cola Report for recount2:SRP058773

Date: 2019-12-26 01:02:58 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 4352   52

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:pam 2 1.000 0.968 0.985 **
MAD:hclust 2 1.000 0.979 0.989 **
MAD:kmeans 2 1.000 0.991 0.995 **
MAD:pam 2 1.000 0.992 0.996 **
ATC:kmeans 2 1.000 0.964 0.986 **
ATC:hclust 2 0.959 0.965 0.984 **
ATC:skmeans 2 0.959 0.942 0.976 **
CV:skmeans 2 0.957 0.955 0.980 **
MAD:skmeans 3 0.928 0.928 0.961 * 2
SD:kmeans 2 0.919 0.949 0.979 *
CV:kmeans 2 0.919 0.937 0.972 *
ATC:pam 3 0.904 0.882 0.946 * 2
SD:skmeans 2 0.880 0.897 0.959
CV:mclust 2 0.880 0.919 0.965
SD:hclust 2 0.839 0.913 0.960
CV:pam 2 0.710 0.894 0.940
ATC:NMF 3 0.681 0.795 0.896
MAD:NMF 2 0.654 0.831 0.913
ATC:mclust 2 0.571 0.840 0.898
CV:NMF 2 0.559 0.764 0.901
SD:mclust 4 0.543 0.656 0.781
MAD:mclust 3 0.476 0.787 0.856
CV:hclust 2 0.295 0.732 0.849
SD:NMF 2 0.149 0.759 0.814

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.149           0.759       0.814          0.456 0.497   0.497
#> CV:NMF      2 0.559           0.764       0.901          0.505 0.493   0.493
#> MAD:NMF     2 0.654           0.831       0.913          0.471 0.517   0.517
#> ATC:NMF     2 0.560           0.775       0.904          0.497 0.491   0.491
#> SD:skmeans  2 0.880           0.897       0.959          0.495 0.497   0.497
#> CV:skmeans  2 0.957           0.955       0.980          0.510 0.491   0.491
#> MAD:skmeans 2 1.000           0.986       0.993          0.498 0.502   0.502
#> ATC:skmeans 2 0.959           0.942       0.976          0.499 0.502   0.502
#> SD:mclust   2 0.200           0.518       0.705          0.437 0.538   0.538
#> CV:mclust   2 0.880           0.919       0.965          0.448 0.538   0.538
#> MAD:mclust  2 0.277           0.740       0.806          0.427 0.581   0.581
#> ATC:mclust  2 0.571           0.840       0.898          0.475 0.491   0.491
#> SD:kmeans   2 0.919           0.949       0.979          0.445 0.566   0.566
#> CV:kmeans   2 0.919           0.937       0.972          0.508 0.491   0.491
#> MAD:kmeans  2 1.000           0.991       0.995          0.423 0.581   0.581
#> ATC:kmeans  2 1.000           0.964       0.986          0.444 0.566   0.566
#> SD:pam      2 1.000           0.968       0.985          0.423 0.566   0.566
#> CV:pam      2 0.710           0.894       0.940          0.459 0.509   0.509
#> MAD:pam     2 1.000           0.992       0.996          0.422 0.581   0.581
#> ATC:pam     2 1.000           0.996       0.998          0.421 0.581   0.581
#> SD:hclust   2 0.839           0.913       0.960          0.420 0.599   0.599
#> CV:hclust   2 0.295           0.732       0.849          0.433 0.509   0.509
#> MAD:hclust  2 1.000           0.979       0.989          0.423 0.581   0.581
#> ATC:hclust  2 0.959           0.965       0.984          0.421 0.581   0.581
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.213           0.550       0.759         0.3243 0.875   0.757
#> CV:NMF      3 0.304           0.515       0.740         0.2752 0.854   0.719
#> MAD:NMF     3 0.428           0.660       0.809         0.3170 0.868   0.745
#> ATC:NMF     3 0.681           0.795       0.896         0.3347 0.688   0.446
#> SD:skmeans  3 0.694           0.775       0.899         0.3040 0.775   0.581
#> CV:skmeans  3 0.591           0.682       0.840         0.2849 0.784   0.584
#> MAD:skmeans 3 0.928           0.928       0.961         0.3366 0.784   0.588
#> ATC:skmeans 3 0.741           0.842       0.915         0.2944 0.803   0.624
#> SD:mclust   3 0.349           0.646       0.799         0.4721 0.713   0.501
#> CV:mclust   3 0.514           0.742       0.841         0.4195 0.756   0.558
#> MAD:mclust  3 0.476           0.787       0.856         0.5061 0.742   0.556
#> ATC:mclust  3 0.492           0.665       0.753         0.3461 0.652   0.404
#> SD:kmeans   3 0.648           0.738       0.859         0.4374 0.753   0.571
#> CV:kmeans   3 0.636           0.692       0.862         0.2969 0.811   0.630
#> MAD:kmeans  3 0.638           0.633       0.778         0.5362 0.744   0.559
#> ATC:kmeans  3 0.689           0.835       0.899         0.4806 0.762   0.587
#> SD:pam      3 0.828           0.924       0.956         0.1968 0.912   0.845
#> CV:pam      3 0.679           0.826       0.899         0.4213 0.697   0.466
#> MAD:pam     3 0.929           0.925       0.966         0.0947 0.973   0.953
#> ATC:pam     3 0.904           0.882       0.946         0.3556 0.778   0.634
#> SD:hclust   3 0.670           0.692       0.870         0.2474 0.934   0.892
#> CV:hclust   3 0.378           0.571       0.787         0.2815 0.949   0.899
#> MAD:hclust  3 0.656           0.603       0.775         0.5039 0.784   0.629
#> ATC:hclust  3 0.710           0.855       0.918         0.5016 0.784   0.629
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.267           0.451       0.689         0.1167 0.923   0.815
#> CV:NMF      4 0.326           0.369       0.640         0.1301 0.888   0.728
#> MAD:NMF     4 0.407           0.559       0.753         0.1103 0.974   0.934
#> ATC:NMF     4 0.569           0.734       0.802         0.0832 0.976   0.928
#> SD:skmeans  4 0.590           0.682       0.820         0.0988 0.941   0.834
#> CV:skmeans  4 0.529           0.553       0.756         0.1036 0.879   0.673
#> MAD:skmeans 4 0.685           0.715       0.840         0.0895 0.922   0.767
#> ATC:skmeans 4 0.793           0.786       0.909         0.1121 0.873   0.667
#> SD:mclust   4 0.543           0.656       0.781         0.1379 0.798   0.471
#> CV:mclust   4 0.490           0.561       0.780         0.0881 0.938   0.821
#> MAD:mclust  4 0.638           0.428       0.733         0.1428 0.807   0.495
#> ATC:mclust  4 0.668           0.733       0.797         0.1373 0.830   0.542
#> SD:kmeans   4 0.661           0.749       0.815         0.1367 0.923   0.781
#> CV:kmeans   4 0.730           0.695       0.835         0.1076 0.867   0.638
#> MAD:kmeans  4 0.769           0.843       0.887         0.1369 0.889   0.674
#> ATC:kmeans  4 0.822           0.818       0.904         0.1196 0.883   0.672
#> SD:pam      4 0.855           0.898       0.960         0.0392 0.989   0.978
#> CV:pam      4 0.642           0.806       0.876         0.0127 1.000   1.000
#> MAD:pam     4 0.883           0.877       0.948         0.0416 1.000   1.000
#> ATC:pam     4 0.805           0.801       0.897         0.0703 0.980   0.951
#> SD:hclust   4 0.567           0.789       0.865         0.1412 0.890   0.802
#> CV:hclust   4 0.411           0.517       0.744         0.1183 0.851   0.691
#> MAD:hclust  4 0.617           0.672       0.801         0.0561 0.825   0.595
#> ATC:hclust  4 0.712           0.782       0.874         0.1184 0.921   0.784
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.337           0.390       0.653         0.0657 0.969   0.912
#> CV:NMF      5 0.382           0.314       0.579         0.0689 0.971   0.907
#> MAD:NMF     5 0.470           0.514       0.690         0.0498 0.906   0.757
#> ATC:NMF     5 0.523           0.533       0.739         0.0543 0.967   0.899
#> SD:skmeans  5 0.581           0.568       0.770         0.0522 0.943   0.819
#> CV:skmeans  5 0.526           0.470       0.692         0.0588 0.965   0.883
#> MAD:skmeans 5 0.625           0.581       0.781         0.0482 0.983   0.937
#> ATC:skmeans 5 0.736           0.590       0.821         0.0439 0.974   0.912
#> SD:mclust   5 0.611           0.699       0.792         0.0658 0.956   0.816
#> CV:mclust   5 0.670           0.639       0.769         0.0835 0.902   0.695
#> MAD:mclust  5 0.716           0.709       0.774         0.0670 0.902   0.644
#> ATC:mclust  5 0.776           0.799       0.859         0.0689 0.982   0.925
#> SD:kmeans   5 0.786           0.791       0.857         0.0658 0.929   0.757
#> CV:kmeans   5 0.762           0.718       0.843         0.0546 0.905   0.668
#> MAD:kmeans  5 0.740           0.773       0.835         0.0529 1.000   1.000
#> ATC:kmeans  5 0.782           0.441       0.780         0.0619 0.928   0.752
#> SD:pam      5 0.889           0.890       0.966         0.0121 0.990   0.979
#> CV:pam      5 0.602           0.646       0.856         0.0122 0.980   0.937
#> MAD:pam     5 0.845           0.832       0.933         0.0412 0.974   0.952
#> ATC:pam     5 0.844           0.768       0.896         0.0416 0.989   0.973
#> SD:hclust   5 0.600           0.702       0.846         0.0696 0.990   0.978
#> CV:hclust   5 0.513           0.543       0.747         0.0577 0.938   0.835
#> MAD:hclust  5 0.634           0.496       0.777         0.0432 0.964   0.888
#> ATC:hclust  5 0.734           0.766       0.861         0.0452 1.000   1.000
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.385           0.347       0.613        0.04490 0.928   0.793
#> CV:NMF      6 0.435           0.267       0.521        0.04668 0.911   0.715
#> MAD:NMF     6 0.497           0.486       0.670        0.04112 0.971   0.911
#> ATC:NMF     6 0.534           0.384       0.675        0.03697 0.947   0.823
#> SD:skmeans  6 0.601           0.595       0.733        0.03830 0.966   0.883
#> CV:skmeans  6 0.536           0.422       0.633        0.04208 0.943   0.799
#> MAD:skmeans 6 0.643           0.557       0.742        0.03380 0.974   0.896
#> ATC:skmeans 6 0.738           0.560       0.781        0.02919 0.968   0.885
#> SD:mclust   6 0.679           0.666       0.755        0.03910 1.000   1.000
#> CV:mclust   6 0.719           0.681       0.818        0.04517 0.952   0.810
#> MAD:mclust  6 0.794           0.692       0.813        0.04539 0.975   0.888
#> ATC:mclust  6 0.807           0.721       0.824        0.04757 0.950   0.788
#> SD:kmeans   6 0.780           0.620       0.772        0.03401 0.952   0.796
#> CV:kmeans   6 0.820           0.697       0.830        0.02678 0.977   0.894
#> MAD:kmeans  6 0.742           0.747       0.798        0.03668 0.956   0.823
#> ATC:kmeans  6 0.826           0.886       0.874        0.03920 0.876   0.545
#> SD:pam      6 0.885           0.851       0.947        0.00974 1.000   1.000
#> CV:pam      6 0.570           0.645       0.845        0.01130 0.986   0.955
#> MAD:pam     6 0.785           0.755       0.927        0.03636 0.964   0.931
#> ATC:pam     6 0.849           0.814       0.903        0.01282 0.988   0.969
#> SD:hclust   6 0.611           0.687       0.817        0.04409 0.982   0.960
#> CV:hclust   6 0.573           0.554       0.718        0.04780 0.895   0.707
#> MAD:hclust  6 0.623           0.494       0.775        0.02637 0.962   0.868
#> ATC:hclust  6 0.741           0.708       0.841        0.01565 0.997   0.989

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 435, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 870, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 1306, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 1741, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 2176, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 435, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 870, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 1306, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 1741, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 2176, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 435)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 870)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 1306)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 1741)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 2176)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.839           0.913       0.960         0.4201 0.599   0.599
#> 3 3 0.670           0.692       0.870         0.2474 0.934   0.892
#> 4 4 0.567           0.789       0.865         0.1412 0.890   0.802
#> 5 5 0.600           0.702       0.846         0.0696 0.990   0.978
#> 6 6 0.611           0.687       0.817         0.0441 0.982   0.960

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.968 1.000 0.000
#> SRR2042653     1  0.0938      0.967 0.988 0.012
#> SRR2042652     1  0.0000      0.968 1.000 0.000
#> SRR2042650     1  0.5294      0.886 0.880 0.120
#> SRR2042649     2  0.0376      0.952 0.004 0.996
#> SRR2042647     2  0.0000      0.954 0.000 1.000
#> SRR2042648     2  0.0000      0.954 0.000 1.000
#> SRR2042646     2  0.6247      0.822 0.156 0.844
#> SRR2042645     2  0.0000      0.954 0.000 1.000
#> SRR2042644     2  0.0000      0.954 0.000 1.000
#> SRR2042643     2  0.9977      0.118 0.472 0.528
#> SRR2042642     2  0.0000      0.954 0.000 1.000
#> SRR2042640     2  0.0000      0.954 0.000 1.000
#> SRR2042641     2  0.0000      0.954 0.000 1.000
#> SRR2042639     2  0.0000      0.954 0.000 1.000
#> SRR2042638     2  0.0000      0.954 0.000 1.000
#> SRR2042637     2  0.0938      0.948 0.012 0.988
#> SRR2042636     2  0.2043      0.933 0.032 0.968
#> SRR2042634     2  0.1633      0.939 0.024 0.976
#> SRR2042635     2  0.0000      0.954 0.000 1.000
#> SRR2042633     2  0.0376      0.952 0.004 0.996
#> SRR2042631     2  0.0000      0.954 0.000 1.000
#> SRR2042632     2  0.1184      0.945 0.016 0.984
#> SRR2042630     2  0.0000      0.954 0.000 1.000
#> SRR2042629     2  0.0000      0.954 0.000 1.000
#> SRR2042628     2  0.6343      0.818 0.160 0.840
#> SRR2042626     2  0.0000      0.954 0.000 1.000
#> SRR2042627     1  0.1633      0.965 0.976 0.024
#> SRR2042624     2  0.6148      0.826 0.152 0.848
#> SRR2042625     1  0.2778      0.955 0.952 0.048
#> SRR2042623     1  0.0000      0.968 1.000 0.000
#> SRR2042622     1  0.0000      0.968 1.000 0.000
#> SRR2042620     2  0.0000      0.954 0.000 1.000
#> SRR2042621     2  0.6048      0.830 0.148 0.852
#> SRR2042619     2  0.0000      0.954 0.000 1.000
#> SRR2042618     2  0.0000      0.954 0.000 1.000
#> SRR2042617     1  0.2778      0.955 0.952 0.048
#> SRR2042616     2  0.0000      0.954 0.000 1.000
#> SRR2042615     2  0.0000      0.954 0.000 1.000
#> SRR2042614     2  0.0000      0.954 0.000 1.000
#> SRR2042613     2  0.0672      0.950 0.008 0.992
#> SRR2042612     1  0.4022      0.924 0.920 0.080
#> SRR2042610     1  0.3879      0.932 0.924 0.076
#> SRR2042611     2  0.0000      0.954 0.000 1.000
#> SRR2042607     2  0.0000      0.954 0.000 1.000
#> SRR2042609     1  0.0000      0.968 1.000 0.000
#> SRR2042608     2  0.0000      0.954 0.000 1.000
#> SRR2042656     2  0.0000      0.954 0.000 1.000
#> SRR2042658     2  0.9896      0.264 0.440 0.560
#> SRR2042659     1  0.0000      0.968 1.000 0.000
#> SRR2042657     2  0.2423      0.927 0.040 0.960
#> SRR2042655     1  0.0376      0.968 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000     0.8299 1.000 0.000 0.000
#> SRR2042653     1  0.1031     0.8266 0.976 0.000 0.024
#> SRR2042652     1  0.0000     0.8299 1.000 0.000 0.000
#> SRR2042650     1  0.5863     0.6277 0.796 0.084 0.120
#> SRR2042649     2  0.2261     0.8115 0.000 0.932 0.068
#> SRR2042647     2  0.3879     0.7503 0.000 0.848 0.152
#> SRR2042648     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042646     2  0.7912     0.0427 0.060 0.536 0.404
#> SRR2042645     2  0.3816     0.7536 0.000 0.852 0.148
#> SRR2042644     2  0.1031     0.8299 0.000 0.976 0.024
#> SRR2042643     3  0.9531     0.0000 0.308 0.216 0.476
#> SRR2042642     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042640     2  0.1163     0.8265 0.000 0.972 0.028
#> SRR2042641     2  0.1964     0.8171 0.000 0.944 0.056
#> SRR2042639     2  0.1031     0.8299 0.000 0.976 0.024
#> SRR2042638     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042637     2  0.2796     0.7927 0.000 0.908 0.092
#> SRR2042636     2  0.4654     0.6866 0.000 0.792 0.208
#> SRR2042634     2  0.4504     0.7064 0.000 0.804 0.196
#> SRR2042635     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042633     2  0.2537     0.8032 0.000 0.920 0.080
#> SRR2042631     2  0.3879     0.7503 0.000 0.848 0.152
#> SRR2042632     2  0.2625     0.7997 0.000 0.916 0.084
#> SRR2042630     2  0.1964     0.8171 0.000 0.944 0.056
#> SRR2042629     2  0.3879     0.7503 0.000 0.848 0.152
#> SRR2042628     2  0.7990     0.0232 0.064 0.532 0.404
#> SRR2042626     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042627     1  0.2384     0.8164 0.936 0.008 0.056
#> SRR2042624     2  0.7831     0.0570 0.056 0.540 0.404
#> SRR2042625     1  0.3769     0.7809 0.880 0.016 0.104
#> SRR2042623     1  0.0000     0.8299 1.000 0.000 0.000
#> SRR2042622     1  0.0000     0.8299 1.000 0.000 0.000
#> SRR2042620     2  0.3879     0.7503 0.000 0.848 0.152
#> SRR2042621     2  0.7901     0.0545 0.060 0.540 0.400
#> SRR2042619     2  0.3941     0.7489 0.000 0.844 0.156
#> SRR2042618     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042617     1  0.4045     0.7759 0.872 0.024 0.104
#> SRR2042616     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042615     2  0.0237     0.8340 0.000 0.996 0.004
#> SRR2042614     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042613     2  0.2448     0.8068 0.000 0.924 0.076
#> SRR2042612     1  0.3941     0.6970 0.844 0.000 0.156
#> SRR2042610     1  0.6597     0.5380 0.696 0.036 0.268
#> SRR2042611     2  0.0000     0.8345 0.000 1.000 0.000
#> SRR2042607     2  0.3879     0.7503 0.000 0.848 0.152
#> SRR2042609     1  0.0000     0.8299 1.000 0.000 0.000
#> SRR2042608     2  0.2165     0.8138 0.000 0.936 0.064
#> SRR2042656     2  0.0592     0.8322 0.000 0.988 0.012
#> SRR2042658     1  0.9981    -0.4600 0.364 0.320 0.316
#> SRR2042659     1  0.1964     0.8141 0.944 0.000 0.056
#> SRR2042657     2  0.5016     0.6439 0.000 0.760 0.240
#> SRR2042655     1  0.0592     0.8279 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000      0.876 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.1059      0.873 0.972 0.000 0.012 0.016
#> SRR2042652     1  0.0000      0.876 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.6058      0.690 0.728 0.036 0.076 0.160
#> SRR2042649     2  0.3335      0.811 0.000 0.860 0.120 0.020
#> SRR2042647     2  0.3486      0.806 0.000 0.812 0.000 0.188
#> SRR2042648     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042646     3  0.3913      0.790 0.028 0.148 0.824 0.000
#> SRR2042645     2  0.3895      0.805 0.000 0.804 0.012 0.184
#> SRR2042644     2  0.1722      0.859 0.000 0.944 0.048 0.008
#> SRR2042643     4  0.8030      0.000 0.148 0.028 0.400 0.424
#> SRR2042642     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042640     2  0.1302      0.867 0.000 0.956 0.000 0.044
#> SRR2042641     2  0.2915      0.830 0.000 0.892 0.080 0.028
#> SRR2042639     2  0.1767      0.862 0.000 0.944 0.044 0.012
#> SRR2042638     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042637     2  0.3790      0.763 0.000 0.820 0.164 0.016
#> SRR2042636     2  0.5267      0.721 0.000 0.712 0.048 0.240
#> SRR2042634     2  0.5321      0.722 0.000 0.716 0.056 0.228
#> SRR2042635     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042633     2  0.3708      0.783 0.000 0.832 0.148 0.020
#> SRR2042631     2  0.3486      0.806 0.000 0.812 0.000 0.188
#> SRR2042632     2  0.3658      0.788 0.000 0.836 0.144 0.020
#> SRR2042630     2  0.2845      0.832 0.000 0.896 0.076 0.028
#> SRR2042629     2  0.3486      0.806 0.000 0.812 0.000 0.188
#> SRR2042628     3  0.3781      0.783 0.028 0.124 0.844 0.004
#> SRR2042626     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042627     1  0.2669      0.858 0.912 0.004 0.032 0.052
#> SRR2042624     3  0.3659      0.798 0.024 0.136 0.840 0.000
#> SRR2042625     1  0.4144      0.793 0.816 0.004 0.028 0.152
#> SRR2042623     1  0.0000      0.876 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.876 1.000 0.000 0.000 0.000
#> SRR2042620     2  0.3486      0.806 0.000 0.812 0.000 0.188
#> SRR2042621     3  0.4188      0.789 0.028 0.144 0.820 0.008
#> SRR2042619     2  0.3668      0.804 0.000 0.808 0.004 0.188
#> SRR2042618     2  0.0188      0.873 0.000 0.996 0.004 0.000
#> SRR2042617     1  0.4254      0.810 0.828 0.004 0.064 0.104
#> SRR2042616     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042615     2  0.0336      0.873 0.000 0.992 0.008 0.000
#> SRR2042614     2  0.0188      0.873 0.000 0.996 0.004 0.000
#> SRR2042613     2  0.3547      0.786 0.000 0.840 0.144 0.016
#> SRR2042612     1  0.4805      0.683 0.784 0.000 0.084 0.132
#> SRR2042610     1  0.6161      0.377 0.552 0.004 0.044 0.400
#> SRR2042611     2  0.0000      0.874 0.000 1.000 0.000 0.000
#> SRR2042607     2  0.3486      0.806 0.000 0.812 0.000 0.188
#> SRR2042609     1  0.0000      0.876 1.000 0.000 0.000 0.000
#> SRR2042608     2  0.3051      0.826 0.000 0.884 0.088 0.028
#> SRR2042656     2  0.0469      0.873 0.000 0.988 0.000 0.012
#> SRR2042658     3  0.6856      0.232 0.316 0.064 0.592 0.028
#> SRR2042659     1  0.2282      0.856 0.924 0.000 0.052 0.024
#> SRR2042657     2  0.4903      0.739 0.000 0.724 0.028 0.248
#> SRR2042655     1  0.0804      0.875 0.980 0.000 0.012 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.7868 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.1278     0.7747 0.960 0.000 0.004 0.020 0.016
#> SRR2042652     1  0.0000     0.7868 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.5817     0.2341 0.696 0.024 0.068 0.028 0.184
#> SRR2042649     2  0.3759     0.7532 0.000 0.808 0.136 0.000 0.056
#> SRR2042647     2  0.3730     0.7155 0.000 0.712 0.000 0.000 0.288
#> SRR2042648     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042646     3  0.1644     0.8378 0.000 0.048 0.940 0.004 0.008
#> SRR2042645     2  0.4252     0.7127 0.000 0.700 0.020 0.000 0.280
#> SRR2042644     2  0.1697     0.8184 0.000 0.932 0.060 0.000 0.008
#> SRR2042643     4  0.4076     0.0000 0.056 0.004 0.108 0.816 0.016
#> SRR2042642     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     2  0.1341     0.8263 0.000 0.944 0.000 0.000 0.056
#> SRR2042641     2  0.3297     0.7763 0.000 0.848 0.084 0.000 0.068
#> SRR2042639     2  0.1740     0.8211 0.000 0.932 0.056 0.000 0.012
#> SRR2042638     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042637     2  0.3882     0.7298 0.000 0.788 0.168 0.000 0.044
#> SRR2042636     2  0.6087     0.6230 0.000 0.624 0.024 0.124 0.228
#> SRR2042634     2  0.5995     0.6210 0.000 0.620 0.036 0.076 0.268
#> SRR2042635     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     2  0.3723     0.7503 0.000 0.804 0.152 0.000 0.044
#> SRR2042631     2  0.3730     0.7155 0.000 0.712 0.000 0.000 0.288
#> SRR2042632     2  0.4010     0.7292 0.000 0.784 0.160 0.000 0.056
#> SRR2042630     2  0.3119     0.7838 0.000 0.860 0.072 0.000 0.068
#> SRR2042629     2  0.3730     0.7155 0.000 0.712 0.000 0.000 0.288
#> SRR2042628     3  0.1412     0.8362 0.004 0.036 0.952 0.008 0.000
#> SRR2042626     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042627     1  0.3007     0.7213 0.884 0.000 0.044 0.028 0.044
#> SRR2042624     3  0.1043     0.8431 0.000 0.040 0.960 0.000 0.000
#> SRR2042625     1  0.4109     0.5036 0.784 0.000 0.020 0.024 0.172
#> SRR2042623     1  0.0000     0.7868 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.7868 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.3730     0.7155 0.000 0.712 0.000 0.000 0.288
#> SRR2042621     3  0.1857     0.8247 0.004 0.060 0.928 0.008 0.000
#> SRR2042619     2  0.3884     0.7134 0.000 0.708 0.004 0.000 0.288
#> SRR2042618     2  0.0162     0.8360 0.000 0.996 0.004 0.000 0.000
#> SRR2042617     1  0.4440     0.5721 0.792 0.000 0.072 0.028 0.108
#> SRR2042616     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042615     2  0.0290     0.8354 0.000 0.992 0.008 0.000 0.000
#> SRR2042614     2  0.0162     0.8360 0.000 0.996 0.004 0.000 0.000
#> SRR2042613     2  0.3536     0.7484 0.000 0.812 0.156 0.000 0.032
#> SRR2042612     1  0.5980    -0.0889 0.576 0.000 0.016 0.320 0.088
#> SRR2042610     5  0.4798     0.0000 0.440 0.000 0.020 0.000 0.540
#> SRR2042611     2  0.0000     0.8362 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     2  0.3730     0.7155 0.000 0.712 0.000 0.000 0.288
#> SRR2042609     1  0.0000     0.7868 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.3622     0.7655 0.000 0.832 0.096 0.004 0.068
#> SRR2042656     2  0.0609     0.8345 0.000 0.980 0.000 0.000 0.020
#> SRR2042658     3  0.6317     0.4089 0.200 0.008 0.644 0.104 0.044
#> SRR2042659     1  0.2304     0.7236 0.908 0.000 0.068 0.004 0.020
#> SRR2042657     2  0.5670     0.6510 0.000 0.636 0.008 0.108 0.248
#> SRR2042655     1  0.0960     0.7816 0.972 0.000 0.008 0.016 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR2042654     1  0.0000     0.8111 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2042653     1  0.1605     0.8006 0.940 0.000 0.000 0.016 0.032 NA
#> SRR2042652     1  0.0000     0.8111 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2042650     1  0.4994     0.5772 0.660 0.008 0.020 0.004 0.040 NA
#> SRR2042649     2  0.3840     0.7246 0.000 0.796 0.116 0.004 0.008 NA
#> SRR2042647     2  0.3647     0.6304 0.000 0.640 0.000 0.000 0.000 NA
#> SRR2042648     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042646     3  0.1218     0.8520 0.000 0.028 0.956 0.000 0.004 NA
#> SRR2042645     2  0.4521     0.5979 0.000 0.596 0.004 0.004 0.024 NA
#> SRR2042644     2  0.1745     0.7863 0.000 0.924 0.056 0.000 0.000 NA
#> SRR2042643     4  0.1391     0.0000 0.016 0.000 0.040 0.944 0.000 NA
#> SRR2042642     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042640     2  0.1267     0.7922 0.000 0.940 0.000 0.000 0.000 NA
#> SRR2042641     2  0.3432     0.7461 0.000 0.836 0.060 0.004 0.016 NA
#> SRR2042639     2  0.1765     0.7887 0.000 0.924 0.052 0.000 0.000 NA
#> SRR2042638     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042637     2  0.4002     0.6993 0.000 0.768 0.152 0.000 0.008 NA
#> SRR2042636     2  0.5749     0.4888 0.000 0.528 0.004 0.096 0.020 NA
#> SRR2042634     2  0.5417     0.4560 0.000 0.504 0.004 0.040 0.032 NA
#> SRR2042635     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042633     2  0.3743     0.7221 0.000 0.788 0.136 0.000 0.004 NA
#> SRR2042631     2  0.3647     0.6304 0.000 0.640 0.000 0.000 0.000 NA
#> SRR2042632     2  0.4083     0.7018 0.000 0.772 0.140 0.004 0.008 NA
#> SRR2042630     2  0.3299     0.7527 0.000 0.844 0.048 0.004 0.016 NA
#> SRR2042629     2  0.3647     0.6304 0.000 0.640 0.000 0.000 0.000 NA
#> SRR2042628     3  0.1317     0.8513 0.000 0.016 0.956 0.004 0.008 NA
#> SRR2042626     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042627     1  0.3454     0.7711 0.848 0.000 0.020 0.020 0.052 NA
#> SRR2042624     3  0.0458     0.8586 0.000 0.016 0.984 0.000 0.000 NA
#> SRR2042625     1  0.4089     0.6784 0.756 0.000 0.000 0.008 0.068 NA
#> SRR2042623     1  0.0000     0.8111 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2042622     1  0.0000     0.8111 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2042620     2  0.3647     0.6304 0.000 0.640 0.000 0.000 0.000 NA
#> SRR2042621     3  0.1768     0.8408 0.000 0.040 0.932 0.004 0.004 NA
#> SRR2042619     2  0.3782     0.6276 0.000 0.636 0.004 0.000 0.000 NA
#> SRR2042618     2  0.0146     0.8039 0.000 0.996 0.004 0.000 0.000 NA
#> SRR2042617     1  0.4983     0.6838 0.728 0.000 0.028 0.020 0.084 NA
#> SRR2042616     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042615     2  0.0260     0.8034 0.000 0.992 0.008 0.000 0.000 NA
#> SRR2042614     2  0.0146     0.8039 0.000 0.996 0.004 0.000 0.000 NA
#> SRR2042613     2  0.3615     0.7179 0.000 0.796 0.140 0.000 0.004 NA
#> SRR2042612     5  0.5308     0.0000 0.272 0.000 0.016 0.100 0.612 NA
#> SRR2042610     1  0.6572    -0.0919 0.372 0.000 0.000 0.024 0.272 NA
#> SRR2042611     2  0.0000     0.8042 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042607     2  0.3647     0.6304 0.000 0.640 0.000 0.000 0.000 NA
#> SRR2042609     1  0.0000     0.8111 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2042608     2  0.3811     0.7315 0.000 0.812 0.072 0.008 0.016 NA
#> SRR2042656     2  0.0547     0.8022 0.000 0.980 0.000 0.000 0.000 NA
#> SRR2042658     3  0.5169     0.4312 0.080 0.000 0.640 0.004 0.260 NA
#> SRR2042659     1  0.3072     0.7652 0.868 0.000 0.024 0.008 0.052 NA
#> SRR2042657     2  0.5726     0.5224 0.000 0.540 0.000 0.116 0.020 NA
#> SRR2042655     1  0.1409     0.8049 0.948 0.000 0.000 0.012 0.032 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.919           0.949       0.979         0.4449 0.566   0.566
#> 3 3 0.648           0.738       0.859         0.4374 0.753   0.571
#> 4 4 0.661           0.749       0.815         0.1367 0.923   0.781
#> 5 5 0.786           0.791       0.857         0.0658 0.929   0.757
#> 6 6 0.780           0.620       0.772         0.0340 0.952   0.796

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1   0.000      0.989 1.000 0.000
#> SRR2042653     1   0.000      0.989 1.000 0.000
#> SRR2042652     1   0.000      0.989 1.000 0.000
#> SRR2042650     1   0.000      0.989 1.000 0.000
#> SRR2042649     2   0.000      0.972 0.000 1.000
#> SRR2042647     2   0.000      0.972 0.000 1.000
#> SRR2042648     2   0.000      0.972 0.000 1.000
#> SRR2042646     2   0.767      0.720 0.224 0.776
#> SRR2042645     2   0.000      0.972 0.000 1.000
#> SRR2042644     2   0.000      0.972 0.000 1.000
#> SRR2042643     1   0.000      0.989 1.000 0.000
#> SRR2042642     2   0.000      0.972 0.000 1.000
#> SRR2042640     2   0.000      0.972 0.000 1.000
#> SRR2042641     2   0.000      0.972 0.000 1.000
#> SRR2042639     2   0.000      0.972 0.000 1.000
#> SRR2042638     2   0.000      0.972 0.000 1.000
#> SRR2042637     2   0.000      0.972 0.000 1.000
#> SRR2042636     2   0.000      0.972 0.000 1.000
#> SRR2042634     2   0.000      0.972 0.000 1.000
#> SRR2042635     2   0.000      0.972 0.000 1.000
#> SRR2042633     2   0.000      0.972 0.000 1.000
#> SRR2042631     2   0.000      0.972 0.000 1.000
#> SRR2042632     2   0.000      0.972 0.000 1.000
#> SRR2042630     2   0.000      0.972 0.000 1.000
#> SRR2042629     2   0.000      0.972 0.000 1.000
#> SRR2042628     2   0.988      0.256 0.436 0.564
#> SRR2042626     2   0.000      0.972 0.000 1.000
#> SRR2042627     1   0.000      0.989 1.000 0.000
#> SRR2042624     2   0.634      0.809 0.160 0.840
#> SRR2042625     1   0.000      0.989 1.000 0.000
#> SRR2042623     1   0.000      0.989 1.000 0.000
#> SRR2042622     1   0.000      0.989 1.000 0.000
#> SRR2042620     2   0.000      0.972 0.000 1.000
#> SRR2042621     2   0.595      0.829 0.144 0.856
#> SRR2042619     2   0.000      0.972 0.000 1.000
#> SRR2042618     2   0.000      0.972 0.000 1.000
#> SRR2042617     1   0.000      0.989 1.000 0.000
#> SRR2042616     2   0.000      0.972 0.000 1.000
#> SRR2042615     2   0.000      0.972 0.000 1.000
#> SRR2042614     2   0.000      0.972 0.000 1.000
#> SRR2042613     2   0.000      0.972 0.000 1.000
#> SRR2042612     1   0.000      0.989 1.000 0.000
#> SRR2042610     1   0.000      0.989 1.000 0.000
#> SRR2042611     2   0.000      0.972 0.000 1.000
#> SRR2042607     2   0.000      0.972 0.000 1.000
#> SRR2042609     1   0.000      0.989 1.000 0.000
#> SRR2042608     2   0.000      0.972 0.000 1.000
#> SRR2042656     2   0.000      0.972 0.000 1.000
#> SRR2042658     1   0.615      0.810 0.848 0.152
#> SRR2042659     1   0.000      0.989 1.000 0.000
#> SRR2042657     2   0.000      0.972 0.000 1.000
#> SRR2042655     1   0.000      0.989 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000     0.8802 1.000 0.000 0.000
#> SRR2042653     1  0.3116     0.8989 0.892 0.000 0.108
#> SRR2042652     1  0.0000     0.8802 1.000 0.000 0.000
#> SRR2042650     1  0.4887     0.8686 0.772 0.000 0.228
#> SRR2042649     3  0.5810     0.7004 0.000 0.336 0.664
#> SRR2042647     2  0.1411     0.8641 0.000 0.964 0.036
#> SRR2042648     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042646     3  0.1753     0.6815 0.000 0.048 0.952
#> SRR2042645     3  0.6286     0.1585 0.000 0.464 0.536
#> SRR2042644     2  0.6267    -0.2939 0.000 0.548 0.452
#> SRR2042643     1  0.6235     0.6077 0.564 0.000 0.436
#> SRR2042642     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042640     2  0.0892     0.8719 0.000 0.980 0.020
#> SRR2042641     3  0.6095     0.6345 0.000 0.392 0.608
#> SRR2042639     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042638     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042637     3  0.5905     0.6877 0.000 0.352 0.648
#> SRR2042636     2  0.6302    -0.0408 0.000 0.520 0.480
#> SRR2042634     2  0.6302    -0.0071 0.000 0.520 0.480
#> SRR2042635     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042633     3  0.5591     0.7126 0.000 0.304 0.696
#> SRR2042631     2  0.3619     0.7749 0.000 0.864 0.136
#> SRR2042632     3  0.5882     0.6914 0.000 0.348 0.652
#> SRR2042630     2  0.2537     0.7937 0.000 0.920 0.080
#> SRR2042629     2  0.2066     0.8493 0.000 0.940 0.060
#> SRR2042628     3  0.1163     0.6648 0.000 0.028 0.972
#> SRR2042626     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042627     1  0.4291     0.8902 0.820 0.000 0.180
#> SRR2042624     3  0.1163     0.6648 0.000 0.028 0.972
#> SRR2042625     1  0.4121     0.8924 0.832 0.000 0.168
#> SRR2042623     1  0.0000     0.8802 1.000 0.000 0.000
#> SRR2042622     1  0.0000     0.8802 1.000 0.000 0.000
#> SRR2042620     2  0.1289     0.8656 0.000 0.968 0.032
#> SRR2042621     3  0.2261     0.6954 0.000 0.068 0.932
#> SRR2042619     2  0.3752     0.7649 0.000 0.856 0.144
#> SRR2042618     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042617     1  0.4796     0.8736 0.780 0.000 0.220
#> SRR2042616     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042615     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042614     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042613     3  0.5926     0.6840 0.000 0.356 0.644
#> SRR2042612     1  0.5098     0.8478 0.752 0.000 0.248
#> SRR2042610     1  0.4605     0.8813 0.796 0.000 0.204
#> SRR2042611     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042607     2  0.1860     0.8553 0.000 0.948 0.052
#> SRR2042609     1  0.0000     0.8802 1.000 0.000 0.000
#> SRR2042608     3  0.5431     0.7171 0.000 0.284 0.716
#> SRR2042656     2  0.0000     0.8806 0.000 1.000 0.000
#> SRR2042658     3  0.1315     0.6372 0.020 0.008 0.972
#> SRR2042659     1  0.2261     0.8948 0.932 0.000 0.068
#> SRR2042657     3  0.6204     0.2495 0.000 0.424 0.576
#> SRR2042655     1  0.3192     0.8989 0.888 0.000 0.112

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.5355     0.6635 0.620 0.000 0.020 0.360
#> SRR2042653     1  0.0707     0.7367 0.980 0.000 0.000 0.020
#> SRR2042652     1  0.5355     0.6635 0.620 0.000 0.020 0.360
#> SRR2042650     1  0.3810     0.6371 0.804 0.000 0.008 0.188
#> SRR2042649     3  0.2401     0.8842 0.000 0.092 0.904 0.004
#> SRR2042647     2  0.4086     0.6738 0.000 0.776 0.008 0.216
#> SRR2042648     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042646     3  0.2718     0.8526 0.056 0.012 0.912 0.020
#> SRR2042645     4  0.8462     0.8479 0.096 0.188 0.172 0.544
#> SRR2042644     3  0.4673     0.6025 0.000 0.292 0.700 0.008
#> SRR2042643     1  0.6031     0.1763 0.564 0.000 0.048 0.388
#> SRR2042642     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042640     2  0.1474     0.8324 0.000 0.948 0.000 0.052
#> SRR2042641     3  0.3392     0.8465 0.000 0.124 0.856 0.020
#> SRR2042639     2  0.1452     0.8385 0.000 0.956 0.036 0.008
#> SRR2042638     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042637     3  0.2401     0.8842 0.000 0.092 0.904 0.004
#> SRR2042636     4  0.7892     0.8932 0.096 0.176 0.124 0.604
#> SRR2042634     4  0.7772     0.8652 0.168 0.140 0.080 0.612
#> SRR2042635     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042633     3  0.2473     0.8813 0.000 0.080 0.908 0.012
#> SRR2042631     2  0.6285     0.0952 0.000 0.528 0.060 0.412
#> SRR2042632     3  0.2216     0.8843 0.000 0.092 0.908 0.000
#> SRR2042630     2  0.3757     0.6872 0.000 0.828 0.152 0.020
#> SRR2042629     2  0.4420     0.6366 0.000 0.748 0.012 0.240
#> SRR2042628     3  0.2596     0.8404 0.068 0.000 0.908 0.024
#> SRR2042626     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042627     1  0.2737     0.7037 0.888 0.000 0.008 0.104
#> SRR2042624     3  0.2413     0.8457 0.064 0.000 0.916 0.020
#> SRR2042625     1  0.1940     0.7175 0.924 0.000 0.000 0.076
#> SRR2042623     1  0.5355     0.6635 0.620 0.000 0.020 0.360
#> SRR2042622     1  0.5306     0.6677 0.632 0.000 0.020 0.348
#> SRR2042620     2  0.2814     0.7702 0.000 0.868 0.000 0.132
#> SRR2042621     3  0.2757     0.8547 0.052 0.016 0.912 0.020
#> SRR2042619     2  0.6130     0.1614 0.000 0.548 0.052 0.400
#> SRR2042618     2  0.0469     0.8509 0.000 0.988 0.012 0.000
#> SRR2042617     1  0.3591     0.6576 0.824 0.000 0.008 0.168
#> SRR2042616     2  0.0707     0.8501 0.000 0.980 0.020 0.000
#> SRR2042615     2  0.0707     0.8501 0.000 0.980 0.020 0.000
#> SRR2042614     2  0.1211     0.8406 0.000 0.960 0.040 0.000
#> SRR2042613     3  0.2610     0.8824 0.000 0.088 0.900 0.012
#> SRR2042612     1  0.2522     0.7069 0.908 0.000 0.076 0.016
#> SRR2042610     1  0.3196     0.6847 0.856 0.000 0.008 0.136
#> SRR2042611     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042607     2  0.4900     0.6277 0.000 0.732 0.032 0.236
#> SRR2042609     1  0.5355     0.6635 0.620 0.000 0.020 0.360
#> SRR2042608     3  0.2882     0.8729 0.000 0.084 0.892 0.024
#> SRR2042656     2  0.0000     0.8560 0.000 1.000 0.000 0.000
#> SRR2042658     3  0.2563     0.8425 0.072 0.000 0.908 0.020
#> SRR2042659     1  0.2999     0.7276 0.864 0.000 0.004 0.132
#> SRR2042657     4  0.7872     0.8730 0.144 0.108 0.136 0.612
#> SRR2042655     1  0.1637     0.7373 0.940 0.000 0.000 0.060

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     5  0.0000      0.991 0.000 0.000 0.000 0.000 1.000
#> SRR2042653     1  0.4066      0.824 0.672 0.000 0.004 0.000 0.324
#> SRR2042652     5  0.0000      0.991 0.000 0.000 0.000 0.000 1.000
#> SRR2042650     1  0.5428      0.823 0.668 0.000 0.008 0.100 0.224
#> SRR2042649     3  0.2864      0.827 0.008 0.044 0.884 0.064 0.000
#> SRR2042647     2  0.4030      0.424 0.000 0.648 0.000 0.352 0.000
#> SRR2042648     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042646     3  0.3399      0.778 0.172 0.004 0.812 0.012 0.000
#> SRR2042645     4  0.1743      0.878 0.004 0.028 0.028 0.940 0.000
#> SRR2042644     3  0.5203      0.563 0.000 0.272 0.648 0.080 0.000
#> SRR2042643     1  0.5764      0.538 0.660 0.000 0.048 0.232 0.060
#> SRR2042642     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     2  0.1043      0.848 0.000 0.960 0.000 0.040 0.000
#> SRR2042641     3  0.4220      0.796 0.028 0.052 0.804 0.116 0.000
#> SRR2042639     2  0.1628      0.830 0.000 0.936 0.008 0.056 0.000
#> SRR2042638     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042637     3  0.2645      0.827 0.000 0.044 0.888 0.068 0.000
#> SRR2042636     4  0.1954      0.882 0.028 0.032 0.008 0.932 0.000
#> SRR2042634     4  0.1996      0.877 0.036 0.032 0.004 0.928 0.000
#> SRR2042635     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     3  0.3365      0.809 0.000 0.044 0.836 0.120 0.000
#> SRR2042631     4  0.3010      0.803 0.000 0.172 0.004 0.824 0.000
#> SRR2042632     3  0.2740      0.827 0.004 0.044 0.888 0.064 0.000
#> SRR2042630     2  0.6023      0.430 0.024 0.636 0.212 0.128 0.000
#> SRR2042629     2  0.4161      0.330 0.000 0.608 0.000 0.392 0.000
#> SRR2042628     3  0.3280      0.774 0.176 0.000 0.812 0.012 0.000
#> SRR2042626     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042627     1  0.4170      0.846 0.712 0.000 0.004 0.012 0.272
#> SRR2042624     3  0.3203      0.775 0.168 0.000 0.820 0.012 0.000
#> SRR2042625     1  0.4456      0.846 0.716 0.000 0.004 0.032 0.248
#> SRR2042623     5  0.0000      0.991 0.000 0.000 0.000 0.000 1.000
#> SRR2042622     5  0.0703      0.961 0.024 0.000 0.000 0.000 0.976
#> SRR2042620     2  0.2377      0.770 0.000 0.872 0.000 0.128 0.000
#> SRR2042621     3  0.3280      0.779 0.160 0.004 0.824 0.012 0.000
#> SRR2042619     4  0.3579      0.703 0.000 0.240 0.004 0.756 0.000
#> SRR2042618     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042617     1  0.5105      0.844 0.688 0.000 0.012 0.060 0.240
#> SRR2042616     2  0.0404      0.865 0.000 0.988 0.012 0.000 0.000
#> SRR2042615     2  0.0290      0.866 0.000 0.992 0.008 0.000 0.000
#> SRR2042614     2  0.1195      0.849 0.000 0.960 0.012 0.028 0.000
#> SRR2042613     3  0.3270      0.819 0.004 0.044 0.852 0.100 0.000
#> SRR2042612     1  0.5361      0.787 0.664 0.000 0.064 0.016 0.256
#> SRR2042610     1  0.5274      0.840 0.664 0.000 0.008 0.072 0.256
#> SRR2042611     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     2  0.4291      0.122 0.000 0.536 0.000 0.464 0.000
#> SRR2042609     5  0.0000      0.991 0.000 0.000 0.000 0.000 1.000
#> SRR2042608     3  0.4192      0.792 0.028 0.040 0.800 0.132 0.000
#> SRR2042656     2  0.0000      0.869 0.000 1.000 0.000 0.000 0.000
#> SRR2042658     3  0.3280      0.776 0.176 0.000 0.812 0.012 0.000
#> SRR2042659     1  0.4698      0.628 0.520 0.000 0.004 0.008 0.468
#> SRR2042657     4  0.2599      0.866 0.044 0.028 0.024 0.904 0.000
#> SRR2042655     1  0.4182      0.803 0.644 0.000 0.004 0.000 0.352

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     6  0.2597     0.9857 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR2042653     1  0.1511     0.7865 0.940 0.000 0.004 0.000 0.012 0.044
#> SRR2042652     6  0.2597     0.9857 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR2042650     1  0.3049     0.7833 0.844 0.000 0.000 0.048 0.104 0.004
#> SRR2042649     3  0.4740     0.1145 0.000 0.008 0.524 0.032 0.436 0.000
#> SRR2042647     2  0.3756     0.2509 0.000 0.600 0.000 0.400 0.000 0.000
#> SRR2042648     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042646     3  0.0000     0.5062 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2042645     4  0.1649     0.7812 0.000 0.008 0.000 0.936 0.040 0.016
#> SRR2042644     3  0.6568    -0.1788 0.000 0.200 0.384 0.036 0.380 0.000
#> SRR2042643     1  0.7348     0.3581 0.420 0.000 0.024 0.132 0.324 0.100
#> SRR2042642     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     2  0.1594     0.8710 0.000 0.932 0.000 0.052 0.016 0.000
#> SRR2042641     5  0.6008    -0.0385 0.000 0.008 0.432 0.076 0.448 0.036
#> SRR2042639     2  0.1633     0.8653 0.000 0.932 0.000 0.044 0.024 0.000
#> SRR2042638     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     3  0.4744     0.1091 0.000 0.008 0.520 0.032 0.440 0.000
#> SRR2042636     4  0.1929     0.7804 0.004 0.008 0.000 0.924 0.048 0.016
#> SRR2042634     4  0.1526     0.7851 0.004 0.008 0.000 0.944 0.036 0.008
#> SRR2042635     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     3  0.5417    -0.0354 0.000 0.004 0.472 0.100 0.424 0.000
#> SRR2042631     4  0.2462     0.7679 0.000 0.096 0.000 0.876 0.028 0.000
#> SRR2042632     3  0.4672     0.1308 0.000 0.008 0.532 0.028 0.432 0.000
#> SRR2042630     5  0.6335     0.1338 0.000 0.408 0.012 0.104 0.440 0.036
#> SRR2042629     2  0.4229     0.1116 0.000 0.548 0.000 0.436 0.016 0.000
#> SRR2042628     3  0.0405     0.5039 0.000 0.000 0.988 0.000 0.004 0.008
#> SRR2042626     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042627     1  0.0653     0.7975 0.980 0.000 0.004 0.004 0.012 0.000
#> SRR2042624     3  0.0146     0.5062 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2042625     1  0.2699     0.7935 0.856 0.000 0.000 0.008 0.124 0.012
#> SRR2042623     6  0.2597     0.9857 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR2042622     6  0.2941     0.9400 0.220 0.000 0.000 0.000 0.000 0.780
#> SRR2042620     2  0.2178     0.7892 0.000 0.868 0.000 0.132 0.000 0.000
#> SRR2042621     3  0.0858     0.5054 0.000 0.000 0.968 0.000 0.028 0.004
#> SRR2042619     4  0.3210     0.7193 0.000 0.168 0.000 0.804 0.028 0.000
#> SRR2042618     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042617     1  0.2357     0.7961 0.888 0.000 0.004 0.012 0.092 0.004
#> SRR2042616     2  0.0790     0.8927 0.000 0.968 0.000 0.000 0.032 0.000
#> SRR2042615     2  0.0632     0.8952 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR2042614     2  0.1297     0.8779 0.000 0.948 0.000 0.012 0.040 0.000
#> SRR2042613     3  0.4860     0.0940 0.000 0.008 0.516 0.040 0.436 0.000
#> SRR2042612     1  0.4882     0.6326 0.684 0.000 0.028 0.004 0.232 0.052
#> SRR2042610     1  0.2790     0.7833 0.844 0.000 0.000 0.024 0.132 0.000
#> SRR2042611     2  0.0000     0.9027 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     4  0.4399     0.0388 0.000 0.460 0.000 0.516 0.024 0.000
#> SRR2042609     6  0.2597     0.9857 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR2042608     5  0.6190    -0.0221 0.000 0.008 0.424 0.084 0.440 0.044
#> SRR2042656     2  0.0146     0.9018 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2042658     3  0.1477     0.4878 0.008 0.000 0.940 0.004 0.048 0.000
#> SRR2042659     1  0.3121     0.6606 0.804 0.000 0.004 0.000 0.012 0.180
#> SRR2042657     4  0.2975     0.7467 0.004 0.008 0.000 0.860 0.088 0.040
#> SRR2042655     1  0.1888     0.7733 0.916 0.000 0.004 0.000 0.012 0.068

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.880           0.897       0.959         0.4952 0.497   0.497
#> 3 3 0.694           0.775       0.899         0.3040 0.775   0.581
#> 4 4 0.590           0.682       0.820         0.0988 0.941   0.834
#> 5 5 0.581           0.568       0.770         0.0522 0.943   0.819
#> 6 6 0.601           0.595       0.733         0.0383 0.966   0.883

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.916 1.000 0.000
#> SRR2042653     1  0.0000      0.916 1.000 0.000
#> SRR2042652     1  0.0000      0.916 1.000 0.000
#> SRR2042650     1  0.0000      0.916 1.000 0.000
#> SRR2042649     2  0.0000      0.984 0.000 1.000
#> SRR2042647     2  0.0000      0.984 0.000 1.000
#> SRR2042648     2  0.0000      0.984 0.000 1.000
#> SRR2042646     1  0.7950      0.672 0.760 0.240
#> SRR2042645     1  0.9795      0.340 0.584 0.416
#> SRR2042644     2  0.0000      0.984 0.000 1.000
#> SRR2042643     1  0.0000      0.916 1.000 0.000
#> SRR2042642     2  0.0000      0.984 0.000 1.000
#> SRR2042640     2  0.0000      0.984 0.000 1.000
#> SRR2042641     2  0.0000      0.984 0.000 1.000
#> SRR2042639     2  0.0000      0.984 0.000 1.000
#> SRR2042638     2  0.0000      0.984 0.000 1.000
#> SRR2042637     2  0.0000      0.984 0.000 1.000
#> SRR2042636     2  0.9686      0.248 0.396 0.604
#> SRR2042634     1  0.9661      0.400 0.608 0.392
#> SRR2042635     2  0.0000      0.984 0.000 1.000
#> SRR2042633     2  0.0376      0.980 0.004 0.996
#> SRR2042631     2  0.0000      0.984 0.000 1.000
#> SRR2042632     2  0.0000      0.984 0.000 1.000
#> SRR2042630     2  0.0000      0.984 0.000 1.000
#> SRR2042629     2  0.0000      0.984 0.000 1.000
#> SRR2042628     1  0.0000      0.916 1.000 0.000
#> SRR2042626     2  0.0000      0.984 0.000 1.000
#> SRR2042627     1  0.0000      0.916 1.000 0.000
#> SRR2042624     1  0.0000      0.916 1.000 0.000
#> SRR2042625     1  0.0000      0.916 1.000 0.000
#> SRR2042623     1  0.0000      0.916 1.000 0.000
#> SRR2042622     1  0.0000      0.916 1.000 0.000
#> SRR2042620     2  0.0000      0.984 0.000 1.000
#> SRR2042621     1  0.9833      0.304 0.576 0.424
#> SRR2042619     2  0.0000      0.984 0.000 1.000
#> SRR2042618     2  0.0000      0.984 0.000 1.000
#> SRR2042617     1  0.0000      0.916 1.000 0.000
#> SRR2042616     2  0.0000      0.984 0.000 1.000
#> SRR2042615     2  0.0000      0.984 0.000 1.000
#> SRR2042614     2  0.0000      0.984 0.000 1.000
#> SRR2042613     2  0.0000      0.984 0.000 1.000
#> SRR2042612     1  0.0000      0.916 1.000 0.000
#> SRR2042610     1  0.0000      0.916 1.000 0.000
#> SRR2042611     2  0.0000      0.984 0.000 1.000
#> SRR2042607     2  0.0000      0.984 0.000 1.000
#> SRR2042609     1  0.0000      0.916 1.000 0.000
#> SRR2042608     2  0.0000      0.984 0.000 1.000
#> SRR2042656     2  0.0000      0.984 0.000 1.000
#> SRR2042658     1  0.0000      0.916 1.000 0.000
#> SRR2042659     1  0.0000      0.916 1.000 0.000
#> SRR2042657     1  0.8443      0.631 0.728 0.272
#> SRR2042655     1  0.0000      0.916 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042650     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042649     3  0.3038     0.8092 0.000 0.104 0.896
#> SRR2042647     2  0.1031     0.8759 0.000 0.976 0.024
#> SRR2042648     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042646     3  0.3695     0.8045 0.108 0.012 0.880
#> SRR2042645     2  0.8837     0.0269 0.424 0.460 0.116
#> SRR2042644     2  0.6302    -0.0806 0.000 0.520 0.480
#> SRR2042643     1  0.0592     0.9200 0.988 0.000 0.012
#> SRR2042642     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042640     2  0.0237     0.8837 0.000 0.996 0.004
#> SRR2042641     2  0.6305    -0.0574 0.000 0.516 0.484
#> SRR2042639     2  0.0592     0.8800 0.000 0.988 0.012
#> SRR2042638     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042637     3  0.4121     0.7753 0.000 0.168 0.832
#> SRR2042636     2  0.8372     0.3412 0.336 0.564 0.100
#> SRR2042634     1  0.8347     0.1460 0.512 0.404 0.084
#> SRR2042635     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042633     3  0.5905     0.4824 0.000 0.352 0.648
#> SRR2042631     2  0.1411     0.8707 0.000 0.964 0.036
#> SRR2042632     3  0.2261     0.8113 0.000 0.068 0.932
#> SRR2042630     2  0.3551     0.7703 0.000 0.868 0.132
#> SRR2042629     2  0.0892     0.8777 0.000 0.980 0.020
#> SRR2042628     3  0.5465     0.6435 0.288 0.000 0.712
#> SRR2042626     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042627     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042624     3  0.3551     0.7921 0.132 0.000 0.868
#> SRR2042625     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042623     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042620     2  0.0592     0.8812 0.000 0.988 0.012
#> SRR2042621     3  0.4209     0.7995 0.128 0.016 0.856
#> SRR2042619     2  0.1989     0.8627 0.004 0.948 0.048
#> SRR2042618     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042617     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042616     2  0.0237     0.8829 0.000 0.996 0.004
#> SRR2042615     2  0.0892     0.8744 0.000 0.980 0.020
#> SRR2042614     2  0.0592     0.8801 0.000 0.988 0.012
#> SRR2042613     3  0.4702     0.7365 0.000 0.212 0.788
#> SRR2042612     1  0.0424     0.9220 0.992 0.000 0.008
#> SRR2042610     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042611     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042607     2  0.1411     0.8725 0.000 0.964 0.036
#> SRR2042609     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042608     3  0.4749     0.7707 0.012 0.172 0.816
#> SRR2042656     2  0.0000     0.8844 0.000 1.000 0.000
#> SRR2042658     3  0.5465     0.6491 0.288 0.000 0.712
#> SRR2042659     1  0.0000     0.9288 1.000 0.000 0.000
#> SRR2042657     1  0.7924     0.4250 0.612 0.304 0.084
#> SRR2042655     1  0.0000     0.9288 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000     0.9781 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9781 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9781 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.1576     0.9432 0.948 0.000 0.004 0.048
#> SRR2042649     3  0.5480     0.5132 0.000 0.124 0.736 0.140
#> SRR2042647     2  0.4283     0.6142 0.000 0.740 0.004 0.256
#> SRR2042648     2  0.0000     0.8070 0.000 1.000 0.000 0.000
#> SRR2042646     3  0.3370     0.5188 0.080 0.000 0.872 0.048
#> SRR2042645     4  0.7814     0.6282 0.180 0.172 0.056 0.592
#> SRR2042644     2  0.7091     0.0415 0.000 0.508 0.356 0.136
#> SRR2042643     1  0.2984     0.8654 0.888 0.000 0.028 0.084
#> SRR2042642     2  0.0000     0.8070 0.000 1.000 0.000 0.000
#> SRR2042640     2  0.2216     0.7796 0.000 0.908 0.000 0.092
#> SRR2042641     2  0.7689    -0.0821 0.000 0.444 0.320 0.236
#> SRR2042639     2  0.2521     0.7879 0.000 0.912 0.024 0.064
#> SRR2042638     2  0.0000     0.8070 0.000 1.000 0.000 0.000
#> SRR2042637     3  0.7095     0.4146 0.000 0.260 0.560 0.180
#> SRR2042636     4  0.7319     0.6280 0.128 0.200 0.044 0.628
#> SRR2042634     4  0.7671     0.6698 0.256 0.156 0.028 0.560
#> SRR2042635     2  0.0000     0.8070 0.000 1.000 0.000 0.000
#> SRR2042633     3  0.8016     0.2162 0.004 0.300 0.396 0.300
#> SRR2042631     2  0.5550     0.2688 0.000 0.552 0.020 0.428
#> SRR2042632     3  0.4581     0.5363 0.000 0.120 0.800 0.080
#> SRR2042630     2  0.5783     0.5578 0.000 0.708 0.120 0.172
#> SRR2042629     2  0.4468     0.6447 0.000 0.752 0.016 0.232
#> SRR2042628     3  0.6179     0.2894 0.320 0.000 0.608 0.072
#> SRR2042626     2  0.0188     0.8066 0.000 0.996 0.000 0.004
#> SRR2042627     1  0.0188     0.9769 0.996 0.000 0.000 0.004
#> SRR2042624     3  0.4840     0.4902 0.116 0.000 0.784 0.100
#> SRR2042625     1  0.0469     0.9739 0.988 0.000 0.000 0.012
#> SRR2042623     1  0.0000     0.9781 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9781 1.000 0.000 0.000 0.000
#> SRR2042620     2  0.2647     0.7580 0.000 0.880 0.000 0.120
#> SRR2042621     3  0.4488     0.5127 0.096 0.000 0.808 0.096
#> SRR2042619     2  0.5732     0.3973 0.004 0.604 0.028 0.364
#> SRR2042618     2  0.0524     0.8061 0.000 0.988 0.004 0.008
#> SRR2042617     1  0.0707     0.9696 0.980 0.000 0.000 0.020
#> SRR2042616     2  0.1488     0.7986 0.000 0.956 0.032 0.012
#> SRR2042615     2  0.2399     0.7855 0.000 0.920 0.032 0.048
#> SRR2042614     2  0.1488     0.8008 0.000 0.956 0.012 0.032
#> SRR2042613     3  0.7468     0.3093 0.000 0.304 0.492 0.204
#> SRR2042612     1  0.1004     0.9579 0.972 0.000 0.024 0.004
#> SRR2042610     1  0.1284     0.9579 0.964 0.000 0.012 0.024
#> SRR2042611     2  0.0000     0.8070 0.000 1.000 0.000 0.000
#> SRR2042607     2  0.4387     0.6438 0.000 0.752 0.012 0.236
#> SRR2042609     1  0.0000     0.9781 1.000 0.000 0.000 0.000
#> SRR2042608     3  0.8175     0.2218 0.016 0.240 0.436 0.308
#> SRR2042656     2  0.0188     0.8065 0.000 0.996 0.000 0.004
#> SRR2042658     3  0.6366     0.1663 0.424 0.000 0.512 0.064
#> SRR2042659     1  0.0188     0.9767 0.996 0.000 0.000 0.004
#> SRR2042657     4  0.7762     0.6192 0.272 0.112 0.052 0.564
#> SRR2042655     1  0.0000     0.9781 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.9543 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0324     0.9544 0.992 0.000 0.000 0.004 0.004
#> SRR2042652     1  0.0000     0.9543 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.2906     0.8753 0.880 0.000 0.012 0.080 0.028
#> SRR2042649     5  0.6539     0.0661 0.000 0.100 0.408 0.028 0.464
#> SRR2042647     2  0.5156     0.5529 0.000 0.688 0.004 0.216 0.092
#> SRR2042648     2  0.0000     0.7365 0.000 1.000 0.000 0.000 0.000
#> SRR2042646     3  0.3888     0.3468 0.056 0.000 0.796 0.000 0.148
#> SRR2042645     4  0.7624     0.4873 0.096 0.112 0.040 0.572 0.180
#> SRR2042644     2  0.7195    -0.1370 0.000 0.488 0.260 0.040 0.212
#> SRR2042643     1  0.4722     0.7041 0.764 0.000 0.032 0.148 0.056
#> SRR2042642     2  0.0000     0.7365 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     2  0.3449     0.6945 0.000 0.844 0.004 0.088 0.064
#> SRR2042641     5  0.7365     0.3432 0.000 0.336 0.136 0.072 0.456
#> SRR2042639     2  0.3890     0.6810 0.000 0.836 0.060 0.052 0.052
#> SRR2042638     2  0.0000     0.7365 0.000 1.000 0.000 0.000 0.000
#> SRR2042637     3  0.7380    -0.3274 0.000 0.192 0.408 0.044 0.356
#> SRR2042636     4  0.6782     0.4899 0.048 0.136 0.036 0.644 0.136
#> SRR2042634     4  0.8064     0.4931 0.184 0.108 0.036 0.520 0.152
#> SRR2042635     2  0.0000     0.7365 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     5  0.8462     0.2233 0.000 0.220 0.296 0.176 0.308
#> SRR2042631     2  0.6402     0.0594 0.000 0.456 0.020 0.424 0.100
#> SRR2042632     3  0.6524    -0.2253 0.000 0.124 0.504 0.020 0.352
#> SRR2042630     2  0.6054     0.2286 0.000 0.596 0.064 0.040 0.300
#> SRR2042629     2  0.5729     0.4669 0.000 0.616 0.004 0.264 0.116
#> SRR2042628     3  0.6148     0.3635 0.280 0.000 0.604 0.048 0.068
#> SRR2042626     2  0.0290     0.7363 0.000 0.992 0.000 0.000 0.008
#> SRR2042627     1  0.0510     0.9525 0.984 0.000 0.000 0.016 0.000
#> SRR2042624     3  0.4449     0.4067 0.112 0.000 0.792 0.064 0.032
#> SRR2042625     1  0.0854     0.9495 0.976 0.000 0.004 0.008 0.012
#> SRR2042623     1  0.0000     0.9543 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0162     0.9543 0.996 0.000 0.004 0.000 0.000
#> SRR2042620     2  0.3847     0.6584 0.000 0.800 0.004 0.156 0.040
#> SRR2042621     3  0.4744     0.3409 0.064 0.000 0.780 0.060 0.096
#> SRR2042619     2  0.6629     0.2050 0.004 0.512 0.024 0.348 0.112
#> SRR2042618     2  0.0162     0.7359 0.000 0.996 0.000 0.000 0.004
#> SRR2042617     1  0.1921     0.9228 0.932 0.000 0.012 0.044 0.012
#> SRR2042616     2  0.2897     0.7013 0.000 0.884 0.024 0.020 0.072
#> SRR2042615     2  0.3079     0.6924 0.000 0.876 0.044 0.016 0.064
#> SRR2042614     2  0.2228     0.7239 0.000 0.920 0.016 0.020 0.044
#> SRR2042613     2  0.7829    -0.4513 0.000 0.348 0.324 0.064 0.264
#> SRR2042612     1  0.2011     0.9103 0.928 0.000 0.020 0.008 0.044
#> SRR2042610     1  0.1538     0.9352 0.948 0.000 0.008 0.036 0.008
#> SRR2042611     2  0.0000     0.7365 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     2  0.5461     0.5181 0.000 0.656 0.008 0.244 0.092
#> SRR2042609     1  0.0000     0.9543 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     5  0.7397     0.3444 0.004 0.172 0.176 0.100 0.548
#> SRR2042656     2  0.1195     0.7354 0.000 0.960 0.000 0.012 0.028
#> SRR2042658     3  0.6900     0.2707 0.372 0.000 0.412 0.012 0.204
#> SRR2042659     1  0.0324     0.9540 0.992 0.000 0.000 0.004 0.004
#> SRR2042657     4  0.7710     0.5289 0.132 0.100 0.044 0.572 0.152
#> SRR2042655     1  0.0324     0.9539 0.992 0.000 0.004 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000     0.9141 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.1148     0.9121 0.960 0.000 0.004 0.020 0.000 0.016
#> SRR2042652     1  0.0000     0.9141 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.3277     0.8438 0.848 0.000 0.016 0.088 0.008 0.040
#> SRR2042649     5  0.6589     0.3183 0.000 0.100 0.284 0.016 0.528 0.072
#> SRR2042647     2  0.5021     0.6104 0.000 0.704 0.008 0.184 0.036 0.068
#> SRR2042648     2  0.0000     0.7451 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042646     3  0.4463     0.3908 0.048 0.000 0.736 0.000 0.180 0.036
#> SRR2042645     4  0.8053     0.4055 0.076 0.080 0.060 0.412 0.048 0.324
#> SRR2042644     2  0.7011    -0.0421 0.000 0.456 0.088 0.020 0.328 0.108
#> SRR2042643     1  0.5754     0.5929 0.684 0.000 0.060 0.128 0.036 0.092
#> SRR2042642     2  0.0000     0.7451 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     2  0.4360     0.6814 0.000 0.772 0.004 0.088 0.032 0.104
#> SRR2042641     5  0.8180     0.2351 0.000 0.216 0.112 0.064 0.360 0.248
#> SRR2042639     2  0.5052     0.6572 0.000 0.744 0.028 0.068 0.068 0.092
#> SRR2042638     2  0.0000     0.7451 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     5  0.7600     0.3780 0.000 0.140 0.196 0.068 0.492 0.104
#> SRR2042636     4  0.6030     0.4195 0.036 0.108 0.020 0.688 0.068 0.080
#> SRR2042634     4  0.6968     0.4327 0.112 0.084 0.044 0.624 0.056 0.080
#> SRR2042635     2  0.0000     0.7451 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     5  0.8298     0.2813 0.000 0.168 0.136 0.080 0.368 0.248
#> SRR2042631     2  0.7134     0.0152 0.000 0.420 0.016 0.304 0.056 0.204
#> SRR2042632     5  0.6034     0.3370 0.000 0.096 0.272 0.008 0.576 0.048
#> SRR2042630     2  0.6864     0.1320 0.000 0.504 0.032 0.052 0.284 0.128
#> SRR2042629     2  0.5783     0.5717 0.000 0.648 0.012 0.136 0.044 0.160
#> SRR2042628     3  0.6089     0.4647 0.236 0.000 0.608 0.024 0.060 0.072
#> SRR2042626     2  0.0146     0.7450 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2042627     1  0.1534     0.9085 0.944 0.000 0.004 0.032 0.004 0.016
#> SRR2042624     3  0.3465     0.4803 0.072 0.000 0.844 0.012 0.048 0.024
#> SRR2042625     1  0.2508     0.8854 0.900 0.000 0.012 0.024 0.016 0.048
#> SRR2042623     1  0.0000     0.9141 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9141 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.3594     0.7043 0.000 0.820 0.000 0.100 0.024 0.056
#> SRR2042621     3  0.5421     0.3996 0.060 0.000 0.716 0.040 0.112 0.072
#> SRR2042619     2  0.7440     0.0827 0.000 0.424 0.060 0.272 0.036 0.208
#> SRR2042618     2  0.0964     0.7425 0.000 0.968 0.004 0.000 0.016 0.012
#> SRR2042617     1  0.2981     0.8618 0.864 0.000 0.020 0.064 0.000 0.052
#> SRR2042616     2  0.4368     0.6650 0.000 0.772 0.004 0.036 0.112 0.076
#> SRR2042615     2  0.3894     0.6878 0.000 0.808 0.012 0.016 0.100 0.064
#> SRR2042614     2  0.3868     0.6879 0.000 0.812 0.016 0.016 0.100 0.056
#> SRR2042613     5  0.8126     0.3375 0.000 0.212 0.228 0.036 0.352 0.172
#> SRR2042612     1  0.3512     0.8250 0.848 0.000 0.048 0.020 0.036 0.048
#> SRR2042610     1  0.3314     0.8573 0.860 0.000 0.036 0.044 0.020 0.040
#> SRR2042611     2  0.0000     0.7451 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     2  0.6112     0.4954 0.000 0.604 0.020 0.196 0.032 0.148
#> SRR2042609     1  0.0000     0.9141 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     5  0.7538     0.2884 0.000 0.068 0.108 0.104 0.484 0.236
#> SRR2042656     2  0.2093     0.7409 0.000 0.920 0.004 0.020 0.020 0.036
#> SRR2042658     3  0.7254     0.3301 0.364 0.000 0.404 0.028 0.104 0.100
#> SRR2042659     1  0.1210     0.9110 0.960 0.000 0.008 0.008 0.004 0.020
#> SRR2042657     4  0.7884     0.4354 0.108 0.064 0.036 0.476 0.064 0.252
#> SRR2042655     1  0.1148     0.9110 0.960 0.000 0.004 0.016 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.968       0.985        0.42295 0.566   0.566
#> 3 3 0.828           0.924       0.956        0.19680 0.912   0.845
#> 4 4 0.855           0.898       0.960        0.03918 0.989   0.978
#> 5 5 0.889           0.890       0.966        0.01207 0.990   0.979
#> 6 6 0.885           0.851       0.947        0.00974 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1   0.000      0.950 1.000 0.000
#> SRR2042653     1   0.000      0.950 1.000 0.000
#> SRR2042652     1   0.000      0.950 1.000 0.000
#> SRR2042650     1   0.000      0.950 1.000 0.000
#> SRR2042649     2   0.000      1.000 0.000 1.000
#> SRR2042647     2   0.000      1.000 0.000 1.000
#> SRR2042648     2   0.000      1.000 0.000 1.000
#> SRR2042646     2   0.000      1.000 0.000 1.000
#> SRR2042645     2   0.000      1.000 0.000 1.000
#> SRR2042644     2   0.000      1.000 0.000 1.000
#> SRR2042643     1   0.913      0.550 0.672 0.328
#> SRR2042642     2   0.000      1.000 0.000 1.000
#> SRR2042640     2   0.000      1.000 0.000 1.000
#> SRR2042641     2   0.000      1.000 0.000 1.000
#> SRR2042639     2   0.000      1.000 0.000 1.000
#> SRR2042638     2   0.000      1.000 0.000 1.000
#> SRR2042637     2   0.000      1.000 0.000 1.000
#> SRR2042636     2   0.000      1.000 0.000 1.000
#> SRR2042634     2   0.000      1.000 0.000 1.000
#> SRR2042635     2   0.000      1.000 0.000 1.000
#> SRR2042633     2   0.000      1.000 0.000 1.000
#> SRR2042631     2   0.000      1.000 0.000 1.000
#> SRR2042632     2   0.000      1.000 0.000 1.000
#> SRR2042630     2   0.000      1.000 0.000 1.000
#> SRR2042629     2   0.000      1.000 0.000 1.000
#> SRR2042628     2   0.118      0.983 0.016 0.984
#> SRR2042626     2   0.000      1.000 0.000 1.000
#> SRR2042627     1   0.000      0.950 1.000 0.000
#> SRR2042624     2   0.000      1.000 0.000 1.000
#> SRR2042625     1   0.000      0.950 1.000 0.000
#> SRR2042623     1   0.000      0.950 1.000 0.000
#> SRR2042622     1   0.000      0.950 1.000 0.000
#> SRR2042620     2   0.000      1.000 0.000 1.000
#> SRR2042621     2   0.000      1.000 0.000 1.000
#> SRR2042619     2   0.000      1.000 0.000 1.000
#> SRR2042618     2   0.000      1.000 0.000 1.000
#> SRR2042617     1   0.000      0.950 1.000 0.000
#> SRR2042616     2   0.000      1.000 0.000 1.000
#> SRR2042615     2   0.000      1.000 0.000 1.000
#> SRR2042614     2   0.000      1.000 0.000 1.000
#> SRR2042613     2   0.000      1.000 0.000 1.000
#> SRR2042612     1   0.000      0.950 1.000 0.000
#> SRR2042610     1   0.574      0.836 0.864 0.136
#> SRR2042611     2   0.000      1.000 0.000 1.000
#> SRR2042607     2   0.000      1.000 0.000 1.000
#> SRR2042609     1   0.000      0.950 1.000 0.000
#> SRR2042608     2   0.000      1.000 0.000 1.000
#> SRR2042656     2   0.000      1.000 0.000 1.000
#> SRR2042658     1   0.866      0.625 0.712 0.288
#> SRR2042659     1   0.000      0.950 1.000 0.000
#> SRR2042657     2   0.000      1.000 0.000 1.000
#> SRR2042655     1   0.000      0.950 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042653     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042652     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042650     1  0.3412      0.855 0.876 0.000 0.124
#> SRR2042649     2  0.1163      0.958 0.000 0.972 0.028
#> SRR2042647     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042648     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042646     3  0.5529      0.816 0.000 0.296 0.704
#> SRR2042645     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042644     2  0.1643      0.941 0.000 0.956 0.044
#> SRR2042643     1  0.8363      0.229 0.504 0.084 0.412
#> SRR2042642     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042640     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042641     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042639     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042638     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042637     2  0.0424      0.979 0.000 0.992 0.008
#> SRR2042636     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042634     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042635     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042633     2  0.1529      0.946 0.000 0.960 0.040
#> SRR2042631     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042632     2  0.3340      0.830 0.000 0.880 0.120
#> SRR2042630     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042629     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042628     3  0.3941      0.789 0.000 0.156 0.844
#> SRR2042626     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042627     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042624     3  0.5497      0.819 0.000 0.292 0.708
#> SRR2042625     1  0.0237      0.926 0.996 0.000 0.004
#> SRR2042623     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042620     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042621     2  0.3192      0.848 0.000 0.888 0.112
#> SRR2042619     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042618     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042617     1  0.3267      0.860 0.884 0.000 0.116
#> SRR2042616     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042615     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042614     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042613     2  0.0237      0.982 0.000 0.996 0.004
#> SRR2042612     1  0.3038      0.870 0.896 0.000 0.104
#> SRR2042610     1  0.4335      0.791 0.864 0.100 0.036
#> SRR2042611     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042607     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042609     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042608     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042656     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042658     3  0.5961      0.634 0.136 0.076 0.788
#> SRR2042659     1  0.0000      0.928 1.000 0.000 0.000
#> SRR2042657     2  0.0000      0.986 0.000 1.000 0.000
#> SRR2042655     1  0.0000      0.928 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.4300      0.792 0.820 0.000 0.088 0.092
#> SRR2042649     2  0.0921      0.963 0.000 0.972 0.028 0.000
#> SRR2042647     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042648     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042646     3  0.3837      0.571 0.000 0.224 0.776 0.000
#> SRR2042645     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042644     2  0.1302      0.948 0.000 0.956 0.044 0.000
#> SRR2042643     4  0.7229      0.000 0.132 0.048 0.176 0.644
#> SRR2042642     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042640     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042641     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042639     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042638     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042637     2  0.0336      0.981 0.000 0.992 0.008 0.000
#> SRR2042636     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042634     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042635     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042633     2  0.1211      0.952 0.000 0.960 0.040 0.000
#> SRR2042631     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042632     2  0.2469      0.869 0.000 0.892 0.108 0.000
#> SRR2042630     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042629     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042628     3  0.0469      0.444 0.000 0.012 0.988 0.000
#> SRR2042626     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042627     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042624     3  0.3801      0.577 0.000 0.220 0.780 0.000
#> SRR2042625     1  0.1398      0.909 0.956 0.000 0.004 0.040
#> SRR2042623     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042620     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042621     2  0.2530      0.867 0.000 0.888 0.112 0.000
#> SRR2042619     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042618     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042617     1  0.3778      0.815 0.848 0.000 0.100 0.052
#> SRR2042616     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042615     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042614     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042613     2  0.0188      0.985 0.000 0.996 0.004 0.000
#> SRR2042612     1  0.2469      0.849 0.892 0.000 0.108 0.000
#> SRR2042610     1  0.4511      0.661 0.724 0.008 0.000 0.268
#> SRR2042611     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042607     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042609     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042608     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042656     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042658     3  0.4129      0.422 0.032 0.008 0.828 0.132
#> SRR2042659     1  0.0000      0.934 1.000 0.000 0.000 0.000
#> SRR2042657     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> SRR2042655     1  0.0000      0.934 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.3675      0.774 0.840 0.000 0.072 0.016 0.072
#> SRR2042649     2  0.0404      0.980 0.000 0.988 0.012 0.000 0.000
#> SRR2042647     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042648     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042646     3  0.3480      0.596 0.000 0.248 0.752 0.000 0.000
#> SRR2042645     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042644     2  0.0794      0.965 0.000 0.972 0.028 0.000 0.000
#> SRR2042643     4  0.0963      0.000 0.000 0.000 0.036 0.964 0.000
#> SRR2042642     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042641     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042639     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042638     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042637     2  0.0290      0.984 0.000 0.992 0.008 0.000 0.000
#> SRR2042636     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042634     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042635     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     2  0.0794      0.965 0.000 0.972 0.028 0.000 0.000
#> SRR2042631     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042632     2  0.1608      0.914 0.000 0.928 0.072 0.000 0.000
#> SRR2042630     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042629     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042628     3  0.3715      0.397 0.000 0.004 0.736 0.000 0.260
#> SRR2042626     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042627     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042624     3  0.3480      0.596 0.000 0.248 0.752 0.000 0.000
#> SRR2042625     1  0.0613      0.941 0.984 0.000 0.004 0.004 0.008
#> SRR2042623     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042621     2  0.2329      0.843 0.000 0.876 0.124 0.000 0.000
#> SRR2042619     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042618     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042617     1  0.3209      0.809 0.864 0.000 0.068 0.008 0.060
#> SRR2042616     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042615     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042614     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042613     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042612     1  0.2615      0.840 0.892 0.000 0.080 0.020 0.008
#> SRR2042610     5  0.3741      0.000 0.264 0.000 0.000 0.004 0.732
#> SRR2042611     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042609     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042656     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042658     3  0.0162      0.394 0.004 0.000 0.996 0.000 0.000
#> SRR2042659     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000
#> SRR2042657     2  0.0000      0.990 0.000 1.000 0.000 0.000 0.000
#> SRR2042655     1  0.0000      0.952 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0363      0.901 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2042652     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.5136      0.430 0.636 0.000 0.028 0.004 0.052 0.280
#> SRR2042649     2  0.0260      0.983 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR2042647     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042648     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042646     3  0.3482      0.509 0.000 0.316 0.684 0.000 0.000 0.000
#> SRR2042645     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042644     2  0.0458      0.976 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR2042643     4  0.0146      0.000 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR2042642     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042641     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042639     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042638     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     2  0.0146      0.986 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR2042636     2  0.1327      0.919 0.000 0.936 0.000 0.000 0.064 0.000
#> SRR2042634     2  0.0146      0.986 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2042635     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     2  0.0458      0.976 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR2042631     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042632     2  0.0865      0.955 0.000 0.964 0.036 0.000 0.000 0.000
#> SRR2042630     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042629     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042628     3  0.1949      0.167 0.000 0.004 0.904 0.000 0.004 0.088
#> SRR2042626     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042627     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042624     3  0.3898      0.521 0.000 0.296 0.684 0.000 0.020 0.000
#> SRR2042625     1  0.0508      0.897 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042623     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042621     2  0.2446      0.815 0.000 0.864 0.124 0.000 0.000 0.012
#> SRR2042619     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042618     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042617     1  0.3745      0.716 0.796 0.000 0.028 0.000 0.032 0.144
#> SRR2042616     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042615     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042614     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042613     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042612     1  0.4783      0.364 0.616 0.000 0.076 0.000 0.000 0.308
#> SRR2042610     5  0.2416      0.000 0.156 0.000 0.000 0.000 0.844 0.000
#> SRR2042611     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042609     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042656     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042658     3  0.4408      0.189 0.000 0.000 0.656 0.000 0.052 0.292
#> SRR2042659     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042657     2  0.0260      0.983 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR2042655     1  0.0260      0.902 0.992 0.000 0.000 0.000 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.200           0.518       0.705         0.4373 0.538   0.538
#> 3 3 0.349           0.646       0.799         0.4721 0.713   0.501
#> 4 4 0.543           0.656       0.781         0.1379 0.798   0.471
#> 5 5 0.611           0.699       0.792         0.0658 0.956   0.816
#> 6 6 0.679           0.666       0.755         0.0391 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.9552     0.5975 0.624 0.376
#> SRR2042653     1  0.9608     0.6001 0.616 0.384
#> SRR2042652     1  0.9552     0.5975 0.624 0.376
#> SRR2042650     1  0.9608     0.6001 0.616 0.384
#> SRR2042649     2  0.0000     0.8496 0.000 1.000
#> SRR2042647     1  0.8813     0.5962 0.700 0.300
#> SRR2042648     1  0.9710    -0.0296 0.600 0.400
#> SRR2042646     2  0.0000     0.8496 0.000 1.000
#> SRR2042645     1  0.9000     0.6071 0.684 0.316
#> SRR2042644     2  0.0000     0.8496 0.000 1.000
#> SRR2042643     1  0.9552     0.6030 0.624 0.376
#> SRR2042642     1  0.9686    -0.0272 0.604 0.396
#> SRR2042640     1  0.7056     0.4974 0.808 0.192
#> SRR2042641     2  0.0000     0.8496 0.000 1.000
#> SRR2042639     2  0.9427     0.1853 0.360 0.640
#> SRR2042638     1  0.9686    -0.0272 0.604 0.396
#> SRR2042637     2  0.0000     0.8496 0.000 1.000
#> SRR2042636     1  0.8909     0.6111 0.692 0.308
#> SRR2042634     1  0.8909     0.6111 0.692 0.308
#> SRR2042635     1  0.9686    -0.0272 0.604 0.396
#> SRR2042633     2  0.0672     0.8432 0.008 0.992
#> SRR2042631     1  0.8499     0.5736 0.724 0.276
#> SRR2042632     2  0.0000     0.8496 0.000 1.000
#> SRR2042630     2  0.2423     0.8014 0.040 0.960
#> SRR2042629     1  0.8813     0.5813 0.700 0.300
#> SRR2042628     2  0.0000     0.8496 0.000 1.000
#> SRR2042626     1  0.9686    -0.0272 0.604 0.396
#> SRR2042627     1  0.9608     0.6001 0.616 0.384
#> SRR2042624     2  0.0000     0.8496 0.000 1.000
#> SRR2042625     1  0.9608     0.6001 0.616 0.384
#> SRR2042623     1  0.9552     0.5975 0.624 0.376
#> SRR2042622     1  0.9608     0.6001 0.616 0.384
#> SRR2042620     1  0.6623     0.5018 0.828 0.172
#> SRR2042621     2  0.0000     0.8496 0.000 1.000
#> SRR2042619     1  0.8499     0.5836 0.724 0.276
#> SRR2042618     1  0.9710    -0.0296 0.600 0.400
#> SRR2042617     1  0.9608     0.6001 0.616 0.384
#> SRR2042616     1  0.9963    -0.0994 0.536 0.464
#> SRR2042615     2  0.9896     0.1757 0.440 0.560
#> SRR2042614     2  0.9933     0.1356 0.452 0.548
#> SRR2042613     2  0.0000     0.8496 0.000 1.000
#> SRR2042612     2  0.8661     0.1848 0.288 0.712
#> SRR2042610     1  0.9635     0.5979 0.612 0.388
#> SRR2042611     1  0.9686    -0.0272 0.604 0.396
#> SRR2042607     1  0.8763     0.5836 0.704 0.296
#> SRR2042609     1  0.9552     0.5975 0.624 0.376
#> SRR2042608     2  0.0000     0.8496 0.000 1.000
#> SRR2042656     1  0.9686    -0.0272 0.604 0.396
#> SRR2042658     2  0.0376     0.8442 0.004 0.996
#> SRR2042659     1  0.9608     0.6001 0.616 0.384
#> SRR2042657     1  0.8909     0.6111 0.692 0.308
#> SRR2042655     1  0.9608     0.6001 0.616 0.384

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000     0.9051 1.000 0.000 0.000
#> SRR2042653     1  0.0661     0.9081 0.988 0.008 0.004
#> SRR2042652     1  0.0237     0.9064 0.996 0.004 0.000
#> SRR2042650     1  0.2774     0.8806 0.920 0.072 0.008
#> SRR2042649     3  0.1647     0.7752 0.036 0.004 0.960
#> SRR2042647     2  0.7772     0.6465 0.196 0.672 0.132
#> SRR2042648     2  0.5443     0.4916 0.004 0.736 0.260
#> SRR2042646     3  0.4326     0.7305 0.144 0.012 0.844
#> SRR2042645     2  0.8030     0.6404 0.204 0.652 0.144
#> SRR2042644     3  0.4479     0.7523 0.044 0.096 0.860
#> SRR2042643     1  0.6721     0.2990 0.604 0.380 0.016
#> SRR2042642     2  0.4002     0.5852 0.000 0.840 0.160
#> SRR2042640     2  0.6093     0.6748 0.068 0.776 0.156
#> SRR2042641     3  0.4270     0.7296 0.116 0.024 0.860
#> SRR2042639     2  0.7286     0.2155 0.028 0.508 0.464
#> SRR2042638     2  0.4974     0.5077 0.000 0.764 0.236
#> SRR2042637     3  0.2116     0.7778 0.040 0.012 0.948
#> SRR2042636     2  0.8058     0.6314 0.212 0.648 0.140
#> SRR2042634     2  0.8935     0.3918 0.352 0.512 0.136
#> SRR2042635     2  0.4504     0.5539 0.000 0.804 0.196
#> SRR2042633     3  0.4960     0.7062 0.040 0.128 0.832
#> SRR2042631     2  0.6920     0.6773 0.104 0.732 0.164
#> SRR2042632     3  0.2152     0.7769 0.036 0.016 0.948
#> SRR2042630     3  0.3337     0.7760 0.060 0.032 0.908
#> SRR2042629     2  0.6902     0.6767 0.100 0.732 0.168
#> SRR2042628     3  0.5598     0.7385 0.148 0.052 0.800
#> SRR2042626     2  0.3412     0.6099 0.000 0.876 0.124
#> SRR2042627     1  0.0983     0.9082 0.980 0.016 0.004
#> SRR2042624     3  0.5564     0.7598 0.128 0.064 0.808
#> SRR2042625     1  0.0661     0.9081 0.988 0.008 0.004
#> SRR2042623     1  0.0000     0.9051 1.000 0.000 0.000
#> SRR2042622     1  0.1129     0.9076 0.976 0.020 0.004
#> SRR2042620     2  0.4859     0.6652 0.116 0.840 0.044
#> SRR2042621     3  0.5428     0.7633 0.120 0.064 0.816
#> SRR2042619     2  0.7044     0.6751 0.108 0.724 0.168
#> SRR2042618     2  0.6314     0.1968 0.004 0.604 0.392
#> SRR2042617     1  0.2173     0.8963 0.944 0.048 0.008
#> SRR2042616     3  0.6298     0.1715 0.004 0.388 0.608
#> SRR2042615     3  0.6931    -0.0844 0.016 0.456 0.528
#> SRR2042614     3  0.6809    -0.1235 0.012 0.464 0.524
#> SRR2042613     3  0.3713     0.7560 0.032 0.076 0.892
#> SRR2042612     1  0.6832     0.3069 0.604 0.020 0.376
#> SRR2042610     1  0.4128     0.8309 0.856 0.132 0.012
#> SRR2042611     2  0.4062     0.5824 0.000 0.836 0.164
#> SRR2042607     2  0.6848     0.6774 0.100 0.736 0.164
#> SRR2042609     1  0.0000     0.9051 1.000 0.000 0.000
#> SRR2042608     3  0.3910     0.7348 0.104 0.020 0.876
#> SRR2042656     2  0.6111     0.1965 0.000 0.604 0.396
#> SRR2042658     3  0.4233     0.7140 0.160 0.004 0.836
#> SRR2042659     1  0.2301     0.8917 0.936 0.060 0.004
#> SRR2042657     2  0.8334     0.5925 0.248 0.616 0.136
#> SRR2042655     1  0.1399     0.9056 0.968 0.028 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0376     0.9075 0.992 0.004 0.000 0.004
#> SRR2042653     1  0.1822     0.9143 0.944 0.004 0.044 0.008
#> SRR2042652     1  0.0524     0.9087 0.988 0.004 0.000 0.008
#> SRR2042650     1  0.4579     0.7964 0.768 0.000 0.032 0.200
#> SRR2042649     3  0.4123     0.6746 0.000 0.220 0.772 0.008
#> SRR2042647     4  0.3521     0.8271 0.032 0.064 0.024 0.880
#> SRR2042648     2  0.2593     0.6651 0.000 0.892 0.004 0.104
#> SRR2042646     3  0.4899     0.6526 0.004 0.300 0.688 0.008
#> SRR2042645     4  0.4028     0.7966 0.100 0.020 0.032 0.848
#> SRR2042644     2  0.5599     0.0686 0.000 0.644 0.316 0.040
#> SRR2042643     4  0.6944     0.2472 0.368 0.016 0.076 0.540
#> SRR2042642     2  0.4454     0.5011 0.000 0.692 0.000 0.308
#> SRR2042640     4  0.3585     0.7481 0.004 0.164 0.004 0.828
#> SRR2042641     3  0.3542     0.6367 0.000 0.120 0.852 0.028
#> SRR2042639     2  0.3958     0.6525 0.000 0.824 0.032 0.144
#> SRR2042638     2  0.3311     0.6509 0.000 0.828 0.000 0.172
#> SRR2042637     3  0.5423     0.6202 0.000 0.332 0.640 0.028
#> SRR2042636     4  0.2928     0.8081 0.076 0.004 0.024 0.896
#> SRR2042634     4  0.4057     0.7441 0.152 0.000 0.032 0.816
#> SRR2042635     2  0.3837     0.6274 0.000 0.776 0.000 0.224
#> SRR2042633     2  0.5799     0.1916 0.000 0.668 0.264 0.068
#> SRR2042631     4  0.2586     0.8204 0.004 0.092 0.004 0.900
#> SRR2042632     3  0.4955     0.6154 0.000 0.344 0.648 0.008
#> SRR2042630     3  0.5608     0.5865 0.000 0.256 0.684 0.060
#> SRR2042629     4  0.2586     0.8215 0.004 0.092 0.004 0.900
#> SRR2042628     3  0.5643     0.3334 0.004 0.440 0.540 0.016
#> SRR2042626     2  0.4661     0.4115 0.000 0.652 0.000 0.348
#> SRR2042627     1  0.1610     0.9155 0.952 0.000 0.032 0.016
#> SRR2042624     3  0.5863     0.2289 0.004 0.476 0.496 0.024
#> SRR2042625     1  0.1953     0.9150 0.940 0.004 0.044 0.012
#> SRR2042623     1  0.0376     0.9075 0.992 0.004 0.000 0.004
#> SRR2042622     1  0.1911     0.9157 0.944 0.004 0.032 0.020
#> SRR2042620     4  0.4335     0.7669 0.016 0.184 0.008 0.792
#> SRR2042621     3  0.6248     0.2291 0.004 0.468 0.484 0.044
#> SRR2042619     4  0.2665     0.8229 0.004 0.088 0.008 0.900
#> SRR2042618     2  0.1406     0.6393 0.000 0.960 0.024 0.016
#> SRR2042617     1  0.4105     0.8524 0.812 0.000 0.032 0.156
#> SRR2042616     2  0.2635     0.6427 0.000 0.904 0.020 0.076
#> SRR2042615     2  0.4036     0.5638 0.000 0.836 0.088 0.076
#> SRR2042614     2  0.2742     0.6403 0.000 0.900 0.024 0.076
#> SRR2042613     2  0.5754     0.0574 0.000 0.636 0.316 0.048
#> SRR2042612     3  0.5035     0.2631 0.284 0.016 0.696 0.004
#> SRR2042610     1  0.5602     0.7576 0.736 0.004 0.116 0.144
#> SRR2042611     2  0.4356     0.5302 0.000 0.708 0.000 0.292
#> SRR2042607     4  0.2586     0.8207 0.004 0.092 0.004 0.900
#> SRR2042609     1  0.0376     0.9075 0.992 0.004 0.000 0.004
#> SRR2042608     3  0.3485     0.6378 0.000 0.116 0.856 0.028
#> SRR2042656     2  0.0895     0.6496 0.000 0.976 0.004 0.020
#> SRR2042658     3  0.3751     0.6737 0.004 0.196 0.800 0.000
#> SRR2042659     1  0.4378     0.8440 0.804 0.004 0.036 0.156
#> SRR2042657     4  0.3389     0.8010 0.104 0.004 0.024 0.868
#> SRR2042655     1  0.2739     0.9044 0.904 0.000 0.036 0.060

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1   0.278      0.831 0.868 0.000 0.012 0.004 0.116
#> SRR2042653     1   0.191      0.857 0.928 0.000 0.028 0.000 0.044
#> SRR2042652     1   0.189      0.846 0.916 0.000 0.004 0.000 0.080
#> SRR2042650     1   0.502      0.629 0.676 0.000 0.008 0.264 0.052
#> SRR2042649     3   0.546      0.532 0.000 0.096 0.660 0.008 0.236
#> SRR2042647     4   0.263      0.856 0.008 0.084 0.012 0.892 0.004
#> SRR2042648     2   0.215      0.812 0.000 0.916 0.000 0.036 0.048
#> SRR2042646     3   0.620      0.348 0.020 0.072 0.520 0.004 0.384
#> SRR2042645     4   0.308      0.839 0.064 0.020 0.016 0.884 0.016
#> SRR2042644     5   0.701      0.577 0.000 0.240 0.160 0.056 0.544
#> SRR2042643     4   0.617      0.430 0.288 0.000 0.044 0.596 0.072
#> SRR2042642     2   0.207      0.795 0.000 0.896 0.000 0.104 0.000
#> SRR2042640     4   0.340      0.669 0.000 0.236 0.000 0.764 0.000
#> SRR2042641     3   0.211      0.557 0.012 0.012 0.932 0.024 0.020
#> SRR2042639     2   0.438      0.771 0.000 0.780 0.012 0.140 0.068
#> SRR2042638     2   0.210      0.810 0.000 0.916 0.000 0.060 0.024
#> SRR2042637     3   0.671      0.407 0.000 0.136 0.544 0.036 0.284
#> SRR2042636     4   0.253      0.840 0.040 0.008 0.016 0.912 0.024
#> SRR2042634     4   0.364      0.814 0.080 0.012 0.016 0.852 0.040
#> SRR2042635     2   0.141      0.808 0.000 0.940 0.000 0.060 0.000
#> SRR2042633     2   0.762     -0.311 0.004 0.404 0.112 0.096 0.384
#> SRR2042631     4   0.141      0.859 0.000 0.060 0.000 0.940 0.000
#> SRR2042632     3   0.643      0.362 0.004 0.136 0.528 0.008 0.324
#> SRR2042630     3   0.557      0.425 0.000 0.128 0.716 0.096 0.060
#> SRR2042629     4   0.157      0.860 0.000 0.060 0.000 0.936 0.004
#> SRR2042628     5   0.443      0.625 0.020 0.040 0.144 0.008 0.788
#> SRR2042626     2   0.278      0.798 0.000 0.864 0.000 0.120 0.016
#> SRR2042627     1   0.133      0.862 0.956 0.000 0.008 0.004 0.032
#> SRR2042624     5   0.483      0.683 0.016 0.084 0.108 0.016 0.776
#> SRR2042625     1   0.182      0.860 0.936 0.000 0.024 0.004 0.036
#> SRR2042623     1   0.278      0.831 0.868 0.000 0.012 0.004 0.116
#> SRR2042622     1   0.117      0.863 0.964 0.000 0.004 0.020 0.012
#> SRR2042620     4   0.307      0.776 0.000 0.196 0.000 0.804 0.000
#> SRR2042621     5   0.519      0.669 0.016 0.068 0.104 0.048 0.764
#> SRR2042619     4   0.156      0.860 0.000 0.052 0.008 0.940 0.000
#> SRR2042618     2   0.231      0.798 0.000 0.916 0.012 0.028 0.044
#> SRR2042617     1   0.401      0.799 0.800 0.000 0.008 0.140 0.052
#> SRR2042616     2   0.341      0.780 0.000 0.844 0.016 0.116 0.024
#> SRR2042615     2   0.500      0.724 0.000 0.752 0.032 0.116 0.100
#> SRR2042614     2   0.437      0.761 0.000 0.792 0.020 0.112 0.076
#> SRR2042613     5   0.719      0.550 0.000 0.244 0.160 0.068 0.528
#> SRR2042612     3   0.450      0.373 0.268 0.000 0.700 0.004 0.028
#> SRR2042610     1   0.508      0.748 0.748 0.000 0.128 0.084 0.040
#> SRR2042611     2   0.218      0.799 0.000 0.896 0.000 0.100 0.004
#> SRR2042607     4   0.141      0.861 0.000 0.060 0.000 0.940 0.000
#> SRR2042609     1   0.278      0.831 0.868 0.000 0.012 0.004 0.116
#> SRR2042608     3   0.188      0.559 0.008 0.008 0.940 0.020 0.024
#> SRR2042656     2   0.117      0.807 0.000 0.964 0.004 0.020 0.012
#> SRR2042658     3   0.580      0.469 0.024 0.048 0.592 0.004 0.332
#> SRR2042659     1   0.421      0.768 0.776 0.000 0.004 0.164 0.056
#> SRR2042657     4   0.326      0.828 0.076 0.012 0.016 0.872 0.024
#> SRR2042655     1   0.215      0.855 0.920 0.000 0.004 0.044 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR2042654     1   0.310     0.7500 0.756 0.000 0.000 0.000 0.000 NA
#> SRR2042653     1   0.253     0.7905 0.884 0.000 0.012 0.000 0.024 NA
#> SRR2042652     1   0.307     0.7681 0.792 0.000 0.004 0.004 0.000 NA
#> SRR2042650     1   0.521     0.4572 0.612 0.000 0.008 0.296 0.008 NA
#> SRR2042649     5   0.530     0.5937 0.000 0.036 0.044 0.000 0.560 NA
#> SRR2042647     4   0.366     0.7909 0.008 0.140 0.000 0.804 0.008 NA
#> SRR2042648     2   0.170     0.7872 0.000 0.936 0.016 0.032 0.000 NA
#> SRR2042646     5   0.653     0.5382 0.012 0.028 0.156 0.000 0.448 NA
#> SRR2042645     4   0.286     0.7972 0.072 0.000 0.012 0.876 0.012 NA
#> SRR2042644     3   0.785     0.3645 0.000 0.132 0.428 0.044 0.172 NA
#> SRR2042643     4   0.629     0.4071 0.296 0.000 0.040 0.556 0.040 NA
#> SRR2042642     2   0.225     0.7711 0.000 0.900 0.004 0.064 0.000 NA
#> SRR2042640     4   0.369     0.6296 0.000 0.260 0.008 0.724 0.000 NA
#> SRR2042641     5   0.112     0.5503 0.008 0.008 0.004 0.016 0.964 NA
#> SRR2042639     2   0.514     0.7235 0.000 0.724 0.064 0.136 0.020 NA
#> SRR2042638     2   0.231     0.7774 0.000 0.904 0.016 0.036 0.000 NA
#> SRR2042637     5   0.686     0.5026 0.000 0.076 0.092 0.024 0.460 NA
#> SRR2042636     4   0.305     0.8023 0.048 0.004 0.008 0.872 0.016 NA
#> SRR2042634     4   0.436     0.7668 0.088 0.012 0.008 0.784 0.016 NA
#> SRR2042635     2   0.209     0.7739 0.000 0.908 0.004 0.064 0.000 NA
#> SRR2042633     2   0.834    -0.0521 0.000 0.372 0.216 0.076 0.160 NA
#> SRR2042631     4   0.165     0.8223 0.004 0.048 0.004 0.936 0.004 NA
#> SRR2042632     5   0.613     0.5619 0.004 0.032 0.100 0.004 0.500 NA
#> SRR2042630     5   0.458     0.4629 0.000 0.068 0.044 0.076 0.780 NA
#> SRR2042629     4   0.191     0.8191 0.000 0.056 0.016 0.920 0.000 NA
#> SRR2042628     3   0.211     0.6168 0.004 0.008 0.896 0.000 0.092 NA
#> SRR2042626     2   0.247     0.7653 0.000 0.876 0.008 0.104 0.000 NA
#> SRR2042627     1   0.132     0.8052 0.956 0.000 0.008 0.008 0.008 NA
#> SRR2042624     3   0.156     0.6374 0.008 0.012 0.940 0.000 0.040 NA
#> SRR2042625     1   0.211     0.7968 0.912 0.000 0.016 0.000 0.016 NA
#> SRR2042623     1   0.322     0.7502 0.756 0.000 0.004 0.000 0.000 NA
#> SRR2042622     1   0.162     0.8049 0.936 0.000 0.012 0.008 0.000 NA
#> SRR2042620     4   0.415     0.7004 0.004 0.244 0.008 0.716 0.000 NA
#> SRR2042621     3   0.229     0.6254 0.012 0.004 0.912 0.032 0.036 NA
#> SRR2042619     4   0.112     0.8210 0.000 0.028 0.004 0.960 0.008 NA
#> SRR2042618     2   0.375     0.7511 0.000 0.816 0.048 0.016 0.012 NA
#> SRR2042617     1   0.409     0.7145 0.772 0.000 0.012 0.148 0.004 NA
#> SRR2042616     2   0.500     0.7240 0.000 0.736 0.040 0.088 0.020 NA
#> SRR2042615     2   0.632     0.6498 0.000 0.632 0.104 0.084 0.036 NA
#> SRR2042614     2   0.546     0.7055 0.000 0.704 0.048 0.084 0.032 NA
#> SRR2042613     3   0.794     0.2774 0.000 0.096 0.384 0.056 0.188 NA
#> SRR2042612     5   0.469     0.3722 0.208 0.000 0.020 0.004 0.708 NA
#> SRR2042610     1   0.438     0.7271 0.760 0.000 0.008 0.032 0.044 NA
#> SRR2042611     2   0.232     0.7703 0.000 0.892 0.004 0.080 0.000 NA
#> SRR2042607     4   0.192     0.8193 0.000 0.056 0.012 0.920 0.000 NA
#> SRR2042609     1   0.310     0.7500 0.756 0.000 0.000 0.000 0.000 NA
#> SRR2042608     5   0.111     0.5525 0.004 0.004 0.012 0.016 0.964 NA
#> SRR2042656     2   0.228     0.7790 0.000 0.904 0.016 0.012 0.004 NA
#> SRR2042658     5   0.653     0.5699 0.028 0.020 0.116 0.004 0.480 NA
#> SRR2042659     1   0.513     0.5830 0.664 0.000 0.032 0.224 0.000 NA
#> SRR2042657     4   0.368     0.7919 0.076 0.016 0.004 0.832 0.012 NA
#> SRR2042655     1   0.230     0.7957 0.908 0.000 0.012 0.040 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.149           0.759       0.814         0.4559 0.497   0.497
#> 3 3 0.213           0.550       0.759         0.3243 0.875   0.757
#> 4 4 0.267           0.451       0.689         0.1167 0.923   0.815
#> 5 5 0.337           0.390       0.653         0.0657 0.969   0.912
#> 6 6 0.385           0.347       0.613         0.0449 0.928   0.793

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     2   0.969      0.452 0.396 0.604
#> SRR2042653     1   0.662      0.798 0.828 0.172
#> SRR2042652     1   0.506      0.778 0.888 0.112
#> SRR2042650     1   0.402      0.812 0.920 0.080
#> SRR2042649     2   0.141      0.852 0.020 0.980
#> SRR2042647     1   0.541      0.825 0.876 0.124
#> SRR2042648     1   0.995      0.407 0.540 0.460
#> SRR2042646     2   0.118      0.852 0.016 0.984
#> SRR2042645     1   0.671      0.832 0.824 0.176
#> SRR2042644     2   0.184      0.857 0.028 0.972
#> SRR2042643     1   0.671      0.822 0.824 0.176
#> SRR2042642     1   0.850      0.780 0.724 0.276
#> SRR2042640     1   0.781      0.814 0.768 0.232
#> SRR2042641     2   0.311      0.852 0.056 0.944
#> SRR2042639     2   0.917      0.445 0.332 0.668
#> SRR2042638     2   0.998     -0.178 0.476 0.524
#> SRR2042637     2   0.224      0.856 0.036 0.964
#> SRR2042636     1   0.541      0.830 0.876 0.124
#> SRR2042634     1   0.430      0.822 0.912 0.088
#> SRR2042635     1   0.955      0.653 0.624 0.376
#> SRR2042633     2   0.388      0.856 0.076 0.924
#> SRR2042631     1   0.866      0.785 0.712 0.288
#> SRR2042632     2   0.163      0.851 0.024 0.976
#> SRR2042630     2   0.358      0.856 0.068 0.932
#> SRR2042629     1   0.833      0.789 0.736 0.264
#> SRR2042628     2   0.358      0.856 0.068 0.932
#> SRR2042626     1   0.876      0.762 0.704 0.296
#> SRR2042627     1   0.871      0.780 0.708 0.292
#> SRR2042624     2   0.278      0.854 0.048 0.952
#> SRR2042625     1   0.529      0.781 0.880 0.120
#> SRR2042623     1   0.625      0.699 0.844 0.156
#> SRR2042622     1   0.775      0.752 0.772 0.228
#> SRR2042620     1   0.644      0.831 0.836 0.164
#> SRR2042621     2   0.358      0.854 0.068 0.932
#> SRR2042619     1   0.680      0.831 0.820 0.180
#> SRR2042618     2   0.563      0.820 0.132 0.868
#> SRR2042617     1   0.518      0.826 0.884 0.116
#> SRR2042616     2   0.730      0.743 0.204 0.796
#> SRR2042615     2   0.595      0.813 0.144 0.856
#> SRR2042614     2   0.574      0.819 0.136 0.864
#> SRR2042613     2   0.343      0.856 0.064 0.936
#> SRR2042612     2   0.224      0.832 0.036 0.964
#> SRR2042610     1   0.242      0.788 0.960 0.040
#> SRR2042611     1   0.876      0.766 0.704 0.296
#> SRR2042607     1   0.814      0.805 0.748 0.252
#> SRR2042609     1   0.625      0.733 0.844 0.156
#> SRR2042608     2   0.482      0.839 0.104 0.896
#> SRR2042656     2   0.929      0.414 0.344 0.656
#> SRR2042658     2   0.224      0.835 0.036 0.964
#> SRR2042659     1   0.861      0.772 0.716 0.284
#> SRR2042657     1   0.327      0.802 0.940 0.060
#> SRR2042655     1   0.917      0.697 0.668 0.332

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     3  0.9852     0.0133 0.312 0.272 0.416
#> SRR2042653     1  0.7325     0.4761 0.576 0.388 0.036
#> SRR2042652     1  0.7712     0.4664 0.556 0.392 0.052
#> SRR2042650     2  0.5506     0.4595 0.220 0.764 0.016
#> SRR2042649     3  0.1337     0.8192 0.016 0.012 0.972
#> SRR2042647     2  0.6025     0.3663 0.232 0.740 0.028
#> SRR2042648     2  0.8087     0.3200 0.076 0.560 0.364
#> SRR2042646     3  0.1015     0.8226 0.008 0.012 0.980
#> SRR2042645     2  0.6351     0.5618 0.168 0.760 0.072
#> SRR2042644     3  0.1525     0.8287 0.004 0.032 0.964
#> SRR2042643     2  0.8204     0.1755 0.316 0.588 0.096
#> SRR2042642     2  0.4749     0.6099 0.040 0.844 0.116
#> SRR2042640     2  0.3983     0.6138 0.048 0.884 0.068
#> SRR2042641     3  0.3148     0.8175 0.048 0.036 0.916
#> SRR2042639     3  0.7558     0.3228 0.044 0.400 0.556
#> SRR2042638     2  0.7555     0.1089 0.040 0.520 0.440
#> SRR2042637     3  0.1919     0.8213 0.024 0.020 0.956
#> SRR2042636     2  0.3802     0.5907 0.080 0.888 0.032
#> SRR2042634     2  0.4326     0.5244 0.144 0.844 0.012
#> SRR2042635     2  0.5905     0.5681 0.044 0.772 0.184
#> SRR2042633     3  0.3539     0.8285 0.012 0.100 0.888
#> SRR2042631     2  0.5954     0.6000 0.116 0.792 0.092
#> SRR2042632     3  0.0424     0.8221 0.000 0.008 0.992
#> SRR2042630     3  0.3995     0.8231 0.016 0.116 0.868
#> SRR2042629     2  0.5344     0.6029 0.092 0.824 0.084
#> SRR2042628     3  0.3826     0.8229 0.008 0.124 0.868
#> SRR2042626     2  0.5696     0.5885 0.056 0.796 0.148
#> SRR2042627     2  0.7398     0.4945 0.180 0.700 0.120
#> SRR2042624     3  0.2269     0.8295 0.016 0.040 0.944
#> SRR2042625     1  0.7777     0.5145 0.532 0.416 0.052
#> SRR2042623     1  0.7671     0.6158 0.628 0.300 0.072
#> SRR2042622     2  0.9265    -0.2583 0.416 0.428 0.156
#> SRR2042620     2  0.5159     0.5404 0.140 0.820 0.040
#> SRR2042621     3  0.3461     0.8295 0.024 0.076 0.900
#> SRR2042619     2  0.4586     0.5789 0.096 0.856 0.048
#> SRR2042618     3  0.5536     0.7545 0.024 0.200 0.776
#> SRR2042617     2  0.5551     0.4233 0.212 0.768 0.020
#> SRR2042616     3  0.6621     0.6308 0.032 0.284 0.684
#> SRR2042615     3  0.5167     0.7789 0.024 0.172 0.804
#> SRR2042614     3  0.5435     0.7572 0.024 0.192 0.784
#> SRR2042613     3  0.3083     0.8313 0.024 0.060 0.916
#> SRR2042612     3  0.5772     0.6339 0.220 0.024 0.756
#> SRR2042610     2  0.6509    -0.4135 0.472 0.524 0.004
#> SRR2042611     2  0.4845     0.6084 0.052 0.844 0.104
#> SRR2042607     2  0.5722     0.5974 0.112 0.804 0.084
#> SRR2042609     1  0.7479     0.5991 0.660 0.264 0.076
#> SRR2042608     3  0.4709     0.8147 0.056 0.092 0.852
#> SRR2042656     3  0.7353     0.5153 0.052 0.316 0.632
#> SRR2042658     3  0.1129     0.8160 0.020 0.004 0.976
#> SRR2042659     2  0.7841     0.3725 0.272 0.636 0.092
#> SRR2042657     2  0.5958     0.1471 0.300 0.692 0.008
#> SRR2042655     2  0.8916     0.2189 0.304 0.544 0.152

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     3   0.979    0.09709 0.156 0.296 0.300 0.248
#> SRR2042653     3   0.833   -0.21381 0.388 0.028 0.388 0.196
#> SRR2042652     1   0.878    0.13446 0.384 0.044 0.316 0.256
#> SRR2042650     4   0.687    0.29816 0.224 0.008 0.148 0.620
#> SRR2042649     2   0.199    0.78067 0.020 0.944 0.024 0.012
#> SRR2042647     4   0.572    0.41093 0.228 0.016 0.048 0.708
#> SRR2042648     4   0.728    0.21766 0.012 0.364 0.112 0.512
#> SRR2042646     2   0.112    0.77848 0.012 0.972 0.012 0.004
#> SRR2042645     4   0.722    0.34170 0.088 0.036 0.284 0.592
#> SRR2042644     2   0.136    0.79130 0.000 0.960 0.008 0.032
#> SRR2042643     4   0.880   -0.12981 0.276 0.048 0.268 0.408
#> SRR2042642     4   0.454    0.55514 0.032 0.108 0.036 0.824
#> SRR2042640     4   0.400    0.57218 0.040 0.064 0.036 0.860
#> SRR2042641     2   0.487    0.73604 0.052 0.816 0.080 0.052
#> SRR2042639     2   0.689    0.35524 0.008 0.536 0.088 0.368
#> SRR2042638     4   0.667   -0.08033 0.004 0.448 0.072 0.476
#> SRR2042637     2   0.222    0.77880 0.020 0.936 0.024 0.020
#> SRR2042636     4   0.448    0.54457 0.044 0.016 0.120 0.820
#> SRR2042634     4   0.599    0.42844 0.128 0.008 0.152 0.712
#> SRR2042635     4   0.570    0.48106 0.016 0.192 0.064 0.728
#> SRR2042633     2   0.343    0.79130 0.012 0.872 0.020 0.096
#> SRR2042631     4   0.612    0.50697 0.048 0.088 0.128 0.736
#> SRR2042632     2   0.127    0.78455 0.008 0.968 0.012 0.012
#> SRR2042630     2   0.513    0.76213 0.032 0.788 0.048 0.132
#> SRR2042629     4   0.456    0.55814 0.008 0.092 0.084 0.816
#> SRR2042628     2   0.427    0.77436 0.012 0.836 0.064 0.088
#> SRR2042626     4   0.524    0.53910 0.020 0.124 0.076 0.780
#> SRR2042627     4   0.744    0.33560 0.088 0.064 0.236 0.612
#> SRR2042624     2   0.241    0.79423 0.000 0.920 0.044 0.036
#> SRR2042625     1   0.772    0.20318 0.576 0.052 0.116 0.256
#> SRR2042623     1   0.676    0.26236 0.684 0.048 0.164 0.104
#> SRR2042622     3   0.931   -0.12097 0.300 0.092 0.368 0.240
#> SRR2042620     4   0.562    0.51033 0.108 0.024 0.108 0.760
#> SRR2042621     2   0.357    0.78574 0.004 0.868 0.052 0.076
#> SRR2042619     4   0.567    0.50579 0.116 0.024 0.104 0.756
#> SRR2042618     2   0.543    0.70778 0.008 0.732 0.056 0.204
#> SRR2042617     4   0.737    0.22050 0.240 0.016 0.164 0.580
#> SRR2042616     2   0.646    0.52769 0.008 0.596 0.068 0.328
#> SRR2042615     2   0.473    0.73183 0.008 0.772 0.028 0.192
#> SRR2042614     2   0.529    0.71371 0.012 0.748 0.048 0.192
#> SRR2042613     2   0.202    0.79676 0.000 0.932 0.012 0.056
#> SRR2042612     2   0.760    0.28852 0.164 0.576 0.232 0.028
#> SRR2042610     1   0.609    0.26197 0.596 0.004 0.048 0.352
#> SRR2042611     4   0.498    0.55590 0.040 0.088 0.064 0.808
#> SRR2042607     4   0.587    0.51533 0.036 0.060 0.168 0.736
#> SRR2042609     1   0.863    0.23583 0.504 0.080 0.236 0.180
#> SRR2042608     2   0.529    0.73663 0.020 0.776 0.076 0.128
#> SRR2042656     2   0.689    0.51013 0.016 0.588 0.088 0.308
#> SRR2042658     2   0.232    0.75440 0.032 0.928 0.036 0.004
#> SRR2042659     4   0.833   -0.11616 0.120 0.060 0.408 0.412
#> SRR2042657     4   0.722   -0.00131 0.372 0.016 0.096 0.516
#> SRR2042655     3   0.854    0.14639 0.112 0.096 0.484 0.308

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.9521    0.07779 0.328 0.236 0.124 0.200 0.112
#> SRR2042653     5  0.2824    0.15834 0.028 0.016 0.000 0.068 0.888
#> SRR2042652     1  0.6975    0.12231 0.632 0.028 0.080 0.132 0.128
#> SRR2042650     4  0.7513    0.14169 0.088 0.004 0.244 0.512 0.152
#> SRR2042649     2  0.2582    0.71269 0.020 0.904 0.060 0.008 0.008
#> SRR2042647     4  0.5934    0.38378 0.032 0.004 0.116 0.672 0.176
#> SRR2042648     4  0.6150    0.17583 0.016 0.336 0.068 0.568 0.012
#> SRR2042646     2  0.1969    0.72584 0.012 0.932 0.044 0.008 0.004
#> SRR2042645     4  0.7406    0.32906 0.112 0.024 0.172 0.584 0.108
#> SRR2042644     2  0.1644    0.73996 0.008 0.948 0.012 0.028 0.004
#> SRR2042643     3  0.9002    0.00000 0.192 0.024 0.316 0.252 0.216
#> SRR2042642     4  0.3572    0.53928 0.016 0.072 0.024 0.860 0.028
#> SRR2042640     4  0.3475    0.54065 0.004 0.036 0.052 0.864 0.044
#> SRR2042641     2  0.5632    0.67173 0.020 0.724 0.124 0.104 0.028
#> SRR2042639     2  0.6119    0.28821 0.008 0.480 0.084 0.424 0.004
#> SRR2042638     4  0.5291    0.14323 0.008 0.356 0.028 0.600 0.008
#> SRR2042637     2  0.2207    0.73551 0.012 0.924 0.040 0.020 0.004
#> SRR2042636     4  0.4609    0.46905 0.016 0.000 0.172 0.756 0.056
#> SRR2042634     4  0.6534    0.36272 0.048 0.004 0.168 0.624 0.156
#> SRR2042635     4  0.4444    0.48661 0.008 0.160 0.024 0.780 0.028
#> SRR2042633     2  0.3470    0.74761 0.016 0.852 0.052 0.080 0.000
#> SRR2042631     4  0.6170    0.42872 0.040 0.040 0.140 0.696 0.084
#> SRR2042632     2  0.0771    0.72578 0.004 0.976 0.020 0.000 0.000
#> SRR2042630     2  0.5315    0.68652 0.020 0.700 0.084 0.196 0.000
#> SRR2042629     4  0.4708    0.53244 0.016 0.056 0.104 0.792 0.032
#> SRR2042628     2  0.5554    0.67995 0.048 0.744 0.112 0.068 0.028
#> SRR2042626     4  0.4423    0.51488 0.016 0.100 0.052 0.808 0.024
#> SRR2042627     4  0.7610   -0.07585 0.036 0.024 0.172 0.476 0.292
#> SRR2042624     2  0.3881    0.71930 0.032 0.836 0.088 0.040 0.004
#> SRR2042625     5  0.8544    0.08272 0.168 0.052 0.240 0.092 0.448
#> SRR2042623     1  0.8648    0.05537 0.416 0.052 0.168 0.092 0.272
#> SRR2042622     1  0.8677    0.15536 0.440 0.056 0.244 0.120 0.140
#> SRR2042620     4  0.5211    0.43966 0.028 0.004 0.084 0.736 0.148
#> SRR2042621     2  0.4766    0.71649 0.032 0.784 0.092 0.084 0.008
#> SRR2042619     4  0.6047    0.43917 0.048 0.020 0.112 0.700 0.120
#> SRR2042618     2  0.4793    0.67190 0.000 0.692 0.048 0.256 0.004
#> SRR2042617     4  0.8054    0.01555 0.076 0.020 0.228 0.464 0.212
#> SRR2042616     2  0.5882    0.41360 0.020 0.536 0.040 0.396 0.008
#> SRR2042615     2  0.4883    0.70797 0.008 0.736 0.060 0.188 0.008
#> SRR2042614     2  0.5060    0.67087 0.000 0.688 0.064 0.240 0.008
#> SRR2042613     2  0.3107    0.74689 0.012 0.868 0.032 0.088 0.000
#> SRR2042612     2  0.7935   -0.00065 0.112 0.460 0.288 0.012 0.128
#> SRR2042610     5  0.8427    0.08310 0.252 0.000 0.168 0.240 0.340
#> SRR2042611     4  0.3802    0.53657 0.004 0.068 0.032 0.844 0.052
#> SRR2042607     4  0.4805    0.49409 0.044 0.024 0.136 0.776 0.020
#> SRR2042609     1  0.6988    0.14589 0.620 0.036 0.076 0.076 0.192
#> SRR2042608     2  0.6041    0.65932 0.028 0.668 0.104 0.188 0.012
#> SRR2042656     2  0.6053    0.39573 0.012 0.520 0.056 0.400 0.012
#> SRR2042658     2  0.2699    0.71092 0.008 0.892 0.080 0.012 0.008
#> SRR2042659     4  0.8768   -0.21660 0.288 0.032 0.272 0.312 0.096
#> SRR2042657     4  0.7966   -0.25831 0.148 0.000 0.196 0.456 0.200
#> SRR2042655     5  0.8992   -0.14430 0.076 0.076 0.232 0.256 0.360

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1   0.916    0.03293 0.352 0.164 0.120 0.172 0.148 0.044
#> SRR2042653     3   0.821   -0.30016 0.124 0.000 0.348 0.068 0.172 0.288
#> SRR2042652     1   0.614    0.08944 0.688 0.028 0.044 0.076 0.080 0.084
#> SRR2042650     4   0.737   -0.17485 0.064 0.000 0.024 0.360 0.356 0.196
#> SRR2042649     2   0.292    0.62436 0.000 0.820 0.168 0.008 0.004 0.000
#> SRR2042647     4   0.570    0.44834 0.040 0.004 0.024 0.680 0.104 0.148
#> SRR2042648     4   0.564    0.30575 0.024 0.316 0.024 0.584 0.052 0.000
#> SRR2042646     2   0.177    0.67312 0.008 0.932 0.044 0.004 0.012 0.000
#> SRR2042645     4   0.638    0.29737 0.060 0.012 0.064 0.580 0.264 0.020
#> SRR2042644     2   0.188    0.68473 0.004 0.928 0.040 0.020 0.008 0.000
#> SRR2042643     1   0.923   -0.02054 0.276 0.024 0.140 0.172 0.224 0.164
#> SRR2042642     4   0.345    0.55208 0.012 0.096 0.012 0.836 0.044 0.000
#> SRR2042640     4   0.348    0.55506 0.004 0.052 0.000 0.836 0.084 0.024
#> SRR2042641     2   0.620    0.44843 0.004 0.548 0.268 0.152 0.012 0.016
#> SRR2042639     2   0.582    0.30911 0.016 0.524 0.032 0.380 0.044 0.004
#> SRR2042638     4   0.438    0.29426 0.000 0.316 0.028 0.648 0.008 0.000
#> SRR2042637     2   0.266    0.66701 0.000 0.872 0.100 0.016 0.008 0.004
#> SRR2042636     4   0.457    0.47557 0.012 0.000 0.028 0.720 0.212 0.028
#> SRR2042634     4   0.567    0.31863 0.020 0.000 0.016 0.592 0.292 0.080
#> SRR2042635     4   0.405    0.50957 0.004 0.192 0.028 0.760 0.008 0.008
#> SRR2042633     2   0.437    0.67683 0.004 0.784 0.076 0.100 0.020 0.016
#> SRR2042631     4   0.629    0.44209 0.068 0.036 0.028 0.632 0.204 0.032
#> SRR2042632     2   0.128    0.67776 0.000 0.944 0.052 0.000 0.004 0.000
#> SRR2042630     2   0.631    0.51200 0.004 0.528 0.200 0.244 0.016 0.008
#> SRR2042629     4   0.517    0.50693 0.016 0.060 0.004 0.684 0.216 0.020
#> SRR2042628     2   0.526    0.56146 0.024 0.736 0.112 0.036 0.076 0.016
#> SRR2042626     4   0.455    0.54324 0.020 0.092 0.020 0.784 0.068 0.016
#> SRR2042627     4   0.754   -0.02019 0.016 0.012 0.140 0.424 0.308 0.100
#> SRR2042624     2   0.366    0.66605 0.028 0.840 0.056 0.040 0.036 0.000
#> SRR2042625     6   0.455    0.30226 0.020 0.016 0.072 0.060 0.040 0.792
#> SRR2042623     6   0.768    0.14186 0.316 0.028 0.084 0.056 0.068 0.448
#> SRR2042622     1   0.920   -0.06421 0.288 0.036 0.192 0.108 0.240 0.136
#> SRR2042620     4   0.485    0.51479 0.024 0.012 0.072 0.768 0.088 0.036
#> SRR2042621     2   0.418    0.66749 0.032 0.816 0.056 0.052 0.036 0.008
#> SRR2042619     4   0.612    0.37456 0.016 0.012 0.016 0.604 0.204 0.148
#> SRR2042618     2   0.512    0.55013 0.004 0.624 0.064 0.292 0.016 0.000
#> SRR2042617     4   0.802   -0.15884 0.064 0.008 0.056 0.356 0.296 0.220
#> SRR2042616     2   0.576    0.18944 0.004 0.456 0.052 0.452 0.028 0.008
#> SRR2042615     2   0.387    0.67414 0.012 0.780 0.028 0.172 0.004 0.004
#> SRR2042614     2   0.432    0.62378 0.000 0.708 0.032 0.244 0.012 0.004
#> SRR2042613     2   0.294    0.69579 0.008 0.872 0.056 0.052 0.012 0.000
#> SRR2042612     3   0.713    0.00621 0.040 0.300 0.488 0.028 0.020 0.124
#> SRR2042610     6   0.777    0.20953 0.240 0.000 0.068 0.132 0.108 0.452
#> SRR2042611     4   0.376    0.55271 0.004 0.068 0.032 0.836 0.036 0.024
#> SRR2042607     4   0.607    0.40592 0.060 0.032 0.028 0.628 0.232 0.020
#> SRR2042609     1   0.761   -0.04876 0.540 0.048 0.116 0.056 0.056 0.184
#> SRR2042608     2   0.668    0.43702 0.004 0.468 0.220 0.276 0.012 0.020
#> SRR2042656     4   0.607   -0.16112 0.008 0.428 0.084 0.452 0.012 0.016
#> SRR2042658     2   0.346    0.57960 0.004 0.776 0.204 0.008 0.000 0.008
#> SRR2042659     5   0.781    0.13197 0.164 0.036 0.068 0.200 0.492 0.040
#> SRR2042657     4   0.804   -0.03235 0.156 0.012 0.020 0.396 0.204 0.212
#> SRR2042655     5   0.895    0.08156 0.144 0.048 0.240 0.132 0.356 0.080

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.295           0.732       0.849         0.4331 0.509   0.509
#> 3 3 0.378           0.571       0.787         0.2815 0.949   0.899
#> 4 4 0.411           0.517       0.744         0.1183 0.851   0.691
#> 5 5 0.513           0.543       0.747         0.0577 0.938   0.835
#> 6 6 0.573           0.554       0.718         0.0478 0.895   0.707

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.890 1.000 0.000
#> SRR2042653     1  0.0000      0.890 1.000 0.000
#> SRR2042652     1  0.0000      0.890 1.000 0.000
#> SRR2042650     1  0.0000      0.890 1.000 0.000
#> SRR2042649     2  0.5408      0.774 0.124 0.876
#> SRR2042647     1  0.2236      0.876 0.964 0.036
#> SRR2042648     2  0.9710      0.637 0.400 0.600
#> SRR2042646     2  0.5737      0.747 0.136 0.864
#> SRR2042645     1  0.2423      0.873 0.960 0.040
#> SRR2042644     2  0.5519      0.777 0.128 0.872
#> SRR2042643     1  0.0376      0.888 0.996 0.004
#> SRR2042642     2  0.9815      0.605 0.420 0.580
#> SRR2042640     1  0.7815      0.597 0.768 0.232
#> SRR2042641     1  0.9491      0.256 0.632 0.368
#> SRR2042639     2  0.9710      0.563 0.400 0.600
#> SRR2042638     2  0.9732      0.631 0.404 0.596
#> SRR2042637     2  0.7376      0.778 0.208 0.792
#> SRR2042636     1  0.1414      0.884 0.980 0.020
#> SRR2042634     1  0.0672      0.888 0.992 0.008
#> SRR2042635     2  0.9732      0.631 0.404 0.596
#> SRR2042633     2  0.9635      0.607 0.388 0.612
#> SRR2042631     1  0.1843      0.879 0.972 0.028
#> SRR2042632     2  0.2778      0.733 0.048 0.952
#> SRR2042630     2  0.5294      0.777 0.120 0.880
#> SRR2042629     1  0.3274      0.858 0.940 0.060
#> SRR2042628     1  0.9970     -0.272 0.532 0.468
#> SRR2042626     2  0.9954      0.507 0.460 0.540
#> SRR2042627     1  0.0000      0.890 1.000 0.000
#> SRR2042624     2  0.7453      0.725 0.212 0.788
#> SRR2042625     1  0.0000      0.890 1.000 0.000
#> SRR2042623     1  0.0000      0.890 1.000 0.000
#> SRR2042622     1  0.0000      0.890 1.000 0.000
#> SRR2042620     1  0.5294      0.798 0.880 0.120
#> SRR2042621     2  0.8813      0.699 0.300 0.700
#> SRR2042619     1  0.1843      0.880 0.972 0.028
#> SRR2042618     2  0.6712      0.785 0.176 0.824
#> SRR2042617     1  0.0000      0.890 1.000 0.000
#> SRR2042616     2  0.6247      0.785 0.156 0.844
#> SRR2042615     2  0.5294      0.779 0.120 0.880
#> SRR2042614     2  0.8081      0.768 0.248 0.752
#> SRR2042613     2  0.3584      0.742 0.068 0.932
#> SRR2042612     1  0.0672      0.888 0.992 0.008
#> SRR2042610     1  0.0000      0.890 1.000 0.000
#> SRR2042611     2  0.9754      0.626 0.408 0.592
#> SRR2042607     1  0.4022      0.844 0.920 0.080
#> SRR2042609     1  0.0000      0.890 1.000 0.000
#> SRR2042608     1  0.7528      0.656 0.784 0.216
#> SRR2042656     1  0.8909      0.417 0.692 0.308
#> SRR2042658     1  0.9977     -0.267 0.528 0.472
#> SRR2042659     1  0.0000      0.890 1.000 0.000
#> SRR2042657     1  0.0376      0.889 0.996 0.004
#> SRR2042655     1  0.0000      0.890 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042653     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042652     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042650     1  0.0237     0.8399 0.996 0.000 0.004
#> SRR2042649     2  0.5598     0.3472 0.052 0.800 0.148
#> SRR2042647     1  0.3933     0.7843 0.880 0.028 0.092
#> SRR2042648     2  0.8647     0.5373 0.208 0.600 0.192
#> SRR2042646     3  0.7278     0.3940 0.028 0.456 0.516
#> SRR2042645     1  0.2152     0.8209 0.948 0.016 0.036
#> SRR2042644     2  0.6435     0.3443 0.076 0.756 0.168
#> SRR2042643     1  0.0237     0.8407 0.996 0.000 0.004
#> SRR2042642     2  0.8802     0.5275 0.216 0.584 0.200
#> SRR2042640     1  0.8913     0.3384 0.572 0.220 0.208
#> SRR2042641     1  0.9433    -0.0536 0.460 0.356 0.184
#> SRR2042639     2  0.9450     0.2510 0.296 0.492 0.212
#> SRR2042638     2  0.8689     0.5385 0.204 0.596 0.200
#> SRR2042637     2  0.7558     0.2849 0.124 0.688 0.188
#> SRR2042636     1  0.2804     0.8137 0.924 0.016 0.060
#> SRR2042634     1  0.0983     0.8358 0.980 0.004 0.016
#> SRR2042635     2  0.8689     0.5385 0.204 0.596 0.200
#> SRR2042633     3  0.9894     0.3600 0.276 0.324 0.400
#> SRR2042631     1  0.2446     0.8196 0.936 0.012 0.052
#> SRR2042632     2  0.4645     0.2453 0.008 0.816 0.176
#> SRR2042630     2  0.5137     0.4541 0.064 0.832 0.104
#> SRR2042629     1  0.5094     0.7440 0.824 0.040 0.136
#> SRR2042628     1  0.9322    -0.3414 0.444 0.164 0.392
#> SRR2042626     2  0.9347     0.4412 0.288 0.508 0.204
#> SRR2042627     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042624     3  0.8548     0.6162 0.120 0.312 0.568
#> SRR2042625     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042623     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042622     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042620     1  0.7304     0.5915 0.688 0.084 0.228
#> SRR2042621     3  0.9129     0.6017 0.180 0.288 0.532
#> SRR2042619     1  0.2383     0.8235 0.940 0.016 0.044
#> SRR2042618     2  0.4206     0.5240 0.088 0.872 0.040
#> SRR2042617     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042616     2  0.4035     0.5079 0.080 0.880 0.040
#> SRR2042615     2  0.4075     0.4878 0.072 0.880 0.048
#> SRR2042614     2  0.5852     0.5398 0.152 0.788 0.060
#> SRR2042613     2  0.5896     0.0739 0.008 0.700 0.292
#> SRR2042612     1  0.0892     0.8346 0.980 0.000 0.020
#> SRR2042610     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042611     2  0.8728     0.5361 0.208 0.592 0.200
#> SRR2042607     1  0.5852     0.7069 0.788 0.060 0.152
#> SRR2042609     1  0.0000     0.8415 1.000 0.000 0.000
#> SRR2042608     1  0.8241     0.4774 0.636 0.204 0.160
#> SRR2042656     1  0.9480     0.1050 0.496 0.268 0.236
#> SRR2042658     1  0.9621    -0.3579 0.432 0.208 0.360
#> SRR2042659     1  0.0237     0.8399 0.996 0.000 0.004
#> SRR2042657     1  0.0424     0.8397 0.992 0.000 0.008
#> SRR2042655     1  0.0475     0.8387 0.992 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000     0.8771 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.8771 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.8771 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.0376     0.8762 0.992 0.004 0.004 0.000
#> SRR2042649     4  0.6862     0.5718 0.020 0.432 0.056 0.492
#> SRR2042647     1  0.4785     0.7488 0.812 0.108 0.052 0.028
#> SRR2042648     2  0.2799     0.4454 0.108 0.884 0.000 0.008
#> SRR2042646     3  0.7216     0.0488 0.000 0.140 0.448 0.412
#> SRR2042645     1  0.2310     0.8406 0.932 0.020 0.032 0.016
#> SRR2042644     2  0.7877    -0.3944 0.044 0.484 0.104 0.368
#> SRR2042643     1  0.0376     0.8765 0.992 0.004 0.000 0.004
#> SRR2042642     2  0.2714     0.4509 0.112 0.884 0.000 0.004
#> SRR2042640     1  0.6700     0.0347 0.476 0.460 0.040 0.024
#> SRR2042641     2  0.8653     0.1321 0.368 0.380 0.044 0.208
#> SRR2042639     2  0.8510     0.2072 0.236 0.488 0.052 0.224
#> SRR2042638     2  0.2281     0.4459 0.096 0.904 0.000 0.000
#> SRR2042637     4  0.8461     0.4826 0.052 0.384 0.152 0.412
#> SRR2042636     1  0.3351     0.8158 0.884 0.068 0.036 0.012
#> SRR2042634     1  0.0779     0.8716 0.980 0.000 0.016 0.004
#> SRR2042635     2  0.2281     0.4459 0.096 0.904 0.000 0.000
#> SRR2042633     3  0.9272     0.3550 0.204 0.196 0.452 0.148
#> SRR2042631     1  0.3106     0.8288 0.900 0.040 0.040 0.020
#> SRR2042632     4  0.6031     0.5793 0.000 0.388 0.048 0.564
#> SRR2042630     2  0.6369    -0.4754 0.032 0.484 0.016 0.468
#> SRR2042629     1  0.5658     0.6687 0.744 0.172 0.056 0.028
#> SRR2042628     3  0.6898     0.4808 0.380 0.032 0.540 0.048
#> SRR2042626     2  0.3992     0.4231 0.188 0.800 0.004 0.008
#> SRR2042627     1  0.0188     0.8770 0.996 0.004 0.000 0.000
#> SRR2042624     3  0.8299     0.3918 0.096 0.092 0.508 0.304
#> SRR2042625     1  0.0188     0.8771 0.996 0.004 0.000 0.000
#> SRR2042623     1  0.0000     0.8771 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0188     0.8770 0.996 0.004 0.000 0.000
#> SRR2042620     1  0.6976     0.3880 0.576 0.332 0.048 0.044
#> SRR2042621     3  0.8719     0.4127 0.120 0.124 0.500 0.256
#> SRR2042619     1  0.2775     0.8382 0.912 0.044 0.032 0.012
#> SRR2042618     2  0.5474    -0.1549 0.024 0.684 0.012 0.280
#> SRR2042617     1  0.0000     0.8771 1.000 0.000 0.000 0.000
#> SRR2042616     2  0.5889    -0.2526 0.024 0.624 0.016 0.336
#> SRR2042615     2  0.5999    -0.3599 0.036 0.564 0.004 0.396
#> SRR2042614     2  0.6037     0.0969 0.072 0.688 0.012 0.228
#> SRR2042613     4  0.7494     0.5264 0.000 0.312 0.204 0.484
#> SRR2042612     1  0.0895     0.8667 0.976 0.004 0.020 0.000
#> SRR2042610     1  0.0188     0.8771 0.996 0.004 0.000 0.000
#> SRR2042611     2  0.2408     0.4499 0.104 0.896 0.000 0.000
#> SRR2042607     1  0.5943     0.6134 0.708 0.216 0.040 0.036
#> SRR2042609     1  0.0000     0.8771 1.000 0.000 0.000 0.000
#> SRR2042608     1  0.7846     0.2541 0.536 0.288 0.036 0.140
#> SRR2042656     2  0.8063     0.1676 0.380 0.464 0.060 0.096
#> SRR2042658     3  0.8150     0.4713 0.364 0.056 0.468 0.112
#> SRR2042659     1  0.0188     0.8754 0.996 0.000 0.004 0.000
#> SRR2042657     1  0.0657     0.8751 0.984 0.004 0.012 0.000
#> SRR2042655     1  0.0712     0.8743 0.984 0.008 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.8710 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.8710 1.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.8710 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0324     0.8698 0.992 0.004 0.000 0.004 0.000
#> SRR2042649     3  0.6830     0.5723 0.012 0.288 0.564 0.076 0.060
#> SRR2042647     1  0.4712     0.6829 0.768 0.124 0.008 0.092 0.008
#> SRR2042648     2  0.2393     0.4717 0.080 0.900 0.016 0.004 0.000
#> SRR2042646     5  0.5023     0.4869 0.000 0.056 0.136 0.056 0.752
#> SRR2042645     1  0.2129     0.8281 0.924 0.008 0.008 0.052 0.008
#> SRR2042644     3  0.7942     0.4347 0.020 0.384 0.392 0.096 0.108
#> SRR2042643     1  0.0613     0.8686 0.984 0.004 0.004 0.008 0.000
#> SRR2042642     2  0.1894     0.4761 0.072 0.920 0.000 0.008 0.000
#> SRR2042640     2  0.6230     0.0911 0.424 0.484 0.016 0.068 0.008
#> SRR2042641     2  0.8696     0.0658 0.304 0.324 0.216 0.140 0.016
#> SRR2042639     2  0.8497     0.1645 0.212 0.456 0.200 0.068 0.064
#> SRR2042638     2  0.1410     0.4688 0.060 0.940 0.000 0.000 0.000
#> SRR2042637     3  0.7735     0.4749 0.020 0.272 0.460 0.208 0.040
#> SRR2042636     1  0.3432     0.7751 0.852 0.076 0.004 0.064 0.004
#> SRR2042634     1  0.0671     0.8654 0.980 0.000 0.000 0.016 0.004
#> SRR2042635     2  0.1410     0.4688 0.060 0.940 0.000 0.000 0.000
#> SRR2042633     4  0.8312     0.2647 0.152 0.140 0.104 0.524 0.080
#> SRR2042631     1  0.3507     0.7838 0.860 0.048 0.012 0.068 0.012
#> SRR2042632     3  0.5571     0.5943 0.000 0.276 0.624 0.004 0.096
#> SRR2042630     3  0.6154     0.4510 0.020 0.384 0.528 0.060 0.008
#> SRR2042629     1  0.5364     0.5855 0.700 0.192 0.008 0.092 0.008
#> SRR2042628     4  0.5890     0.5655 0.308 0.008 0.016 0.604 0.064
#> SRR2042626     2  0.3351     0.4592 0.148 0.828 0.004 0.020 0.000
#> SRR2042627     1  0.0162     0.8709 0.996 0.004 0.000 0.000 0.000
#> SRR2042624     5  0.6902     0.5710 0.080 0.040 0.072 0.172 0.636
#> SRR2042625     1  0.0324     0.8705 0.992 0.004 0.000 0.004 0.000
#> SRR2042623     1  0.0000     0.8710 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0162     0.8709 0.996 0.004 0.000 0.000 0.000
#> SRR2042620     1  0.6658     0.1651 0.504 0.364 0.024 0.100 0.008
#> SRR2042621     5  0.7413     0.5104 0.084 0.060 0.048 0.248 0.560
#> SRR2042619     1  0.2623     0.8191 0.900 0.044 0.004 0.048 0.004
#> SRR2042618     2  0.5274    -0.2206 0.024 0.612 0.344 0.012 0.008
#> SRR2042617     1  0.0000     0.8710 1.000 0.000 0.000 0.000 0.000
#> SRR2042616     2  0.5334    -0.3101 0.024 0.552 0.408 0.012 0.004
#> SRR2042615     2  0.5849    -0.4442 0.024 0.484 0.456 0.024 0.012
#> SRR2042614     2  0.5281     0.0502 0.052 0.668 0.264 0.012 0.004
#> SRR2042613     3  0.7463     0.3872 0.000 0.220 0.464 0.056 0.260
#> SRR2042612     1  0.0794     0.8565 0.972 0.000 0.000 0.028 0.000
#> SRR2042610     1  0.0324     0.8705 0.992 0.004 0.000 0.004 0.000
#> SRR2042611     2  0.1638     0.4722 0.064 0.932 0.000 0.004 0.000
#> SRR2042607     1  0.5662     0.5125 0.660 0.236 0.016 0.084 0.004
#> SRR2042609     1  0.0000     0.8710 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     1  0.7834     0.0243 0.472 0.260 0.140 0.124 0.004
#> SRR2042656     2  0.7478     0.2105 0.324 0.468 0.080 0.124 0.004
#> SRR2042658     4  0.7519     0.5545 0.296 0.024 0.064 0.508 0.108
#> SRR2042659     1  0.0162     0.8691 0.996 0.000 0.000 0.004 0.000
#> SRR2042657     1  0.0833     0.8669 0.976 0.004 0.000 0.016 0.004
#> SRR2042655     1  0.0579     0.8683 0.984 0.008 0.000 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000    0.91268 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000    0.91268 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000    0.91268 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0291    0.91111 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR2042649     5  0.6511    0.60138 0.008 0.048 0.044 0.428 0.436 0.036
#> SRR2042647     1  0.3926    0.66040 0.736 0.232 0.008 0.000 0.004 0.020
#> SRR2042648     2  0.4636    0.31055 0.040 0.516 0.000 0.444 0.000 0.000
#> SRR2042646     3  0.2069    0.41074 0.000 0.020 0.924 0.028 0.012 0.016
#> SRR2042645     1  0.2120    0.86379 0.920 0.032 0.004 0.008 0.004 0.032
#> SRR2042644     4  0.5810    0.31387 0.016 0.064 0.040 0.704 0.068 0.108
#> SRR2042643     1  0.0547    0.90796 0.980 0.020 0.000 0.000 0.000 0.000
#> SRR2042642     2  0.4504    0.33114 0.032 0.536 0.000 0.432 0.000 0.000
#> SRR2042640     2  0.5608    0.29563 0.368 0.528 0.000 0.084 0.008 0.012
#> SRR2042641     2  0.7933    0.04118 0.212 0.472 0.024 0.096 0.152 0.044
#> SRR2042639     4  0.8083   -0.00691 0.176 0.296 0.016 0.380 0.092 0.040
#> SRR2042638     2  0.4389    0.31396 0.024 0.528 0.000 0.448 0.000 0.000
#> SRR2042637     5  0.7046    0.63359 0.016 0.056 0.004 0.316 0.452 0.156
#> SRR2042636     1  0.3485    0.79052 0.836 0.108 0.008 0.012 0.012 0.024
#> SRR2042634     1  0.0622    0.90720 0.980 0.008 0.000 0.000 0.000 0.012
#> SRR2042635     2  0.4389    0.31396 0.024 0.528 0.000 0.448 0.000 0.000
#> SRR2042633     6  0.7575    0.28835 0.120 0.068 0.008 0.120 0.156 0.528
#> SRR2042631     1  0.3312    0.78332 0.828 0.132 0.012 0.000 0.008 0.020
#> SRR2042632     4  0.5321   -0.07776 0.000 0.004 0.092 0.636 0.248 0.020
#> SRR2042630     4  0.6384    0.23163 0.012 0.140 0.024 0.632 0.132 0.060
#> SRR2042629     1  0.4852    0.50039 0.656 0.288 0.008 0.012 0.012 0.024
#> SRR2042628     6  0.4869    0.54981 0.256 0.020 0.020 0.008 0.016 0.680
#> SRR2042626     2  0.5314    0.34094 0.096 0.528 0.000 0.372 0.004 0.000
#> SRR2042627     1  0.0146    0.91245 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR2042624     3  0.7937    0.52049 0.072 0.064 0.456 0.024 0.124 0.260
#> SRR2042625     1  0.0260    0.91170 0.992 0.008 0.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000    0.91268 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0146    0.91245 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.5750    0.15527 0.432 0.484 0.008 0.032 0.024 0.020
#> SRR2042621     3  0.8572    0.47489 0.072 0.064 0.372 0.056 0.148 0.288
#> SRR2042619     1  0.2253    0.85187 0.896 0.084 0.000 0.004 0.004 0.012
#> SRR2042618     4  0.2723    0.40685 0.016 0.128 0.000 0.852 0.000 0.004
#> SRR2042617     1  0.0000    0.91268 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042616     4  0.2510    0.40555 0.016 0.088 0.004 0.884 0.008 0.000
#> SRR2042615     4  0.4596    0.35291 0.020 0.080 0.020 0.784 0.076 0.020
#> SRR2042614     4  0.4271    0.33144 0.032 0.252 0.004 0.704 0.008 0.000
#> SRR2042613     4  0.7501   -0.20804 0.000 0.040 0.248 0.348 0.320 0.044
#> SRR2042612     1  0.0777    0.89840 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR2042610     1  0.0260    0.91170 0.992 0.008 0.000 0.000 0.000 0.000
#> SRR2042611     2  0.4449    0.32267 0.028 0.532 0.000 0.440 0.000 0.000
#> SRR2042607     1  0.4765    0.37937 0.616 0.340 0.004 0.020 0.004 0.016
#> SRR2042609     1  0.0000    0.91268 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.7229   -0.01655 0.380 0.412 0.004 0.052 0.096 0.056
#> SRR2042656     2  0.6691    0.31684 0.232 0.572 0.004 0.092 0.056 0.044
#> SRR2042658     6  0.6894    0.53119 0.248 0.072 0.076 0.008 0.044 0.552
#> SRR2042659     1  0.0146    0.91109 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042657     1  0.0692    0.90774 0.976 0.020 0.000 0.000 0.000 0.004
#> SRR2042655     1  0.0508    0.90977 0.984 0.012 0.000 0.000 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.919           0.937       0.972         0.5079 0.491   0.491
#> 3 3 0.636           0.692       0.862         0.2969 0.811   0.630
#> 4 4 0.730           0.695       0.835         0.1076 0.867   0.638
#> 5 5 0.762           0.718       0.843         0.0546 0.905   0.668
#> 6 6 0.820           0.697       0.830         0.0268 0.977   0.894

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.984 1.000 0.000
#> SRR2042653     1  0.0000      0.984 1.000 0.000
#> SRR2042652     1  0.0000      0.984 1.000 0.000
#> SRR2042650     1  0.0000      0.984 1.000 0.000
#> SRR2042649     2  0.0000      0.957 0.000 1.000
#> SRR2042647     1  0.1184      0.971 0.984 0.016
#> SRR2042648     2  0.0000      0.957 0.000 1.000
#> SRR2042646     2  0.0000      0.957 0.000 1.000
#> SRR2042645     1  0.0000      0.984 1.000 0.000
#> SRR2042644     2  0.0000      0.957 0.000 1.000
#> SRR2042643     1  0.0000      0.984 1.000 0.000
#> SRR2042642     2  0.0000      0.957 0.000 1.000
#> SRR2042640     2  0.2236      0.934 0.036 0.964
#> SRR2042641     2  0.1414      0.946 0.020 0.980
#> SRR2042639     2  0.0000      0.957 0.000 1.000
#> SRR2042638     2  0.0000      0.957 0.000 1.000
#> SRR2042637     2  0.0000      0.957 0.000 1.000
#> SRR2042636     1  0.0000      0.984 1.000 0.000
#> SRR2042634     1  0.0000      0.984 1.000 0.000
#> SRR2042635     2  0.0000      0.957 0.000 1.000
#> SRR2042633     2  0.1414      0.946 0.020 0.980
#> SRR2042631     1  0.0000      0.984 1.000 0.000
#> SRR2042632     2  0.0000      0.957 0.000 1.000
#> SRR2042630     2  0.0000      0.957 0.000 1.000
#> SRR2042629     1  0.5629      0.846 0.868 0.132
#> SRR2042628     1  0.1633      0.964 0.976 0.024
#> SRR2042626     2  0.0376      0.955 0.004 0.996
#> SRR2042627     1  0.0000      0.984 1.000 0.000
#> SRR2042624     2  0.0938      0.951 0.012 0.988
#> SRR2042625     1  0.0000      0.984 1.000 0.000
#> SRR2042623     1  0.0000      0.984 1.000 0.000
#> SRR2042622     1  0.0000      0.984 1.000 0.000
#> SRR2042620     2  0.8555      0.632 0.280 0.720
#> SRR2042621     2  0.0000      0.957 0.000 1.000
#> SRR2042619     1  0.0000      0.984 1.000 0.000
#> SRR2042618     2  0.0000      0.957 0.000 1.000
#> SRR2042617     1  0.0000      0.984 1.000 0.000
#> SRR2042616     2  0.0000      0.957 0.000 1.000
#> SRR2042615     2  0.0000      0.957 0.000 1.000
#> SRR2042614     2  0.0000      0.957 0.000 1.000
#> SRR2042613     2  0.0000      0.957 0.000 1.000
#> SRR2042612     1  0.0000      0.984 1.000 0.000
#> SRR2042610     1  0.0000      0.984 1.000 0.000
#> SRR2042611     2  0.0000      0.957 0.000 1.000
#> SRR2042607     2  0.9850      0.291 0.428 0.572
#> SRR2042609     1  0.0000      0.984 1.000 0.000
#> SRR2042608     2  0.7883      0.705 0.236 0.764
#> SRR2042656     2  0.3274      0.914 0.060 0.940
#> SRR2042658     1  0.6973      0.766 0.812 0.188
#> SRR2042659     1  0.0000      0.984 1.000 0.000
#> SRR2042657     1  0.0000      0.984 1.000 0.000
#> SRR2042655     1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042650     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042649     3  0.5254     0.6683 0.000 0.264 0.736
#> SRR2042647     1  0.7807     0.6110 0.656 0.108 0.236
#> SRR2042648     2  0.0424     0.7291 0.000 0.992 0.008
#> SRR2042646     3  0.4504     0.7106 0.000 0.196 0.804
#> SRR2042645     1  0.1289     0.9216 0.968 0.000 0.032
#> SRR2042644     2  0.6280    -0.2255 0.000 0.540 0.460
#> SRR2042643     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042642     2  0.0000     0.7272 0.000 1.000 0.000
#> SRR2042640     2  0.6217     0.5246 0.024 0.712 0.264
#> SRR2042641     3  0.6345     0.2652 0.004 0.400 0.596
#> SRR2042639     3  0.6291     0.0132 0.000 0.468 0.532
#> SRR2042638     2  0.0424     0.7291 0.000 0.992 0.008
#> SRR2042637     3  0.5397     0.6583 0.000 0.280 0.720
#> SRR2042636     1  0.3482     0.8559 0.872 0.000 0.128
#> SRR2042634     1  0.0237     0.9364 0.996 0.000 0.004
#> SRR2042635     2  0.0424     0.7291 0.000 0.992 0.008
#> SRR2042633     3  0.2866     0.7213 0.008 0.076 0.916
#> SRR2042631     1  0.5406     0.7492 0.764 0.012 0.224
#> SRR2042632     3  0.5327     0.6582 0.000 0.272 0.728
#> SRR2042630     3  0.6307     0.2604 0.000 0.488 0.512
#> SRR2042629     1  0.9016     0.4309 0.556 0.192 0.252
#> SRR2042628     3  0.3340     0.6262 0.120 0.000 0.880
#> SRR2042626     2  0.1753     0.7103 0.000 0.952 0.048
#> SRR2042627     1  0.0747     0.9298 0.984 0.000 0.016
#> SRR2042624     3  0.1753     0.7175 0.000 0.048 0.952
#> SRR2042625     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042623     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042620     2  0.7530     0.4835 0.084 0.664 0.252
#> SRR2042621     3  0.2261     0.7228 0.000 0.068 0.932
#> SRR2042619     1  0.4399     0.7915 0.812 0.000 0.188
#> SRR2042618     2  0.0892     0.7232 0.000 0.980 0.020
#> SRR2042617     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042616     2  0.4750     0.4814 0.000 0.784 0.216
#> SRR2042615     2  0.6252    -0.1636 0.000 0.556 0.444
#> SRR2042614     2  0.0892     0.7248 0.000 0.980 0.020
#> SRR2042613     3  0.5291     0.6630 0.000 0.268 0.732
#> SRR2042612     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042610     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042611     2  0.0424     0.7291 0.000 0.992 0.008
#> SRR2042607     2  0.9813     0.2045 0.316 0.424 0.260
#> SRR2042609     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042608     3  0.3461     0.6547 0.024 0.076 0.900
#> SRR2042656     2  0.6067     0.5611 0.028 0.736 0.236
#> SRR2042658     3  0.1753     0.6856 0.048 0.000 0.952
#> SRR2042659     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042657     1  0.0000     0.9382 1.000 0.000 0.000
#> SRR2042655     1  0.0000     0.9382 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042649     3  0.5321    0.75525 0.000 0.056 0.716 0.228
#> SRR2042647     4  0.5775    0.60777 0.288 0.048 0.004 0.660
#> SRR2042648     2  0.0336    0.77119 0.000 0.992 0.000 0.008
#> SRR2042646     3  0.3907    0.77580 0.000 0.044 0.836 0.120
#> SRR2042645     1  0.1867    0.86701 0.928 0.000 0.000 0.072
#> SRR2042644     2  0.6925    0.34328 0.000 0.544 0.328 0.128
#> SRR2042643     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042642     2  0.0336    0.77119 0.000 0.992 0.000 0.008
#> SRR2042640     4  0.4923    0.57584 0.004 0.304 0.008 0.684
#> SRR2042641     4  0.4786    0.44933 0.000 0.108 0.104 0.788
#> SRR2042639     2  0.7852    0.15751 0.000 0.392 0.276 0.332
#> SRR2042638     2  0.0000    0.77130 0.000 1.000 0.000 0.000
#> SRR2042637     3  0.5669    0.75597 0.000 0.092 0.708 0.200
#> SRR2042636     1  0.5158   -0.06353 0.524 0.000 0.004 0.472
#> SRR2042634     1  0.0336    0.92734 0.992 0.000 0.000 0.008
#> SRR2042635     2  0.0336    0.77119 0.000 0.992 0.000 0.008
#> SRR2042633     3  0.2999    0.77244 0.000 0.004 0.864 0.132
#> SRR2042631     4  0.5110    0.44759 0.372 0.004 0.004 0.620
#> SRR2042632     3  0.4957    0.74902 0.000 0.048 0.748 0.204
#> SRR2042630     3  0.7770    0.00503 0.000 0.364 0.396 0.240
#> SRR2042629     4  0.6638    0.66947 0.224 0.100 0.020 0.656
#> SRR2042628     3  0.4428    0.70993 0.068 0.000 0.808 0.124
#> SRR2042626     2  0.2149    0.70587 0.000 0.912 0.000 0.088
#> SRR2042627     1  0.1302    0.89393 0.956 0.000 0.000 0.044
#> SRR2042624     3  0.1716    0.78353 0.000 0.000 0.936 0.064
#> SRR2042625     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042620     4  0.5222    0.60823 0.032 0.280 0.000 0.688
#> SRR2042621     3  0.1474    0.78637 0.000 0.000 0.948 0.052
#> SRR2042619     1  0.5119    0.03657 0.556 0.000 0.004 0.440
#> SRR2042618     2  0.1209    0.76099 0.000 0.964 0.004 0.032
#> SRR2042617     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042616     2  0.6423    0.51024 0.000 0.648 0.196 0.156
#> SRR2042615     2  0.7660    0.04456 0.000 0.428 0.356 0.216
#> SRR2042614     2  0.0657    0.77030 0.000 0.984 0.004 0.012
#> SRR2042613     3  0.5218    0.74313 0.000 0.064 0.736 0.200
#> SRR2042612     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042610     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042611     2  0.0336    0.77119 0.000 0.992 0.000 0.008
#> SRR2042607     4  0.6394    0.67533 0.156 0.160 0.008 0.676
#> SRR2042609     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042608     4  0.3564    0.47497 0.012 0.016 0.112 0.860
#> SRR2042656     4  0.6058    0.23695 0.008 0.448 0.028 0.516
#> SRR2042658     3  0.3196    0.76418 0.008 0.000 0.856 0.136
#> SRR2042659     1  0.0000    0.93244 1.000 0.000 0.000 0.000
#> SRR2042657     1  0.0707    0.91825 0.980 0.000 0.000 0.020
#> SRR2042655     1  0.0000    0.93244 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0162      0.982 0.996 0.000 0.004 0.000 0.000
#> SRR2042652     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0162      0.982 0.996 0.000 0.004 0.000 0.000
#> SRR2042649     5  0.3996      0.493 0.000 0.008 0.228 0.012 0.752
#> SRR2042647     4  0.3386      0.688 0.128 0.040 0.000 0.832 0.000
#> SRR2042648     2  0.0324      0.890 0.000 0.992 0.000 0.004 0.004
#> SRR2042646     3  0.5475      0.432 0.000 0.012 0.564 0.044 0.380
#> SRR2042645     1  0.2124      0.888 0.900 0.000 0.004 0.096 0.000
#> SRR2042644     2  0.7146     -0.175 0.000 0.440 0.140 0.048 0.372
#> SRR2042643     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042642     2  0.0162      0.890 0.000 0.996 0.000 0.004 0.000
#> SRR2042640     4  0.3210      0.634 0.008 0.152 0.000 0.832 0.008
#> SRR2042641     4  0.5945      0.101 0.000 0.016 0.068 0.516 0.400
#> SRR2042639     5  0.8555      0.130 0.000 0.248 0.196 0.272 0.284
#> SRR2042638     2  0.0290      0.888 0.000 0.992 0.000 0.000 0.008
#> SRR2042637     5  0.5649      0.266 0.000 0.024 0.372 0.040 0.564
#> SRR2042636     4  0.4735      0.517 0.352 0.000 0.020 0.624 0.004
#> SRR2042634     1  0.0703      0.965 0.976 0.000 0.000 0.024 0.000
#> SRR2042635     2  0.0000      0.891 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     3  0.3248      0.746 0.004 0.000 0.856 0.052 0.088
#> SRR2042631     4  0.3618      0.660 0.196 0.012 0.004 0.788 0.000
#> SRR2042632     5  0.2984      0.541 0.000 0.004 0.124 0.016 0.856
#> SRR2042630     5  0.4321      0.571 0.000 0.084 0.056 0.052 0.808
#> SRR2042629     4  0.3866      0.687 0.096 0.076 0.008 0.820 0.000
#> SRR2042628     3  0.2507      0.754 0.028 0.000 0.908 0.044 0.020
#> SRR2042626     2  0.1731      0.843 0.000 0.932 0.004 0.060 0.004
#> SRR2042627     1  0.1270      0.935 0.948 0.000 0.000 0.052 0.000
#> SRR2042624     3  0.4298      0.726 0.000 0.000 0.756 0.060 0.184
#> SRR2042625     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     4  0.3713      0.656 0.032 0.132 0.004 0.824 0.008
#> SRR2042621     3  0.3495      0.756 0.000 0.000 0.816 0.032 0.152
#> SRR2042619     4  0.4684      0.314 0.452 0.004 0.008 0.536 0.000
#> SRR2042618     2  0.1341      0.855 0.000 0.944 0.000 0.000 0.056
#> SRR2042617     1  0.0162      0.982 0.996 0.000 0.004 0.000 0.000
#> SRR2042616     5  0.5128      0.225 0.000 0.420 0.012 0.020 0.548
#> SRR2042615     5  0.4763      0.566 0.000 0.192 0.044 0.024 0.740
#> SRR2042614     2  0.1285      0.871 0.000 0.956 0.004 0.004 0.036
#> SRR2042613     5  0.4046      0.504 0.000 0.008 0.180 0.032 0.780
#> SRR2042612     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042610     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042611     2  0.0162      0.890 0.000 0.996 0.000 0.004 0.000
#> SRR2042607     4  0.3821      0.688 0.104 0.064 0.004 0.824 0.004
#> SRR2042609     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     4  0.5412      0.359 0.004 0.000 0.088 0.644 0.264
#> SRR2042656     4  0.7103      0.265 0.008 0.340 0.040 0.488 0.124
#> SRR2042658     3  0.2875      0.754 0.008 0.000 0.884 0.052 0.056
#> SRR2042659     1  0.0000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR2042657     1  0.1410      0.928 0.940 0.000 0.000 0.060 0.000
#> SRR2042655     1  0.0162      0.982 0.996 0.000 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042649     5  0.4413      0.557 0.000 0.004 0.088 0.008 0.740 0.160
#> SRR2042647     4  0.2253      0.635 0.084 0.004 0.000 0.896 0.004 0.012
#> SRR2042648     2  0.0291      0.886 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR2042646     3  0.5846      0.343 0.000 0.000 0.540 0.020 0.300 0.140
#> SRR2042645     1  0.2320      0.879 0.892 0.000 0.000 0.080 0.004 0.024
#> SRR2042644     2  0.7578     -0.228 0.000 0.356 0.188 0.024 0.340 0.092
#> SRR2042643     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042642     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     4  0.2316      0.548 0.004 0.064 0.000 0.900 0.004 0.028
#> SRR2042641     6  0.5005      0.813 0.000 0.000 0.000 0.248 0.124 0.628
#> SRR2042639     3  0.8811     -0.139 0.000 0.168 0.276 0.132 0.196 0.228
#> SRR2042638     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     5  0.6620      0.350 0.000 0.032 0.212 0.028 0.540 0.188
#> SRR2042636     4  0.3827      0.495 0.256 0.000 0.000 0.720 0.004 0.020
#> SRR2042634     1  0.0777      0.960 0.972 0.000 0.000 0.024 0.004 0.000
#> SRR2042635     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     3  0.4932      0.554 0.000 0.000 0.704 0.040 0.080 0.176
#> SRR2042631     4  0.3090      0.614 0.140 0.000 0.000 0.828 0.004 0.028
#> SRR2042632     5  0.1528      0.614 0.000 0.000 0.048 0.000 0.936 0.016
#> SRR2042630     5  0.4525      0.512 0.000 0.032 0.032 0.000 0.700 0.236
#> SRR2042629     4  0.3152      0.628 0.072 0.032 0.008 0.864 0.004 0.020
#> SRR2042628     3  0.4684      0.572 0.016 0.000 0.696 0.028 0.020 0.240
#> SRR2042626     2  0.1958      0.808 0.000 0.896 0.000 0.100 0.004 0.000
#> SRR2042627     1  0.1124      0.944 0.956 0.000 0.000 0.036 0.000 0.008
#> SRR2042624     3  0.3890      0.567 0.000 0.000 0.796 0.024 0.116 0.064
#> SRR2042625     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042620     4  0.2490      0.548 0.012 0.044 0.000 0.892 0.000 0.052
#> SRR2042621     3  0.2791      0.591 0.000 0.000 0.864 0.008 0.096 0.032
#> SRR2042619     4  0.4147      0.337 0.436 0.000 0.000 0.552 0.000 0.012
#> SRR2042618     2  0.0653      0.881 0.000 0.980 0.004 0.004 0.012 0.000
#> SRR2042617     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042616     5  0.5343      0.281 0.000 0.380 0.016 0.008 0.544 0.052
#> SRR2042615     5  0.4514      0.581 0.000 0.124 0.024 0.000 0.744 0.108
#> SRR2042614     2  0.1726      0.849 0.000 0.932 0.000 0.012 0.044 0.012
#> SRR2042613     5  0.4277      0.555 0.000 0.004 0.112 0.012 0.764 0.108
#> SRR2042612     1  0.0146      0.979 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042610     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042611     2  0.0000      0.888 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     4  0.2395      0.626 0.072 0.012 0.000 0.896 0.004 0.016
#> SRR2042609     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     6  0.5134      0.811 0.000 0.000 0.016 0.292 0.076 0.616
#> SRR2042656     4  0.6907     -0.445 0.004 0.248 0.008 0.396 0.028 0.316
#> SRR2042658     3  0.4727      0.553 0.004 0.000 0.664 0.012 0.048 0.272
#> SRR2042659     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042657     1  0.1806      0.889 0.908 0.000 0.000 0.088 0.004 0.000
#> SRR2042655     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.957           0.955       0.980         0.5096 0.491   0.491
#> 3 3 0.591           0.682       0.840         0.2849 0.784   0.584
#> 4 4 0.529           0.553       0.756         0.1036 0.879   0.673
#> 5 5 0.526           0.470       0.692         0.0588 0.965   0.883
#> 6 6 0.536           0.422       0.633         0.0421 0.943   0.799

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.991 1.000 0.000
#> SRR2042653     1  0.0000      0.991 1.000 0.000
#> SRR2042652     1  0.0000      0.991 1.000 0.000
#> SRR2042650     1  0.0000      0.991 1.000 0.000
#> SRR2042649     2  0.0000      0.967 0.000 1.000
#> SRR2042647     1  0.0376      0.988 0.996 0.004
#> SRR2042648     2  0.0000      0.967 0.000 1.000
#> SRR2042646     2  0.0000      0.967 0.000 1.000
#> SRR2042645     1  0.0000      0.991 1.000 0.000
#> SRR2042644     2  0.0000      0.967 0.000 1.000
#> SRR2042643     1  0.0000      0.991 1.000 0.000
#> SRR2042642     2  0.0000      0.967 0.000 1.000
#> SRR2042640     2  0.0938      0.959 0.012 0.988
#> SRR2042641     2  0.0000      0.967 0.000 1.000
#> SRR2042639     2  0.0000      0.967 0.000 1.000
#> SRR2042638     2  0.0000      0.967 0.000 1.000
#> SRR2042637     2  0.0000      0.967 0.000 1.000
#> SRR2042636     1  0.0000      0.991 1.000 0.000
#> SRR2042634     1  0.0000      0.991 1.000 0.000
#> SRR2042635     2  0.0000      0.967 0.000 1.000
#> SRR2042633     2  0.2778      0.932 0.048 0.952
#> SRR2042631     1  0.0000      0.991 1.000 0.000
#> SRR2042632     2  0.0000      0.967 0.000 1.000
#> SRR2042630     2  0.0000      0.967 0.000 1.000
#> SRR2042629     1  0.5842      0.835 0.860 0.140
#> SRR2042628     1  0.0938      0.981 0.988 0.012
#> SRR2042626     2  0.0000      0.967 0.000 1.000
#> SRR2042627     1  0.0000      0.991 1.000 0.000
#> SRR2042624     2  0.2778      0.931 0.048 0.952
#> SRR2042625     1  0.0000      0.991 1.000 0.000
#> SRR2042623     1  0.0000      0.991 1.000 0.000
#> SRR2042622     1  0.0000      0.991 1.000 0.000
#> SRR2042620     2  0.5842      0.838 0.140 0.860
#> SRR2042621     2  0.0000      0.967 0.000 1.000
#> SRR2042619     1  0.0000      0.991 1.000 0.000
#> SRR2042618     2  0.0000      0.967 0.000 1.000
#> SRR2042617     1  0.0000      0.991 1.000 0.000
#> SRR2042616     2  0.0000      0.967 0.000 1.000
#> SRR2042615     2  0.0000      0.967 0.000 1.000
#> SRR2042614     2  0.0000      0.967 0.000 1.000
#> SRR2042613     2  0.0000      0.967 0.000 1.000
#> SRR2042612     1  0.0000      0.991 1.000 0.000
#> SRR2042610     1  0.0000      0.991 1.000 0.000
#> SRR2042611     2  0.0000      0.967 0.000 1.000
#> SRR2042607     2  0.9635      0.396 0.388 0.612
#> SRR2042609     1  0.0000      0.991 1.000 0.000
#> SRR2042608     2  0.7376      0.748 0.208 0.792
#> SRR2042656     2  0.0376      0.965 0.004 0.996
#> SRR2042658     1  0.3274      0.934 0.940 0.060
#> SRR2042659     1  0.0000      0.991 1.000 0.000
#> SRR2042657     1  0.0000      0.991 1.000 0.000
#> SRR2042655     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042653     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042652     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042650     1  0.0424    0.94589 0.992 0.008 0.000
#> SRR2042649     3  0.4346    0.68042 0.000 0.184 0.816
#> SRR2042647     1  0.8342    0.04361 0.464 0.456 0.080
#> SRR2042648     2  0.2796    0.70509 0.000 0.908 0.092
#> SRR2042646     3  0.4654    0.67238 0.000 0.208 0.792
#> SRR2042645     1  0.1337    0.93668 0.972 0.012 0.016
#> SRR2042644     3  0.6252    0.31332 0.000 0.444 0.556
#> SRR2042643     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042642     2  0.2261    0.70782 0.000 0.932 0.068
#> SRR2042640     2  0.2945    0.65861 0.004 0.908 0.088
#> SRR2042641     2  0.6529    0.30975 0.012 0.620 0.368
#> SRR2042639     2  0.6280    0.05683 0.000 0.540 0.460
#> SRR2042638     2  0.2878    0.70184 0.000 0.904 0.096
#> SRR2042637     3  0.5363    0.62799 0.000 0.276 0.724
#> SRR2042636     1  0.2434    0.91378 0.940 0.024 0.036
#> SRR2042634     1  0.0475    0.94567 0.992 0.004 0.004
#> SRR2042635     2  0.2537    0.70777 0.000 0.920 0.080
#> SRR2042633     3  0.4782    0.65349 0.016 0.164 0.820
#> SRR2042631     1  0.6106    0.71818 0.756 0.200 0.044
#> SRR2042632     3  0.4974    0.65842 0.000 0.236 0.764
#> SRR2042630     3  0.6168    0.41171 0.000 0.412 0.588
#> SRR2042629     2  0.9338    0.15658 0.360 0.468 0.172
#> SRR2042628     3  0.6264    0.27229 0.380 0.004 0.616
#> SRR2042626     2  0.1964    0.70085 0.000 0.944 0.056
#> SRR2042627     1  0.1337    0.93710 0.972 0.016 0.012
#> SRR2042624     3  0.3207    0.64465 0.012 0.084 0.904
#> SRR2042625     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042623     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042622     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042620     2  0.4544    0.60855 0.056 0.860 0.084
#> SRR2042621     3  0.2711    0.66986 0.000 0.088 0.912
#> SRR2042619     1  0.5212    0.80933 0.828 0.108 0.064
#> SRR2042618     2  0.4796    0.58518 0.000 0.780 0.220
#> SRR2042617     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042616     2  0.6252   -0.00868 0.000 0.556 0.444
#> SRR2042615     3  0.6192    0.40048 0.000 0.420 0.580
#> SRR2042614     2  0.4654    0.60583 0.000 0.792 0.208
#> SRR2042613     3  0.5497    0.62139 0.000 0.292 0.708
#> SRR2042612     1  0.0592    0.94403 0.988 0.000 0.012
#> SRR2042610     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042611     2  0.2448    0.70824 0.000 0.924 0.076
#> SRR2042607     2  0.7930    0.40632 0.168 0.664 0.168
#> SRR2042609     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042608     3  0.7599    0.50361 0.084 0.260 0.656
#> SRR2042656     2  0.4353    0.65292 0.008 0.836 0.156
#> SRR2042658     3  0.4679    0.55189 0.148 0.020 0.832
#> SRR2042659     1  0.0000    0.94816 1.000 0.000 0.000
#> SRR2042657     1  0.0475    0.94597 0.992 0.004 0.004
#> SRR2042655     1  0.0475    0.94602 0.992 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0188     0.9029 0.996 0.000 0.000 0.004
#> SRR2042653     1  0.0336     0.9036 0.992 0.000 0.000 0.008
#> SRR2042652     1  0.0336     0.9023 0.992 0.000 0.000 0.008
#> SRR2042650     1  0.1474     0.8981 0.948 0.000 0.000 0.052
#> SRR2042649     3  0.6242     0.4561 0.000 0.308 0.612 0.080
#> SRR2042647     4  0.7476     0.5319 0.208 0.160 0.032 0.600
#> SRR2042648     2  0.1610     0.6280 0.000 0.952 0.016 0.032
#> SRR2042646     3  0.6570     0.4692 0.000 0.280 0.604 0.116
#> SRR2042645     1  0.4553     0.7371 0.780 0.000 0.040 0.180
#> SRR2042644     2  0.6067     0.1647 0.000 0.572 0.376 0.052
#> SRR2042643     1  0.1637     0.8948 0.940 0.000 0.000 0.060
#> SRR2042642     2  0.1474     0.6261 0.000 0.948 0.000 0.052
#> SRR2042640     2  0.6975     0.2978 0.016 0.568 0.088 0.328
#> SRR2042641     2  0.7664     0.1547 0.000 0.460 0.248 0.292
#> SRR2042639     2  0.7626     0.0711 0.000 0.448 0.336 0.216
#> SRR2042638     2  0.0376     0.6262 0.000 0.992 0.004 0.004
#> SRR2042637     3  0.6603     0.4168 0.000 0.328 0.572 0.100
#> SRR2042636     1  0.5678     0.4339 0.640 0.000 0.044 0.316
#> SRR2042634     1  0.2473     0.8763 0.908 0.000 0.012 0.080
#> SRR2042635     2  0.0895     0.6274 0.000 0.976 0.004 0.020
#> SRR2042633     3  0.6517     0.5120 0.004 0.212 0.648 0.136
#> SRR2042631     4  0.6834     0.1836 0.440 0.060 0.016 0.484
#> SRR2042632     3  0.6054     0.3948 0.000 0.352 0.592 0.056
#> SRR2042630     2  0.6602    -0.0584 0.000 0.484 0.436 0.080
#> SRR2042629     4  0.8412     0.4683 0.136 0.228 0.096 0.540
#> SRR2042628     3  0.7486     0.0717 0.244 0.012 0.556 0.188
#> SRR2042626     2  0.4010     0.5730 0.000 0.816 0.028 0.156
#> SRR2042627     1  0.2888     0.8408 0.872 0.004 0.000 0.124
#> SRR2042624     3  0.5603     0.5348 0.012 0.088 0.744 0.156
#> SRR2042625     1  0.0592     0.9045 0.984 0.000 0.000 0.016
#> SRR2042623     1  0.0000     0.9025 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0469     0.9034 0.988 0.000 0.000 0.012
#> SRR2042620     2  0.6762     0.0675 0.028 0.504 0.040 0.428
#> SRR2042621     3  0.5277     0.5688 0.000 0.132 0.752 0.116
#> SRR2042619     1  0.6213     0.5306 0.688 0.028 0.060 0.224
#> SRR2042618     2  0.3497     0.5774 0.000 0.860 0.104 0.036
#> SRR2042617     1  0.0921     0.9036 0.972 0.000 0.000 0.028
#> SRR2042616     2  0.6133     0.3643 0.000 0.644 0.268 0.088
#> SRR2042615     2  0.6483     0.0831 0.000 0.532 0.392 0.076
#> SRR2042614     2  0.3948     0.6010 0.000 0.840 0.096 0.064
#> SRR2042613     3  0.6299     0.2458 0.000 0.420 0.520 0.060
#> SRR2042612     1  0.2443     0.8747 0.916 0.000 0.024 0.060
#> SRR2042610     1  0.0707     0.9043 0.980 0.000 0.000 0.020
#> SRR2042611     2  0.1118     0.6272 0.000 0.964 0.000 0.036
#> SRR2042607     4  0.8479     0.3982 0.140 0.272 0.080 0.508
#> SRR2042609     1  0.0188     0.9027 0.996 0.000 0.000 0.004
#> SRR2042608     4  0.8793    -0.1517 0.084 0.144 0.352 0.420
#> SRR2042656     2  0.7156     0.4219 0.008 0.576 0.148 0.268
#> SRR2042658     3  0.5942     0.3737 0.128 0.008 0.716 0.148
#> SRR2042659     1  0.1557     0.8976 0.944 0.000 0.000 0.056
#> SRR2042657     1  0.3196     0.8173 0.856 0.000 0.008 0.136
#> SRR2042655     1  0.1576     0.8961 0.948 0.000 0.004 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0451    0.85046 0.988 0.000 0.000 0.008 0.004
#> SRR2042653     1  0.0865    0.85329 0.972 0.000 0.000 0.024 0.004
#> SRR2042652     1  0.0324    0.84951 0.992 0.000 0.000 0.004 0.004
#> SRR2042650     1  0.2659    0.83927 0.888 0.000 0.000 0.060 0.052
#> SRR2042649     3  0.5971    0.24636 0.000 0.200 0.640 0.020 0.140
#> SRR2042647     4  0.7298    0.40854 0.112 0.136 0.020 0.596 0.136
#> SRR2042648     2  0.3362    0.60837 0.000 0.864 0.040 0.032 0.064
#> SRR2042646     3  0.6423    0.20649 0.000 0.240 0.596 0.036 0.128
#> SRR2042645     1  0.5616    0.63119 0.696 0.000 0.036 0.164 0.104
#> SRR2042644     2  0.6657    0.27294 0.000 0.548 0.280 0.032 0.140
#> SRR2042643     1  0.2171    0.84260 0.912 0.000 0.000 0.064 0.024
#> SRR2042642     2  0.2537    0.60252 0.000 0.904 0.016 0.056 0.024
#> SRR2042640     2  0.7232    0.25755 0.004 0.532 0.056 0.232 0.176
#> SRR2042641     5  0.8272    0.24264 0.000 0.276 0.200 0.152 0.372
#> SRR2042639     2  0.7917    0.08796 0.000 0.452 0.196 0.124 0.228
#> SRR2042638     2  0.1419    0.61436 0.000 0.956 0.016 0.012 0.016
#> SRR2042637     3  0.7217    0.20614 0.000 0.276 0.492 0.048 0.184
#> SRR2042636     1  0.6143    0.35251 0.584 0.000 0.012 0.272 0.132
#> SRR2042634     1  0.3906    0.76622 0.812 0.000 0.004 0.104 0.080
#> SRR2042635     2  0.1306    0.61476 0.000 0.960 0.016 0.008 0.016
#> SRR2042633     3  0.7764    0.14801 0.004 0.208 0.424 0.064 0.300
#> SRR2042631     4  0.7256    0.45037 0.252 0.064 0.024 0.560 0.100
#> SRR2042632     3  0.5683    0.25717 0.000 0.256 0.636 0.012 0.096
#> SRR2042630     3  0.7363    0.01465 0.000 0.352 0.396 0.036 0.216
#> SRR2042629     4  0.8138    0.43815 0.128 0.156 0.052 0.532 0.132
#> SRR2042628     3  0.8458   -0.03423 0.192 0.012 0.372 0.128 0.296
#> SRR2042626     2  0.4929    0.51505 0.004 0.740 0.020 0.180 0.056
#> SRR2042627     1  0.4487    0.73074 0.772 0.000 0.008 0.124 0.096
#> SRR2042624     3  0.7044    0.12338 0.004 0.076 0.572 0.128 0.220
#> SRR2042625     1  0.1399    0.85366 0.952 0.000 0.000 0.028 0.020
#> SRR2042623     1  0.0290    0.84897 0.992 0.000 0.000 0.008 0.000
#> SRR2042622     1  0.1300    0.85191 0.956 0.000 0.000 0.028 0.016
#> SRR2042620     2  0.7695   -0.07281 0.024 0.412 0.032 0.356 0.176
#> SRR2042621     3  0.6291    0.19778 0.000 0.080 0.632 0.072 0.216
#> SRR2042619     1  0.7779   -0.00618 0.472 0.032 0.032 0.220 0.244
#> SRR2042618     2  0.4212    0.55100 0.000 0.792 0.136 0.012 0.060
#> SRR2042617     1  0.1914    0.84979 0.932 0.000 0.004 0.032 0.032
#> SRR2042616     2  0.6370    0.27359 0.000 0.560 0.300 0.024 0.116
#> SRR2042615     2  0.6753   -0.01579 0.000 0.468 0.388 0.040 0.104
#> SRR2042614     2  0.4639    0.56475 0.000 0.784 0.080 0.040 0.096
#> SRR2042613     3  0.6796    0.20172 0.000 0.308 0.520 0.036 0.136
#> SRR2042612     1  0.3750    0.78627 0.824 0.000 0.004 0.084 0.088
#> SRR2042610     1  0.1117    0.85313 0.964 0.000 0.000 0.020 0.016
#> SRR2042611     2  0.1106    0.61255 0.000 0.964 0.000 0.024 0.012
#> SRR2042607     4  0.8333    0.32278 0.112 0.184 0.068 0.512 0.124
#> SRR2042609     1  0.0404    0.85056 0.988 0.000 0.000 0.012 0.000
#> SRR2042608     5  0.7883    0.25345 0.024 0.080 0.244 0.152 0.500
#> SRR2042656     2  0.7186    0.27706 0.000 0.548 0.104 0.228 0.120
#> SRR2042658     3  0.6602    0.03175 0.084 0.004 0.560 0.048 0.304
#> SRR2042659     1  0.2459    0.84103 0.904 0.000 0.004 0.052 0.040
#> SRR2042657     1  0.4459    0.68873 0.744 0.000 0.004 0.200 0.052
#> SRR2042655     1  0.2376    0.83607 0.904 0.000 0.000 0.052 0.044

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0865    0.79808 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR2042653     1  0.2008    0.80123 0.920 0.000 0.004 0.032 0.004 0.040
#> SRR2042652     1  0.0405    0.79635 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2042650     1  0.3104    0.78608 0.844 0.000 0.004 0.068 0.000 0.084
#> SRR2042649     5  0.6463    0.32299 0.000 0.208 0.200 0.020 0.544 0.028
#> SRR2042647     4  0.5903    0.27013 0.104 0.108 0.028 0.692 0.024 0.044
#> SRR2042648     2  0.3236    0.56488 0.000 0.864 0.028 0.032 0.024 0.052
#> SRR2042646     5  0.6758    0.27503 0.000 0.236 0.212 0.008 0.492 0.052
#> SRR2042645     1  0.7182    0.33182 0.484 0.000 0.084 0.188 0.020 0.224
#> SRR2042644     2  0.7119   -0.09753 0.000 0.440 0.176 0.028 0.308 0.048
#> SRR2042643     1  0.3742    0.75959 0.796 0.000 0.008 0.076 0.000 0.120
#> SRR2042642     2  0.2708    0.56131 0.000 0.892 0.016 0.040 0.020 0.032
#> SRR2042640     2  0.7474    0.10573 0.000 0.472 0.052 0.212 0.068 0.196
#> SRR2042641     5  0.8458   -0.05192 0.004 0.264 0.080 0.112 0.328 0.212
#> SRR2042639     2  0.8377   -0.05251 0.000 0.360 0.176 0.076 0.224 0.164
#> SRR2042638     2  0.1390    0.55986 0.000 0.948 0.016 0.000 0.032 0.004
#> SRR2042637     5  0.7512    0.27281 0.000 0.236 0.192 0.056 0.456 0.060
#> SRR2042636     1  0.7305    0.22748 0.460 0.004 0.068 0.244 0.020 0.204
#> SRR2042634     1  0.4672    0.69567 0.716 0.000 0.008 0.072 0.012 0.192
#> SRR2042635     2  0.2131    0.56800 0.000 0.920 0.016 0.016 0.036 0.012
#> SRR2042633     3  0.7408    0.13942 0.004 0.088 0.432 0.044 0.336 0.096
#> SRR2042631     4  0.7681    0.22217 0.168 0.056 0.056 0.492 0.020 0.208
#> SRR2042632     5  0.5884    0.41340 0.000 0.264 0.096 0.008 0.592 0.040
#> SRR2042630     5  0.7161    0.36055 0.000 0.336 0.156 0.016 0.416 0.076
#> SRR2042629     4  0.7917    0.23072 0.060 0.148 0.096 0.504 0.028 0.164
#> SRR2042628     3  0.7823    0.03317 0.176 0.008 0.488 0.060 0.140 0.128
#> SRR2042626     2  0.5136    0.48468 0.000 0.724 0.020 0.120 0.040 0.096
#> SRR2042627     1  0.4792    0.71677 0.736 0.000 0.028 0.104 0.008 0.124
#> SRR2042624     3  0.7158    0.22036 0.000 0.076 0.484 0.048 0.292 0.100
#> SRR2042625     1  0.2294    0.80049 0.896 0.000 0.008 0.020 0.000 0.076
#> SRR2042623     1  0.0146    0.79542 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042622     1  0.1760    0.79993 0.928 0.000 0.004 0.020 0.000 0.048
#> SRR2042620     4  0.8207    0.18368 0.032 0.304 0.084 0.372 0.036 0.172
#> SRR2042621     3  0.6876    0.14514 0.000 0.088 0.468 0.028 0.340 0.076
#> SRR2042619     1  0.7997   -0.00803 0.368 0.024 0.092 0.144 0.032 0.340
#> SRR2042618     2  0.4914    0.43276 0.000 0.724 0.072 0.008 0.156 0.040
#> SRR2042617     1  0.3384    0.78560 0.840 0.000 0.024 0.040 0.004 0.092
#> SRR2042616     2  0.6297   -0.05233 0.000 0.492 0.104 0.016 0.356 0.032
#> SRR2042615     5  0.6559    0.34364 0.000 0.384 0.088 0.016 0.452 0.060
#> SRR2042614     2  0.5332    0.44874 0.000 0.704 0.080 0.028 0.152 0.036
#> SRR2042613     5  0.6097    0.43473 0.000 0.316 0.092 0.008 0.540 0.044
#> SRR2042612     1  0.4160    0.75870 0.788 0.000 0.052 0.084 0.000 0.076
#> SRR2042610     1  0.1867    0.80271 0.924 0.000 0.000 0.036 0.004 0.036
#> SRR2042611     2  0.1540    0.56702 0.000 0.948 0.012 0.012 0.016 0.012
#> SRR2042607     4  0.8633    0.19986 0.036 0.172 0.088 0.420 0.108 0.176
#> SRR2042609     1  0.0363    0.79669 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2042608     6  0.8762    0.00000 0.028 0.044 0.192 0.172 0.264 0.300
#> SRR2042656     2  0.7853    0.17189 0.000 0.468 0.120 0.200 0.112 0.100
#> SRR2042658     3  0.7011    0.10512 0.080 0.004 0.548 0.056 0.232 0.080
#> SRR2042659     1  0.3725    0.76869 0.804 0.000 0.016 0.064 0.000 0.116
#> SRR2042657     1  0.5360    0.61359 0.668 0.004 0.024 0.192 0.004 0.108
#> SRR2042655     1  0.4318    0.74338 0.784 0.000 0.032 0.056 0.016 0.112

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.710           0.894       0.940         0.4587 0.509   0.509
#> 3 3 0.679           0.826       0.899         0.4213 0.697   0.466
#> 4 4 0.642           0.806       0.876         0.0127 1.000   1.000
#> 5 5 0.602           0.646       0.856         0.0122 0.980   0.937
#> 6 6 0.570           0.645       0.845         0.0113 0.986   0.955

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.984 1.000 0.000
#> SRR2042653     1  0.0000      0.984 1.000 0.000
#> SRR2042652     1  0.0000      0.984 1.000 0.000
#> SRR2042650     1  0.0000      0.984 1.000 0.000
#> SRR2042649     2  0.9732      0.503 0.404 0.596
#> SRR2042647     1  0.1633      0.973 0.976 0.024
#> SRR2042648     2  0.0000      0.860 0.000 1.000
#> SRR2042646     2  0.8909      0.629 0.308 0.692
#> SRR2042645     1  0.0672      0.981 0.992 0.008
#> SRR2042644     2  0.0376      0.861 0.004 0.996
#> SRR2042643     1  0.0000      0.984 1.000 0.000
#> SRR2042642     2  0.0000      0.860 0.000 1.000
#> SRR2042640     2  0.9608      0.547 0.384 0.616
#> SRR2042641     2  0.9988      0.268 0.480 0.520
#> SRR2042639     2  0.5519      0.841 0.128 0.872
#> SRR2042638     2  0.0000      0.860 0.000 1.000
#> SRR2042637     2  0.7056      0.808 0.192 0.808
#> SRR2042636     1  0.0000      0.984 1.000 0.000
#> SRR2042634     1  0.0000      0.984 1.000 0.000
#> SRR2042635     2  0.0000      0.860 0.000 1.000
#> SRR2042633     1  0.5629      0.832 0.868 0.132
#> SRR2042631     1  0.1414      0.975 0.980 0.020
#> SRR2042632     2  0.0000      0.860 0.000 1.000
#> SRR2042630     2  0.6801      0.818 0.180 0.820
#> SRR2042629     1  0.1843      0.970 0.972 0.028
#> SRR2042628     1  0.0672      0.981 0.992 0.008
#> SRR2042626     2  0.1414      0.861 0.020 0.980
#> SRR2042627     1  0.1843      0.970 0.972 0.028
#> SRR2042624     1  0.1633      0.973 0.976 0.024
#> SRR2042625     1  0.0000      0.984 1.000 0.000
#> SRR2042623     1  0.0000      0.984 1.000 0.000
#> SRR2042622     1  0.0000      0.984 1.000 0.000
#> SRR2042620     1  0.3114      0.933 0.944 0.056
#> SRR2042621     1  0.1843      0.970 0.972 0.028
#> SRR2042619     1  0.0000      0.984 1.000 0.000
#> SRR2042618     2  0.0000      0.860 0.000 1.000
#> SRR2042617     1  0.0000      0.984 1.000 0.000
#> SRR2042616     2  0.6712      0.819 0.176 0.824
#> SRR2042615     2  0.6247      0.829 0.156 0.844
#> SRR2042614     2  0.3584      0.855 0.068 0.932
#> SRR2042613     2  0.0000      0.860 0.000 1.000
#> SRR2042612     1  0.0000      0.984 1.000 0.000
#> SRR2042610     1  0.0000      0.984 1.000 0.000
#> SRR2042611     2  0.0000      0.860 0.000 1.000
#> SRR2042607     1  0.1843      0.970 0.972 0.028
#> SRR2042609     1  0.0000      0.984 1.000 0.000
#> SRR2042608     1  0.1843      0.970 0.972 0.028
#> SRR2042656     2  0.7219      0.801 0.200 0.800
#> SRR2042658     1  0.0000      0.984 1.000 0.000
#> SRR2042659     1  0.0000      0.984 1.000 0.000
#> SRR2042657     1  0.0000      0.984 1.000 0.000
#> SRR2042655     1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042653     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042652     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042650     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042649     3  0.5371      0.721 0.048 0.140 0.812
#> SRR2042647     3  0.2537      0.836 0.080 0.000 0.920
#> SRR2042648     2  0.0592      0.847 0.000 0.988 0.012
#> SRR2042646     3  0.0237      0.799 0.000 0.004 0.996
#> SRR2042645     1  0.3482      0.822 0.872 0.000 0.128
#> SRR2042644     2  0.2590      0.831 0.004 0.924 0.072
#> SRR2042643     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042642     2  0.0000      0.847 0.000 1.000 0.000
#> SRR2042640     3  0.2229      0.829 0.044 0.012 0.944
#> SRR2042641     3  0.2176      0.822 0.032 0.020 0.948
#> SRR2042639     3  0.5803      0.610 0.028 0.212 0.760
#> SRR2042638     2  0.0000      0.847 0.000 1.000 0.000
#> SRR2042637     2  0.7905      0.257 0.056 0.500 0.444
#> SRR2042636     1  0.0237      0.987 0.996 0.000 0.004
#> SRR2042634     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042635     2  0.0000      0.847 0.000 1.000 0.000
#> SRR2042633     3  0.1765      0.828 0.040 0.004 0.956
#> SRR2042631     3  0.4931      0.767 0.232 0.000 0.768
#> SRR2042632     2  0.0000      0.847 0.000 1.000 0.000
#> SRR2042630     2  0.7128      0.631 0.052 0.664 0.284
#> SRR2042629     3  0.3412      0.825 0.124 0.000 0.876
#> SRR2042628     3  0.6244      0.428 0.440 0.000 0.560
#> SRR2042626     2  0.4692      0.785 0.012 0.820 0.168
#> SRR2042627     3  0.1753      0.831 0.048 0.000 0.952
#> SRR2042624     3  0.1964      0.834 0.056 0.000 0.944
#> SRR2042625     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042623     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042620     3  0.5902      0.667 0.316 0.004 0.680
#> SRR2042621     3  0.2066      0.835 0.060 0.000 0.940
#> SRR2042619     3  0.5621      0.674 0.308 0.000 0.692
#> SRR2042618     2  0.0424      0.847 0.000 0.992 0.008
#> SRR2042617     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042616     2  0.7853      0.426 0.060 0.556 0.384
#> SRR2042615     2  0.6793      0.638 0.036 0.672 0.292
#> SRR2042614     2  0.4810      0.792 0.028 0.832 0.140
#> SRR2042613     2  0.0000      0.847 0.000 1.000 0.000
#> SRR2042612     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042610     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042611     2  0.0000      0.847 0.000 1.000 0.000
#> SRR2042607     3  0.3816      0.813 0.148 0.000 0.852
#> SRR2042609     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042608     3  0.2878      0.834 0.096 0.000 0.904
#> SRR2042656     3  0.5295      0.695 0.036 0.156 0.808
#> SRR2042658     3  0.6111      0.513 0.396 0.000 0.604
#> SRR2042659     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042657     1  0.0000      0.990 1.000 0.000 0.000
#> SRR2042655     1  0.0237      0.986 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR2042654     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042653     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042652     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042650     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042649     3  0.5716      0.690 0.044 0.104 0.764 NA
#> SRR2042647     3  0.2281      0.812 0.096 0.000 0.904 NA
#> SRR2042648     2  0.0469      0.827 0.000 0.988 0.012 NA
#> SRR2042646     3  0.3942      0.659 0.000 0.000 0.764 NA
#> SRR2042645     1  0.2760      0.817 0.872 0.000 0.128 NA
#> SRR2042644     2  0.2053      0.816 0.000 0.924 0.072 NA
#> SRR2042643     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042642     2  0.0000      0.826 0.000 1.000 0.000 NA
#> SRR2042640     3  0.2319      0.787 0.040 0.036 0.924 NA
#> SRR2042641     3  0.2224      0.783 0.032 0.040 0.928 NA
#> SRR2042639     3  0.4599      0.595 0.028 0.212 0.760 NA
#> SRR2042638     2  0.0000      0.826 0.000 1.000 0.000 NA
#> SRR2042637     2  0.8592      0.211 0.052 0.392 0.384 NA
#> SRR2042636     1  0.0188      0.986 0.996 0.000 0.004 NA
#> SRR2042634     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042635     2  0.0000      0.826 0.000 1.000 0.000 NA
#> SRR2042633     3  0.2983      0.779 0.040 0.000 0.892 NA
#> SRR2042631     3  0.4103      0.749 0.256 0.000 0.744 NA
#> SRR2042632     2  0.0469      0.825 0.000 0.988 0.000 NA
#> SRR2042630     2  0.5599      0.626 0.048 0.664 0.288 NA
#> SRR2042629     3  0.2973      0.805 0.144 0.000 0.856 NA
#> SRR2042628     3  0.4967      0.422 0.452 0.000 0.548 NA
#> SRR2042626     2  0.3636      0.774 0.008 0.820 0.172 NA
#> SRR2042627     3  0.1792      0.803 0.068 0.000 0.932 NA
#> SRR2042624     3  0.2376      0.808 0.068 0.000 0.916 NA
#> SRR2042625     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042623     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042622     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042620     3  0.4800      0.644 0.340 0.004 0.656 NA
#> SRR2042621     3  0.3013      0.811 0.080 0.000 0.888 NA
#> SRR2042619     3  0.4585      0.651 0.332 0.000 0.668 NA
#> SRR2042618     2  0.0336      0.827 0.000 0.992 0.008 NA
#> SRR2042617     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042616     2  0.6223      0.420 0.060 0.556 0.384 NA
#> SRR2042615     2  0.5321      0.633 0.032 0.672 0.296 NA
#> SRR2042614     2  0.3812      0.780 0.028 0.832 0.140 NA
#> SRR2042613     2  0.4761      0.652 0.000 0.628 0.000 NA
#> SRR2042612     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042610     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042611     2  0.0000      0.826 0.000 1.000 0.000 NA
#> SRR2042607     3  0.3311      0.793 0.172 0.000 0.828 NA
#> SRR2042609     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042608     3  0.2469      0.813 0.108 0.000 0.892 NA
#> SRR2042656     3  0.4152      0.670 0.032 0.160 0.808 NA
#> SRR2042658     3  0.4907      0.482 0.420 0.000 0.580 NA
#> SRR2042659     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042657     1  0.0000      0.990 1.000 0.000 0.000 NA
#> SRR2042655     1  0.0188      0.986 0.996 0.000 0.004 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042649     3  0.7204     0.1464 0.040 0.092 0.616 0.092 0.160
#> SRR2042647     3  0.2329     0.6542 0.124 0.000 0.876 0.000 0.000
#> SRR2042648     2  0.0404     0.6778 0.000 0.988 0.012 0.000 0.000
#> SRR2042646     3  0.5663     0.0185 0.000 0.000 0.548 0.364 0.088
#> SRR2042645     1  0.2377     0.8114 0.872 0.000 0.128 0.000 0.000
#> SRR2042644     2  0.1768     0.6613 0.000 0.924 0.072 0.004 0.000
#> SRR2042643     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042642     2  0.0000     0.6720 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     3  0.2504     0.5771 0.040 0.064 0.896 0.000 0.000
#> SRR2042641     3  0.2300     0.5610 0.024 0.072 0.904 0.000 0.000
#> SRR2042639     3  0.3993     0.2617 0.028 0.216 0.756 0.000 0.000
#> SRR2042638     2  0.0000     0.6720 0.000 1.000 0.000 0.000 0.000
#> SRR2042637     4  0.7758     0.0000 0.056 0.284 0.304 0.356 0.000
#> SRR2042636     1  0.0162     0.9859 0.996 0.000 0.004 0.000 0.000
#> SRR2042634     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042635     2  0.0000     0.6720 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     3  0.4313     0.5228 0.036 0.000 0.804 0.060 0.100
#> SRR2042631     3  0.3707     0.5828 0.284 0.000 0.716 0.000 0.000
#> SRR2042632     2  0.1942     0.6190 0.000 0.920 0.000 0.068 0.012
#> SRR2042630     2  0.4822     0.1841 0.048 0.664 0.288 0.000 0.000
#> SRR2042629     3  0.2852     0.6479 0.172 0.000 0.828 0.000 0.000
#> SRR2042628     3  0.4287     0.3884 0.460 0.000 0.540 0.000 0.000
#> SRR2042626     2  0.3010     0.5913 0.004 0.824 0.172 0.000 0.000
#> SRR2042627     3  0.1965     0.6416 0.096 0.000 0.904 0.000 0.000
#> SRR2042624     3  0.3509     0.6321 0.084 0.000 0.852 0.032 0.032
#> SRR2042625     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     3  0.4341     0.5007 0.364 0.008 0.628 0.000 0.000
#> SRR2042621     3  0.2917     0.5928 0.048 0.000 0.888 0.024 0.040
#> SRR2042619     3  0.4060     0.5158 0.360 0.000 0.640 0.000 0.000
#> SRR2042618     2  0.0290     0.6768 0.000 0.992 0.008 0.000 0.000
#> SRR2042617     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042616     2  0.5313    -0.2688 0.056 0.556 0.388 0.000 0.000
#> SRR2042615     2  0.4583     0.2087 0.032 0.672 0.296 0.000 0.000
#> SRR2042614     2  0.3238     0.6017 0.028 0.836 0.136 0.000 0.000
#> SRR2042613     5  0.4249     0.0000 0.000 0.432 0.000 0.000 0.568
#> SRR2042612     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042610     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042611     2  0.0000     0.6720 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     3  0.3143     0.6373 0.204 0.000 0.796 0.000 0.000
#> SRR2042609     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     3  0.2516     0.6547 0.140 0.000 0.860 0.000 0.000
#> SRR2042656     3  0.3616     0.3951 0.032 0.164 0.804 0.000 0.000
#> SRR2042658     3  0.4273     0.4119 0.448 0.000 0.552 0.000 0.000
#> SRR2042659     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042657     1  0.0000     0.9899 1.000 0.000 0.000 0.000 0.000
#> SRR2042655     1  0.0162     0.9854 0.996 0.000 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042649     4  0.5769     -0.261 0.028 0.088 0.000 0.472 0.412 0.000
#> SRR2042647     4  0.2416      0.618 0.156 0.000 0.000 0.844 0.000 0.000
#> SRR2042648     2  0.0363      0.725 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR2042646     3  0.3464      0.000 0.000 0.000 0.688 0.312 0.000 0.000
#> SRR2042645     1  0.2092      0.811 0.876 0.000 0.000 0.124 0.000 0.000
#> SRR2042644     2  0.1757      0.711 0.000 0.916 0.008 0.076 0.000 0.000
#> SRR2042643     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042642     2  0.0000      0.720 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     4  0.2728      0.531 0.040 0.100 0.000 0.860 0.000 0.000
#> SRR2042641     4  0.2537      0.525 0.032 0.096 0.000 0.872 0.000 0.000
#> SRR2042639     4  0.3641      0.332 0.028 0.224 0.000 0.748 0.000 0.000
#> SRR2042638     2  0.0000      0.720 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     5  0.9257      0.000 0.048 0.180 0.204 0.232 0.264 0.072
#> SRR2042636     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR2042634     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042635     2  0.0000      0.720 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     4  0.3974      0.429 0.036 0.000 0.012 0.764 0.004 0.184
#> SRR2042631     4  0.3499      0.553 0.320 0.000 0.000 0.680 0.000 0.000
#> SRR2042632     2  0.2866      0.634 0.000 0.864 0.024 0.000 0.092 0.020
#> SRR2042630     2  0.4861      0.378 0.044 0.652 0.012 0.284 0.004 0.004
#> SRR2042629     4  0.2823      0.616 0.204 0.000 0.000 0.796 0.000 0.000
#> SRR2042628     4  0.3864      0.390 0.480 0.000 0.000 0.520 0.000 0.000
#> SRR2042626     2  0.2738      0.650 0.004 0.820 0.000 0.176 0.000 0.000
#> SRR2042627     4  0.2178      0.609 0.132 0.000 0.000 0.868 0.000 0.000
#> SRR2042624     4  0.3916      0.448 0.056 0.000 0.044 0.824 0.052 0.024
#> SRR2042625     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042620     4  0.4333      0.484 0.380 0.020 0.000 0.596 0.004 0.000
#> SRR2042621     4  0.3982      0.380 0.028 0.000 0.008 0.776 0.168 0.020
#> SRR2042619     4  0.3756      0.477 0.400 0.000 0.000 0.600 0.000 0.000
#> SRR2042618     2  0.0260      0.724 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR2042617     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042616     2  0.4905      0.054 0.056 0.552 0.000 0.388 0.000 0.004
#> SRR2042615     2  0.4065      0.405 0.028 0.672 0.000 0.300 0.000 0.000
#> SRR2042614     2  0.2983      0.659 0.032 0.832 0.000 0.136 0.000 0.000
#> SRR2042613     6  0.3531      0.000 0.000 0.328 0.000 0.000 0.000 0.672
#> SRR2042612     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042610     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042611     2  0.0000      0.720 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     4  0.3076      0.601 0.240 0.000 0.000 0.760 0.000 0.000
#> SRR2042609     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     4  0.2631      0.620 0.180 0.000 0.000 0.820 0.000 0.000
#> SRR2042656     4  0.3409      0.384 0.028 0.192 0.000 0.780 0.000 0.000
#> SRR2042658     4  0.3866      0.378 0.484 0.000 0.000 0.516 0.000 0.000
#> SRR2042659     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042657     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042655     1  0.0146      0.985 0.996 0.000 0.000 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.880           0.919       0.965         0.4482 0.538   0.538
#> 3 3 0.514           0.742       0.841         0.4195 0.756   0.558
#> 4 4 0.490           0.561       0.780         0.0881 0.938   0.821
#> 5 5 0.670           0.639       0.769         0.0835 0.902   0.695
#> 6 6 0.719           0.681       0.818         0.0452 0.952   0.810

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.918 1.000 0.000
#> SRR2042653     1  0.0000      0.918 1.000 0.000
#> SRR2042652     1  0.0000      0.918 1.000 0.000
#> SRR2042650     1  0.2236      0.906 0.964 0.036
#> SRR2042649     2  0.0000      0.984 0.000 1.000
#> SRR2042647     2  0.0000      0.984 0.000 1.000
#> SRR2042648     2  0.0000      0.984 0.000 1.000
#> SRR2042646     2  0.0000      0.984 0.000 1.000
#> SRR2042645     1  0.9996      0.153 0.512 0.488
#> SRR2042644     2  0.0000      0.984 0.000 1.000
#> SRR2042643     1  0.1843      0.909 0.972 0.028
#> SRR2042642     2  0.0000      0.984 0.000 1.000
#> SRR2042640     2  0.0000      0.984 0.000 1.000
#> SRR2042641     2  0.0000      0.984 0.000 1.000
#> SRR2042639     2  0.0000      0.984 0.000 1.000
#> SRR2042638     2  0.0000      0.984 0.000 1.000
#> SRR2042637     2  0.0000      0.984 0.000 1.000
#> SRR2042636     2  0.8555      0.573 0.280 0.720
#> SRR2042634     1  0.8267      0.672 0.740 0.260
#> SRR2042635     2  0.0000      0.984 0.000 1.000
#> SRR2042633     2  0.0000      0.984 0.000 1.000
#> SRR2042631     2  0.0672      0.977 0.008 0.992
#> SRR2042632     2  0.0000      0.984 0.000 1.000
#> SRR2042630     2  0.0000      0.984 0.000 1.000
#> SRR2042629     2  0.0000      0.984 0.000 1.000
#> SRR2042628     2  0.0000      0.984 0.000 1.000
#> SRR2042626     2  0.0000      0.984 0.000 1.000
#> SRR2042627     1  0.6438      0.796 0.836 0.164
#> SRR2042624     2  0.0000      0.984 0.000 1.000
#> SRR2042625     1  0.0000      0.918 1.000 0.000
#> SRR2042623     1  0.0000      0.918 1.000 0.000
#> SRR2042622     1  0.0000      0.918 1.000 0.000
#> SRR2042620     2  0.0000      0.984 0.000 1.000
#> SRR2042621     2  0.0000      0.984 0.000 1.000
#> SRR2042619     2  0.6531      0.780 0.168 0.832
#> SRR2042618     2  0.0000      0.984 0.000 1.000
#> SRR2042617     1  0.0000      0.918 1.000 0.000
#> SRR2042616     2  0.0000      0.984 0.000 1.000
#> SRR2042615     2  0.0000      0.984 0.000 1.000
#> SRR2042614     2  0.0000      0.984 0.000 1.000
#> SRR2042613     2  0.0000      0.984 0.000 1.000
#> SRR2042612     1  0.0938      0.916 0.988 0.012
#> SRR2042610     1  0.1843      0.909 0.972 0.028
#> SRR2042611     2  0.0000      0.984 0.000 1.000
#> SRR2042607     2  0.1414      0.965 0.020 0.980
#> SRR2042609     1  0.0000      0.918 1.000 0.000
#> SRR2042608     2  0.0000      0.984 0.000 1.000
#> SRR2042656     2  0.0000      0.984 0.000 1.000
#> SRR2042658     2  0.0000      0.984 0.000 1.000
#> SRR2042659     1  0.0672      0.917 0.992 0.008
#> SRR2042657     1  0.9170      0.552 0.668 0.332
#> SRR2042655     1  0.0000      0.918 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0424      0.894 0.992 0.008 0.000
#> SRR2042653     1  0.0000      0.894 1.000 0.000 0.000
#> SRR2042652     1  0.0424      0.894 0.992 0.008 0.000
#> SRR2042650     1  0.3295      0.847 0.896 0.096 0.008
#> SRR2042649     3  0.0892      0.882 0.000 0.020 0.980
#> SRR2042647     2  0.3619      0.691 0.000 0.864 0.136
#> SRR2042648     2  0.4974      0.701 0.000 0.764 0.236
#> SRR2042646     3  0.1031      0.887 0.000 0.024 0.976
#> SRR2042645     1  0.8789      0.129 0.460 0.428 0.112
#> SRR2042644     3  0.3267      0.897 0.000 0.116 0.884
#> SRR2042643     1  0.4235      0.777 0.824 0.176 0.000
#> SRR2042642     2  0.4702      0.701 0.000 0.788 0.212
#> SRR2042640     2  0.5529      0.687 0.000 0.704 0.296
#> SRR2042641     3  0.4702      0.765 0.000 0.212 0.788
#> SRR2042639     3  0.5397      0.597 0.000 0.280 0.720
#> SRR2042638     2  0.4796      0.699 0.000 0.780 0.220
#> SRR2042637     3  0.1753      0.896 0.000 0.048 0.952
#> SRR2042636     2  0.7782      0.469 0.248 0.652 0.100
#> SRR2042634     1  0.6215      0.400 0.572 0.428 0.000
#> SRR2042635     2  0.4654      0.699 0.000 0.792 0.208
#> SRR2042633     3  0.2959      0.905 0.000 0.100 0.900
#> SRR2042631     2  0.4514      0.687 0.012 0.832 0.156
#> SRR2042632     3  0.0747      0.883 0.000 0.016 0.984
#> SRR2042630     3  0.1411      0.896 0.000 0.036 0.964
#> SRR2042629     2  0.3686      0.692 0.000 0.860 0.140
#> SRR2042628     3  0.2711      0.908 0.000 0.088 0.912
#> SRR2042626     2  0.5497      0.686 0.000 0.708 0.292
#> SRR2042627     1  0.5212      0.770 0.828 0.108 0.064
#> SRR2042624     3  0.3192      0.898 0.000 0.112 0.888
#> SRR2042625     1  0.0237      0.894 0.996 0.004 0.000
#> SRR2042623     1  0.0424      0.894 0.992 0.008 0.000
#> SRR2042622     1  0.0424      0.894 0.992 0.008 0.000
#> SRR2042620     2  0.5621      0.683 0.000 0.692 0.308
#> SRR2042621     3  0.2959      0.906 0.000 0.100 0.900
#> SRR2042619     2  0.8196      0.382 0.284 0.608 0.108
#> SRR2042618     2  0.6309      0.246 0.000 0.504 0.496
#> SRR2042617     1  0.0000      0.894 1.000 0.000 0.000
#> SRR2042616     3  0.2625      0.904 0.000 0.084 0.916
#> SRR2042615     3  0.2796      0.907 0.000 0.092 0.908
#> SRR2042614     2  0.6244      0.432 0.000 0.560 0.440
#> SRR2042613     3  0.0424      0.875 0.000 0.008 0.992
#> SRR2042612     1  0.0829      0.891 0.984 0.004 0.012
#> SRR2042610     1  0.3482      0.818 0.872 0.128 0.000
#> SRR2042611     2  0.4654      0.699 0.000 0.792 0.208
#> SRR2042607     2  0.4937      0.680 0.028 0.824 0.148
#> SRR2042609     1  0.0424      0.894 0.992 0.008 0.000
#> SRR2042608     3  0.3941      0.842 0.000 0.156 0.844
#> SRR2042656     2  0.5810      0.649 0.000 0.664 0.336
#> SRR2042658     3  0.2625      0.908 0.000 0.084 0.916
#> SRR2042659     1  0.0661      0.892 0.988 0.004 0.008
#> SRR2042657     2  0.6813     -0.206 0.468 0.520 0.012
#> SRR2042655     1  0.0592      0.893 0.988 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> SRR2042653     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> SRR2042652     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> SRR2042650     1  0.3241      0.840 0.884 0.072 0.004 0.040
#> SRR2042649     3  0.2610      0.422 0.000 0.012 0.900 0.088
#> SRR2042647     2  0.5688      0.721 0.024 0.732 0.052 0.192
#> SRR2042648     2  0.2214      0.711 0.000 0.928 0.044 0.028
#> SRR2042646     3  0.2593      0.420 0.000 0.016 0.904 0.080
#> SRR2042645     1  0.8476      0.327 0.516 0.256 0.080 0.148
#> SRR2042644     3  0.6339      0.285 0.000 0.196 0.656 0.148
#> SRR2042643     1  0.4046      0.792 0.828 0.124 0.000 0.048
#> SRR2042642     2  0.2021      0.701 0.000 0.936 0.024 0.040
#> SRR2042640     2  0.5260      0.727 0.004 0.760 0.092 0.144
#> SRR2042641     3  0.7265      0.307 0.000 0.288 0.528 0.184
#> SRR2042639     2  0.6148      0.207 0.000 0.540 0.408 0.052
#> SRR2042638     2  0.2411      0.702 0.000 0.920 0.040 0.040
#> SRR2042637     3  0.3286      0.466 0.000 0.044 0.876 0.080
#> SRR2042636     2  0.8103      0.429 0.296 0.512 0.044 0.148
#> SRR2042634     1  0.6741      0.482 0.612 0.256 0.004 0.128
#> SRR2042635     2  0.2021      0.701 0.000 0.936 0.024 0.040
#> SRR2042633     3  0.7038     -0.337 0.004 0.124 0.548 0.324
#> SRR2042631     2  0.6056      0.713 0.032 0.716 0.064 0.188
#> SRR2042632     3  0.1211      0.448 0.000 0.000 0.960 0.040
#> SRR2042630     3  0.4581      0.496 0.000 0.080 0.800 0.120
#> SRR2042629     2  0.5547      0.721 0.020 0.740 0.052 0.188
#> SRR2042628     3  0.5861      0.327 0.000 0.144 0.704 0.152
#> SRR2042626     2  0.2926      0.724 0.004 0.888 0.096 0.012
#> SRR2042627     1  0.3768      0.817 0.872 0.044 0.036 0.048
#> SRR2042624     4  0.6145      0.000 0.000 0.048 0.460 0.492
#> SRR2042625     1  0.0376      0.878 0.992 0.004 0.000 0.004
#> SRR2042623     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> SRR2042622     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> SRR2042620     2  0.5750      0.715 0.008 0.732 0.136 0.124
#> SRR2042621     3  0.5938     -0.921 0.000 0.036 0.488 0.476
#> SRR2042619     2  0.8206      0.415 0.296 0.500 0.044 0.160
#> SRR2042618     2  0.5592      0.231 0.000 0.572 0.404 0.024
#> SRR2042617     1  0.0000      0.877 1.000 0.000 0.000 0.000
#> SRR2042616     3  0.5247      0.492 0.000 0.148 0.752 0.100
#> SRR2042615     3  0.4285      0.503 0.000 0.156 0.804 0.040
#> SRR2042614     2  0.5036      0.534 0.000 0.696 0.280 0.024
#> SRR2042613     3  0.1722      0.457 0.000 0.008 0.944 0.048
#> SRR2042612     1  0.0524      0.876 0.988 0.000 0.008 0.004
#> SRR2042610     1  0.2805      0.825 0.888 0.100 0.000 0.012
#> SRR2042611     2  0.2021      0.701 0.000 0.936 0.024 0.040
#> SRR2042607     2  0.6568      0.696 0.068 0.692 0.056 0.184
#> SRR2042609     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> SRR2042608     3  0.7085      0.346 0.000 0.232 0.568 0.200
#> SRR2042656     2  0.5030      0.628 0.008 0.732 0.236 0.024
#> SRR2042658     3  0.4963      0.454 0.004 0.152 0.776 0.068
#> SRR2042659     1  0.0712      0.875 0.984 0.004 0.008 0.004
#> SRR2042657     1  0.7142      0.303 0.524 0.324 0.000 0.152
#> SRR2042655     1  0.0804      0.875 0.980 0.008 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.1952     0.8403 0.912 0.000 0.000 0.084 0.004
#> SRR2042649     3  0.2136     0.6584 0.000 0.000 0.904 0.008 0.088
#> SRR2042647     4  0.5122     0.7353 0.044 0.308 0.000 0.640 0.008
#> SRR2042648     2  0.0613     0.7152 0.000 0.984 0.004 0.008 0.004
#> SRR2042646     3  0.3022     0.6291 0.000 0.004 0.848 0.012 0.136
#> SRR2042645     1  0.6397     0.0739 0.484 0.016 0.036 0.424 0.040
#> SRR2042644     3  0.5674     0.4685 0.000 0.084 0.648 0.020 0.248
#> SRR2042643     1  0.2179     0.8294 0.896 0.000 0.000 0.100 0.004
#> SRR2042642     2  0.0000     0.7149 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     4  0.5281     0.6435 0.024 0.384 0.012 0.576 0.004
#> SRR2042641     3  0.7500     0.3200 0.008 0.076 0.464 0.336 0.116
#> SRR2042639     3  0.6845     0.0883 0.000 0.372 0.468 0.036 0.124
#> SRR2042638     2  0.0703     0.7142 0.000 0.976 0.024 0.000 0.000
#> SRR2042637     3  0.3404     0.6544 0.000 0.012 0.840 0.024 0.124
#> SRR2042636     4  0.6929     0.4974 0.336 0.188 0.008 0.460 0.008
#> SRR2042634     1  0.4949     0.2475 0.572 0.032 0.000 0.396 0.000
#> SRR2042635     2  0.0000     0.7149 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     5  0.6045     0.5776 0.012 0.024 0.340 0.048 0.576
#> SRR2042631     4  0.5705     0.7343 0.044 0.292 0.012 0.632 0.020
#> SRR2042632     3  0.0880     0.6676 0.000 0.000 0.968 0.000 0.032
#> SRR2042630     3  0.4378     0.6494 0.000 0.032 0.800 0.088 0.080
#> SRR2042629     4  0.5102     0.7317 0.032 0.292 0.008 0.660 0.008
#> SRR2042628     3  0.4741     0.4334 0.012 0.008 0.696 0.016 0.268
#> SRR2042626     2  0.2956     0.5961 0.000 0.848 0.008 0.140 0.004
#> SRR2042627     1  0.2787     0.7771 0.856 0.004 0.004 0.136 0.000
#> SRR2042624     5  0.3171     0.7741 0.000 0.000 0.176 0.008 0.816
#> SRR2042625     1  0.0162     0.8760 0.996 0.000 0.000 0.004 0.000
#> SRR2042623     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     4  0.6204     0.6004 0.020 0.376 0.036 0.540 0.028
#> SRR2042621     5  0.3607     0.7882 0.000 0.000 0.244 0.004 0.752
#> SRR2042619     4  0.6528     0.4577 0.344 0.148 0.012 0.496 0.000
#> SRR2042618     2  0.4819     0.2739 0.000 0.576 0.404 0.012 0.008
#> SRR2042617     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042616     3  0.4300     0.6455 0.004 0.100 0.800 0.012 0.084
#> SRR2042615     3  0.3371     0.6591 0.000 0.104 0.848 0.008 0.040
#> SRR2042614     2  0.5585     0.4428 0.000 0.612 0.312 0.060 0.016
#> SRR2042613     3  0.1725     0.6665 0.000 0.000 0.936 0.020 0.044
#> SRR2042612     1  0.0162     0.8752 0.996 0.000 0.004 0.000 0.000
#> SRR2042610     1  0.1502     0.8538 0.940 0.000 0.000 0.056 0.004
#> SRR2042611     2  0.0000     0.7149 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     4  0.5739     0.7365 0.080 0.296 0.008 0.612 0.004
#> SRR2042609     1  0.0000     0.8766 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     3  0.7426     0.3473 0.020 0.052 0.508 0.296 0.124
#> SRR2042656     2  0.7165     0.3141 0.012 0.476 0.300 0.196 0.016
#> SRR2042658     3  0.3381     0.6474 0.004 0.016 0.848 0.016 0.116
#> SRR2042659     1  0.0324     0.8753 0.992 0.000 0.004 0.004 0.000
#> SRR2042657     1  0.5741    -0.0454 0.484 0.072 0.000 0.440 0.004
#> SRR2042655     1  0.0609     0.8707 0.980 0.000 0.000 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0260     0.8759 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2042653     1  0.0000     0.8768 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0405     0.8750 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2042650     1  0.1753     0.8501 0.912 0.000 0.000 0.084 0.000 0.004
#> SRR2042649     5  0.1578     0.6775 0.000 0.000 0.012 0.004 0.936 0.048
#> SRR2042647     4  0.2592     0.7859 0.000 0.116 0.004 0.864 0.000 0.016
#> SRR2042648     2  0.0748     0.8151 0.000 0.976 0.000 0.016 0.004 0.004
#> SRR2042646     5  0.2531     0.6502 0.000 0.000 0.128 0.004 0.860 0.008
#> SRR2042645     1  0.5610     0.4770 0.580 0.012 0.056 0.320 0.000 0.032
#> SRR2042644     5  0.5365     0.3204 0.000 0.052 0.356 0.008 0.564 0.020
#> SRR2042643     1  0.2488     0.8216 0.864 0.000 0.004 0.124 0.000 0.008
#> SRR2042642     2  0.0405     0.8105 0.000 0.988 0.000 0.008 0.000 0.004
#> SRR2042640     4  0.3564     0.7557 0.000 0.148 0.008 0.804 0.004 0.036
#> SRR2042641     6  0.3621     0.8497 0.004 0.012 0.008 0.052 0.096 0.828
#> SRR2042639     5  0.8123     0.0469 0.004 0.296 0.236 0.100 0.320 0.044
#> SRR2042638     2  0.0767     0.8145 0.000 0.976 0.000 0.012 0.008 0.004
#> SRR2042637     5  0.2756     0.6680 0.000 0.004 0.044 0.012 0.880 0.060
#> SRR2042636     1  0.5973     0.0320 0.484 0.092 0.000 0.388 0.004 0.032
#> SRR2042634     1  0.4374     0.5661 0.656 0.020 0.000 0.308 0.000 0.016
#> SRR2042635     2  0.0603     0.8137 0.000 0.980 0.000 0.016 0.000 0.004
#> SRR2042633     3  0.5118     0.5889 0.008 0.016 0.680 0.036 0.236 0.024
#> SRR2042631     4  0.2828     0.7852 0.012 0.080 0.032 0.872 0.000 0.004
#> SRR2042632     5  0.1480     0.6813 0.000 0.000 0.040 0.000 0.940 0.020
#> SRR2042630     5  0.4451     0.5348 0.000 0.000 0.072 0.000 0.680 0.248
#> SRR2042629     4  0.2613     0.7884 0.008 0.076 0.012 0.888 0.004 0.012
#> SRR2042628     3  0.5558     0.0458 0.028 0.004 0.472 0.004 0.448 0.044
#> SRR2042626     2  0.3359     0.6870 0.000 0.784 0.012 0.196 0.000 0.008
#> SRR2042627     1  0.1531     0.8486 0.928 0.000 0.000 0.068 0.000 0.004
#> SRR2042624     3  0.0964     0.5744 0.000 0.000 0.968 0.004 0.016 0.012
#> SRR2042625     1  0.0146     0.8768 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR2042623     1  0.0405     0.8750 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2042622     1  0.0260     0.8759 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2042620     4  0.4951     0.6951 0.000 0.152 0.004 0.688 0.008 0.148
#> SRR2042621     3  0.2312     0.6338 0.000 0.000 0.876 0.000 0.112 0.012
#> SRR2042619     4  0.5326     0.2626 0.360 0.056 0.000 0.560 0.004 0.020
#> SRR2042618     2  0.4271     0.6738 0.000 0.756 0.012 0.016 0.176 0.040
#> SRR2042617     1  0.0000     0.8768 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042616     5  0.4707     0.5943 0.000 0.144 0.028 0.020 0.748 0.060
#> SRR2042615     5  0.5000     0.6027 0.000 0.128 0.084 0.004 0.724 0.060
#> SRR2042614     2  0.4961     0.6834 0.000 0.732 0.020 0.052 0.148 0.048
#> SRR2042613     5  0.2007     0.6820 0.000 0.000 0.044 0.004 0.916 0.036
#> SRR2042612     1  0.0000     0.8768 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042610     1  0.2006     0.8364 0.892 0.000 0.000 0.104 0.000 0.004
#> SRR2042611     2  0.0405     0.8105 0.000 0.988 0.000 0.008 0.000 0.004
#> SRR2042607     4  0.3296     0.7689 0.068 0.088 0.004 0.836 0.000 0.004
#> SRR2042609     1  0.0405     0.8750 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2042608     6  0.4265     0.8431 0.032 0.004 0.052 0.012 0.108 0.792
#> SRR2042656     2  0.7070     0.3020 0.000 0.428 0.008 0.312 0.176 0.076
#> SRR2042658     5  0.4137     0.5921 0.004 0.004 0.148 0.004 0.768 0.072
#> SRR2042659     1  0.0146     0.8769 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR2042657     1  0.4676     0.4926 0.612 0.020 0.008 0.348 0.000 0.012
#> SRR2042655     1  0.0363     0.8750 0.988 0.000 0.000 0.012 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.559           0.764       0.901         0.5050 0.493   0.493
#> 3 3 0.304           0.515       0.740         0.2752 0.854   0.719
#> 4 4 0.326           0.369       0.640         0.1301 0.888   0.728
#> 5 5 0.382           0.314       0.579         0.0689 0.971   0.907
#> 6 6 0.435           0.267       0.521         0.0467 0.911   0.715

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000     0.8722 1.000 0.000
#> SRR2042653     1  0.9754     0.3744 0.592 0.408
#> SRR2042652     1  0.9996     0.1162 0.512 0.488
#> SRR2042650     2  0.0376     0.9006 0.004 0.996
#> SRR2042649     1  0.0000     0.8722 1.000 0.000
#> SRR2042647     2  0.0376     0.9002 0.004 0.996
#> SRR2042648     2  0.0938     0.8998 0.012 0.988
#> SRR2042646     1  0.0000     0.8722 1.000 0.000
#> SRR2042645     2  0.9608     0.3663 0.384 0.616
#> SRR2042644     1  0.0376     0.8719 0.996 0.004
#> SRR2042643     2  0.0938     0.8992 0.012 0.988
#> SRR2042642     2  0.0000     0.8994 0.000 1.000
#> SRR2042640     2  0.0672     0.9006 0.008 0.992
#> SRR2042641     2  0.9944     0.0984 0.456 0.544
#> SRR2042639     1  1.0000    -0.0217 0.500 0.500
#> SRR2042638     2  0.1414     0.8980 0.020 0.980
#> SRR2042637     1  0.0672     0.8711 0.992 0.008
#> SRR2042636     2  0.0938     0.8995 0.012 0.988
#> SRR2042634     2  0.5737     0.8017 0.136 0.864
#> SRR2042635     2  0.0376     0.9002 0.004 0.996
#> SRR2042633     1  0.0672     0.8711 0.992 0.008
#> SRR2042631     2  0.0376     0.9002 0.004 0.996
#> SRR2042632     1  0.0000     0.8722 1.000 0.000
#> SRR2042630     1  0.0000     0.8722 1.000 0.000
#> SRR2042629     2  0.0672     0.9004 0.008 0.992
#> SRR2042628     1  0.0000     0.8722 1.000 0.000
#> SRR2042626     2  0.0000     0.8994 0.000 1.000
#> SRR2042627     1  0.8955     0.5752 0.688 0.312
#> SRR2042624     1  0.0376     0.8718 0.996 0.004
#> SRR2042625     1  0.2043     0.8615 0.968 0.032
#> SRR2042623     1  0.1184     0.8692 0.984 0.016
#> SRR2042622     2  0.8955     0.5365 0.312 0.688
#> SRR2042620     2  0.0000     0.8994 0.000 1.000
#> SRR2042621     1  0.0000     0.8722 1.000 0.000
#> SRR2042619     2  0.4022     0.8544 0.080 0.920
#> SRR2042618     1  0.8327     0.6605 0.736 0.264
#> SRR2042617     1  0.9635     0.3635 0.612 0.388
#> SRR2042616     1  0.0376     0.8717 0.996 0.004
#> SRR2042615     1  0.0000     0.8722 1.000 0.000
#> SRR2042614     2  0.9933     0.0735 0.452 0.548
#> SRR2042613     1  0.0000     0.8722 1.000 0.000
#> SRR2042612     1  0.5294     0.8147 0.880 0.120
#> SRR2042610     2  0.0938     0.8995 0.012 0.988
#> SRR2042611     2  0.0000     0.8994 0.000 1.000
#> SRR2042607     2  0.1843     0.8925 0.028 0.972
#> SRR2042609     1  0.6712     0.7692 0.824 0.176
#> SRR2042608     1  0.4161     0.8356 0.916 0.084
#> SRR2042656     2  0.3733     0.8544 0.072 0.928
#> SRR2042658     1  0.0000     0.8722 1.000 0.000
#> SRR2042659     1  0.5842     0.7862 0.860 0.140
#> SRR2042657     2  0.0672     0.9006 0.008 0.992
#> SRR2042655     1  0.6148     0.7891 0.848 0.152

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     3  0.4974    0.55557 0.236 0.000 0.764
#> SRR2042653     1  0.9405    0.52137 0.508 0.232 0.260
#> SRR2042652     1  0.9357    0.50861 0.516 0.248 0.236
#> SRR2042650     2  0.5578    0.60834 0.240 0.748 0.012
#> SRR2042649     3  0.1832    0.72423 0.036 0.008 0.956
#> SRR2042647     2  0.4002    0.68973 0.160 0.840 0.000
#> SRR2042648     2  0.3995    0.70462 0.116 0.868 0.016
#> SRR2042646     3  0.2492    0.72831 0.048 0.016 0.936
#> SRR2042645     1  0.9398    0.08308 0.428 0.400 0.172
#> SRR2042644     3  0.1878    0.72511 0.044 0.004 0.952
#> SRR2042643     2  0.6587    0.42490 0.352 0.632 0.016
#> SRR2042642     2  0.2066    0.70876 0.060 0.940 0.000
#> SRR2042640     2  0.3715    0.69290 0.128 0.868 0.004
#> SRR2042641     2  0.9978   -0.28804 0.304 0.360 0.336
#> SRR2042639     3  0.7821    0.34558 0.116 0.224 0.660
#> SRR2042638     2  0.3644    0.69719 0.124 0.872 0.004
#> SRR2042637     3  0.3802    0.70924 0.080 0.032 0.888
#> SRR2042636     2  0.6126    0.55025 0.352 0.644 0.004
#> SRR2042634     2  0.7391    0.50960 0.308 0.636 0.056
#> SRR2042635     2  0.2772    0.70720 0.080 0.916 0.004
#> SRR2042633     3  0.3742    0.70996 0.072 0.036 0.892
#> SRR2042631     2  0.4931    0.64028 0.212 0.784 0.004
#> SRR2042632     3  0.0592    0.72233 0.012 0.000 0.988
#> SRR2042630     3  0.1832    0.72458 0.036 0.008 0.956
#> SRR2042629     2  0.3340    0.69175 0.120 0.880 0.000
#> SRR2042628     3  0.2066    0.71931 0.060 0.000 0.940
#> SRR2042626     2  0.2959    0.70251 0.100 0.900 0.000
#> SRR2042627     3  0.8478    0.33011 0.204 0.180 0.616
#> SRR2042624     3  0.3755    0.69378 0.120 0.008 0.872
#> SRR2042625     3  0.8220   -0.06976 0.408 0.076 0.516
#> SRR2042623     3  0.6262    0.48142 0.284 0.020 0.696
#> SRR2042622     1  0.8929    0.10454 0.460 0.416 0.124
#> SRR2042620     2  0.5178    0.63185 0.256 0.744 0.000
#> SRR2042621     3  0.2200    0.72413 0.056 0.004 0.940
#> SRR2042619     2  0.7444    0.54138 0.220 0.684 0.096
#> SRR2042618     3  0.7372    0.50594 0.128 0.168 0.704
#> SRR2042617     1  0.9234    0.37552 0.476 0.160 0.364
#> SRR2042616     3  0.3670    0.71457 0.092 0.020 0.888
#> SRR2042615     3  0.1860    0.72665 0.052 0.000 0.948
#> SRR2042614     3  0.9162   -0.14404 0.152 0.368 0.480
#> SRR2042613     3  0.1765    0.72550 0.040 0.004 0.956
#> SRR2042612     3  0.8608    0.00432 0.412 0.100 0.488
#> SRR2042610     2  0.6673    0.52470 0.344 0.636 0.020
#> SRR2042611     2  0.2261    0.70631 0.068 0.932 0.000
#> SRR2042607     2  0.5406    0.65959 0.200 0.780 0.020
#> SRR2042609     1  0.9140    0.21357 0.452 0.144 0.404
#> SRR2042608     3  0.8122    0.34525 0.292 0.100 0.608
#> SRR2042656     2  0.8042    0.39580 0.248 0.636 0.116
#> SRR2042658     3  0.1031    0.72238 0.024 0.000 0.976
#> SRR2042659     3  0.7997    0.35546 0.236 0.120 0.644
#> SRR2042657     2  0.6398    0.45307 0.372 0.620 0.008
#> SRR2042655     3  0.8526    0.26024 0.308 0.120 0.572

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1   0.654     0.2472 0.500 0.004 0.432 0.064
#> SRR2042653     1   0.799     0.2262 0.588 0.168 0.076 0.168
#> SRR2042652     1   0.716     0.3410 0.668 0.116 0.080 0.136
#> SRR2042650     2   0.715     0.2351 0.220 0.560 0.000 0.220
#> SRR2042649     3   0.313     0.6537 0.100 0.008 0.880 0.012
#> SRR2042647     2   0.447     0.4443 0.040 0.788 0.000 0.172
#> SRR2042648     2   0.503     0.4494 0.088 0.784 0.008 0.120
#> SRR2042646     3   0.449     0.6519 0.100 0.024 0.828 0.048
#> SRR2042645     4   0.906     0.2513 0.252 0.212 0.092 0.444
#> SRR2042644     3   0.379     0.6423 0.096 0.008 0.856 0.040
#> SRR2042643     4   0.778     0.3077 0.168 0.364 0.012 0.456
#> SRR2042642     2   0.231     0.5095 0.032 0.924 0.000 0.044
#> SRR2042640     2   0.546     0.4205 0.072 0.716 0.000 0.212
#> SRR2042641     2   0.985    -0.0692 0.220 0.320 0.272 0.188
#> SRR2042639     3   0.866     0.3264 0.108 0.168 0.524 0.200
#> SRR2042638     2   0.444     0.4926 0.060 0.820 0.008 0.112
#> SRR2042637     3   0.469     0.6179 0.132 0.028 0.808 0.032
#> SRR2042636     2   0.679     0.2912 0.128 0.576 0.000 0.296
#> SRR2042634     2   0.772     0.0838 0.124 0.556 0.040 0.280
#> SRR2042635     2   0.409     0.5040 0.080 0.840 0.004 0.076
#> SRR2042633     3   0.552     0.6120 0.092 0.040 0.776 0.092
#> SRR2042631     2   0.577     0.2409 0.056 0.652 0.000 0.292
#> SRR2042632     3   0.147     0.6552 0.052 0.000 0.948 0.000
#> SRR2042630     3   0.398     0.6429 0.108 0.000 0.836 0.056
#> SRR2042629     2   0.547     0.3928 0.068 0.712 0.000 0.220
#> SRR2042628     3   0.459     0.5945 0.116 0.000 0.800 0.084
#> SRR2042626     2   0.434     0.4549 0.052 0.808 0.000 0.140
#> SRR2042627     3   0.886    -0.0262 0.332 0.140 0.432 0.096
#> SRR2042624     3   0.555     0.5819 0.096 0.008 0.744 0.152
#> SRR2042625     1   0.830     0.4319 0.500 0.044 0.268 0.188
#> SRR2042623     1   0.649     0.3018 0.536 0.024 0.408 0.032
#> SRR2042622     1   0.845    -0.0261 0.496 0.284 0.064 0.156
#> SRR2042620     2   0.593     0.4347 0.116 0.692 0.000 0.192
#> SRR2042621     3   0.343     0.6480 0.060 0.004 0.876 0.060
#> SRR2042619     2   0.847     0.1441 0.232 0.496 0.052 0.220
#> SRR2042618     3   0.795     0.4361 0.148 0.144 0.604 0.104
#> SRR2042617     1   0.868     0.3527 0.504 0.084 0.188 0.224
#> SRR2042616     3   0.433     0.6500 0.084 0.028 0.840 0.048
#> SRR2042615     3   0.336     0.6614 0.084 0.004 0.876 0.036
#> SRR2042614     3   0.904     0.1551 0.112 0.268 0.456 0.164
#> SRR2042613     3   0.273     0.6598 0.060 0.004 0.908 0.028
#> SRR2042612     3   0.939    -0.2212 0.284 0.092 0.340 0.284
#> SRR2042610     2   0.730     0.0167 0.136 0.488 0.004 0.372
#> SRR2042611     2   0.340     0.5127 0.064 0.872 0.000 0.064
#> SRR2042607     2   0.715     0.2259 0.228 0.560 0.000 0.212
#> SRR2042609     1   0.800     0.4871 0.564 0.084 0.252 0.100
#> SRR2042608     3   0.898     0.1942 0.168 0.136 0.492 0.204
#> SRR2042656     2   0.832     0.2603 0.140 0.568 0.120 0.172
#> SRR2042658     3   0.185     0.6569 0.048 0.000 0.940 0.012
#> SRR2042659     3   0.889    -0.0802 0.272 0.100 0.468 0.160
#> SRR2042657     4   0.738     0.0879 0.140 0.424 0.004 0.432
#> SRR2042655     1   0.682     0.4240 0.608 0.068 0.296 0.028

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1   0.674     0.3480 0.556 0.000 0.276 0.052 0.116
#> SRR2042653     1   0.843     0.2859 0.468 0.116 0.036 0.188 0.192
#> SRR2042652     1   0.644     0.4192 0.676 0.072 0.036 0.152 0.064
#> SRR2042650     2   0.849    -0.0137 0.188 0.404 0.012 0.240 0.156
#> SRR2042649     3   0.424     0.5829 0.104 0.012 0.804 0.004 0.076
#> SRR2042647     2   0.567     0.3628 0.016 0.664 0.000 0.204 0.116
#> SRR2042648     2   0.560     0.4043 0.076 0.716 0.004 0.148 0.056
#> SRR2042646     3   0.485     0.5884 0.112 0.024 0.772 0.008 0.084
#> SRR2042645     4   0.912     0.1719 0.124 0.140 0.100 0.408 0.228
#> SRR2042644     3   0.502     0.5724 0.092 0.004 0.756 0.028 0.120
#> SRR2042643     4   0.595     0.2522 0.076 0.288 0.000 0.608 0.028
#> SRR2042642     2   0.275     0.4701 0.020 0.896 0.000 0.048 0.036
#> SRR2042640     2   0.568     0.3197 0.040 0.656 0.004 0.256 0.044
#> SRR2042641     5   0.897     0.2770 0.084 0.236 0.308 0.060 0.312
#> SRR2042639     3   0.805     0.2050 0.052 0.084 0.512 0.116 0.236
#> SRR2042638     2   0.488     0.4333 0.008 0.768 0.028 0.132 0.064
#> SRR2042637     3   0.562     0.5548 0.136 0.040 0.728 0.020 0.076
#> SRR2042636     2   0.837     0.0639 0.088 0.332 0.012 0.272 0.296
#> SRR2042634     2   0.827     0.0941 0.096 0.448 0.028 0.268 0.160
#> SRR2042635     2   0.435     0.4580 0.044 0.804 0.004 0.112 0.036
#> SRR2042633     3   0.611     0.5171 0.084 0.016 0.688 0.056 0.156
#> SRR2042631     2   0.587     0.2226 0.032 0.604 0.000 0.304 0.060
#> SRR2042632     3   0.240     0.5970 0.068 0.000 0.904 0.004 0.024
#> SRR2042630     3   0.502     0.4978 0.096 0.012 0.752 0.012 0.128
#> SRR2042629     2   0.549     0.3986 0.076 0.716 0.000 0.152 0.056
#> SRR2042628     3   0.510     0.5073 0.112 0.000 0.744 0.032 0.112
#> SRR2042626     2   0.445     0.4204 0.028 0.768 0.000 0.172 0.032
#> SRR2042627     3   0.909    -0.2181 0.316 0.144 0.324 0.056 0.160
#> SRR2042624     3   0.628     0.5189 0.104 0.012 0.676 0.068 0.140
#> SRR2042625     1   0.780     0.4138 0.532 0.016 0.156 0.164 0.132
#> SRR2042623     1   0.614     0.3503 0.648 0.024 0.228 0.020 0.080
#> SRR2042622     1   0.821     0.2560 0.508 0.216 0.056 0.104 0.116
#> SRR2042620     2   0.717     0.3183 0.088 0.556 0.000 0.188 0.168
#> SRR2042621     3   0.533     0.5560 0.108 0.008 0.740 0.032 0.112
#> SRR2042619     2   0.888     0.0191 0.220 0.408 0.044 0.160 0.168
#> SRR2042618     3   0.733     0.4100 0.116 0.132 0.612 0.044 0.096
#> SRR2042617     1   0.804     0.3930 0.496 0.036 0.088 0.248 0.132
#> SRR2042616     3   0.568     0.5524 0.128 0.044 0.716 0.008 0.104
#> SRR2042615     3   0.470     0.5764 0.112 0.000 0.768 0.020 0.100
#> SRR2042614     3   0.857     0.0457 0.088 0.276 0.444 0.088 0.104
#> SRR2042613     3   0.270     0.5949 0.048 0.004 0.896 0.004 0.048
#> SRR2042612     5   0.747     0.1649 0.144 0.020 0.228 0.064 0.544
#> SRR2042610     2   0.824    -0.0590 0.072 0.380 0.016 0.288 0.244
#> SRR2042611     2   0.272     0.4724 0.020 0.896 0.000 0.056 0.028
#> SRR2042607     2   0.796     0.0973 0.196 0.472 0.004 0.200 0.128
#> SRR2042609     1   0.757     0.4024 0.600 0.080 0.080 0.108 0.132
#> SRR2042608     3   0.828    -0.3780 0.084 0.100 0.408 0.056 0.352
#> SRR2042656     2   0.853    -0.0753 0.052 0.444 0.196 0.080 0.228
#> SRR2042658     3   0.279     0.5841 0.040 0.000 0.884 0.004 0.072
#> SRR2042659     3   0.872    -0.1987 0.324 0.048 0.352 0.084 0.192
#> SRR2042657     4   0.755     0.1699 0.076 0.312 0.008 0.476 0.128
#> SRR2042655     1   0.758     0.3714 0.600 0.100 0.128 0.072 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1   0.610    0.15122 0.640 0.152 0.144 0.016 0.032 0.016
#> SRR2042653     1   0.886    0.11210 0.368 0.024 0.192 0.104 0.144 0.168
#> SRR2042652     1   0.620    0.27669 0.684 0.032 0.040 0.076 0.080 0.088
#> SRR2042650     4   0.903   -0.01473 0.160 0.020 0.132 0.328 0.208 0.152
#> SRR2042649     2   0.394    0.56974 0.064 0.808 0.100 0.016 0.008 0.004
#> SRR2042647     4   0.598    0.37665 0.012 0.000 0.068 0.640 0.128 0.152
#> SRR2042648     4   0.442    0.46052 0.028 0.008 0.036 0.788 0.028 0.112
#> SRR2042646     2   0.463    0.56032 0.044 0.756 0.152 0.020 0.020 0.008
#> SRR2042645     6   0.850    0.07868 0.140 0.036 0.252 0.076 0.092 0.404
#> SRR2042644     2   0.602    0.47076 0.080 0.600 0.260 0.004 0.020 0.036
#> SRR2042643     6   0.675    0.28853 0.100 0.004 0.032 0.216 0.076 0.572
#> SRR2042642     4   0.308    0.49349 0.016 0.000 0.012 0.860 0.088 0.024
#> SRR2042640     4   0.615    0.32109 0.044 0.012 0.024 0.588 0.052 0.280
#> SRR2042641     2   0.858   -0.07750 0.056 0.364 0.132 0.128 0.284 0.036
#> SRR2042639     2   0.827    0.18030 0.032 0.444 0.232 0.068 0.108 0.116
#> SRR2042638     4   0.630    0.38452 0.016 0.076 0.032 0.620 0.216 0.040
#> SRR2042637     2   0.615    0.51850 0.100 0.640 0.172 0.028 0.056 0.004
#> SRR2042636     5   0.699   -0.09471 0.060 0.004 0.040 0.316 0.488 0.092
#> SRR2042634     4   0.861    0.06649 0.104 0.028 0.088 0.404 0.204 0.172
#> SRR2042635     4   0.439    0.47964 0.028 0.008 0.016 0.792 0.088 0.068
#> SRR2042633     2   0.613    0.46894 0.036 0.580 0.296 0.036 0.040 0.012
#> SRR2042631     4   0.656    0.23863 0.048 0.000 0.060 0.540 0.060 0.292
#> SRR2042632     2   0.238    0.56820 0.040 0.896 0.056 0.000 0.008 0.000
#> SRR2042630     2   0.554    0.46143 0.040 0.696 0.152 0.008 0.084 0.020
#> SRR2042629     4   0.604    0.38998 0.036 0.000 0.100 0.656 0.064 0.144
#> SRR2042628     2   0.690    0.31433 0.100 0.544 0.248 0.004 0.056 0.048
#> SRR2042626     4   0.521    0.43036 0.028 0.000 0.044 0.712 0.056 0.160
#> SRR2042627     1   0.895   -0.03012 0.356 0.252 0.128 0.116 0.100 0.048
#> SRR2042624     2   0.575    0.37956 0.052 0.572 0.300 0.000 0.000 0.076
#> SRR2042625     1   0.760    0.22909 0.536 0.092 0.140 0.024 0.052 0.156
#> SRR2042623     1   0.608    0.18998 0.632 0.216 0.076 0.020 0.040 0.016
#> SRR2042622     1   0.822    0.09846 0.492 0.052 0.132 0.152 0.108 0.064
#> SRR2042620     4   0.620    0.29799 0.052 0.004 0.008 0.500 0.368 0.068
#> SRR2042621     2   0.562    0.45763 0.056 0.604 0.296 0.008 0.024 0.012
#> SRR2042619     4   0.959   -0.06277 0.188 0.064 0.140 0.272 0.176 0.160
#> SRR2042618     2   0.699    0.43190 0.060 0.604 0.088 0.116 0.116 0.016
#> SRR2042617     1   0.816    0.15777 0.476 0.072 0.152 0.036 0.080 0.184
#> SRR2042616     2   0.538    0.54100 0.040 0.728 0.108 0.040 0.076 0.008
#> SRR2042615     2   0.490    0.53235 0.096 0.744 0.112 0.008 0.032 0.008
#> SRR2042614     2   0.827    0.16203 0.048 0.420 0.132 0.272 0.076 0.052
#> SRR2042613     2   0.349    0.55926 0.044 0.832 0.104 0.008 0.008 0.004
#> SRR2042612     5   0.883   -0.00773 0.152 0.152 0.264 0.020 0.324 0.088
#> SRR2042610     5   0.829   -0.16522 0.044 0.004 0.132 0.268 0.316 0.236
#> SRR2042611     4   0.465    0.48646 0.032 0.008 0.016 0.768 0.120 0.056
#> SRR2042607     4   0.850    0.01463 0.188 0.008 0.056 0.344 0.172 0.232
#> SRR2042609     1   0.826    0.21801 0.480 0.128 0.184 0.076 0.076 0.056
#> SRR2042608     5   0.814   -0.06327 0.072 0.320 0.168 0.044 0.368 0.028
#> SRR2042656     4   0.843    0.00840 0.040 0.168 0.068 0.380 0.280 0.064
#> SRR2042658     2   0.432    0.52896 0.048 0.740 0.192 0.000 0.016 0.004
#> SRR2042659     3   0.873    0.00000 0.248 0.244 0.312 0.028 0.064 0.104
#> SRR2042657     6   0.726    0.19141 0.068 0.004 0.056 0.240 0.116 0.516
#> SRR2042655     1   0.755    0.26125 0.568 0.116 0.104 0.068 0.104 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.979       0.989         0.4233 0.581   0.581
#> 3 3 0.656           0.603       0.775         0.5039 0.784   0.629
#> 4 4 0.617           0.672       0.801         0.0561 0.825   0.595
#> 5 5 0.634           0.496       0.777         0.0432 0.964   0.888
#> 6 6 0.623           0.494       0.775         0.0264 0.962   0.868

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.991 1.000 0.000
#> SRR2042653     1  0.0000      0.991 1.000 0.000
#> SRR2042652     1  0.0000      0.991 1.000 0.000
#> SRR2042650     1  0.1843      0.970 0.972 0.028
#> SRR2042649     2  0.0000      0.987 0.000 1.000
#> SRR2042647     2  0.0376      0.986 0.004 0.996
#> SRR2042648     2  0.0000      0.987 0.000 1.000
#> SRR2042646     2  0.1414      0.975 0.020 0.980
#> SRR2042645     2  0.1184      0.979 0.016 0.984
#> SRR2042644     2  0.0000      0.987 0.000 1.000
#> SRR2042643     1  0.4161      0.912 0.916 0.084
#> SRR2042642     2  0.0000      0.987 0.000 1.000
#> SRR2042640     2  0.0000      0.987 0.000 1.000
#> SRR2042641     2  0.0000      0.987 0.000 1.000
#> SRR2042639     2  0.0000      0.987 0.000 1.000
#> SRR2042638     2  0.0000      0.987 0.000 1.000
#> SRR2042637     2  0.0000      0.987 0.000 1.000
#> SRR2042636     2  0.2948      0.948 0.052 0.948
#> SRR2042634     2  0.6438      0.816 0.164 0.836
#> SRR2042635     2  0.0000      0.987 0.000 1.000
#> SRR2042633     2  0.0000      0.987 0.000 1.000
#> SRR2042631     2  0.0376      0.986 0.004 0.996
#> SRR2042632     2  0.0000      0.987 0.000 1.000
#> SRR2042630     2  0.0000      0.987 0.000 1.000
#> SRR2042629     2  0.0376      0.986 0.004 0.996
#> SRR2042628     2  0.0938      0.981 0.012 0.988
#> SRR2042626     2  0.0000      0.987 0.000 1.000
#> SRR2042627     1  0.0000      0.991 1.000 0.000
#> SRR2042624     2  0.1414      0.975 0.020 0.980
#> SRR2042625     1  0.0000      0.991 1.000 0.000
#> SRR2042623     1  0.0000      0.991 1.000 0.000
#> SRR2042622     1  0.0000      0.991 1.000 0.000
#> SRR2042620     2  0.0376      0.986 0.004 0.996
#> SRR2042621     2  0.0376      0.986 0.004 0.996
#> SRR2042619     2  0.0376      0.986 0.004 0.996
#> SRR2042618     2  0.0000      0.987 0.000 1.000
#> SRR2042617     1  0.0376      0.989 0.996 0.004
#> SRR2042616     2  0.0000      0.987 0.000 1.000
#> SRR2042615     2  0.0000      0.987 0.000 1.000
#> SRR2042614     2  0.0000      0.987 0.000 1.000
#> SRR2042613     2  0.0000      0.987 0.000 1.000
#> SRR2042612     1  0.0938      0.983 0.988 0.012
#> SRR2042610     1  0.0000      0.991 1.000 0.000
#> SRR2042611     2  0.0000      0.987 0.000 1.000
#> SRR2042607     2  0.0376      0.986 0.004 0.996
#> SRR2042609     1  0.0000      0.991 1.000 0.000
#> SRR2042608     2  0.0000      0.987 0.000 1.000
#> SRR2042656     2  0.0000      0.987 0.000 1.000
#> SRR2042658     2  0.4298      0.911 0.088 0.912
#> SRR2042659     1  0.0376      0.989 0.996 0.004
#> SRR2042657     2  0.3114      0.944 0.056 0.944
#> SRR2042655     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042653     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2042652     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042650     1  0.1337      0.971 0.972 0.016 0.012
#> SRR2042649     3  0.6307      0.946 0.000 0.488 0.512
#> SRR2042647     2  0.6180      0.540 0.000 0.584 0.416
#> SRR2042648     2  0.0000      0.446 0.000 1.000 0.000
#> SRR2042646     3  0.6936      0.933 0.016 0.460 0.524
#> SRR2042645     2  0.6587      0.534 0.008 0.568 0.424
#> SRR2042644     2  0.5016     -0.178 0.000 0.760 0.240
#> SRR2042643     1  0.3832      0.906 0.888 0.036 0.076
#> SRR2042642     2  0.0000      0.446 0.000 1.000 0.000
#> SRR2042640     2  0.3116      0.493 0.000 0.892 0.108
#> SRR2042641     3  0.6305      0.944 0.000 0.484 0.516
#> SRR2042639     2  0.5098     -0.124 0.000 0.752 0.248
#> SRR2042638     2  0.0000      0.446 0.000 1.000 0.000
#> SRR2042637     3  0.6309      0.938 0.000 0.496 0.504
#> SRR2042636     2  0.7346      0.518 0.032 0.536 0.432
#> SRR2042634     2  0.9285      0.444 0.160 0.448 0.392
#> SRR2042635     2  0.0000      0.446 0.000 1.000 0.000
#> SRR2042633     2  0.6267     -0.799 0.000 0.548 0.452
#> SRR2042631     2  0.6192      0.539 0.000 0.580 0.420
#> SRR2042632     3  0.6305      0.947 0.000 0.484 0.516
#> SRR2042630     3  0.6307      0.940 0.000 0.488 0.512
#> SRR2042629     2  0.5968      0.541 0.000 0.636 0.364
#> SRR2042628     3  0.6672      0.937 0.008 0.472 0.520
#> SRR2042626     2  0.0000      0.446 0.000 1.000 0.000
#> SRR2042627     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2042624     3  0.6936      0.933 0.016 0.460 0.524
#> SRR2042625     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2042623     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042620     2  0.6192      0.539 0.000 0.580 0.420
#> SRR2042621     3  0.6302      0.939 0.000 0.480 0.520
#> SRR2042619     2  0.6192      0.539 0.000 0.580 0.420
#> SRR2042618     2  0.5016     -0.178 0.000 0.760 0.240
#> SRR2042617     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2042616     2  0.4452     -0.011 0.000 0.808 0.192
#> SRR2042615     2  0.4974     -0.163 0.000 0.764 0.236
#> SRR2042614     2  0.5016     -0.178 0.000 0.760 0.240
#> SRR2042613     2  0.6252     -0.838 0.000 0.556 0.444
#> SRR2042612     1  0.1031      0.978 0.976 0.000 0.024
#> SRR2042610     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042611     2  0.0000      0.446 0.000 1.000 0.000
#> SRR2042607     2  0.6140      0.542 0.000 0.596 0.404
#> SRR2042609     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042608     3  0.6305      0.944 0.000 0.484 0.516
#> SRR2042656     2  0.0892      0.458 0.000 0.980 0.020
#> SRR2042658     3  0.8157      0.814 0.076 0.384 0.540
#> SRR2042659     1  0.0424      0.987 0.992 0.000 0.008
#> SRR2042657     2  0.7657      0.507 0.044 0.508 0.448
#> SRR2042655     1  0.0000      0.989 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3    p4
#> SRR2042654     1  0.0000      0.962 1.000 0.000 NA 0.000
#> SRR2042653     1  0.0707      0.960 0.980 0.000 NA 0.000
#> SRR2042652     1  0.0000      0.962 1.000 0.000 NA 0.000
#> SRR2042650     1  0.1824      0.942 0.936 0.000 NA 0.004
#> SRR2042649     2  0.1284      0.742 0.000 0.964 NA 0.012
#> SRR2042647     4  0.1356      0.653 0.000 0.032 NA 0.960
#> SRR2042648     4  0.4985      0.342 0.000 0.468 NA 0.532
#> SRR2042646     2  0.4230      0.657 0.008 0.776 NA 0.004
#> SRR2042645     4  0.4070      0.611 0.000 0.044 NA 0.824
#> SRR2042644     2  0.4331      0.498 0.000 0.712 NA 0.288
#> SRR2042643     1  0.5355      0.697 0.620 0.000 NA 0.020
#> SRR2042642     4  0.4985      0.342 0.000 0.468 NA 0.532
#> SRR2042640     4  0.4713      0.469 0.000 0.360 NA 0.640
#> SRR2042641     2  0.1629      0.741 0.000 0.952 NA 0.024
#> SRR2042639     2  0.4500      0.451 0.000 0.684 NA 0.316
#> SRR2042638     4  0.4985      0.342 0.000 0.468 NA 0.532
#> SRR2042637     2  0.1411      0.743 0.000 0.960 NA 0.020
#> SRR2042636     4  0.3831      0.614 0.012 0.012 NA 0.836
#> SRR2042634     4  0.6570      0.455 0.068 0.024 NA 0.640
#> SRR2042635     4  0.4985      0.342 0.000 0.468 NA 0.532
#> SRR2042633     2  0.2773      0.710 0.000 0.880 NA 0.116
#> SRR2042631     4  0.1256      0.652 0.000 0.028 NA 0.964
#> SRR2042632     2  0.1151      0.741 0.000 0.968 NA 0.008
#> SRR2042630     2  0.1733      0.741 0.000 0.948 NA 0.028
#> SRR2042629     4  0.2714      0.638 0.000 0.112 NA 0.884
#> SRR2042628     2  0.4509      0.604 0.000 0.708 NA 0.004
#> SRR2042626     4  0.4985      0.342 0.000 0.468 NA 0.532
#> SRR2042627     1  0.0707      0.960 0.980 0.000 NA 0.000
#> SRR2042624     2  0.4374      0.648 0.008 0.760 NA 0.004
#> SRR2042625     1  0.1211      0.954 0.960 0.000 NA 0.000
#> SRR2042623     1  0.0000      0.962 1.000 0.000 NA 0.000
#> SRR2042622     1  0.0188      0.961 0.996 0.000 NA 0.000
#> SRR2042620     4  0.1256      0.652 0.000 0.028 NA 0.964
#> SRR2042621     2  0.4011      0.665 0.000 0.784 NA 0.008
#> SRR2042619     4  0.1256      0.652 0.000 0.028 NA 0.964
#> SRR2042618     2  0.4331      0.498 0.000 0.712 NA 0.288
#> SRR2042617     1  0.0817      0.958 0.976 0.000 NA 0.000
#> SRR2042616     2  0.4605      0.374 0.000 0.664 NA 0.336
#> SRR2042615     2  0.4356      0.490 0.000 0.708 NA 0.292
#> SRR2042614     2  0.4331      0.498 0.000 0.712 NA 0.288
#> SRR2042613     2  0.2011      0.721 0.000 0.920 NA 0.080
#> SRR2042612     1  0.3610      0.854 0.800 0.000 NA 0.000
#> SRR2042610     1  0.0592      0.960 0.984 0.000 NA 0.000
#> SRR2042611     4  0.4985      0.342 0.000 0.468 NA 0.532
#> SRR2042607     4  0.1489      0.653 0.000 0.044 NA 0.952
#> SRR2042609     1  0.0000      0.962 1.000 0.000 NA 0.000
#> SRR2042608     2  0.1629      0.741 0.000 0.952 NA 0.024
#> SRR2042656     4  0.4967      0.363 0.000 0.452 NA 0.548
#> SRR2042658     2  0.4842      0.627 0.048 0.760 NA 0.000
#> SRR2042659     1  0.0817      0.959 0.976 0.000 NA 0.000
#> SRR2042657     4  0.3765      0.568 0.004 0.004 NA 0.812
#> SRR2042655     1  0.0336      0.961 0.992 0.000 NA 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.1168      0.897 0.960 0.000 0.008 0.000 0.032
#> SRR2042652     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.2012      0.841 0.920 0.000 0.020 0.000 0.060
#> SRR2042649     2  0.1357      0.536 0.000 0.948 0.048 0.000 0.004
#> SRR2042647     4  0.0880      0.619 0.000 0.032 0.000 0.968 0.000
#> SRR2042648     4  0.4306      0.298 0.000 0.492 0.000 0.508 0.000
#> SRR2042646     2  0.4452     -0.797 0.004 0.500 0.496 0.000 0.000
#> SRR2042645     4  0.4452      0.530 0.000 0.032 0.036 0.776 0.156
#> SRR2042644     2  0.3586      0.496 0.000 0.736 0.000 0.264 0.000
#> SRR2042643     5  0.4403      0.000 0.436 0.000 0.000 0.004 0.560
#> SRR2042642     4  0.4306      0.298 0.000 0.492 0.000 0.508 0.000
#> SRR2042640     4  0.4126      0.427 0.000 0.380 0.000 0.620 0.000
#> SRR2042641     2  0.1569      0.539 0.000 0.944 0.044 0.004 0.008
#> SRR2042639     2  0.3774      0.448 0.000 0.704 0.000 0.296 0.000
#> SRR2042638     4  0.4306      0.298 0.000 0.492 0.000 0.508 0.000
#> SRR2042637     2  0.1757      0.547 0.000 0.936 0.048 0.012 0.004
#> SRR2042636     4  0.4372      0.507 0.000 0.008 0.040 0.752 0.200
#> SRR2042634     4  0.7113      0.153 0.036 0.008 0.184 0.536 0.236
#> SRR2042635     4  0.4306      0.298 0.000 0.492 0.000 0.508 0.000
#> SRR2042633     2  0.2629      0.559 0.000 0.880 0.012 0.104 0.004
#> SRR2042631     4  0.0794      0.618 0.000 0.028 0.000 0.972 0.000
#> SRR2042632     2  0.1430      0.530 0.000 0.944 0.052 0.000 0.004
#> SRR2042630     2  0.1695      0.544 0.000 0.940 0.044 0.008 0.008
#> SRR2042629     4  0.2835      0.607 0.000 0.112 0.016 0.868 0.004
#> SRR2042628     3  0.4015      0.752 0.000 0.348 0.652 0.000 0.000
#> SRR2042626     4  0.4306      0.298 0.000 0.492 0.000 0.508 0.000
#> SRR2042627     1  0.1168      0.897 0.960 0.000 0.008 0.000 0.032
#> SRR2042624     3  0.4440      0.708 0.004 0.468 0.528 0.000 0.000
#> SRR2042625     1  0.1697      0.859 0.932 0.000 0.008 0.000 0.060
#> SRR2042623     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0162      0.909 0.996 0.000 0.000 0.000 0.004
#> SRR2042620     4  0.0794      0.618 0.000 0.028 0.000 0.972 0.000
#> SRR2042621     2  0.4304     -0.776 0.000 0.516 0.484 0.000 0.000
#> SRR2042619     4  0.0955      0.617 0.000 0.028 0.004 0.968 0.000
#> SRR2042618     2  0.3586      0.496 0.000 0.736 0.000 0.264 0.000
#> SRR2042617     1  0.0880      0.899 0.968 0.000 0.000 0.000 0.032
#> SRR2042616     2  0.3857      0.382 0.000 0.688 0.000 0.312 0.000
#> SRR2042615     2  0.3612      0.488 0.000 0.732 0.000 0.268 0.000
#> SRR2042614     2  0.3586      0.496 0.000 0.736 0.000 0.264 0.000
#> SRR2042613     2  0.1809      0.570 0.000 0.928 0.012 0.060 0.000
#> SRR2042612     1  0.5637     -0.356 0.604 0.000 0.112 0.000 0.284
#> SRR2042610     1  0.0865      0.901 0.972 0.000 0.004 0.000 0.024
#> SRR2042611     4  0.4306      0.298 0.000 0.492 0.000 0.508 0.000
#> SRR2042607     4  0.1197      0.620 0.000 0.048 0.000 0.952 0.000
#> SRR2042609     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.1757      0.531 0.000 0.936 0.048 0.004 0.012
#> SRR2042656     4  0.4300      0.317 0.000 0.476 0.000 0.524 0.000
#> SRR2042658     2  0.5222     -0.439 0.016 0.600 0.356 0.000 0.028
#> SRR2042659     1  0.0898      0.901 0.972 0.000 0.008 0.000 0.020
#> SRR2042657     4  0.4100      0.459 0.004 0.004 0.020 0.760 0.212
#> SRR2042655     1  0.0324      0.909 0.992 0.000 0.004 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000      0.897 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.1901      0.871 0.924 0.000 0.008 0.000 0.028 0.040
#> SRR2042652     1  0.0000      0.897 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.2144      0.852 0.908 0.000 0.004 0.000 0.040 0.048
#> SRR2042649     2  0.1152      0.635 0.000 0.952 0.044 0.000 0.000 0.004
#> SRR2042647     4  0.0777      0.311 0.000 0.024 0.000 0.972 0.000 0.004
#> SRR2042648     4  0.3864      0.295 0.000 0.480 0.000 0.520 0.000 0.000
#> SRR2042646     3  0.3742      0.831 0.000 0.348 0.648 0.004 0.000 0.000
#> SRR2042645     4  0.4078     -0.137 0.000 0.016 0.004 0.700 0.008 0.272
#> SRR2042644     2  0.3534      0.550 0.000 0.716 0.008 0.276 0.000 0.000
#> SRR2042643     5  0.3151      0.000 0.252 0.000 0.000 0.000 0.748 0.000
#> SRR2042642     4  0.3864      0.295 0.000 0.480 0.000 0.520 0.000 0.000
#> SRR2042640     4  0.3672      0.424 0.000 0.368 0.000 0.632 0.000 0.000
#> SRR2042641     2  0.1168      0.637 0.000 0.956 0.028 0.000 0.000 0.016
#> SRR2042639     2  0.3784      0.502 0.000 0.680 0.012 0.308 0.000 0.000
#> SRR2042638     4  0.3864      0.295 0.000 0.480 0.000 0.520 0.000 0.000
#> SRR2042637     2  0.1693      0.649 0.000 0.932 0.044 0.020 0.000 0.004
#> SRR2042636     4  0.5047     -0.271 0.000 0.000 0.028 0.684 0.188 0.100
#> SRR2042634     6  0.6786      0.000 0.028 0.012 0.036 0.416 0.088 0.420
#> SRR2042635     4  0.3864      0.295 0.000 0.480 0.000 0.520 0.000 0.000
#> SRR2042633     2  0.2971      0.652 0.000 0.848 0.024 0.116 0.000 0.012
#> SRR2042631     4  0.0692      0.305 0.000 0.020 0.000 0.976 0.000 0.004
#> SRR2042632     2  0.1429      0.628 0.000 0.940 0.052 0.004 0.000 0.004
#> SRR2042630     2  0.1313      0.641 0.000 0.952 0.028 0.004 0.000 0.016
#> SRR2042629     4  0.2619      0.344 0.000 0.096 0.012 0.876 0.004 0.012
#> SRR2042628     3  0.2797      0.613 0.000 0.140 0.844 0.004 0.008 0.004
#> SRR2042626     4  0.3864      0.295 0.000 0.480 0.000 0.520 0.000 0.000
#> SRR2042627     1  0.1821      0.874 0.928 0.000 0.008 0.000 0.024 0.040
#> SRR2042624     3  0.3584      0.846 0.000 0.308 0.688 0.004 0.000 0.000
#> SRR2042625     1  0.2611      0.814 0.880 0.000 0.012 0.000 0.080 0.028
#> SRR2042623     1  0.0000      0.897 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0146      0.897 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042620     4  0.0692      0.305 0.000 0.020 0.000 0.976 0.000 0.004
#> SRR2042621     3  0.4089      0.809 0.000 0.372 0.616 0.004 0.004 0.004
#> SRR2042619     4  0.0806      0.303 0.000 0.020 0.000 0.972 0.000 0.008
#> SRR2042618     2  0.3534      0.550 0.000 0.716 0.008 0.276 0.000 0.000
#> SRR2042617     1  0.1176      0.887 0.956 0.000 0.000 0.000 0.020 0.024
#> SRR2042616     2  0.3758      0.430 0.000 0.668 0.008 0.324 0.000 0.000
#> SRR2042615     2  0.3555      0.542 0.000 0.712 0.008 0.280 0.000 0.000
#> SRR2042614     2  0.3534      0.550 0.000 0.716 0.008 0.276 0.000 0.000
#> SRR2042613     2  0.2066      0.669 0.000 0.904 0.024 0.072 0.000 0.000
#> SRR2042612     1  0.6976     -0.454 0.420 0.000 0.072 0.000 0.252 0.256
#> SRR2042610     1  0.1410      0.883 0.944 0.000 0.004 0.000 0.008 0.044
#> SRR2042611     4  0.3864      0.295 0.000 0.480 0.000 0.520 0.000 0.000
#> SRR2042607     4  0.0935      0.324 0.000 0.032 0.004 0.964 0.000 0.000
#> SRR2042609     1  0.0000      0.897 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.1390      0.628 0.000 0.948 0.032 0.000 0.004 0.016
#> SRR2042656     4  0.3854      0.314 0.000 0.464 0.000 0.536 0.000 0.000
#> SRR2042658     2  0.4665     -0.447 0.008 0.536 0.432 0.000 0.020 0.004
#> SRR2042659     1  0.0976      0.892 0.968 0.000 0.008 0.000 0.016 0.008
#> SRR2042657     4  0.4176     -0.242 0.000 0.000 0.000 0.716 0.064 0.220
#> SRR2042655     1  0.0551      0.895 0.984 0.000 0.008 0.000 0.004 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.995         0.4227 0.581   0.581
#> 3 3 0.638           0.633       0.778         0.5362 0.744   0.559
#> 4 4 0.769           0.843       0.887         0.1369 0.889   0.674
#> 5 5 0.740           0.773       0.835         0.0529 1.000   1.000
#> 6 6 0.742           0.747       0.798         0.0367 0.956   0.823

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      1.000 1.000 0.000
#> SRR2042653     1  0.0000      1.000 1.000 0.000
#> SRR2042652     1  0.0000      1.000 1.000 0.000
#> SRR2042650     1  0.0000      1.000 1.000 0.000
#> SRR2042649     2  0.0000      0.993 0.000 1.000
#> SRR2042647     2  0.0000      0.993 0.000 1.000
#> SRR2042648     2  0.0000      0.993 0.000 1.000
#> SRR2042646     2  0.0000      0.993 0.000 1.000
#> SRR2042645     2  0.0000      0.993 0.000 1.000
#> SRR2042644     2  0.0000      0.993 0.000 1.000
#> SRR2042643     1  0.0000      1.000 1.000 0.000
#> SRR2042642     2  0.0000      0.993 0.000 1.000
#> SRR2042640     2  0.0000      0.993 0.000 1.000
#> SRR2042641     2  0.0000      0.993 0.000 1.000
#> SRR2042639     2  0.0000      0.993 0.000 1.000
#> SRR2042638     2  0.0000      0.993 0.000 1.000
#> SRR2042637     2  0.0000      0.993 0.000 1.000
#> SRR2042636     2  0.1633      0.973 0.024 0.976
#> SRR2042634     2  0.4690      0.894 0.100 0.900
#> SRR2042635     2  0.0000      0.993 0.000 1.000
#> SRR2042633     2  0.0000      0.993 0.000 1.000
#> SRR2042631     2  0.0000      0.993 0.000 1.000
#> SRR2042632     2  0.0000      0.993 0.000 1.000
#> SRR2042630     2  0.0000      0.993 0.000 1.000
#> SRR2042629     2  0.0000      0.993 0.000 1.000
#> SRR2042628     2  0.0000      0.993 0.000 1.000
#> SRR2042626     2  0.0000      0.993 0.000 1.000
#> SRR2042627     1  0.0000      1.000 1.000 0.000
#> SRR2042624     2  0.0000      0.993 0.000 1.000
#> SRR2042625     1  0.0000      1.000 1.000 0.000
#> SRR2042623     1  0.0000      1.000 1.000 0.000
#> SRR2042622     1  0.0000      1.000 1.000 0.000
#> SRR2042620     2  0.0000      0.993 0.000 1.000
#> SRR2042621     2  0.0000      0.993 0.000 1.000
#> SRR2042619     2  0.0000      0.993 0.000 1.000
#> SRR2042618     2  0.0000      0.993 0.000 1.000
#> SRR2042617     1  0.0000      1.000 1.000 0.000
#> SRR2042616     2  0.0000      0.993 0.000 1.000
#> SRR2042615     2  0.0000      0.993 0.000 1.000
#> SRR2042614     2  0.0000      0.993 0.000 1.000
#> SRR2042613     2  0.0000      0.993 0.000 1.000
#> SRR2042612     1  0.0000      1.000 1.000 0.000
#> SRR2042610     1  0.0000      1.000 1.000 0.000
#> SRR2042611     2  0.0000      0.993 0.000 1.000
#> SRR2042607     2  0.0000      0.993 0.000 1.000
#> SRR2042609     1  0.0000      1.000 1.000 0.000
#> SRR2042608     2  0.0000      0.993 0.000 1.000
#> SRR2042656     2  0.0000      0.993 0.000 1.000
#> SRR2042658     2  0.4690      0.894 0.100 0.900
#> SRR2042659     1  0.0000      1.000 1.000 0.000
#> SRR2042657     2  0.0938      0.984 0.012 0.988
#> SRR2042655     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.1289      0.969 0.968 0.000 0.032
#> SRR2042653     1  0.0000      0.977 1.000 0.000 0.000
#> SRR2042652     1  0.1289      0.969 0.968 0.000 0.032
#> SRR2042650     1  0.1289      0.974 0.968 0.000 0.032
#> SRR2042649     3  0.6291      0.566 0.000 0.468 0.532
#> SRR2042647     2  0.5291      0.589 0.000 0.732 0.268
#> SRR2042648     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042646     3  0.5678      0.588 0.000 0.316 0.684
#> SRR2042645     3  0.7377     -0.284 0.032 0.452 0.516
#> SRR2042644     3  0.6305      0.547 0.000 0.484 0.516
#> SRR2042643     1  0.1643      0.967 0.956 0.000 0.044
#> SRR2042642     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042640     2  0.4178      0.651 0.000 0.828 0.172
#> SRR2042641     3  0.6291      0.566 0.000 0.468 0.532
#> SRR2042639     2  0.1031      0.721 0.000 0.976 0.024
#> SRR2042638     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042637     3  0.6267      0.576 0.000 0.452 0.548
#> SRR2042636     3  0.7729     -0.263 0.048 0.436 0.516
#> SRR2042634     3  0.8447     -0.213 0.092 0.392 0.516
#> SRR2042635     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042633     3  0.6274      0.574 0.000 0.456 0.544
#> SRR2042631     2  0.6154      0.434 0.000 0.592 0.408
#> SRR2042632     3  0.6291      0.566 0.000 0.468 0.532
#> SRR2042630     2  0.6235     -0.456 0.000 0.564 0.436
#> SRR2042629     2  0.5835      0.520 0.000 0.660 0.340
#> SRR2042628     3  0.5239      0.513 0.032 0.160 0.808
#> SRR2042626     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042627     1  0.1031      0.976 0.976 0.000 0.024
#> SRR2042624     3  0.4755      0.528 0.008 0.184 0.808
#> SRR2042625     1  0.1289      0.974 0.968 0.000 0.032
#> SRR2042623     1  0.1289      0.969 0.968 0.000 0.032
#> SRR2042622     1  0.1289      0.969 0.968 0.000 0.032
#> SRR2042620     2  0.5058      0.604 0.000 0.756 0.244
#> SRR2042621     3  0.5650      0.587 0.000 0.312 0.688
#> SRR2042619     2  0.6111      0.449 0.000 0.604 0.396
#> SRR2042618     2  0.1163      0.717 0.000 0.972 0.028
#> SRR2042617     1  0.1289      0.974 0.968 0.000 0.032
#> SRR2042616     2  0.1411      0.707 0.000 0.964 0.036
#> SRR2042615     2  0.1289      0.713 0.000 0.968 0.032
#> SRR2042614     2  0.1529      0.701 0.000 0.960 0.040
#> SRR2042613     3  0.6280      0.572 0.000 0.460 0.540
#> SRR2042612     1  0.1289      0.974 0.968 0.000 0.032
#> SRR2042610     1  0.0000      0.977 1.000 0.000 0.000
#> SRR2042611     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042607     2  0.5650      0.551 0.000 0.688 0.312
#> SRR2042609     1  0.1289      0.969 0.968 0.000 0.032
#> SRR2042608     3  0.6062      0.589 0.000 0.384 0.616
#> SRR2042656     2  0.0000      0.740 0.000 1.000 0.000
#> SRR2042658     3  0.5956      0.571 0.016 0.264 0.720
#> SRR2042659     1  0.0592      0.977 0.988 0.000 0.012
#> SRR2042657     3  0.7396     -0.326 0.032 0.480 0.488
#> SRR2042655     1  0.0592      0.977 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.2319      0.930 0.924 0.000 0.036 0.040
#> SRR2042653     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.2319      0.930 0.924 0.000 0.036 0.040
#> SRR2042650     1  0.2179      0.926 0.924 0.000 0.012 0.064
#> SRR2042649     3  0.4072      0.866 0.000 0.252 0.748 0.000
#> SRR2042647     4  0.4790      0.535 0.000 0.380 0.000 0.620
#> SRR2042648     2  0.0817      0.898 0.000 0.976 0.000 0.024
#> SRR2042646     3  0.2363      0.818 0.000 0.056 0.920 0.024
#> SRR2042645     4  0.2587      0.844 0.040 0.028 0.012 0.920
#> SRR2042644     3  0.4643      0.758 0.000 0.344 0.656 0.000
#> SRR2042643     1  0.4182      0.804 0.796 0.000 0.024 0.180
#> SRR2042642     2  0.1118      0.896 0.000 0.964 0.000 0.036
#> SRR2042640     2  0.3837      0.613 0.000 0.776 0.000 0.224
#> SRR2042641     3  0.4193      0.855 0.000 0.268 0.732 0.000
#> SRR2042639     2  0.0188      0.897 0.000 0.996 0.000 0.004
#> SRR2042638     2  0.0188      0.897 0.000 0.996 0.000 0.004
#> SRR2042637     3  0.4040      0.866 0.000 0.248 0.752 0.000
#> SRR2042636     4  0.2497      0.841 0.040 0.020 0.016 0.924
#> SRR2042634     4  0.2189      0.840 0.044 0.020 0.004 0.932
#> SRR2042635     2  0.1118      0.896 0.000 0.964 0.000 0.036
#> SRR2042633     3  0.4222      0.850 0.000 0.272 0.728 0.000
#> SRR2042631     4  0.2831      0.840 0.000 0.120 0.004 0.876
#> SRR2042632     3  0.4072      0.866 0.000 0.252 0.748 0.000
#> SRR2042630     2  0.4222      0.391 0.000 0.728 0.272 0.000
#> SRR2042629     4  0.4155      0.760 0.000 0.240 0.004 0.756
#> SRR2042628     3  0.2188      0.781 0.020 0.012 0.936 0.032
#> SRR2042626     2  0.1118      0.896 0.000 0.964 0.000 0.036
#> SRR2042627     1  0.1305      0.943 0.960 0.000 0.004 0.036
#> SRR2042624     3  0.2400      0.797 0.012 0.028 0.928 0.032
#> SRR2042625     1  0.1706      0.940 0.948 0.000 0.016 0.036
#> SRR2042623     1  0.2319      0.930 0.924 0.000 0.036 0.040
#> SRR2042622     1  0.2319      0.930 0.924 0.000 0.036 0.040
#> SRR2042620     2  0.4661      0.293 0.000 0.652 0.000 0.348
#> SRR2042621     3  0.2363      0.818 0.000 0.056 0.920 0.024
#> SRR2042619     4  0.2773      0.841 0.000 0.116 0.004 0.880
#> SRR2042618     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> SRR2042617     1  0.1584      0.940 0.952 0.000 0.012 0.036
#> SRR2042616     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> SRR2042615     2  0.0000      0.896 0.000 1.000 0.000 0.000
#> SRR2042614     2  0.0188      0.892 0.000 0.996 0.004 0.000
#> SRR2042613     3  0.4072      0.866 0.000 0.252 0.748 0.000
#> SRR2042612     1  0.1610      0.941 0.952 0.000 0.016 0.032
#> SRR2042610     1  0.0469      0.947 0.988 0.000 0.000 0.012
#> SRR2042611     2  0.1118      0.896 0.000 0.964 0.000 0.036
#> SRR2042607     4  0.4608      0.681 0.000 0.304 0.004 0.692
#> SRR2042609     1  0.2319      0.930 0.924 0.000 0.036 0.040
#> SRR2042608     3  0.4188      0.866 0.000 0.244 0.752 0.004
#> SRR2042656     2  0.1118      0.896 0.000 0.964 0.000 0.036
#> SRR2042658     3  0.1697      0.806 0.016 0.028 0.952 0.004
#> SRR2042659     1  0.0336      0.947 0.992 0.000 0.000 0.008
#> SRR2042657     4  0.2497      0.841 0.040 0.020 0.016 0.924
#> SRR2042655     1  0.0524      0.947 0.988 0.000 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR2042654     1  0.3895     0.7526 0.680 0.000 0.000 0.000 NA
#> SRR2042653     1  0.0794     0.8230 0.972 0.000 0.000 0.000 NA
#> SRR2042652     1  0.3895     0.7526 0.680 0.000 0.000 0.000 NA
#> SRR2042650     1  0.2824     0.7948 0.864 0.000 0.000 0.020 NA
#> SRR2042649     3  0.3039     0.8092 0.000 0.152 0.836 0.000 NA
#> SRR2042647     4  0.4015     0.5676 0.000 0.348 0.000 0.652 NA
#> SRR2042648     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042646     3  0.4065     0.6717 0.000 0.000 0.720 0.016 NA
#> SRR2042645     4  0.1970     0.8460 0.012 0.004 0.000 0.924 NA
#> SRR2042644     3  0.4318     0.6518 0.000 0.292 0.688 0.000 NA
#> SRR2042643     1  0.5620     0.5809 0.612 0.000 0.000 0.116 NA
#> SRR2042642     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042640     2  0.3266     0.6360 0.000 0.796 0.000 0.200 NA
#> SRR2042641     3  0.3454     0.8045 0.000 0.156 0.816 0.000 NA
#> SRR2042639     2  0.0510     0.8929 0.000 0.984 0.016 0.000 NA
#> SRR2042638     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042637     3  0.3141     0.8093 0.000 0.152 0.832 0.000 NA
#> SRR2042636     4  0.2110     0.8387 0.016 0.000 0.000 0.912 NA
#> SRR2042634     4  0.2171     0.8371 0.024 0.000 0.000 0.912 NA
#> SRR2042635     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042633     3  0.3670     0.7921 0.000 0.180 0.796 0.004 NA
#> SRR2042631     4  0.1197     0.8592 0.000 0.048 0.000 0.952 NA
#> SRR2042632     3  0.3141     0.8091 0.000 0.152 0.832 0.000 NA
#> SRR2042630     2  0.4867     0.0418 0.000 0.544 0.432 0.000 NA
#> SRR2042629     4  0.3355     0.7880 0.000 0.184 0.000 0.804 NA
#> SRR2042628     3  0.4184     0.6649 0.000 0.000 0.700 0.016 NA
#> SRR2042626     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042627     1  0.0992     0.8212 0.968 0.000 0.000 0.008 NA
#> SRR2042624     3  0.4138     0.6703 0.000 0.000 0.708 0.016 NA
#> SRR2042625     1  0.3333     0.7541 0.788 0.000 0.000 0.004 NA
#> SRR2042623     1  0.3895     0.7526 0.680 0.000 0.000 0.000 NA
#> SRR2042622     1  0.3895     0.7526 0.680 0.000 0.000 0.000 NA
#> SRR2042620     2  0.3816     0.4175 0.000 0.696 0.000 0.304 NA
#> SRR2042621     3  0.4065     0.6794 0.000 0.000 0.720 0.016 NA
#> SRR2042619     4  0.1502     0.8584 0.000 0.056 0.000 0.940 NA
#> SRR2042618     2  0.0880     0.8866 0.000 0.968 0.032 0.000 NA
#> SRR2042617     1  0.2305     0.8046 0.896 0.000 0.000 0.012 NA
#> SRR2042616     2  0.0963     0.8850 0.000 0.964 0.036 0.000 NA
#> SRR2042615     2  0.0963     0.8850 0.000 0.964 0.036 0.000 NA
#> SRR2042614     2  0.1270     0.8732 0.000 0.948 0.052 0.000 NA
#> SRR2042613     3  0.3319     0.8073 0.000 0.160 0.820 0.000 NA
#> SRR2042612     1  0.3196     0.7605 0.804 0.000 0.000 0.004 NA
#> SRR2042610     1  0.1410     0.8227 0.940 0.000 0.000 0.000 NA
#> SRR2042611     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042607     4  0.4046     0.6574 0.000 0.296 0.000 0.696 NA
#> SRR2042609     1  0.3895     0.7526 0.680 0.000 0.000 0.000 NA
#> SRR2042608     3  0.3412     0.8066 0.000 0.152 0.820 0.000 NA
#> SRR2042656     2  0.0162     0.8970 0.000 0.996 0.000 0.004 NA
#> SRR2042658     3  0.2046     0.7445 0.000 0.000 0.916 0.016 NA
#> SRR2042659     1  0.1831     0.8178 0.920 0.000 0.000 0.004 NA
#> SRR2042657     4  0.2448     0.8350 0.020 0.000 0.000 0.892 NA
#> SRR2042655     1  0.1502     0.8227 0.940 0.000 0.000 0.004 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR2042654     1  0.3862      0.621 0.524 0.000 0.000 0.000 0.000 NA
#> SRR2042653     1  0.1367      0.720 0.944 0.000 0.012 0.000 0.000 NA
#> SRR2042652     1  0.3862      0.621 0.524 0.000 0.000 0.000 0.000 NA
#> SRR2042650     1  0.4267      0.656 0.772 0.000 0.056 0.024 0.008 NA
#> SRR2042649     5  0.2201      0.792 0.000 0.076 0.028 0.000 0.896 NA
#> SRR2042647     4  0.3607      0.556 0.000 0.348 0.000 0.652 0.000 NA
#> SRR2042648     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042646     3  0.3592      0.920 0.000 0.000 0.656 0.000 0.344 NA
#> SRR2042645     4  0.3445      0.764 0.004 0.000 0.048 0.832 0.016 NA
#> SRR2042644     5  0.4000      0.700 0.000 0.184 0.060 0.000 0.752 NA
#> SRR2042643     1  0.7078      0.387 0.432 0.000 0.104 0.068 0.036 NA
#> SRR2042642     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042640     2  0.2883      0.662 0.000 0.788 0.000 0.212 0.000 NA
#> SRR2042641     5  0.3702      0.764 0.000 0.080 0.088 0.000 0.812 NA
#> SRR2042639     2  0.0777      0.910 0.000 0.972 0.000 0.000 0.024 NA
#> SRR2042638     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042637     5  0.2474      0.785 0.000 0.080 0.040 0.000 0.880 NA
#> SRR2042636     4  0.4377      0.731 0.004 0.000 0.084 0.760 0.020 NA
#> SRR2042634     4  0.2980      0.773 0.016 0.000 0.056 0.868 0.004 NA
#> SRR2042635     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042633     5  0.3301      0.770 0.000 0.100 0.068 0.000 0.828 NA
#> SRR2042631     4  0.1219      0.802 0.000 0.048 0.000 0.948 0.000 NA
#> SRR2042632     5  0.2095      0.791 0.000 0.076 0.016 0.000 0.904 NA
#> SRR2042630     5  0.4953      0.538 0.000 0.284 0.064 0.000 0.636 NA
#> SRR2042629     4  0.3230      0.758 0.000 0.192 0.008 0.792 0.000 NA
#> SRR2042628     3  0.3852      0.932 0.000 0.000 0.664 0.000 0.324 NA
#> SRR2042626     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 NA
#> SRR2042627     1  0.1642      0.712 0.936 0.000 0.028 0.004 0.000 NA
#> SRR2042624     3  0.3482      0.937 0.000 0.000 0.684 0.000 0.316 NA
#> SRR2042625     1  0.4452      0.613 0.700 0.000 0.040 0.004 0.012 NA
#> SRR2042623     1  0.3862      0.621 0.524 0.000 0.000 0.000 0.000 NA
#> SRR2042622     1  0.3862      0.621 0.524 0.000 0.000 0.000 0.000 NA
#> SRR2042620     2  0.3244      0.536 0.000 0.732 0.000 0.268 0.000 NA
#> SRR2042621     3  0.3819      0.896 0.000 0.000 0.624 0.000 0.372 NA
#> SRR2042619     4  0.1524      0.802 0.000 0.060 0.000 0.932 0.000 NA
#> SRR2042618     2  0.1219      0.898 0.000 0.948 0.000 0.000 0.048 NA
#> SRR2042617     1  0.2981      0.691 0.856 0.000 0.032 0.008 0.004 NA
#> SRR2042616     2  0.1700      0.879 0.000 0.916 0.000 0.000 0.080 NA
#> SRR2042615     2  0.1700      0.879 0.000 0.916 0.000 0.000 0.080 NA
#> SRR2042614     2  0.2146      0.841 0.000 0.880 0.000 0.000 0.116 NA
#> SRR2042613     5  0.3314      0.766 0.000 0.092 0.076 0.000 0.828 NA
#> SRR2042612     1  0.5414      0.596 0.640 0.000 0.072 0.004 0.040 NA
#> SRR2042610     1  0.2575      0.708 0.872 0.000 0.024 0.004 0.000 NA
#> SRR2042611     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042607     4  0.3482      0.611 0.000 0.316 0.000 0.684 0.000 NA
#> SRR2042609     1  0.3862      0.621 0.524 0.000 0.000 0.000 0.000 NA
#> SRR2042608     5  0.3467      0.766 0.000 0.076 0.068 0.000 0.832 NA
#> SRR2042656     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042658     5  0.3695      0.262 0.000 0.000 0.244 0.000 0.732 NA
#> SRR2042659     1  0.2373      0.714 0.880 0.000 0.008 0.000 0.008 NA
#> SRR2042657     4  0.3452      0.762 0.004 0.000 0.040 0.828 0.016 NA
#> SRR2042655     1  0.2039      0.720 0.908 0.000 0.016 0.000 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.993         0.4983 0.502   0.502
#> 3 3 0.928           0.928       0.961         0.3366 0.784   0.588
#> 4 4 0.685           0.715       0.840         0.0895 0.922   0.767
#> 5 5 0.625           0.581       0.781         0.0482 0.983   0.937
#> 6 6 0.643           0.557       0.742         0.0338 0.974   0.896

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.992 1.000 0.000
#> SRR2042653     1  0.0000      0.992 1.000 0.000
#> SRR2042652     1  0.0000      0.992 1.000 0.000
#> SRR2042650     1  0.0000      0.992 1.000 0.000
#> SRR2042649     2  0.0000      0.993 0.000 1.000
#> SRR2042647     2  0.0000      0.993 0.000 1.000
#> SRR2042648     2  0.0000      0.993 0.000 1.000
#> SRR2042646     2  0.5059      0.877 0.112 0.888
#> SRR2042645     1  0.4431      0.904 0.908 0.092
#> SRR2042644     2  0.0000      0.993 0.000 1.000
#> SRR2042643     1  0.0000      0.992 1.000 0.000
#> SRR2042642     2  0.0000      0.993 0.000 1.000
#> SRR2042640     2  0.0000      0.993 0.000 1.000
#> SRR2042641     2  0.0000      0.993 0.000 1.000
#> SRR2042639     2  0.0000      0.993 0.000 1.000
#> SRR2042638     2  0.0000      0.993 0.000 1.000
#> SRR2042637     2  0.0000      0.993 0.000 1.000
#> SRR2042636     1  0.0000      0.992 1.000 0.000
#> SRR2042634     1  0.0000      0.992 1.000 0.000
#> SRR2042635     2  0.0000      0.993 0.000 1.000
#> SRR2042633     2  0.0000      0.993 0.000 1.000
#> SRR2042631     2  0.4022      0.916 0.080 0.920
#> SRR2042632     2  0.0000      0.993 0.000 1.000
#> SRR2042630     2  0.0000      0.993 0.000 1.000
#> SRR2042629     2  0.0000      0.993 0.000 1.000
#> SRR2042628     1  0.2948      0.947 0.948 0.052
#> SRR2042626     2  0.0000      0.993 0.000 1.000
#> SRR2042627     1  0.0000      0.992 1.000 0.000
#> SRR2042624     1  0.0938      0.984 0.988 0.012
#> SRR2042625     1  0.0000      0.992 1.000 0.000
#> SRR2042623     1  0.0000      0.992 1.000 0.000
#> SRR2042622     1  0.0000      0.992 1.000 0.000
#> SRR2042620     2  0.0000      0.993 0.000 1.000
#> SRR2042621     2  0.0000      0.993 0.000 1.000
#> SRR2042619     2  0.0000      0.993 0.000 1.000
#> SRR2042618     2  0.0000      0.993 0.000 1.000
#> SRR2042617     1  0.0000      0.992 1.000 0.000
#> SRR2042616     2  0.0000      0.993 0.000 1.000
#> SRR2042615     2  0.0000      0.993 0.000 1.000
#> SRR2042614     2  0.0000      0.993 0.000 1.000
#> SRR2042613     2  0.0000      0.993 0.000 1.000
#> SRR2042612     1  0.0000      0.992 1.000 0.000
#> SRR2042610     1  0.0000      0.992 1.000 0.000
#> SRR2042611     2  0.0000      0.993 0.000 1.000
#> SRR2042607     2  0.0000      0.993 0.000 1.000
#> SRR2042609     1  0.0000      0.992 1.000 0.000
#> SRR2042608     2  0.0000      0.993 0.000 1.000
#> SRR2042656     2  0.0000      0.993 0.000 1.000
#> SRR2042658     1  0.0000      0.992 1.000 0.000
#> SRR2042659     1  0.0000      0.992 1.000 0.000
#> SRR2042657     1  0.0672      0.987 0.992 0.008
#> SRR2042655     1  0.0000      0.992 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042653     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042652     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042650     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042649     3  0.0424      0.935 0.000 0.008 0.992
#> SRR2042647     2  0.0000      0.958 0.000 1.000 0.000
#> SRR2042648     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042646     3  0.0237      0.935 0.004 0.000 0.996
#> SRR2042645     1  0.6416      0.572 0.676 0.304 0.020
#> SRR2042644     3  0.4399      0.790 0.000 0.188 0.812
#> SRR2042643     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042642     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042640     2  0.0237      0.960 0.000 0.996 0.004
#> SRR2042641     3  0.3038      0.882 0.000 0.104 0.896
#> SRR2042639     2  0.1163      0.964 0.000 0.972 0.028
#> SRR2042638     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042637     3  0.0237      0.935 0.000 0.004 0.996
#> SRR2042636     1  0.2625      0.904 0.916 0.084 0.000
#> SRR2042634     1  0.1399      0.950 0.968 0.028 0.004
#> SRR2042635     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042633     3  0.4346      0.792 0.000 0.184 0.816
#> SRR2042631     2  0.1129      0.942 0.020 0.976 0.004
#> SRR2042632     3  0.0000      0.935 0.000 0.000 1.000
#> SRR2042630     2  0.5835      0.498 0.000 0.660 0.340
#> SRR2042629     2  0.0424      0.956 0.000 0.992 0.008
#> SRR2042628     3  0.3038      0.866 0.104 0.000 0.896
#> SRR2042626     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042627     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042624     3  0.1163      0.928 0.028 0.000 0.972
#> SRR2042625     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042623     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042620     2  0.0000      0.958 0.000 1.000 0.000
#> SRR2042621     3  0.0237      0.935 0.000 0.004 0.996
#> SRR2042619     2  0.0237      0.956 0.000 0.996 0.004
#> SRR2042618     2  0.1163      0.963 0.000 0.972 0.028
#> SRR2042617     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042616     2  0.1411      0.959 0.000 0.964 0.036
#> SRR2042615     2  0.1964      0.944 0.000 0.944 0.056
#> SRR2042614     2  0.2537      0.922 0.000 0.920 0.080
#> SRR2042613     3  0.2066      0.918 0.000 0.060 0.940
#> SRR2042612     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042610     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042611     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042607     2  0.0000      0.958 0.000 1.000 0.000
#> SRR2042609     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042608     3  0.1411      0.929 0.000 0.036 0.964
#> SRR2042656     2  0.1031      0.965 0.000 0.976 0.024
#> SRR2042658     3  0.1289      0.923 0.032 0.000 0.968
#> SRR2042659     1  0.0000      0.970 1.000 0.000 0.000
#> SRR2042657     1  0.2590      0.913 0.924 0.072 0.004
#> SRR2042655     1  0.0000      0.970 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.0336     0.9873 0.992 0.000 0.000 0.008
#> SRR2042649     3  0.3570     0.7336 0.000 0.092 0.860 0.048
#> SRR2042647     2  0.4804     0.3607 0.000 0.616 0.000 0.384
#> SRR2042648     2  0.0188     0.8259 0.000 0.996 0.000 0.004
#> SRR2042646     3  0.2408     0.7035 0.000 0.000 0.896 0.104
#> SRR2042645     4  0.6195     0.5416 0.188 0.084 0.024 0.704
#> SRR2042644     3  0.6137     0.2570 0.000 0.448 0.504 0.048
#> SRR2042643     1  0.1211     0.9487 0.960 0.000 0.000 0.040
#> SRR2042642     2  0.0188     0.8259 0.000 0.996 0.000 0.004
#> SRR2042640     2  0.3356     0.7110 0.000 0.824 0.000 0.176
#> SRR2042641     3  0.6652     0.5235 0.000 0.316 0.576 0.108
#> SRR2042639     2  0.2214     0.8095 0.000 0.928 0.044 0.028
#> SRR2042638     2  0.0000     0.8256 0.000 1.000 0.000 0.000
#> SRR2042637     3  0.3617     0.7326 0.000 0.076 0.860 0.064
#> SRR2042636     4  0.5929     0.5303 0.332 0.044 0.004 0.620
#> SRR2042634     4  0.5295     0.2298 0.488 0.008 0.000 0.504
#> SRR2042635     2  0.0188     0.8259 0.000 0.996 0.000 0.004
#> SRR2042633     3  0.6979     0.4453 0.000 0.344 0.528 0.128
#> SRR2042631     4  0.4920     0.1949 0.004 0.368 0.000 0.628
#> SRR2042632     3  0.3128     0.7343 0.000 0.076 0.884 0.040
#> SRR2042630     2  0.5884     0.2986 0.000 0.620 0.328 0.052
#> SRR2042629     2  0.4925     0.2738 0.000 0.572 0.000 0.428
#> SRR2042628     3  0.6380     0.5065 0.168 0.004 0.668 0.160
#> SRR2042626     2  0.0188     0.8259 0.000 0.996 0.000 0.004
#> SRR2042627     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042624     3  0.3856     0.6786 0.032 0.000 0.832 0.136
#> SRR2042625     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042620     2  0.3801     0.6581 0.000 0.780 0.000 0.220
#> SRR2042621     3  0.2973     0.7015 0.000 0.000 0.856 0.144
#> SRR2042619     4  0.5155    -0.0779 0.004 0.468 0.000 0.528
#> SRR2042618     2  0.1635     0.8125 0.000 0.948 0.044 0.008
#> SRR2042617     1  0.0188     0.9915 0.996 0.000 0.000 0.004
#> SRR2042616     2  0.2623     0.7961 0.000 0.908 0.064 0.028
#> SRR2042615     2  0.2861     0.7805 0.000 0.888 0.096 0.016
#> SRR2042614     2  0.3205     0.7667 0.000 0.872 0.104 0.024
#> SRR2042613     3  0.6013     0.5978 0.000 0.288 0.640 0.072
#> SRR2042612     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042610     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042611     2  0.0188     0.8259 0.000 0.996 0.000 0.004
#> SRR2042607     2  0.4781     0.4712 0.000 0.660 0.004 0.336
#> SRR2042609     1  0.0000     0.9945 1.000 0.000 0.000 0.000
#> SRR2042608     3  0.6215     0.6314 0.000 0.208 0.664 0.128
#> SRR2042656     2  0.0376     0.8256 0.000 0.992 0.004 0.004
#> SRR2042658     3  0.2796     0.7088 0.016 0.000 0.892 0.092
#> SRR2042659     1  0.0188     0.9913 0.996 0.000 0.000 0.004
#> SRR2042657     4  0.6120     0.4086 0.416 0.040 0.004 0.540
#> SRR2042655     1  0.0188     0.9915 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.9729 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9729 1.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9729 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.1522     0.9385 0.944 0.000 0.000 0.044 0.012
#> SRR2042649     3  0.3551     0.3995 0.000 0.096 0.840 0.008 0.056
#> SRR2042647     2  0.5204     0.2631 0.000 0.560 0.000 0.392 0.048
#> SRR2042648     2  0.0162     0.7800 0.000 0.996 0.004 0.000 0.000
#> SRR2042646     3  0.4150    -0.3103 0.000 0.000 0.612 0.000 0.388
#> SRR2042645     4  0.6601     0.4455 0.160 0.064 0.004 0.628 0.144
#> SRR2042644     3  0.6060     0.1837 0.000 0.424 0.476 0.008 0.092
#> SRR2042643     1  0.2830     0.8520 0.876 0.000 0.000 0.080 0.044
#> SRR2042642     2  0.0162     0.7796 0.000 0.996 0.000 0.000 0.004
#> SRR2042640     2  0.3909     0.6814 0.000 0.808 0.004 0.124 0.064
#> SRR2042641     3  0.6536     0.3105 0.000 0.228 0.572 0.024 0.176
#> SRR2042639     2  0.3244     0.7521 0.000 0.860 0.084 0.008 0.048
#> SRR2042638     2  0.0162     0.7800 0.000 0.996 0.004 0.000 0.000
#> SRR2042637     3  0.3950     0.3621 0.000 0.068 0.796 0.000 0.136
#> SRR2042636     4  0.5833     0.4632 0.196 0.020 0.008 0.672 0.104
#> SRR2042634     4  0.6604     0.3626 0.356 0.000 0.004 0.452 0.188
#> SRR2042635     2  0.0162     0.7796 0.000 0.996 0.000 0.000 0.004
#> SRR2042633     3  0.7631     0.2804 0.000 0.228 0.464 0.076 0.232
#> SRR2042631     4  0.5535     0.3605 0.000 0.256 0.000 0.628 0.116
#> SRR2042632     3  0.2729     0.3532 0.000 0.056 0.884 0.000 0.060
#> SRR2042630     2  0.6040    -0.1187 0.000 0.456 0.452 0.012 0.080
#> SRR2042629     2  0.6207     0.2193 0.000 0.524 0.008 0.348 0.120
#> SRR2042628     5  0.6881     0.5272 0.148 0.000 0.328 0.032 0.492
#> SRR2042626     2  0.0486     0.7779 0.000 0.988 0.004 0.004 0.004
#> SRR2042627     1  0.0451     0.9710 0.988 0.000 0.000 0.008 0.004
#> SRR2042624     5  0.5917     0.4512 0.040 0.004 0.392 0.028 0.536
#> SRR2042625     1  0.0404     0.9703 0.988 0.000 0.000 0.000 0.012
#> SRR2042623     1  0.0000     0.9729 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9729 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.4532     0.5599 0.000 0.712 0.004 0.248 0.036
#> SRR2042621     3  0.4774    -0.3483 0.000 0.004 0.540 0.012 0.444
#> SRR2042619     4  0.6300     0.0663 0.000 0.400 0.008 0.472 0.120
#> SRR2042618     2  0.2517     0.7444 0.000 0.884 0.104 0.004 0.008
#> SRR2042617     1  0.1579     0.9451 0.944 0.000 0.000 0.024 0.032
#> SRR2042616     2  0.3773     0.6859 0.000 0.800 0.164 0.004 0.032
#> SRR2042615     2  0.3484     0.7101 0.000 0.824 0.144 0.004 0.028
#> SRR2042614     2  0.4512     0.6509 0.000 0.760 0.176 0.016 0.048
#> SRR2042613     3  0.6435     0.3563 0.000 0.236 0.548 0.008 0.208
#> SRR2042612     1  0.1043     0.9522 0.960 0.000 0.000 0.000 0.040
#> SRR2042610     1  0.0807     0.9660 0.976 0.000 0.000 0.012 0.012
#> SRR2042611     2  0.0162     0.7796 0.000 0.996 0.000 0.000 0.004
#> SRR2042607     2  0.5818     0.4359 0.000 0.620 0.012 0.264 0.104
#> SRR2042609     1  0.0000     0.9729 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     3  0.6376     0.3000 0.000 0.104 0.608 0.048 0.240
#> SRR2042656     2  0.2122     0.7752 0.000 0.924 0.032 0.008 0.036
#> SRR2042658     3  0.4820    -0.1909 0.024 0.000 0.664 0.012 0.300
#> SRR2042659     1  0.0290     0.9720 0.992 0.000 0.000 0.000 0.008
#> SRR2042657     4  0.6374     0.4147 0.308 0.016 0.008 0.564 0.104
#> SRR2042655     1  0.0579     0.9685 0.984 0.000 0.000 0.008 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000    0.92302 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0603    0.92448 0.980 0.000 0.000 0.004 0.000 0.016
#> SRR2042652     1  0.0146    0.92301 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR2042650     1  0.2903    0.84136 0.872 0.000 0.008 0.076 0.016 0.028
#> SRR2042649     5  0.5855    0.31004 0.000 0.108 0.212 0.004 0.620 0.056
#> SRR2042647     2  0.6210    0.22519 0.000 0.528 0.008 0.284 0.024 0.156
#> SRR2042648     2  0.0547    0.72018 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR2042646     3  0.3746    0.57566 0.000 0.000 0.712 0.004 0.272 0.012
#> SRR2042645     4  0.7256    0.20658 0.080 0.028 0.068 0.516 0.036 0.272
#> SRR2042644     5  0.5961    0.36510 0.000 0.360 0.048 0.008 0.520 0.064
#> SRR2042643     1  0.3710    0.74009 0.816 0.000 0.008 0.108 0.016 0.052
#> SRR2042642     2  0.0405    0.72144 0.000 0.988 0.000 0.004 0.000 0.008
#> SRR2042640     2  0.4898    0.58409 0.000 0.712 0.012 0.076 0.020 0.180
#> SRR2042641     5  0.7957    0.30994 0.000 0.256 0.188 0.036 0.380 0.140
#> SRR2042639     2  0.4795    0.59614 0.000 0.740 0.020 0.024 0.144 0.072
#> SRR2042638     2  0.0000    0.72121 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     5  0.5710    0.34835 0.000 0.108 0.204 0.012 0.640 0.036
#> SRR2042636     4  0.4709    0.00476 0.148 0.012 0.024 0.756 0.020 0.040
#> SRR2042634     6  0.7450    0.00000 0.320 0.008 0.036 0.280 0.024 0.332
#> SRR2042635     2  0.0405    0.72162 0.000 0.988 0.000 0.000 0.004 0.008
#> SRR2042633     5  0.7438    0.37405 0.000 0.192 0.160 0.048 0.500 0.100
#> SRR2042631     4  0.6822    0.30880 0.004 0.152 0.044 0.508 0.020 0.272
#> SRR2042632     5  0.5401    0.29267 0.000 0.092 0.236 0.000 0.636 0.036
#> SRR2042630     2  0.6057    0.20287 0.000 0.556 0.036 0.012 0.300 0.096
#> SRR2042629     2  0.7259   -0.10567 0.000 0.388 0.032 0.212 0.040 0.328
#> SRR2042628     3  0.5467    0.56058 0.060 0.000 0.712 0.036 0.104 0.088
#> SRR2042626     2  0.0935    0.72024 0.000 0.964 0.000 0.004 0.000 0.032
#> SRR2042627     1  0.2017    0.90148 0.920 0.000 0.008 0.048 0.004 0.020
#> SRR2042624     3  0.3601    0.61316 0.024 0.000 0.840 0.036 0.072 0.028
#> SRR2042625     1  0.1230    0.91656 0.956 0.000 0.000 0.008 0.008 0.028
#> SRR2042623     1  0.0146    0.92351 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042622     1  0.0508    0.92391 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042620     2  0.5245    0.52099 0.000 0.672 0.004 0.160 0.020 0.144
#> SRR2042621     3  0.4178    0.54943 0.000 0.000 0.708 0.008 0.248 0.036
#> SRR2042619     4  0.7110    0.25894 0.000 0.300 0.016 0.384 0.040 0.260
#> SRR2042618     2  0.2264    0.68316 0.000 0.888 0.004 0.000 0.096 0.012
#> SRR2042617     1  0.2618    0.87108 0.888 0.000 0.004 0.060 0.012 0.036
#> SRR2042616     2  0.4058    0.58482 0.000 0.748 0.012 0.000 0.196 0.044
#> SRR2042615     2  0.4383    0.56958 0.000 0.732 0.028 0.000 0.196 0.044
#> SRR2042614     2  0.4589    0.53207 0.000 0.712 0.028 0.000 0.208 0.052
#> SRR2042613     5  0.6847    0.42906 0.000 0.256 0.152 0.000 0.484 0.108
#> SRR2042612     1  0.2854    0.84187 0.880 0.000 0.036 0.036 0.004 0.044
#> SRR2042610     1  0.1390    0.91652 0.948 0.000 0.000 0.032 0.004 0.016
#> SRR2042611     2  0.0291    0.72175 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR2042607     2  0.7057    0.15425 0.000 0.484 0.032 0.208 0.044 0.232
#> SRR2042609     1  0.0000    0.92302 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     5  0.7435    0.21381 0.000 0.104 0.168 0.040 0.492 0.196
#> SRR2042656     2  0.2078    0.71429 0.000 0.912 0.000 0.004 0.044 0.040
#> SRR2042658     3  0.6219    0.39743 0.044 0.000 0.496 0.012 0.364 0.084
#> SRR2042659     1  0.1485    0.91560 0.944 0.000 0.004 0.024 0.000 0.028
#> SRR2042657     4  0.7089   -0.16670 0.236 0.008 0.040 0.512 0.036 0.168
#> SRR2042655     1  0.1692    0.91438 0.940 0.000 0.008 0.020 0.008 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.4221 0.581   0.581
#> 3 3 0.929           0.925       0.966         0.0947 0.973   0.953
#> 4 4 0.883           0.877       0.948         0.0416 1.000   1.000
#> 5 5 0.845           0.832       0.933         0.0412 0.974   0.952
#> 6 6 0.785           0.755       0.927         0.0364 0.964   0.931

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      1.000 1.000 0.000
#> SRR2042653     1  0.0000      1.000 1.000 0.000
#> SRR2042652     1  0.0000      1.000 1.000 0.000
#> SRR2042650     1  0.0000      1.000 1.000 0.000
#> SRR2042649     2  0.0000      0.995 0.000 1.000
#> SRR2042647     2  0.0000      0.995 0.000 1.000
#> SRR2042648     2  0.0000      0.995 0.000 1.000
#> SRR2042646     2  0.0000      0.995 0.000 1.000
#> SRR2042645     2  0.0000      0.995 0.000 1.000
#> SRR2042644     2  0.0000      0.995 0.000 1.000
#> SRR2042643     1  0.0000      1.000 1.000 0.000
#> SRR2042642     2  0.0000      0.995 0.000 1.000
#> SRR2042640     2  0.0000      0.995 0.000 1.000
#> SRR2042641     2  0.0000      0.995 0.000 1.000
#> SRR2042639     2  0.0000      0.995 0.000 1.000
#> SRR2042638     2  0.0000      0.995 0.000 1.000
#> SRR2042637     2  0.0000      0.995 0.000 1.000
#> SRR2042636     2  0.2043      0.964 0.032 0.968
#> SRR2042634     2  0.0376      0.991 0.004 0.996
#> SRR2042635     2  0.0000      0.995 0.000 1.000
#> SRR2042633     2  0.0000      0.995 0.000 1.000
#> SRR2042631     2  0.0000      0.995 0.000 1.000
#> SRR2042632     2  0.0000      0.995 0.000 1.000
#> SRR2042630     2  0.0000      0.995 0.000 1.000
#> SRR2042629     2  0.0000      0.995 0.000 1.000
#> SRR2042628     2  0.0000      0.995 0.000 1.000
#> SRR2042626     2  0.0000      0.995 0.000 1.000
#> SRR2042627     1  0.0000      1.000 1.000 0.000
#> SRR2042624     2  0.0000      0.995 0.000 1.000
#> SRR2042625     1  0.0000      1.000 1.000 0.000
#> SRR2042623     1  0.0000      1.000 1.000 0.000
#> SRR2042622     1  0.0000      1.000 1.000 0.000
#> SRR2042620     2  0.0000      0.995 0.000 1.000
#> SRR2042621     2  0.0000      0.995 0.000 1.000
#> SRR2042619     2  0.0000      0.995 0.000 1.000
#> SRR2042618     2  0.0000      0.995 0.000 1.000
#> SRR2042617     1  0.0000      1.000 1.000 0.000
#> SRR2042616     2  0.0000      0.995 0.000 1.000
#> SRR2042615     2  0.0000      0.995 0.000 1.000
#> SRR2042614     2  0.0000      0.995 0.000 1.000
#> SRR2042613     2  0.0000      0.995 0.000 1.000
#> SRR2042612     1  0.0000      1.000 1.000 0.000
#> SRR2042610     1  0.0000      1.000 1.000 0.000
#> SRR2042611     2  0.0000      0.995 0.000 1.000
#> SRR2042607     2  0.0000      0.995 0.000 1.000
#> SRR2042609     1  0.0000      1.000 1.000 0.000
#> SRR2042608     2  0.0000      0.995 0.000 1.000
#> SRR2042656     2  0.0000      0.995 0.000 1.000
#> SRR2042658     2  0.6247      0.817 0.156 0.844
#> SRR2042659     1  0.0000      1.000 1.000 0.000
#> SRR2042657     2  0.0000      0.995 0.000 1.000
#> SRR2042655     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0892      0.960 0.980 0.000 0.020
#> SRR2042653     1  0.1031      0.960 0.976 0.000 0.024
#> SRR2042652     1  0.0892      0.960 0.980 0.000 0.020
#> SRR2042650     1  0.2537      0.945 0.920 0.000 0.080
#> SRR2042649     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042647     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042648     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042646     2  0.4178      0.734 0.000 0.828 0.172
#> SRR2042645     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042644     2  0.0237      0.967 0.000 0.996 0.004
#> SRR2042643     1  0.4235      0.869 0.824 0.000 0.176
#> SRR2042642     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042640     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042641     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042639     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042638     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042637     2  0.0592      0.959 0.000 0.988 0.012
#> SRR2042636     2  0.2318      0.905 0.028 0.944 0.028
#> SRR2042634     2  0.0661      0.958 0.004 0.988 0.008
#> SRR2042635     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042633     2  0.0237      0.967 0.000 0.996 0.004
#> SRR2042631     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042632     2  0.3619      0.794 0.000 0.864 0.136
#> SRR2042630     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042629     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042628     3  0.5178      0.000 0.000 0.256 0.744
#> SRR2042626     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042627     1  0.1289      0.958 0.968 0.000 0.032
#> SRR2042624     2  0.4235      0.726 0.000 0.824 0.176
#> SRR2042625     1  0.2448      0.946 0.924 0.000 0.076
#> SRR2042623     1  0.0892      0.960 0.980 0.000 0.020
#> SRR2042622     1  0.0892      0.960 0.980 0.000 0.020
#> SRR2042620     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042621     2  0.0237      0.967 0.000 0.996 0.004
#> SRR2042619     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042618     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042617     1  0.2066      0.952 0.940 0.000 0.060
#> SRR2042616     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042615     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042614     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042613     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042612     1  0.2165      0.956 0.936 0.000 0.064
#> SRR2042610     1  0.2066      0.952 0.940 0.000 0.060
#> SRR2042611     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042607     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042609     1  0.0892      0.960 0.980 0.000 0.020
#> SRR2042608     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042656     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042658     2  0.5467      0.663 0.032 0.792 0.176
#> SRR2042659     1  0.0892      0.960 0.980 0.000 0.020
#> SRR2042657     2  0.0000      0.970 0.000 1.000 0.000
#> SRR2042655     1  0.0592      0.961 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0817     0.9354 0.976 0.000 0.024 0.000
#> SRR2042653     1  0.0817     0.9344 0.976 0.000 0.000 0.024
#> SRR2042652     1  0.0817     0.9354 0.976 0.000 0.024 0.000
#> SRR2042650     1  0.2483     0.9208 0.916 0.000 0.052 0.032
#> SRR2042649     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042647     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042648     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042646     2  0.3444     0.7157 0.000 0.816 0.000 0.184
#> SRR2042645     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042644     2  0.0188     0.9480 0.000 0.996 0.000 0.004
#> SRR2042643     1  0.4624     0.6556 0.660 0.000 0.000 0.340
#> SRR2042642     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042640     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042641     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042639     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042638     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042637     2  0.0469     0.9410 0.000 0.988 0.000 0.012
#> SRR2042636     2  0.6294     0.3901 0.008 0.684 0.136 0.172
#> SRR2042634     2  0.1938     0.8872 0.000 0.936 0.052 0.012
#> SRR2042635     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042633     2  0.0188     0.9480 0.000 0.996 0.000 0.004
#> SRR2042631     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042632     2  0.2973     0.7779 0.000 0.856 0.000 0.144
#> SRR2042630     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042629     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042628     3  0.6685     0.0000 0.000 0.224 0.616 0.160
#> SRR2042626     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042627     1  0.1022     0.9331 0.968 0.000 0.000 0.032
#> SRR2042624     2  0.3486     0.7086 0.000 0.812 0.000 0.188
#> SRR2042625     1  0.2300     0.9235 0.924 0.000 0.048 0.028
#> SRR2042623     1  0.0817     0.9354 0.976 0.000 0.024 0.000
#> SRR2042622     1  0.0817     0.9354 0.976 0.000 0.024 0.000
#> SRR2042620     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042621     2  0.0188     0.9480 0.000 0.996 0.000 0.004
#> SRR2042619     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042618     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042617     1  0.2399     0.9224 0.920 0.000 0.048 0.032
#> SRR2042616     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042615     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042614     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042613     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042612     1  0.4938     0.8026 0.772 0.000 0.148 0.080
#> SRR2042610     1  0.2142     0.9235 0.928 0.000 0.056 0.016
#> SRR2042611     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042607     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042609     1  0.0817     0.9354 0.976 0.000 0.024 0.000
#> SRR2042608     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042656     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042658     2  0.5476     0.0381 0.020 0.584 0.000 0.396
#> SRR2042659     1  0.0817     0.9354 0.976 0.000 0.024 0.000
#> SRR2042657     2  0.0000     0.9509 0.000 1.000 0.000 0.000
#> SRR2042655     1  0.0469     0.9355 0.988 0.000 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR2042654     1  0.0510      0.912 0.984 0.000 0.000 0.000 NA
#> SRR2042653     1  0.0609      0.911 0.980 0.000 0.000 0.000 NA
#> SRR2042652     1  0.0510      0.912 0.984 0.000 0.000 0.000 NA
#> SRR2042650     1  0.3051      0.870 0.852 0.000 0.000 0.120 NA
#> SRR2042649     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042647     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042648     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042646     2  0.3608      0.638 0.000 0.812 0.148 0.040 NA
#> SRR2042645     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042644     2  0.0162      0.941 0.000 0.996 0.004 0.000 NA
#> SRR2042643     1  0.4397      0.510 0.564 0.000 0.000 0.004 NA
#> SRR2042642     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042640     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042641     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042639     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042638     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042637     2  0.0404      0.932 0.000 0.988 0.012 0.000 NA
#> SRR2042636     2  0.4452     -0.502 0.004 0.500 0.000 0.000 NA
#> SRR2042634     2  0.3727      0.643 0.000 0.812 0.020 0.152 NA
#> SRR2042635     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042633     2  0.0162      0.941 0.000 0.996 0.004 0.000 NA
#> SRR2042631     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042632     2  0.2674      0.729 0.000 0.856 0.140 0.004 NA
#> SRR2042630     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042629     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042628     3  0.2813      0.000 0.000 0.168 0.832 0.000 NA
#> SRR2042626     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042627     1  0.0794      0.909 0.972 0.000 0.000 0.000 NA
#> SRR2042624     2  0.3649      0.628 0.000 0.808 0.152 0.040 NA
#> SRR2042625     1  0.2597      0.885 0.884 0.000 0.000 0.092 NA
#> SRR2042623     1  0.0510      0.912 0.984 0.000 0.000 0.000 NA
#> SRR2042622     1  0.0510      0.912 0.984 0.000 0.000 0.000 NA
#> SRR2042620     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042621     2  0.0162      0.941 0.000 0.996 0.004 0.000 NA
#> SRR2042619     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042618     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042617     1  0.2511      0.888 0.892 0.000 0.000 0.080 NA
#> SRR2042616     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042615     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042614     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042613     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042612     1  0.6072      0.646 0.652 0.000 0.144 0.168 NA
#> SRR2042610     1  0.2833      0.874 0.864 0.000 0.004 0.120 NA
#> SRR2042611     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042607     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042609     1  0.0510      0.912 0.984 0.000 0.000 0.000 NA
#> SRR2042608     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042656     2  0.0000      0.944 0.000 1.000 0.000 0.000 NA
#> SRR2042658     4  0.6499      0.000 0.012 0.332 0.148 0.508 NA
#> SRR2042659     1  0.0510      0.912 0.984 0.000 0.000 0.000 NA
#> SRR2042657     2  0.0771      0.918 0.000 0.976 0.000 0.020 NA
#> SRR2042655     1  0.0510      0.911 0.984 0.000 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0508      0.824 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042653     1  0.0622      0.818 0.980 0.000 0.000 0.000 0.012 0.008
#> SRR2042652     1  0.0508      0.824 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042650     1  0.3128      0.658 0.836 0.000 0.008 0.008 0.016 0.132
#> SRR2042649     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042647     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042648     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042646     2  0.3023      0.559 0.000 0.808 0.004 0.000 0.008 0.180
#> SRR2042645     2  0.0806      0.904 0.000 0.972 0.008 0.000 0.020 0.000
#> SRR2042644     2  0.0146      0.937 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2042643     5  0.3866      0.000 0.484 0.000 0.000 0.000 0.516 0.000
#> SRR2042642     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042641     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042639     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042638     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     2  0.0363      0.928 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR2042636     4  0.3833      0.000 0.000 0.444 0.000 0.556 0.000 0.000
#> SRR2042634     2  0.3745      0.235 0.000 0.732 0.028 0.000 0.240 0.000
#> SRR2042635     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     2  0.0146      0.937 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2042631     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042632     2  0.2178      0.712 0.000 0.868 0.000 0.000 0.000 0.132
#> SRR2042630     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042629     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042628     3  0.3637      0.000 0.000 0.084 0.792 0.000 0.000 0.124
#> SRR2042626     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042627     1  0.0862      0.813 0.972 0.000 0.004 0.000 0.016 0.008
#> SRR2042624     2  0.3245      0.523 0.000 0.796 0.004 0.000 0.016 0.184
#> SRR2042625     1  0.2779      0.690 0.856 0.000 0.004 0.004 0.016 0.120
#> SRR2042623     1  0.0508      0.824 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042622     1  0.0508      0.824 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042620     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042621     2  0.0146      0.937 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2042619     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042618     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042617     1  0.2149      0.752 0.900 0.000 0.004 0.000 0.016 0.080
#> SRR2042616     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042615     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042614     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042613     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042612     1  0.5248     -0.485 0.492 0.000 0.000 0.428 0.072 0.008
#> SRR2042610     1  0.3118      0.645 0.836 0.000 0.072 0.000 0.000 0.092
#> SRR2042611     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042609     1  0.0508      0.824 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042608     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042656     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042658     6  0.2902      0.000 0.004 0.196 0.000 0.000 0.000 0.800
#> SRR2042659     1  0.0508      0.824 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR2042657     2  0.4142      0.363 0.000 0.764 0.096 0.004 0.132 0.004
#> SRR2042655     1  0.0551      0.819 0.984 0.000 0.004 0.000 0.008 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.277           0.740       0.806         0.4270 0.581   0.581
#> 3 3 0.476           0.787       0.856         0.5061 0.742   0.556
#> 4 4 0.638           0.428       0.733         0.1428 0.807   0.495
#> 5 5 0.716           0.709       0.774         0.0670 0.902   0.644
#> 6 6 0.794           0.692       0.813         0.0454 0.975   0.888

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1   0.000      0.898 1.000 0.000
#> SRR2042653     1   0.456      0.890 0.904 0.096
#> SRR2042652     1   0.000      0.898 1.000 0.000
#> SRR2042650     1   0.541      0.861 0.876 0.124
#> SRR2042649     2   0.861      0.693 0.284 0.716
#> SRR2042647     2   0.722      0.635 0.200 0.800
#> SRR2042648     2   0.242      0.712 0.040 0.960
#> SRR2042646     2   0.861      0.693 0.284 0.716
#> SRR2042645     2   0.722      0.635 0.200 0.800
#> SRR2042644     2   0.855      0.696 0.280 0.720
#> SRR2042643     1   0.625      0.836 0.844 0.156
#> SRR2042642     2   0.242      0.712 0.040 0.960
#> SRR2042640     2   0.373      0.703 0.072 0.928
#> SRR2042641     2   0.861      0.693 0.284 0.716
#> SRR2042639     2   0.767      0.715 0.224 0.776
#> SRR2042638     2   0.242      0.712 0.040 0.960
#> SRR2042637     2   0.861      0.693 0.284 0.716
#> SRR2042636     2   0.722      0.635 0.200 0.800
#> SRR2042634     2   0.722      0.635 0.200 0.800
#> SRR2042635     2   0.242      0.712 0.040 0.960
#> SRR2042633     2   0.855      0.696 0.280 0.720
#> SRR2042631     2   0.722      0.635 0.200 0.800
#> SRR2042632     2   0.861      0.693 0.284 0.716
#> SRR2042630     2   0.861      0.693 0.284 0.716
#> SRR2042629     2   0.706      0.642 0.192 0.808
#> SRR2042628     2   0.855      0.696 0.280 0.720
#> SRR2042626     2   0.242      0.712 0.040 0.960
#> SRR2042627     1   0.260      0.916 0.956 0.044
#> SRR2042624     2   0.855      0.696 0.280 0.720
#> SRR2042625     1   0.482      0.883 0.896 0.104
#> SRR2042623     1   0.000      0.898 1.000 0.000
#> SRR2042622     1   0.184      0.914 0.972 0.028
#> SRR2042620     2   0.722      0.635 0.200 0.800
#> SRR2042621     2   0.855      0.696 0.280 0.720
#> SRR2042619     2   0.722      0.635 0.200 0.800
#> SRR2042618     2   0.886      0.698 0.304 0.696
#> SRR2042617     1   0.204      0.915 0.968 0.032
#> SRR2042616     2   0.886      0.698 0.304 0.696
#> SRR2042615     2   0.886      0.698 0.304 0.696
#> SRR2042614     2   0.886      0.698 0.304 0.696
#> SRR2042613     2   0.855      0.696 0.280 0.720
#> SRR2042612     1   0.788      0.715 0.764 0.236
#> SRR2042610     1   0.529      0.865 0.880 0.120
#> SRR2042611     2   0.242      0.712 0.040 0.960
#> SRR2042607     2   0.714      0.639 0.196 0.804
#> SRR2042609     1   0.000      0.898 1.000 0.000
#> SRR2042608     2   0.861      0.693 0.284 0.716
#> SRR2042656     2   0.242      0.712 0.040 0.960
#> SRR2042658     2   0.861      0.693 0.284 0.716
#> SRR2042659     1   0.278      0.915 0.952 0.048
#> SRR2042657     2   0.722      0.635 0.200 0.800
#> SRR2042655     1   0.224      0.916 0.964 0.036

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0237      0.930 0.996 0.004 0.000
#> SRR2042653     1  0.2443      0.927 0.940 0.028 0.032
#> SRR2042652     1  0.0237      0.930 0.996 0.004 0.000
#> SRR2042650     1  0.3369      0.904 0.908 0.052 0.040
#> SRR2042649     3  0.0592      0.802 0.012 0.000 0.988
#> SRR2042647     2  0.7500      0.792 0.140 0.696 0.164
#> SRR2042648     2  0.1529      0.771 0.000 0.960 0.040
#> SRR2042646     3  0.0592      0.802 0.012 0.000 0.988
#> SRR2042645     2  0.6622      0.807 0.088 0.748 0.164
#> SRR2042644     3  0.4178      0.782 0.000 0.172 0.828
#> SRR2042643     1  0.5756      0.690 0.764 0.208 0.028
#> SRR2042642     2  0.1163      0.770 0.000 0.972 0.028
#> SRR2042640     2  0.4679      0.791 0.020 0.832 0.148
#> SRR2042641     3  0.3921      0.730 0.112 0.016 0.872
#> SRR2042639     2  0.5835      0.489 0.000 0.660 0.340
#> SRR2042638     2  0.2796      0.726 0.000 0.908 0.092
#> SRR2042637     3  0.0829      0.803 0.012 0.004 0.984
#> SRR2042636     2  0.7500      0.792 0.140 0.696 0.164
#> SRR2042634     2  0.8410      0.714 0.216 0.620 0.164
#> SRR2042635     2  0.1163      0.770 0.000 0.972 0.028
#> SRR2042633     3  0.4235      0.780 0.000 0.176 0.824
#> SRR2042631     2  0.7059      0.805 0.112 0.724 0.164
#> SRR2042632     3  0.0829      0.803 0.012 0.004 0.984
#> SRR2042630     3  0.2680      0.770 0.068 0.008 0.924
#> SRR2042629     2  0.6351      0.804 0.072 0.760 0.168
#> SRR2042628     3  0.4062      0.787 0.000 0.164 0.836
#> SRR2042626     2  0.1031      0.774 0.000 0.976 0.024
#> SRR2042627     1  0.1636      0.931 0.964 0.016 0.020
#> SRR2042624     3  0.4121      0.785 0.000 0.168 0.832
#> SRR2042625     1  0.3134      0.916 0.916 0.032 0.052
#> SRR2042623     1  0.0237      0.930 0.996 0.004 0.000
#> SRR2042622     1  0.0661      0.934 0.988 0.004 0.008
#> SRR2042620     2  0.7192      0.803 0.120 0.716 0.164
#> SRR2042621     3  0.4062      0.787 0.000 0.164 0.836
#> SRR2042619     2  0.7256      0.801 0.124 0.712 0.164
#> SRR2042618     3  0.6235      0.370 0.000 0.436 0.564
#> SRR2042617     1  0.1337      0.933 0.972 0.012 0.016
#> SRR2042616     3  0.5760      0.588 0.000 0.328 0.672
#> SRR2042615     3  0.6026      0.501 0.000 0.376 0.624
#> SRR2042614     3  0.5835      0.576 0.000 0.340 0.660
#> SRR2042613     3  0.2625      0.802 0.000 0.084 0.916
#> SRR2042612     1  0.5919      0.669 0.724 0.016 0.260
#> SRR2042610     1  0.3802      0.894 0.888 0.080 0.032
#> SRR2042611     2  0.1031      0.771 0.000 0.976 0.024
#> SRR2042607     2  0.6083      0.801 0.060 0.772 0.168
#> SRR2042609     1  0.0237      0.930 0.996 0.004 0.000
#> SRR2042608     3  0.4063      0.731 0.112 0.020 0.868
#> SRR2042656     2  0.2165      0.773 0.000 0.936 0.064
#> SRR2042658     3  0.0592      0.802 0.012 0.000 0.988
#> SRR2042659     1  0.1315      0.932 0.972 0.008 0.020
#> SRR2042657     2  0.7930      0.763 0.172 0.664 0.164
#> SRR2042655     1  0.0592      0.933 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.1297     0.8754 0.964 0.016 0.020 0.000
#> SRR2042653     1  0.4471     0.7979 0.796 0.004 0.164 0.036
#> SRR2042652     1  0.1297     0.8754 0.964 0.016 0.020 0.000
#> SRR2042650     1  0.3043     0.8379 0.876 0.004 0.008 0.112
#> SRR2042649     3  0.5174     0.5762 0.000 0.368 0.620 0.012
#> SRR2042647     4  0.3705     0.8168 0.020 0.092 0.024 0.864
#> SRR2042648     2  0.4996    -0.3237 0.000 0.516 0.000 0.484
#> SRR2042646     3  0.5244     0.5416 0.000 0.388 0.600 0.012
#> SRR2042645     4  0.1598     0.8259 0.020 0.020 0.004 0.956
#> SRR2042644     2  0.5366    -0.2904 0.000 0.548 0.440 0.012
#> SRR2042643     1  0.5028     0.3605 0.596 0.000 0.004 0.400
#> SRR2042642     2  0.4999    -0.3378 0.000 0.508 0.000 0.492
#> SRR2042640     4  0.5047     0.5507 0.000 0.316 0.016 0.668
#> SRR2042641     3  0.1584     0.5534 0.000 0.036 0.952 0.012
#> SRR2042639     2  0.4605     0.2895 0.000 0.800 0.108 0.092
#> SRR2042638     2  0.4730    -0.0875 0.000 0.636 0.000 0.364
#> SRR2042637     3  0.5268     0.5532 0.000 0.396 0.592 0.012
#> SRR2042636     4  0.1296     0.8221 0.028 0.004 0.004 0.964
#> SRR2042634     4  0.2799     0.7658 0.108 0.000 0.008 0.884
#> SRR2042635     2  0.4996    -0.3237 0.000 0.516 0.000 0.484
#> SRR2042633     2  0.5320    -0.2511 0.000 0.572 0.416 0.012
#> SRR2042631     4  0.0188     0.8266 0.004 0.000 0.000 0.996
#> SRR2042632     3  0.5256     0.5577 0.000 0.392 0.596 0.012
#> SRR2042630     3  0.3217     0.5438 0.000 0.128 0.860 0.012
#> SRR2042629     4  0.2922     0.8129 0.004 0.104 0.008 0.884
#> SRR2042628     2  0.5396    -0.3035 0.000 0.524 0.464 0.012
#> SRR2042626     4  0.5000     0.2527 0.000 0.500 0.000 0.500
#> SRR2042627     1  0.1492     0.8765 0.956 0.004 0.004 0.036
#> SRR2042624     2  0.5388    -0.2844 0.000 0.532 0.456 0.012
#> SRR2042625     1  0.5512     0.6780 0.660 0.000 0.300 0.040
#> SRR2042623     1  0.1297     0.8754 0.964 0.016 0.020 0.000
#> SRR2042622     1  0.0657     0.8801 0.984 0.000 0.004 0.012
#> SRR2042620     4  0.2989     0.8149 0.004 0.100 0.012 0.884
#> SRR2042621     2  0.5388    -0.2844 0.000 0.532 0.456 0.012
#> SRR2042619     4  0.0524     0.8280 0.008 0.004 0.000 0.988
#> SRR2042618     2  0.4322     0.2501 0.000 0.804 0.152 0.044
#> SRR2042617     1  0.1707     0.8785 0.952 0.004 0.020 0.024
#> SRR2042616     2  0.4462     0.2423 0.000 0.792 0.164 0.044
#> SRR2042615     2  0.4499     0.2467 0.000 0.792 0.160 0.048
#> SRR2042614     2  0.4405     0.2552 0.000 0.800 0.152 0.048
#> SRR2042613     2  0.5372    -0.3064 0.000 0.544 0.444 0.012
#> SRR2042612     3  0.4920    -0.1724 0.368 0.004 0.628 0.000
#> SRR2042610     1  0.6573     0.6610 0.616 0.004 0.276 0.104
#> SRR2042611     2  0.5000    -0.3452 0.000 0.504 0.000 0.496
#> SRR2042607     4  0.3345     0.7972 0.004 0.124 0.012 0.860
#> SRR2042609     1  0.1297     0.8754 0.964 0.016 0.020 0.000
#> SRR2042608     3  0.1584     0.5539 0.000 0.036 0.952 0.012
#> SRR2042656     2  0.4967    -0.2785 0.000 0.548 0.000 0.452
#> SRR2042658     3  0.5110     0.5763 0.000 0.352 0.636 0.012
#> SRR2042659     1  0.0895     0.8799 0.976 0.004 0.000 0.020
#> SRR2042657     4  0.2401     0.7760 0.092 0.000 0.004 0.904
#> SRR2042655     1  0.0469     0.8798 0.988 0.000 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.3455      0.793 0.784 0.000 0.000 0.008 0.208
#> SRR2042653     1  0.3410      0.828 0.860 0.000 0.052 0.024 0.064
#> SRR2042652     1  0.3455      0.793 0.784 0.000 0.000 0.008 0.208
#> SRR2042650     1  0.3090      0.807 0.856 0.000 0.000 0.104 0.040
#> SRR2042649     3  0.4754      0.554 0.000 0.052 0.684 0.000 0.264
#> SRR2042647     4  0.5197      0.770 0.020 0.184 0.024 0.732 0.040
#> SRR2042648     2  0.1646      0.779 0.000 0.944 0.004 0.032 0.020
#> SRR2042646     3  0.5071      0.451 0.000 0.040 0.616 0.004 0.340
#> SRR2042645     4  0.1815      0.883 0.020 0.016 0.000 0.940 0.024
#> SRR2042644     5  0.6528      0.669 0.000 0.152 0.384 0.008 0.456
#> SRR2042643     1  0.4251      0.535 0.672 0.000 0.000 0.316 0.012
#> SRR2042642     2  0.1502      0.769 0.000 0.940 0.000 0.056 0.004
#> SRR2042640     2  0.4974      0.287 0.000 0.604 0.024 0.364 0.008
#> SRR2042641     3  0.0290      0.536 0.000 0.008 0.992 0.000 0.000
#> SRR2042639     2  0.4129      0.692 0.000 0.808 0.076 0.016 0.100
#> SRR2042638     2  0.1743      0.776 0.000 0.940 0.004 0.028 0.028
#> SRR2042637     3  0.4969      0.533 0.000 0.056 0.652 0.000 0.292
#> SRR2042636     4  0.1405      0.887 0.020 0.008 0.000 0.956 0.016
#> SRR2042634     4  0.2736      0.865 0.052 0.008 0.012 0.900 0.028
#> SRR2042635     2  0.1571      0.767 0.000 0.936 0.000 0.060 0.004
#> SRR2042633     5  0.6353      0.703 0.000 0.128 0.388 0.008 0.476
#> SRR2042631     4  0.0968      0.887 0.004 0.012 0.000 0.972 0.012
#> SRR2042632     3  0.5238      0.503 0.000 0.064 0.640 0.004 0.292
#> SRR2042630     3  0.1493      0.534 0.000 0.024 0.948 0.000 0.028
#> SRR2042629     4  0.3257      0.846 0.000 0.124 0.004 0.844 0.028
#> SRR2042628     5  0.4832      0.735 0.000 0.032 0.292 0.008 0.668
#> SRR2042626     2  0.1864      0.765 0.000 0.924 0.004 0.068 0.004
#> SRR2042627     1  0.0566      0.848 0.984 0.000 0.000 0.012 0.004
#> SRR2042624     5  0.4886      0.741 0.000 0.036 0.288 0.008 0.668
#> SRR2042625     1  0.3671      0.822 0.844 0.000 0.072 0.024 0.060
#> SRR2042623     1  0.3455      0.793 0.784 0.000 0.000 0.008 0.208
#> SRR2042622     1  0.0693      0.848 0.980 0.000 0.000 0.008 0.012
#> SRR2042620     4  0.3242      0.813 0.000 0.172 0.012 0.816 0.000
#> SRR2042621     5  0.5131      0.751 0.000 0.048 0.296 0.008 0.648
#> SRR2042619     4  0.0566      0.887 0.004 0.012 0.000 0.984 0.000
#> SRR2042618     2  0.5510      0.543 0.000 0.664 0.112 0.008 0.216
#> SRR2042617     1  0.0727      0.849 0.980 0.000 0.004 0.012 0.004
#> SRR2042616     2  0.5691      0.517 0.000 0.648 0.132 0.008 0.212
#> SRR2042615     2  0.6034      0.414 0.000 0.596 0.140 0.008 0.256
#> SRR2042614     2  0.6005      0.432 0.000 0.604 0.144 0.008 0.244
#> SRR2042613     5  0.6168      0.671 0.000 0.104 0.412 0.008 0.476
#> SRR2042612     1  0.5353      0.486 0.576 0.000 0.368 0.004 0.052
#> SRR2042610     1  0.4949      0.785 0.768 0.000 0.076 0.076 0.080
#> SRR2042611     2  0.1502      0.769 0.000 0.940 0.000 0.056 0.004
#> SRR2042607     4  0.4145      0.781 0.000 0.188 0.012 0.772 0.028
#> SRR2042609     1  0.3455      0.793 0.784 0.000 0.000 0.008 0.208
#> SRR2042608     3  0.0579      0.540 0.000 0.008 0.984 0.000 0.008
#> SRR2042656     2  0.1483      0.778 0.000 0.952 0.008 0.028 0.012
#> SRR2042658     3  0.4956      0.520 0.000 0.040 0.644 0.004 0.312
#> SRR2042659     1  0.1484      0.842 0.944 0.000 0.000 0.048 0.008
#> SRR2042657     4  0.2459      0.874 0.036 0.012 0.012 0.916 0.024
#> SRR2042655     1  0.1012      0.849 0.968 0.000 0.000 0.020 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR2042654     1  0.3563     0.6550 0.664 0.000 0.000 0.000 0.000 NA
#> SRR2042653     1  0.3062     0.7528 0.824 0.000 0.004 0.008 0.008 NA
#> SRR2042652     1  0.3563     0.6550 0.664 0.000 0.000 0.000 0.000 NA
#> SRR2042650     1  0.2724     0.7578 0.864 0.000 0.000 0.084 0.000 NA
#> SRR2042649     5  0.0363     0.6798 0.000 0.000 0.012 0.000 0.988 NA
#> SRR2042647     4  0.4779     0.8164 0.012 0.096 0.008 0.728 0.004 NA
#> SRR2042648     2  0.0551     0.7627 0.000 0.984 0.008 0.004 0.000 NA
#> SRR2042646     5  0.3301     0.5529 0.000 0.000 0.216 0.004 0.772 NA
#> SRR2042645     4  0.0909     0.9097 0.000 0.000 0.012 0.968 0.000 NA
#> SRR2042644     5  0.6974     0.1025 0.000 0.112 0.352 0.004 0.416 NA
#> SRR2042643     1  0.4254     0.5414 0.680 0.000 0.000 0.272 0.000 NA
#> SRR2042642     2  0.0000     0.7640 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042640     2  0.4189     0.0415 0.000 0.552 0.004 0.436 0.000 NA
#> SRR2042641     5  0.3089     0.6486 0.000 0.000 0.008 0.004 0.800 NA
#> SRR2042639     2  0.4709     0.6758 0.000 0.736 0.036 0.012 0.048 NA
#> SRR2042638     2  0.0405     0.7624 0.000 0.988 0.000 0.004 0.008 NA
#> SRR2042637     5  0.1075     0.6770 0.000 0.000 0.048 0.000 0.952 NA
#> SRR2042636     4  0.1453     0.9140 0.008 0.000 0.008 0.944 0.000 NA
#> SRR2042634     4  0.3113     0.8757 0.024 0.004 0.012 0.844 0.000 NA
#> SRR2042635     2  0.0000     0.7640 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042633     5  0.7010     0.0616 0.000 0.108 0.368 0.004 0.396 NA
#> SRR2042631     4  0.0146     0.9132 0.000 0.000 0.000 0.996 0.000 NA
#> SRR2042632     5  0.1297     0.6791 0.000 0.012 0.040 0.000 0.948 NA
#> SRR2042630     5  0.3159     0.6554 0.000 0.012 0.004 0.004 0.812 NA
#> SRR2042629     4  0.1682     0.9050 0.000 0.052 0.000 0.928 0.000 NA
#> SRR2042628     3  0.1226     0.9550 0.000 0.004 0.952 0.004 0.040 NA
#> SRR2042626     2  0.0405     0.7624 0.000 0.988 0.004 0.008 0.000 NA
#> SRR2042627     1  0.0405     0.7885 0.988 0.000 0.000 0.008 0.000 NA
#> SRR2042624     3  0.0692     0.9565 0.000 0.000 0.976 0.000 0.020 NA
#> SRR2042625     1  0.3339     0.7358 0.792 0.000 0.004 0.008 0.008 NA
#> SRR2042623     1  0.3563     0.6550 0.664 0.000 0.000 0.000 0.000 NA
#> SRR2042622     1  0.0260     0.7869 0.992 0.000 0.000 0.000 0.000 NA
#> SRR2042620     4  0.2554     0.8837 0.000 0.092 0.004 0.876 0.000 NA
#> SRR2042621     3  0.1429     0.9422 0.000 0.004 0.940 0.004 0.052 NA
#> SRR2042619     4  0.0858     0.9157 0.000 0.000 0.004 0.968 0.000 NA
#> SRR2042618     2  0.6170     0.5488 0.000 0.584 0.204 0.000 0.076 NA
#> SRR2042617     1  0.0260     0.7882 0.992 0.000 0.000 0.000 0.000 NA
#> SRR2042616     2  0.6523     0.5137 0.000 0.536 0.208 0.000 0.080 NA
#> SRR2042615     2  0.6528     0.5108 0.000 0.536 0.200 0.000 0.080 NA
#> SRR2042614     2  0.6667     0.4962 0.000 0.524 0.196 0.000 0.096 NA
#> SRR2042613     5  0.5557     0.2853 0.000 0.036 0.340 0.000 0.556 NA
#> SRR2042612     1  0.5681     0.4167 0.552 0.000 0.004 0.000 0.212 NA
#> SRR2042610     1  0.3263     0.7445 0.800 0.000 0.000 0.020 0.004 NA
#> SRR2042611     2  0.0000     0.7640 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2042607     4  0.2011     0.8973 0.000 0.064 0.004 0.912 0.000 NA
#> SRR2042609     1  0.3563     0.6550 0.664 0.000 0.000 0.000 0.000 NA
#> SRR2042608     5  0.3187     0.6481 0.000 0.000 0.012 0.004 0.796 NA
#> SRR2042656     2  0.0551     0.7630 0.000 0.984 0.008 0.000 0.004 NA
#> SRR2042658     5  0.3309     0.5679 0.000 0.000 0.192 0.004 0.788 NA
#> SRR2042659     1  0.1643     0.7750 0.924 0.000 0.000 0.068 0.000 NA
#> SRR2042657     4  0.2308     0.9003 0.016 0.000 0.012 0.896 0.000 NA
#> SRR2042655     1  0.0653     0.7875 0.980 0.000 0.004 0.000 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.654           0.831       0.913         0.4709 0.517   0.517
#> 3 3 0.428           0.660       0.809         0.3170 0.868   0.745
#> 4 4 0.407           0.559       0.753         0.1103 0.974   0.934
#> 5 5 0.470           0.514       0.690         0.0498 0.906   0.757
#> 6 6 0.497           0.486       0.670         0.0411 0.971   0.911

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     2  0.9248      0.542 0.340 0.660
#> SRR2042653     1  0.3584      0.908 0.932 0.068
#> SRR2042652     1  0.4690      0.893 0.900 0.100
#> SRR2042650     1  0.0672      0.928 0.992 0.008
#> SRR2042649     2  0.0938      0.872 0.012 0.988
#> SRR2042647     1  0.0938      0.922 0.988 0.012
#> SRR2042648     1  0.2778      0.925 0.952 0.048
#> SRR2042646     2  0.0938      0.872 0.012 0.988
#> SRR2042645     1  0.2236      0.929 0.964 0.036
#> SRR2042644     2  0.1414      0.872 0.020 0.980
#> SRR2042643     1  0.0938      0.925 0.988 0.012
#> SRR2042642     1  0.1414      0.931 0.980 0.020
#> SRR2042640     1  0.1843      0.930 0.972 0.028
#> SRR2042641     2  0.4022      0.844 0.080 0.920
#> SRR2042639     1  0.8661      0.575 0.712 0.288
#> SRR2042638     1  0.3431      0.913 0.936 0.064
#> SRR2042637     2  0.1184      0.874 0.016 0.984
#> SRR2042636     1  0.0938      0.930 0.988 0.012
#> SRR2042634     1  0.0376      0.926 0.996 0.004
#> SRR2042635     1  0.1843      0.930 0.972 0.028
#> SRR2042633     2  0.1414      0.874 0.020 0.980
#> SRR2042631     1  0.0938      0.929 0.988 0.012
#> SRR2042632     2  0.1184      0.874 0.016 0.984
#> SRR2042630     2  0.1414      0.874 0.020 0.980
#> SRR2042629     1  0.1843      0.930 0.972 0.028
#> SRR2042628     2  0.4431      0.834 0.092 0.908
#> SRR2042626     1  0.1414      0.930 0.980 0.020
#> SRR2042627     1  0.1633      0.931 0.976 0.024
#> SRR2042624     2  0.0938      0.873 0.012 0.988
#> SRR2042625     1  0.9129      0.504 0.672 0.328
#> SRR2042623     1  0.5294      0.856 0.880 0.120
#> SRR2042622     1  0.5946      0.843 0.856 0.144
#> SRR2042620     1  0.0376      0.929 0.996 0.004
#> SRR2042621     2  0.1184      0.873 0.016 0.984
#> SRR2042619     1  0.0938      0.928 0.988 0.012
#> SRR2042618     2  0.9977      0.191 0.472 0.528
#> SRR2042617     1  0.3274      0.917 0.940 0.060
#> SRR2042616     2  0.9909      0.286 0.444 0.556
#> SRR2042615     2  0.9775      0.384 0.412 0.588
#> SRR2042614     2  0.9170      0.551 0.332 0.668
#> SRR2042613     2  0.0938      0.873 0.012 0.988
#> SRR2042612     2  0.0938      0.863 0.012 0.988
#> SRR2042610     1  0.1843      0.921 0.972 0.028
#> SRR2042611     1  0.1184      0.930 0.984 0.016
#> SRR2042607     1  0.1843      0.930 0.972 0.028
#> SRR2042609     1  0.6438      0.814 0.836 0.164
#> SRR2042608     2  0.1633      0.872 0.024 0.976
#> SRR2042656     1  0.3431      0.917 0.936 0.064
#> SRR2042658     2  0.1184      0.874 0.016 0.984
#> SRR2042659     1  0.3274      0.918 0.940 0.060
#> SRR2042657     1  0.0376      0.926 0.996 0.004
#> SRR2042655     1  0.8763      0.600 0.704 0.296

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     3  0.9550    -0.0476 0.340 0.204 0.456
#> SRR2042653     1  0.6129     0.5926 0.700 0.284 0.016
#> SRR2042652     1  0.7517     0.5316 0.588 0.364 0.048
#> SRR2042650     2  0.5591     0.5817 0.304 0.696 0.000
#> SRR2042649     3  0.0661     0.8417 0.008 0.004 0.988
#> SRR2042647     2  0.5465     0.5362 0.288 0.712 0.000
#> SRR2042648     2  0.2773     0.7567 0.048 0.928 0.024
#> SRR2042646     3  0.0475     0.8409 0.004 0.004 0.992
#> SRR2042645     2  0.4615     0.7172 0.144 0.836 0.020
#> SRR2042644     3  0.1585     0.8419 0.008 0.028 0.964
#> SRR2042643     2  0.6229     0.3438 0.340 0.652 0.008
#> SRR2042642     2  0.2860     0.7573 0.084 0.912 0.004
#> SRR2042640     2  0.3207     0.7644 0.084 0.904 0.012
#> SRR2042641     3  0.2550     0.8237 0.040 0.024 0.936
#> SRR2042639     2  0.6998     0.3210 0.044 0.664 0.292
#> SRR2042638     2  0.3148     0.7593 0.048 0.916 0.036
#> SRR2042637     3  0.1015     0.8437 0.008 0.012 0.980
#> SRR2042636     2  0.3112     0.7579 0.096 0.900 0.004
#> SRR2042634     2  0.5070     0.6927 0.224 0.772 0.004
#> SRR2042635     2  0.3325     0.7604 0.076 0.904 0.020
#> SRR2042633     3  0.1765     0.8406 0.004 0.040 0.956
#> SRR2042631     2  0.2261     0.7617 0.068 0.932 0.000
#> SRR2042632     3  0.0829     0.8412 0.012 0.004 0.984
#> SRR2042630     3  0.1585     0.8446 0.008 0.028 0.964
#> SRR2042629     2  0.3846     0.7438 0.108 0.876 0.016
#> SRR2042628     3  0.4960     0.7530 0.040 0.128 0.832
#> SRR2042626     2  0.2229     0.7619 0.044 0.944 0.012
#> SRR2042627     2  0.5455     0.7189 0.184 0.788 0.028
#> SRR2042624     3  0.1170     0.8450 0.008 0.016 0.976
#> SRR2042625     1  0.9529     0.3861 0.448 0.196 0.356
#> SRR2042623     1  0.6142     0.6452 0.748 0.212 0.040
#> SRR2042622     1  0.9152     0.4126 0.484 0.364 0.152
#> SRR2042620     2  0.3941     0.7203 0.156 0.844 0.000
#> SRR2042621     3  0.1337     0.8441 0.016 0.012 0.972
#> SRR2042619     2  0.4178     0.7189 0.172 0.828 0.000
#> SRR2042618     3  0.6579     0.4789 0.020 0.328 0.652
#> SRR2042617     2  0.7012     0.4471 0.308 0.652 0.040
#> SRR2042616     3  0.7114     0.3314 0.028 0.388 0.584
#> SRR2042615     3  0.6601     0.5438 0.028 0.296 0.676
#> SRR2042614     3  0.6143     0.6126 0.024 0.256 0.720
#> SRR2042613     3  0.1170     0.8451 0.008 0.016 0.976
#> SRR2042612     3  0.3112     0.7782 0.096 0.004 0.900
#> SRR2042610     1  0.5948     0.5288 0.640 0.360 0.000
#> SRR2042611     2  0.2796     0.7505 0.092 0.908 0.000
#> SRR2042607     2  0.3183     0.7504 0.076 0.908 0.016
#> SRR2042609     1  0.7318     0.6316 0.668 0.264 0.068
#> SRR2042608     3  0.1129     0.8451 0.004 0.020 0.976
#> SRR2042656     2  0.4058     0.7568 0.076 0.880 0.044
#> SRR2042658     3  0.0592     0.8349 0.012 0.000 0.988
#> SRR2042659     2  0.6769     0.4639 0.320 0.652 0.028
#> SRR2042657     2  0.5397     0.5442 0.280 0.720 0.000
#> SRR2042655     2  0.8556     0.3334 0.232 0.604 0.164

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.8707     0.2004 0.508 0.112 0.240 0.140
#> SRR2042653     4  0.6929     0.1887 0.244 0.140 0.008 0.608
#> SRR2042652     1  0.8303     0.1301 0.440 0.160 0.040 0.360
#> SRR2042650     2  0.7642     0.2190 0.292 0.492 0.004 0.212
#> SRR2042649     3  0.1059     0.8498 0.012 0.000 0.972 0.016
#> SRR2042647     2  0.5453     0.5179 0.036 0.660 0.000 0.304
#> SRR2042648     2  0.4108     0.6918 0.080 0.848 0.056 0.016
#> SRR2042646     3  0.0992     0.8521 0.012 0.004 0.976 0.008
#> SRR2042645     2  0.4623     0.6817 0.168 0.792 0.020 0.020
#> SRR2042644     3  0.0779     0.8520 0.016 0.000 0.980 0.004
#> SRR2042643     2  0.7659     0.1206 0.244 0.460 0.000 0.296
#> SRR2042642     2  0.2075     0.7167 0.016 0.936 0.004 0.044
#> SRR2042640     2  0.3392     0.7143 0.080 0.880 0.024 0.016
#> SRR2042641     3  0.3918     0.7972 0.048 0.020 0.860 0.072
#> SRR2042639     2  0.6897     0.1326 0.076 0.520 0.392 0.012
#> SRR2042638     2  0.3574     0.6982 0.044 0.876 0.064 0.016
#> SRR2042637     3  0.0927     0.8521 0.008 0.000 0.976 0.016
#> SRR2042636     2  0.3325     0.7119 0.112 0.864 0.000 0.024
#> SRR2042634     2  0.5938     0.5984 0.168 0.696 0.000 0.136
#> SRR2042635     2  0.2271     0.7167 0.012 0.928 0.008 0.052
#> SRR2042633     3  0.2032     0.8433 0.028 0.036 0.936 0.000
#> SRR2042631     2  0.3205     0.7139 0.104 0.872 0.000 0.024
#> SRR2042632     3  0.0937     0.8500 0.012 0.000 0.976 0.012
#> SRR2042630     3  0.2895     0.8310 0.044 0.016 0.908 0.032
#> SRR2042629     2  0.3380     0.7044 0.136 0.852 0.004 0.008
#> SRR2042628     3  0.4199     0.7735 0.060 0.096 0.836 0.008
#> SRR2042626     2  0.2599     0.7157 0.064 0.912 0.004 0.020
#> SRR2042627     2  0.6949     0.5987 0.144 0.672 0.048 0.136
#> SRR2042624     3  0.0967     0.8531 0.016 0.004 0.976 0.004
#> SRR2042625     4  0.8758     0.0178 0.200 0.096 0.200 0.504
#> SRR2042623     4  0.6777    -0.0138 0.296 0.092 0.012 0.600
#> SRR2042622     1  0.9124     0.1596 0.452 0.208 0.108 0.232
#> SRR2042620     2  0.4282     0.6889 0.060 0.816 0.000 0.124
#> SRR2042621     3  0.1443     0.8509 0.028 0.004 0.960 0.008
#> SRR2042619     2  0.5228     0.6652 0.124 0.756 0.000 0.120
#> SRR2042618     3  0.5076     0.5635 0.024 0.260 0.712 0.004
#> SRR2042617     2  0.8371     0.0959 0.304 0.440 0.028 0.228
#> SRR2042616     3  0.5802     0.4818 0.040 0.296 0.656 0.008
#> SRR2042615     3  0.4936     0.6892 0.052 0.176 0.768 0.004
#> SRR2042614     3  0.4634     0.7205 0.048 0.156 0.792 0.004
#> SRR2042613     3  0.0657     0.8520 0.012 0.004 0.984 0.000
#> SRR2042612     3  0.7006     0.4662 0.164 0.020 0.636 0.180
#> SRR2042610     4  0.5910     0.2067 0.104 0.208 0.000 0.688
#> SRR2042611     2  0.2450     0.7116 0.016 0.912 0.000 0.072
#> SRR2042607     2  0.3088     0.7082 0.128 0.864 0.000 0.008
#> SRR2042609     1  0.8498     0.1232 0.404 0.116 0.076 0.404
#> SRR2042608     3  0.3643     0.8257 0.060 0.032 0.876 0.032
#> SRR2042656     2  0.3833     0.6971 0.044 0.864 0.072 0.020
#> SRR2042658     3  0.1733     0.8400 0.024 0.000 0.948 0.028
#> SRR2042659     2  0.6952     0.0166 0.452 0.456 0.008 0.084
#> SRR2042657     2  0.6238     0.5166 0.112 0.652 0.000 0.236
#> SRR2042655     2  0.8299     0.0648 0.400 0.428 0.076 0.096

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.8362    -0.0967 0.488 0.204 0.168 0.064 0.076
#> SRR2042653     3  0.7886     0.0325 0.160 0.004 0.420 0.096 0.320
#> SRR2042652     3  0.8552     0.1431 0.292 0.016 0.304 0.100 0.288
#> SRR2042650     4  0.7991    -0.1745 0.248 0.000 0.256 0.400 0.096
#> SRR2042649     2  0.1205     0.8161 0.004 0.956 0.000 0.000 0.040
#> SRR2042647     4  0.4706     0.5478 0.008 0.000 0.316 0.656 0.020
#> SRR2042648     4  0.4145     0.6820 0.028 0.056 0.032 0.836 0.048
#> SRR2042646     2  0.0579     0.8188 0.008 0.984 0.000 0.000 0.008
#> SRR2042645     4  0.5030     0.6430 0.132 0.020 0.024 0.764 0.060
#> SRR2042644     2  0.1200     0.8192 0.016 0.964 0.000 0.008 0.012
#> SRR2042643     4  0.8312    -0.1882 0.172 0.000 0.176 0.348 0.304
#> SRR2042642     4  0.2733     0.7089 0.012 0.004 0.112 0.872 0.000
#> SRR2042640     4  0.3946     0.7068 0.048 0.036 0.036 0.848 0.032
#> SRR2042641     2  0.3870     0.7522 0.012 0.832 0.032 0.016 0.108
#> SRR2042639     2  0.6477     0.1427 0.032 0.476 0.008 0.420 0.064
#> SRR2042638     4  0.3389     0.6918 0.024 0.060 0.020 0.872 0.024
#> SRR2042637     2  0.0880     0.8169 0.000 0.968 0.000 0.000 0.032
#> SRR2042636     4  0.4703     0.6799 0.108 0.000 0.056 0.780 0.056
#> SRR2042634     4  0.6670     0.3915 0.188 0.000 0.200 0.576 0.036
#> SRR2042635     4  0.3068     0.7133 0.028 0.012 0.072 0.880 0.008
#> SRR2042633     2  0.2002     0.8192 0.028 0.932 0.000 0.020 0.020
#> SRR2042631     4  0.4066     0.6956 0.072 0.000 0.028 0.820 0.080
#> SRR2042632     2  0.1074     0.8183 0.012 0.968 0.000 0.004 0.016
#> SRR2042630     2  0.2172     0.8026 0.000 0.908 0.000 0.016 0.076
#> SRR2042629     4  0.4820     0.6834 0.112 0.020 0.056 0.784 0.028
#> SRR2042628     2  0.5177     0.7307 0.068 0.764 0.012 0.100 0.056
#> SRR2042626     4  0.3148     0.7099 0.040 0.004 0.024 0.880 0.052
#> SRR2042627     4  0.7530     0.3997 0.148 0.040 0.128 0.588 0.096
#> SRR2042624     2  0.2492     0.8120 0.020 0.908 0.000 0.024 0.048
#> SRR2042625     5  0.8413     0.0000 0.108 0.088 0.304 0.064 0.436
#> SRR2042623     3  0.8150     0.0529 0.300 0.008 0.408 0.108 0.176
#> SRR2042622     1  0.8811    -0.1036 0.460 0.076 0.160 0.140 0.164
#> SRR2042620     4  0.4883     0.6743 0.084 0.000 0.080 0.772 0.064
#> SRR2042621     2  0.2151     0.8148 0.020 0.924 0.000 0.016 0.040
#> SRR2042619     4  0.5079     0.6439 0.044 0.000 0.100 0.752 0.104
#> SRR2042618     2  0.4646     0.6673 0.012 0.732 0.000 0.212 0.044
#> SRR2042617     1  0.8292     0.1649 0.352 0.020 0.236 0.324 0.068
#> SRR2042616     2  0.4475     0.5910 0.000 0.692 0.000 0.276 0.032
#> SRR2042615     2  0.4556     0.7181 0.024 0.772 0.004 0.160 0.040
#> SRR2042614     2  0.4184     0.7583 0.016 0.808 0.008 0.124 0.044
#> SRR2042613     2  0.0740     0.8199 0.008 0.980 0.000 0.008 0.004
#> SRR2042612     2  0.5554     0.0785 0.024 0.512 0.020 0.004 0.440
#> SRR2042610     3  0.2866     0.0934 0.024 0.000 0.872 0.100 0.004
#> SRR2042611     4  0.2681     0.7134 0.024 0.004 0.068 0.896 0.008
#> SRR2042607     4  0.3553     0.7065 0.072 0.012 0.024 0.860 0.032
#> SRR2042609     3  0.8133     0.1381 0.348 0.036 0.380 0.044 0.192
#> SRR2042608     2  0.3367     0.7946 0.016 0.856 0.000 0.040 0.088
#> SRR2042656     4  0.4373     0.6544 0.028 0.092 0.024 0.816 0.040
#> SRR2042658     2  0.1877     0.8016 0.012 0.924 0.000 0.000 0.064
#> SRR2042659     1  0.8228     0.1465 0.436 0.024 0.132 0.296 0.112
#> SRR2042657     4  0.6409     0.4794 0.056 0.000 0.240 0.608 0.096
#> SRR2042655     1  0.8263     0.2237 0.416 0.032 0.072 0.308 0.172

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1   0.457   0.139455 0.768 0.124 0.008 0.064 0.012 0.024
#> SRR2042653     6   0.773   0.211108 0.072 0.000 0.248 0.056 0.204 0.420
#> SRR2042652     1   0.806  -0.027921 0.480 0.028 0.108 0.072 0.104 0.208
#> SRR2042650     4   0.858  -0.175188 0.148 0.004 0.076 0.312 0.252 0.208
#> SRR2042649     2   0.164   0.762982 0.008 0.924 0.068 0.000 0.000 0.000
#> SRR2042647     4   0.555   0.556312 0.012 0.000 0.036 0.616 0.060 0.276
#> SRR2042648     4   0.450   0.660093 0.012 0.052 0.052 0.780 0.100 0.004
#> SRR2042646     2   0.137   0.781988 0.004 0.948 0.036 0.000 0.012 0.000
#> SRR2042645     4   0.512   0.605987 0.032 0.012 0.036 0.704 0.200 0.016
#> SRR2042644     2   0.141   0.787410 0.008 0.952 0.020 0.004 0.016 0.000
#> SRR2042643     4   0.887  -0.263479 0.152 0.000 0.180 0.264 0.176 0.228
#> SRR2042642     4   0.336   0.691528 0.016 0.004 0.012 0.852 0.040 0.076
#> SRR2042640     4   0.466   0.682925 0.028 0.048 0.028 0.784 0.092 0.020
#> SRR2042641     2   0.415   0.659592 0.008 0.780 0.156 0.024 0.012 0.020
#> SRR2042639     2   0.638   0.220810 0.012 0.492 0.072 0.368 0.048 0.008
#> SRR2042638     4   0.389   0.663581 0.016 0.084 0.020 0.824 0.048 0.008
#> SRR2042637     2   0.123   0.782003 0.004 0.952 0.040 0.000 0.004 0.000
#> SRR2042636     4   0.479   0.645125 0.084 0.000 0.016 0.740 0.136 0.024
#> SRR2042634     4   0.675   0.492464 0.120 0.000 0.024 0.568 0.188 0.100
#> SRR2042635     4   0.356   0.693482 0.012 0.020 0.020 0.852 0.044 0.052
#> SRR2042633     2   0.313   0.776336 0.024 0.868 0.052 0.040 0.016 0.000
#> SRR2042631     4   0.411   0.682469 0.064 0.000 0.012 0.800 0.092 0.032
#> SRR2042632     2   0.104   0.781621 0.004 0.964 0.024 0.000 0.008 0.000
#> SRR2042630     2   0.325   0.719748 0.004 0.832 0.128 0.020 0.016 0.000
#> SRR2042629     4   0.524   0.648962 0.080 0.020 0.008 0.724 0.132 0.036
#> SRR2042628     2   0.559   0.606362 0.020 0.704 0.092 0.060 0.116 0.008
#> SRR2042626     4   0.360   0.688245 0.032 0.012 0.012 0.844 0.076 0.024
#> SRR2042627     4   0.755   0.416858 0.068 0.048 0.052 0.552 0.172 0.108
#> SRR2042624     2   0.344   0.759486 0.020 0.848 0.068 0.020 0.044 0.000
#> SRR2042625     3   0.853  -0.218817 0.100 0.084 0.404 0.056 0.084 0.272
#> SRR2042623     6   0.837   0.108320 0.292 0.008 0.168 0.052 0.148 0.332
#> SRR2042622     5   0.902  -0.028257 0.260 0.068 0.200 0.080 0.316 0.076
#> SRR2042620     4   0.564   0.638173 0.092 0.000 0.036 0.700 0.092 0.080
#> SRR2042621     2   0.313   0.766259 0.016 0.868 0.052 0.024 0.040 0.000
#> SRR2042619     4   0.625   0.602853 0.120 0.000 0.028 0.636 0.124 0.092
#> SRR2042618     2   0.398   0.651970 0.004 0.772 0.032 0.176 0.012 0.004
#> SRR2042617     1   0.849   0.077599 0.384 0.032 0.040 0.240 0.144 0.160
#> SRR2042616     2   0.455   0.577984 0.008 0.708 0.040 0.228 0.016 0.000
#> SRR2042615     2   0.427   0.709886 0.004 0.780 0.056 0.116 0.044 0.000
#> SRR2042614     2   0.297   0.770303 0.004 0.868 0.044 0.068 0.016 0.000
#> SRR2042613     2   0.131   0.788604 0.008 0.956 0.020 0.004 0.012 0.000
#> SRR2042612     3   0.517   0.222393 0.024 0.400 0.544 0.008 0.004 0.020
#> SRR2042610     6   0.427   0.216552 0.080 0.000 0.012 0.100 0.024 0.784
#> SRR2042611     4   0.261   0.693501 0.020 0.000 0.012 0.896 0.044 0.028
#> SRR2042607     4   0.424   0.664606 0.016 0.016 0.012 0.772 0.164 0.020
#> SRR2042609     1   0.842  -0.057236 0.420 0.028 0.152 0.076 0.096 0.228
#> SRR2042608     2   0.453   0.662273 0.028 0.760 0.148 0.048 0.012 0.004
#> SRR2042656     4   0.467   0.637140 0.012 0.116 0.032 0.772 0.048 0.020
#> SRR2042658     2   0.216   0.744356 0.008 0.892 0.096 0.000 0.004 0.000
#> SRR2042659     5   0.754  -0.000601 0.192 0.016 0.028 0.228 0.472 0.064
#> SRR2042657     4   0.658   0.438132 0.020 0.000 0.064 0.564 0.136 0.216
#> SRR2042655     1   0.874  -0.040756 0.332 0.048 0.112 0.176 0.284 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.959           0.965       0.984         0.4212 0.581   0.581
#> 3 3 0.710           0.855       0.918         0.5016 0.784   0.629
#> 4 4 0.712           0.782       0.874         0.1184 0.921   0.784
#> 5 5 0.734           0.766       0.861         0.0452 1.000   1.000
#> 6 6 0.741           0.708       0.841         0.0157 0.997   0.989

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      0.976 1.000 0.000
#> SRR2042653     1  0.0000      0.976 1.000 0.000
#> SRR2042652     1  0.0000      0.976 1.000 0.000
#> SRR2042650     1  0.0672      0.972 0.992 0.008
#> SRR2042649     2  0.0000      0.985 0.000 1.000
#> SRR2042647     2  0.0000      0.985 0.000 1.000
#> SRR2042648     2  0.0000      0.985 0.000 1.000
#> SRR2042646     2  0.0000      0.985 0.000 1.000
#> SRR2042645     2  0.1184      0.972 0.016 0.984
#> SRR2042644     2  0.0000      0.985 0.000 1.000
#> SRR2042643     1  0.7745      0.704 0.772 0.228
#> SRR2042642     2  0.0000      0.985 0.000 1.000
#> SRR2042640     2  0.0000      0.985 0.000 1.000
#> SRR2042641     2  0.0000      0.985 0.000 1.000
#> SRR2042639     2  0.0000      0.985 0.000 1.000
#> SRR2042638     2  0.0000      0.985 0.000 1.000
#> SRR2042637     2  0.0000      0.985 0.000 1.000
#> SRR2042636     2  0.5946      0.835 0.144 0.856
#> SRR2042634     2  0.7376      0.744 0.208 0.792
#> SRR2042635     2  0.0000      0.985 0.000 1.000
#> SRR2042633     2  0.0000      0.985 0.000 1.000
#> SRR2042631     2  0.0000      0.985 0.000 1.000
#> SRR2042632     2  0.0000      0.985 0.000 1.000
#> SRR2042630     2  0.0000      0.985 0.000 1.000
#> SRR2042629     2  0.0000      0.985 0.000 1.000
#> SRR2042628     2  0.1184      0.972 0.016 0.984
#> SRR2042626     2  0.0000      0.985 0.000 1.000
#> SRR2042627     1  0.0000      0.976 1.000 0.000
#> SRR2042624     2  0.0000      0.985 0.000 1.000
#> SRR2042625     1  0.0000      0.976 1.000 0.000
#> SRR2042623     1  0.0000      0.976 1.000 0.000
#> SRR2042622     1  0.0000      0.976 1.000 0.000
#> SRR2042620     2  0.0000      0.985 0.000 1.000
#> SRR2042621     2  0.0000      0.985 0.000 1.000
#> SRR2042619     2  0.0376      0.982 0.004 0.996
#> SRR2042618     2  0.0000      0.985 0.000 1.000
#> SRR2042617     1  0.3879      0.911 0.924 0.076
#> SRR2042616     2  0.0000      0.985 0.000 1.000
#> SRR2042615     2  0.0000      0.985 0.000 1.000
#> SRR2042614     2  0.0000      0.985 0.000 1.000
#> SRR2042613     2  0.0000      0.985 0.000 1.000
#> SRR2042612     1  0.0000      0.976 1.000 0.000
#> SRR2042610     1  0.0000      0.976 1.000 0.000
#> SRR2042611     2  0.0000      0.985 0.000 1.000
#> SRR2042607     2  0.0000      0.985 0.000 1.000
#> SRR2042609     1  0.0000      0.976 1.000 0.000
#> SRR2042608     2  0.0000      0.985 0.000 1.000
#> SRR2042656     2  0.0000      0.985 0.000 1.000
#> SRR2042658     2  0.0000      0.985 0.000 1.000
#> SRR2042659     1  0.0000      0.976 1.000 0.000
#> SRR2042657     2  0.5946      0.836 0.144 0.856
#> SRR2042655     1  0.0672      0.972 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.967 1.000 0.000 0.000
#> SRR2042653     1  0.0747      0.966 0.984 0.016 0.000
#> SRR2042652     1  0.0000      0.967 1.000 0.000 0.000
#> SRR2042650     1  0.1031      0.963 0.976 0.024 0.000
#> SRR2042649     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042647     2  0.2625      0.882 0.000 0.916 0.084
#> SRR2042648     3  0.5291      0.682 0.000 0.268 0.732
#> SRR2042646     3  0.0892      0.887 0.000 0.020 0.980
#> SRR2042645     2  0.2584      0.877 0.008 0.928 0.064
#> SRR2042644     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042643     1  0.5529      0.638 0.704 0.296 0.000
#> SRR2042642     3  0.5291      0.682 0.000 0.268 0.732
#> SRR2042640     2  0.6095      0.344 0.000 0.608 0.392
#> SRR2042641     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042639     3  0.4399      0.766 0.000 0.188 0.812
#> SRR2042638     3  0.5291      0.682 0.000 0.268 0.732
#> SRR2042637     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042636     2  0.3886      0.801 0.096 0.880 0.024
#> SRR2042634     2  0.3918      0.731 0.140 0.856 0.004
#> SRR2042635     3  0.5291      0.682 0.000 0.268 0.732
#> SRR2042633     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042631     2  0.2625      0.882 0.000 0.916 0.084
#> SRR2042632     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042630     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042629     2  0.3116      0.875 0.000 0.892 0.108
#> SRR2042628     3  0.3272      0.825 0.004 0.104 0.892
#> SRR2042626     3  0.5706      0.589 0.000 0.320 0.680
#> SRR2042627     1  0.0747      0.966 0.984 0.016 0.000
#> SRR2042624     3  0.1163      0.887 0.000 0.028 0.972
#> SRR2042625     1  0.0592      0.967 0.988 0.012 0.000
#> SRR2042623     1  0.0000      0.967 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.967 1.000 0.000 0.000
#> SRR2042620     2  0.4062      0.825 0.000 0.836 0.164
#> SRR2042621     3  0.1163      0.887 0.000 0.028 0.972
#> SRR2042619     2  0.3030      0.882 0.004 0.904 0.092
#> SRR2042618     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042617     1  0.3038      0.897 0.896 0.104 0.000
#> SRR2042616     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042615     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042614     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042613     3  0.0000      0.896 0.000 0.000 1.000
#> SRR2042612     1  0.0237      0.966 0.996 0.004 0.000
#> SRR2042610     1  0.0592      0.967 0.988 0.012 0.000
#> SRR2042611     3  0.5291      0.682 0.000 0.268 0.732
#> SRR2042607     2  0.3340      0.868 0.000 0.880 0.120
#> SRR2042609     1  0.0000      0.967 1.000 0.000 0.000
#> SRR2042608     3  0.0424      0.893 0.000 0.008 0.992
#> SRR2042656     3  0.3619      0.816 0.000 0.136 0.864
#> SRR2042658     3  0.0892      0.887 0.000 0.020 0.980
#> SRR2042659     1  0.0237      0.967 0.996 0.004 0.000
#> SRR2042657     2  0.4295      0.801 0.104 0.864 0.032
#> SRR2042655     1  0.1031      0.962 0.976 0.024 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.1022      0.949 0.968 0.000 0.032 0.000
#> SRR2042652     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.1545      0.944 0.952 0.000 0.040 0.008
#> SRR2042649     2  0.1716      0.715 0.000 0.936 0.064 0.000
#> SRR2042647     4  0.1004      0.871 0.000 0.024 0.004 0.972
#> SRR2042648     2  0.4431      0.613 0.000 0.696 0.000 0.304
#> SRR2042646     3  0.4866      0.794 0.000 0.404 0.596 0.000
#> SRR2042645     4  0.0376      0.862 0.000 0.004 0.004 0.992
#> SRR2042644     2  0.0188      0.748 0.000 0.996 0.004 0.000
#> SRR2042643     1  0.7080      0.500 0.568 0.000 0.236 0.196
#> SRR2042642     2  0.4431      0.613 0.000 0.696 0.000 0.304
#> SRR2042640     4  0.4643      0.347 0.000 0.344 0.000 0.656
#> SRR2042641     2  0.2921      0.612 0.000 0.860 0.140 0.000
#> SRR2042639     2  0.3764      0.655 0.000 0.784 0.000 0.216
#> SRR2042638     2  0.4431      0.613 0.000 0.696 0.000 0.304
#> SRR2042637     2  0.1022      0.737 0.000 0.968 0.032 0.000
#> SRR2042636     4  0.3196      0.794 0.008 0.000 0.136 0.856
#> SRR2042634     4  0.4840      0.706 0.028 0.000 0.240 0.732
#> SRR2042635     2  0.4431      0.613 0.000 0.696 0.000 0.304
#> SRR2042633     2  0.1004      0.741 0.000 0.972 0.024 0.004
#> SRR2042631     4  0.1004      0.871 0.000 0.024 0.004 0.972
#> SRR2042632     2  0.1637      0.719 0.000 0.940 0.060 0.000
#> SRR2042630     2  0.1302      0.730 0.000 0.956 0.044 0.000
#> SRR2042629     4  0.1302      0.865 0.000 0.044 0.000 0.956
#> SRR2042628     3  0.4253      0.780 0.000 0.208 0.776 0.016
#> SRR2042626     2  0.4730      0.534 0.000 0.636 0.000 0.364
#> SRR2042627     1  0.1022      0.949 0.968 0.000 0.032 0.000
#> SRR2042624     3  0.4950      0.865 0.000 0.376 0.620 0.004
#> SRR2042625     1  0.1211      0.948 0.960 0.000 0.040 0.000
#> SRR2042623     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> SRR2042620     4  0.2345      0.821 0.000 0.100 0.000 0.900
#> SRR2042621     3  0.4950      0.865 0.000 0.376 0.620 0.004
#> SRR2042619     4  0.1356      0.871 0.000 0.032 0.008 0.960
#> SRR2042618     2  0.0000      0.750 0.000 1.000 0.000 0.000
#> SRR2042617     1  0.3335      0.880 0.856 0.000 0.128 0.016
#> SRR2042616     2  0.0000      0.750 0.000 1.000 0.000 0.000
#> SRR2042615     2  0.0000      0.750 0.000 1.000 0.000 0.000
#> SRR2042614     2  0.0000      0.750 0.000 1.000 0.000 0.000
#> SRR2042613     2  0.1022      0.738 0.000 0.968 0.032 0.000
#> SRR2042612     1  0.0188      0.951 0.996 0.000 0.004 0.000
#> SRR2042610     1  0.0592      0.952 0.984 0.000 0.016 0.000
#> SRR2042611     2  0.4431      0.613 0.000 0.696 0.000 0.304
#> SRR2042607     4  0.1557      0.859 0.000 0.056 0.000 0.944
#> SRR2042609     1  0.0000      0.952 1.000 0.000 0.000 0.000
#> SRR2042608     2  0.3933      0.453 0.000 0.792 0.200 0.008
#> SRR2042656     2  0.3123      0.697 0.000 0.844 0.000 0.156
#> SRR2042658     3  0.4500      0.856 0.000 0.316 0.684 0.000
#> SRR2042659     1  0.0469      0.951 0.988 0.000 0.012 0.000
#> SRR2042657     4  0.3377      0.790 0.012 0.000 0.140 0.848
#> SRR2042655     1  0.1545      0.943 0.952 0.000 0.040 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR2042654     1  0.0162      0.942 0.996 0.000 0.000 0.000 NA
#> SRR2042653     1  0.0963      0.940 0.964 0.000 0.000 0.000 NA
#> SRR2042652     1  0.0162      0.942 0.996 0.000 0.000 0.000 NA
#> SRR2042650     1  0.1341      0.935 0.944 0.000 0.000 0.000 NA
#> SRR2042649     2  0.2331      0.735 0.000 0.900 0.080 0.000 NA
#> SRR2042647     4  0.0727      0.836 0.000 0.004 0.004 0.980 NA
#> SRR2042648     2  0.4474      0.611 0.000 0.652 0.004 0.332 NA
#> SRR2042646     3  0.4402      0.712 0.000 0.204 0.740 0.000 NA
#> SRR2042645     4  0.1704      0.823 0.000 0.000 0.004 0.928 NA
#> SRR2042644     2  0.0290      0.774 0.000 0.992 0.008 0.000 NA
#> SRR2042643     1  0.5492      0.448 0.536 0.000 0.000 0.068 NA
#> SRR2042642     2  0.4457      0.616 0.000 0.656 0.004 0.328 NA
#> SRR2042640     4  0.4325      0.371 0.000 0.300 0.004 0.684 NA
#> SRR2042641     2  0.3950      0.640 0.000 0.796 0.136 0.000 NA
#> SRR2042639     2  0.3962      0.691 0.000 0.744 0.004 0.240 NA
#> SRR2042638     2  0.4457      0.616 0.000 0.656 0.004 0.328 NA
#> SRR2042637     2  0.1124      0.765 0.000 0.960 0.036 0.000 NA
#> SRR2042636     4  0.3766      0.704 0.000 0.000 0.004 0.728 NA
#> SRR2042634     4  0.4182      0.591 0.000 0.000 0.000 0.600 NA
#> SRR2042635     2  0.4457      0.616 0.000 0.656 0.004 0.328 NA
#> SRR2042633     2  0.1074      0.772 0.000 0.968 0.016 0.004 NA
#> SRR2042631     4  0.1026      0.835 0.000 0.004 0.004 0.968 NA
#> SRR2042632     2  0.2110      0.744 0.000 0.912 0.072 0.000 NA
#> SRR2042630     2  0.1740      0.756 0.000 0.932 0.056 0.000 NA
#> SRR2042629     4  0.0451      0.832 0.000 0.008 0.000 0.988 NA
#> SRR2042628     3  0.4331      0.653 0.000 0.004 0.596 0.000 NA
#> SRR2042626     2  0.4676      0.506 0.000 0.592 0.004 0.392 NA
#> SRR2042627     1  0.0963      0.940 0.964 0.000 0.000 0.000 NA
#> SRR2042624     3  0.2561      0.818 0.000 0.144 0.856 0.000 NA
#> SRR2042625     1  0.1341      0.935 0.944 0.000 0.000 0.000 NA
#> SRR2042623     1  0.0162      0.942 0.996 0.000 0.000 0.000 NA
#> SRR2042622     1  0.0162      0.942 0.996 0.000 0.000 0.000 NA
#> SRR2042620     4  0.1857      0.791 0.000 0.060 0.004 0.928 NA
#> SRR2042621     3  0.2561      0.818 0.000 0.144 0.856 0.000 NA
#> SRR2042619     4  0.1059      0.837 0.000 0.008 0.004 0.968 NA
#> SRR2042618     2  0.0000      0.776 0.000 1.000 0.000 0.000 NA
#> SRR2042617     1  0.2773      0.857 0.836 0.000 0.000 0.000 NA
#> SRR2042616     2  0.0000      0.776 0.000 1.000 0.000 0.000 NA
#> SRR2042615     2  0.0000      0.776 0.000 1.000 0.000 0.000 NA
#> SRR2042614     2  0.0000      0.776 0.000 1.000 0.000 0.000 NA
#> SRR2042613     2  0.1082      0.766 0.000 0.964 0.028 0.000 NA
#> SRR2042612     1  0.0404      0.941 0.988 0.000 0.000 0.000 NA
#> SRR2042610     1  0.0880      0.941 0.968 0.000 0.000 0.000 NA
#> SRR2042611     2  0.4457      0.616 0.000 0.656 0.004 0.328 NA
#> SRR2042607     4  0.0798      0.827 0.000 0.016 0.000 0.976 NA
#> SRR2042609     1  0.0162      0.942 0.996 0.000 0.000 0.000 NA
#> SRR2042608     2  0.5936      0.378 0.000 0.636 0.240 0.028 NA
#> SRR2042656     2  0.3167      0.728 0.000 0.820 0.004 0.172 NA
#> SRR2042658     3  0.3647      0.770 0.000 0.052 0.816 0.000 NA
#> SRR2042659     1  0.0510      0.942 0.984 0.000 0.000 0.000 NA
#> SRR2042657     4  0.3969      0.681 0.000 0.000 0.004 0.692 NA
#> SRR2042655     1  0.1270      0.935 0.948 0.000 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0146     0.9286 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042653     1  0.1141     0.9269 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR2042652     1  0.0146     0.9286 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042650     1  0.1501     0.9209 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR2042649     2  0.2051     0.7210 0.000 0.896 0.096 0.000 0.004 0.004
#> SRR2042647     4  0.0622     0.7863 0.000 0.000 0.000 0.980 0.008 0.012
#> SRR2042648     2  0.4134     0.6006 0.000 0.640 0.000 0.340 0.004 0.016
#> SRR2042646     3  0.3424     0.5610 0.000 0.168 0.796 0.000 0.004 0.032
#> SRR2042645     4  0.2673     0.7519 0.000 0.000 0.004 0.852 0.012 0.132
#> SRR2042644     2  0.0146     0.7632 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR2042643     1  0.4494     0.3564 0.512 0.000 0.000 0.012 0.012 0.464
#> SRR2042642     2  0.4119     0.6055 0.000 0.644 0.000 0.336 0.004 0.016
#> SRR2042640     4  0.3915     0.3550 0.000 0.288 0.000 0.692 0.004 0.016
#> SRR2042641     2  0.3752     0.6138 0.000 0.776 0.168 0.000 0.004 0.052
#> SRR2042639     2  0.3697     0.6821 0.000 0.732 0.000 0.248 0.004 0.016
#> SRR2042638     2  0.4119     0.6055 0.000 0.644 0.000 0.336 0.004 0.016
#> SRR2042637     2  0.0935     0.7538 0.000 0.964 0.032 0.000 0.000 0.004
#> SRR2042636     4  0.3887     0.5782 0.000 0.000 0.000 0.632 0.008 0.360
#> SRR2042634     4  0.4403     0.4357 0.000 0.000 0.000 0.508 0.024 0.468
#> SRR2042635     2  0.4119     0.6055 0.000 0.644 0.000 0.336 0.004 0.016
#> SRR2042633     2  0.1167     0.7605 0.000 0.960 0.020 0.008 0.000 0.012
#> SRR2042631     4  0.1196     0.7850 0.000 0.000 0.000 0.952 0.008 0.040
#> SRR2042632     2  0.1897     0.7299 0.000 0.908 0.084 0.000 0.004 0.004
#> SRR2042630     2  0.1524     0.7435 0.000 0.932 0.060 0.000 0.000 0.008
#> SRR2042629     4  0.0146     0.7828 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2042628     5  0.2006     0.0000 0.000 0.000 0.104 0.000 0.892 0.004
#> SRR2042626     2  0.4301     0.4977 0.000 0.580 0.000 0.400 0.004 0.016
#> SRR2042627     1  0.1204     0.9265 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR2042624     3  0.3419     0.6897 0.000 0.104 0.812 0.000 0.084 0.000
#> SRR2042625     1  0.1556     0.9201 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR2042623     1  0.0146     0.9286 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042622     1  0.0146     0.9286 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042620     4  0.1578     0.7469 0.000 0.048 0.000 0.936 0.004 0.012
#> SRR2042621     3  0.3419     0.6897 0.000 0.104 0.812 0.000 0.084 0.000
#> SRR2042619     4  0.1225     0.7874 0.000 0.000 0.000 0.952 0.012 0.036
#> SRR2042618     2  0.0146     0.7647 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2042617     1  0.2877     0.8422 0.820 0.000 0.000 0.000 0.012 0.168
#> SRR2042616     2  0.0146     0.7647 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2042615     2  0.0146     0.7647 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2042614     2  0.0146     0.7647 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2042613     2  0.0858     0.7550 0.000 0.968 0.028 0.000 0.000 0.004
#> SRR2042612     1  0.1370     0.9230 0.948 0.000 0.004 0.000 0.012 0.036
#> SRR2042610     1  0.0865     0.9290 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR2042611     2  0.4119     0.6055 0.000 0.644 0.000 0.336 0.004 0.016
#> SRR2042607     4  0.0551     0.7783 0.000 0.004 0.000 0.984 0.004 0.008
#> SRR2042609     1  0.0146     0.9286 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042608     2  0.7327    -0.0121 0.000 0.448 0.188 0.032 0.064 0.268
#> SRR2042656     2  0.2989     0.7200 0.000 0.812 0.000 0.176 0.004 0.008
#> SRR2042658     3  0.3693     0.5336 0.000 0.016 0.800 0.000 0.048 0.136
#> SRR2042659     1  0.0632     0.9282 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR2042657     4  0.4408     0.5091 0.000 0.000 0.004 0.560 0.020 0.416
#> SRR2042655     1  0.1387     0.9221 0.932 0.000 0.000 0.000 0.000 0.068

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.986         0.4442 0.566   0.566
#> 3 3 0.689           0.835       0.899         0.4806 0.762   0.587
#> 4 4 0.822           0.818       0.904         0.1196 0.883   0.672
#> 5 5 0.782           0.441       0.780         0.0619 0.928   0.752
#> 6 6 0.826           0.886       0.874         0.0392 0.876   0.545

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000     0.9992 1.000 0.000
#> SRR2042653     1  0.0000     0.9992 1.000 0.000
#> SRR2042652     1  0.0000     0.9992 1.000 0.000
#> SRR2042650     1  0.0000     0.9992 1.000 0.000
#> SRR2042649     2  0.0000     0.9800 0.000 1.000
#> SRR2042647     2  0.0000     0.9800 0.000 1.000
#> SRR2042648     2  0.0000     0.9800 0.000 1.000
#> SRR2042646     2  0.0000     0.9800 0.000 1.000
#> SRR2042645     2  0.2778     0.9382 0.048 0.952
#> SRR2042644     2  0.0000     0.9800 0.000 1.000
#> SRR2042643     1  0.0000     0.9992 1.000 0.000
#> SRR2042642     2  0.0000     0.9800 0.000 1.000
#> SRR2042640     2  0.0000     0.9800 0.000 1.000
#> SRR2042641     2  0.0000     0.9800 0.000 1.000
#> SRR2042639     2  0.0000     0.9800 0.000 1.000
#> SRR2042638     2  0.0000     0.9800 0.000 1.000
#> SRR2042637     2  0.0000     0.9800 0.000 1.000
#> SRR2042636     2  0.4298     0.8973 0.088 0.912
#> SRR2042634     1  0.0938     0.9874 0.988 0.012
#> SRR2042635     2  0.0000     0.9800 0.000 1.000
#> SRR2042633     2  0.0000     0.9800 0.000 1.000
#> SRR2042631     2  0.0000     0.9800 0.000 1.000
#> SRR2042632     2  0.0000     0.9800 0.000 1.000
#> SRR2042630     2  0.0000     0.9800 0.000 1.000
#> SRR2042629     2  0.0000     0.9800 0.000 1.000
#> SRR2042628     2  0.3274     0.9271 0.060 0.940
#> SRR2042626     2  0.0000     0.9800 0.000 1.000
#> SRR2042627     1  0.0000     0.9992 1.000 0.000
#> SRR2042624     2  0.0000     0.9800 0.000 1.000
#> SRR2042625     1  0.0000     0.9992 1.000 0.000
#> SRR2042623     1  0.0000     0.9992 1.000 0.000
#> SRR2042622     1  0.0000     0.9992 1.000 0.000
#> SRR2042620     2  0.0000     0.9800 0.000 1.000
#> SRR2042621     2  0.0000     0.9800 0.000 1.000
#> SRR2042619     2  0.0000     0.9800 0.000 1.000
#> SRR2042618     2  0.0000     0.9800 0.000 1.000
#> SRR2042617     1  0.0000     0.9992 1.000 0.000
#> SRR2042616     2  0.0000     0.9800 0.000 1.000
#> SRR2042615     2  0.0000     0.9800 0.000 1.000
#> SRR2042614     2  0.0000     0.9800 0.000 1.000
#> SRR2042613     2  0.0000     0.9800 0.000 1.000
#> SRR2042612     1  0.0000     0.9992 1.000 0.000
#> SRR2042610     1  0.0000     0.9992 1.000 0.000
#> SRR2042611     2  0.0000     0.9800 0.000 1.000
#> SRR2042607     2  0.0000     0.9800 0.000 1.000
#> SRR2042609     1  0.0000     0.9992 1.000 0.000
#> SRR2042608     2  0.0000     0.9800 0.000 1.000
#> SRR2042656     2  0.0000     0.9800 0.000 1.000
#> SRR2042658     2  0.0000     0.9800 0.000 1.000
#> SRR2042659     1  0.0000     0.9992 1.000 0.000
#> SRR2042657     2  1.0000     0.0205 0.500 0.500
#> SRR2042655     1  0.0000     0.9992 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0424      0.987 0.992 0.008 0.000
#> SRR2042653     1  0.0592      0.991 0.988 0.012 0.000
#> SRR2042652     1  0.0424      0.987 0.992 0.008 0.000
#> SRR2042650     1  0.0747      0.991 0.984 0.016 0.000
#> SRR2042649     3  0.0000      0.812 0.000 0.000 1.000
#> SRR2042647     2  0.1031      0.864 0.000 0.976 0.024
#> SRR2042648     3  0.5591      0.722 0.000 0.304 0.696
#> SRR2042646     3  0.0892      0.806 0.000 0.020 0.980
#> SRR2042645     2  0.1031      0.861 0.024 0.976 0.000
#> SRR2042644     3  0.0424      0.817 0.000 0.008 0.992
#> SRR2042643     1  0.0747      0.991 0.984 0.016 0.000
#> SRR2042642     3  0.5591      0.722 0.000 0.304 0.696
#> SRR2042640     2  0.3941      0.726 0.000 0.844 0.156
#> SRR2042641     3  0.0237      0.815 0.000 0.004 0.996
#> SRR2042639     3  0.4887      0.778 0.000 0.228 0.772
#> SRR2042638     3  0.5254      0.755 0.000 0.264 0.736
#> SRR2042637     3  0.0424      0.817 0.000 0.008 0.992
#> SRR2042636     2  0.1031      0.861 0.024 0.976 0.000
#> SRR2042634     2  0.4291      0.710 0.180 0.820 0.000
#> SRR2042635     3  0.5591      0.722 0.000 0.304 0.696
#> SRR2042633     3  0.1031      0.820 0.000 0.024 0.976
#> SRR2042631     2  0.0747      0.866 0.000 0.984 0.016
#> SRR2042632     3  0.0000      0.812 0.000 0.000 1.000
#> SRR2042630     3  0.0892      0.819 0.000 0.020 0.980
#> SRR2042629     2  0.1031      0.864 0.000 0.976 0.024
#> SRR2042628     2  0.6252      0.545 0.008 0.648 0.344
#> SRR2042626     3  0.5591      0.722 0.000 0.304 0.696
#> SRR2042627     1  0.0747      0.991 0.984 0.016 0.000
#> SRR2042624     2  0.6079      0.494 0.000 0.612 0.388
#> SRR2042625     1  0.0592      0.991 0.988 0.012 0.000
#> SRR2042623     1  0.0424      0.987 0.992 0.008 0.000
#> SRR2042622     1  0.0424      0.987 0.992 0.008 0.000
#> SRR2042620     2  0.2878      0.806 0.000 0.904 0.096
#> SRR2042621     3  0.2537      0.764 0.000 0.080 0.920
#> SRR2042619     2  0.0592      0.866 0.000 0.988 0.012
#> SRR2042618     3  0.3941      0.813 0.000 0.156 0.844
#> SRR2042617     1  0.0747      0.991 0.984 0.016 0.000
#> SRR2042616     3  0.3941      0.813 0.000 0.156 0.844
#> SRR2042615     3  0.3412      0.818 0.000 0.124 0.876
#> SRR2042614     3  0.3941      0.813 0.000 0.156 0.844
#> SRR2042613     3  0.0424      0.817 0.000 0.008 0.992
#> SRR2042612     1  0.0747      0.991 0.984 0.016 0.000
#> SRR2042610     1  0.0000      0.989 1.000 0.000 0.000
#> SRR2042611     3  0.5591      0.722 0.000 0.304 0.696
#> SRR2042607     2  0.1289      0.861 0.000 0.968 0.032
#> SRR2042609     1  0.0424      0.987 0.992 0.008 0.000
#> SRR2042608     3  0.4842      0.576 0.000 0.224 0.776
#> SRR2042656     3  0.5591      0.722 0.000 0.304 0.696
#> SRR2042658     3  0.4399      0.638 0.000 0.188 0.812
#> SRR2042659     1  0.0592      0.991 0.988 0.012 0.000
#> SRR2042657     2  0.1753      0.847 0.048 0.952 0.000
#> SRR2042655     1  0.0747      0.991 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.3047     0.9089 0.872 0.000 0.116 0.012
#> SRR2042653     1  0.0188     0.9450 0.996 0.000 0.000 0.004
#> SRR2042652     1  0.3047     0.9089 0.872 0.000 0.116 0.012
#> SRR2042650     1  0.1520     0.9431 0.956 0.000 0.024 0.020
#> SRR2042649     3  0.4830     0.5364 0.000 0.392 0.608 0.000
#> SRR2042647     4  0.1109     0.9429 0.000 0.028 0.004 0.968
#> SRR2042648     2  0.0336     0.8891 0.000 0.992 0.000 0.008
#> SRR2042646     3  0.2973     0.7813 0.000 0.144 0.856 0.000
#> SRR2042645     4  0.0927     0.9357 0.008 0.000 0.016 0.976
#> SRR2042644     2  0.1302     0.8575 0.000 0.956 0.044 0.000
#> SRR2042643     1  0.1520     0.9431 0.956 0.000 0.024 0.020
#> SRR2042642     2  0.0336     0.8891 0.000 0.992 0.000 0.008
#> SRR2042640     4  0.4122     0.6898 0.000 0.236 0.004 0.760
#> SRR2042641     3  0.4967     0.4227 0.000 0.452 0.548 0.000
#> SRR2042639     2  0.0336     0.8891 0.000 0.992 0.000 0.008
#> SRR2042638     2  0.0188     0.8891 0.000 0.996 0.000 0.004
#> SRR2042637     2  0.4994    -0.2896 0.000 0.520 0.480 0.000
#> SRR2042636     4  0.0804     0.9352 0.012 0.000 0.008 0.980
#> SRR2042634     4  0.1042     0.9308 0.020 0.000 0.008 0.972
#> SRR2042635     2  0.0336     0.8891 0.000 0.992 0.000 0.008
#> SRR2042633     2  0.4866     0.0204 0.000 0.596 0.404 0.000
#> SRR2042631     4  0.1004     0.9435 0.000 0.024 0.004 0.972
#> SRR2042632     3  0.4961     0.4225 0.000 0.448 0.552 0.000
#> SRR2042630     2  0.0592     0.8799 0.000 0.984 0.016 0.000
#> SRR2042629     4  0.1109     0.9429 0.000 0.028 0.004 0.968
#> SRR2042628     3  0.3323     0.6917 0.064 0.000 0.876 0.060
#> SRR2042626     2  0.0469     0.8855 0.000 0.988 0.000 0.012
#> SRR2042627     1  0.1520     0.9431 0.956 0.000 0.024 0.020
#> SRR2042624     3  0.3487     0.7439 0.016 0.040 0.880 0.064
#> SRR2042625     1  0.0895     0.9458 0.976 0.000 0.020 0.004
#> SRR2042623     1  0.3047     0.9089 0.872 0.000 0.116 0.012
#> SRR2042622     1  0.2988     0.9104 0.876 0.000 0.112 0.012
#> SRR2042620     4  0.2714     0.8657 0.000 0.112 0.004 0.884
#> SRR2042621     3  0.3196     0.7832 0.000 0.136 0.856 0.008
#> SRR2042619     4  0.1151     0.9436 0.000 0.024 0.008 0.968
#> SRR2042618     2  0.0524     0.8880 0.000 0.988 0.008 0.004
#> SRR2042617     1  0.1520     0.9431 0.956 0.000 0.024 0.020
#> SRR2042616     2  0.0524     0.8880 0.000 0.988 0.008 0.004
#> SRR2042615     2  0.0469     0.8858 0.000 0.988 0.012 0.000
#> SRR2042614     2  0.0524     0.8880 0.000 0.988 0.008 0.004
#> SRR2042613     2  0.4164     0.4914 0.000 0.736 0.264 0.000
#> SRR2042612     1  0.1151     0.9452 0.968 0.000 0.024 0.008
#> SRR2042610     1  0.0657     0.9430 0.984 0.000 0.012 0.004
#> SRR2042611     2  0.0336     0.8891 0.000 0.992 0.000 0.008
#> SRR2042607     4  0.1209     0.9412 0.000 0.032 0.004 0.964
#> SRR2042609     1  0.3047     0.9089 0.872 0.000 0.116 0.012
#> SRR2042608     3  0.4285     0.7759 0.000 0.156 0.804 0.040
#> SRR2042656     2  0.0336     0.8891 0.000 0.992 0.000 0.008
#> SRR2042658     3  0.3319     0.7740 0.012 0.096 0.876 0.016
#> SRR2042659     1  0.0657     0.9460 0.984 0.000 0.012 0.004
#> SRR2042657     4  0.0804     0.9352 0.012 0.000 0.008 0.980
#> SRR2042655     1  0.1297     0.9450 0.964 0.000 0.020 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.3308 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.4446    -0.7091 0.520 0.000 0.004 0.000 0.476
#> SRR2042652     1  0.0000     0.3308 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.4659    -0.8103 0.496 0.000 0.000 0.012 0.492
#> SRR2042649     2  0.5520    -0.0805 0.000 0.560 0.364 0.000 0.076
#> SRR2042647     4  0.0404     0.9165 0.000 0.000 0.000 0.988 0.012
#> SRR2042648     2  0.4165     0.7390 0.000 0.672 0.000 0.008 0.320
#> SRR2042646     3  0.1626     0.8877 0.000 0.016 0.940 0.000 0.044
#> SRR2042645     4  0.2304     0.9005 0.000 0.000 0.008 0.892 0.100
#> SRR2042644     2  0.0324     0.5944 0.000 0.992 0.004 0.000 0.004
#> SRR2042643     5  0.4981     0.7585 0.440 0.000 0.012 0.012 0.536
#> SRR2042642     2  0.4165     0.7390 0.000 0.672 0.000 0.008 0.320
#> SRR2042640     4  0.4028     0.6869 0.000 0.192 0.000 0.768 0.040
#> SRR2042641     2  0.5475     0.0375 0.000 0.596 0.320 0.000 0.084
#> SRR2042639     2  0.4009     0.7398 0.000 0.684 0.000 0.004 0.312
#> SRR2042638     2  0.4165     0.7390 0.000 0.672 0.000 0.008 0.320
#> SRR2042637     2  0.4988     0.1723 0.000 0.656 0.284 0.000 0.060
#> SRR2042636     4  0.2193     0.9021 0.000 0.000 0.008 0.900 0.092
#> SRR2042634     4  0.2068     0.9026 0.000 0.000 0.004 0.904 0.092
#> SRR2042635     2  0.4165     0.7390 0.000 0.672 0.000 0.008 0.320
#> SRR2042633     2  0.3720     0.3392 0.000 0.760 0.228 0.000 0.012
#> SRR2042631     4  0.0000     0.9170 0.000 0.000 0.000 1.000 0.000
#> SRR2042632     2  0.5420     0.0218 0.000 0.592 0.332 0.000 0.076
#> SRR2042630     2  0.1410     0.5618 0.000 0.940 0.000 0.000 0.060
#> SRR2042629     4  0.0404     0.9165 0.000 0.000 0.000 0.988 0.012
#> SRR2042628     3  0.0798     0.9083 0.000 0.000 0.976 0.008 0.016
#> SRR2042626     2  0.4270     0.7367 0.000 0.668 0.000 0.012 0.320
#> SRR2042627     1  0.4561    -0.7688 0.504 0.000 0.000 0.008 0.488
#> SRR2042624     3  0.0798     0.9083 0.000 0.000 0.976 0.008 0.016
#> SRR2042625     1  0.4557    -0.7186 0.516 0.000 0.008 0.000 0.476
#> SRR2042623     1  0.0000     0.3308 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0703     0.3184 0.976 0.000 0.000 0.000 0.024
#> SRR2042620     4  0.2450     0.8477 0.000 0.076 0.000 0.896 0.028
#> SRR2042621     3  0.0854     0.9060 0.000 0.012 0.976 0.004 0.008
#> SRR2042619     4  0.0290     0.9165 0.000 0.000 0.000 0.992 0.008
#> SRR2042618     2  0.3816     0.7392 0.000 0.696 0.000 0.000 0.304
#> SRR2042617     5  0.4658     0.7245 0.484 0.000 0.000 0.012 0.504
#> SRR2042616     2  0.3774     0.7387 0.000 0.704 0.000 0.000 0.296
#> SRR2042615     2  0.3774     0.7387 0.000 0.704 0.000 0.000 0.296
#> SRR2042614     2  0.3774     0.7387 0.000 0.704 0.000 0.000 0.296
#> SRR2042613     2  0.3691     0.4157 0.000 0.804 0.156 0.000 0.040
#> SRR2042612     1  0.4448    -0.7170 0.516 0.000 0.004 0.000 0.480
#> SRR2042610     1  0.4300    -0.7040 0.524 0.000 0.000 0.000 0.476
#> SRR2042611     2  0.4165     0.7390 0.000 0.672 0.000 0.008 0.320
#> SRR2042607     4  0.0671     0.9142 0.000 0.004 0.000 0.980 0.016
#> SRR2042609     1  0.0000     0.3308 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     3  0.5747     0.5567 0.000 0.320 0.600 0.028 0.052
#> SRR2042656     2  0.4165     0.7390 0.000 0.672 0.000 0.008 0.320
#> SRR2042658     3  0.0693     0.9086 0.000 0.000 0.980 0.008 0.012
#> SRR2042659     1  0.4304    -0.7144 0.516 0.000 0.000 0.000 0.484
#> SRR2042657     4  0.2411     0.8968 0.000 0.000 0.008 0.884 0.108
#> SRR2042655     1  0.4705    -0.7706 0.504 0.000 0.004 0.008 0.484

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     6  0.3620      0.991 0.352 0.000 0.000 0.000 0.000 0.648
#> SRR2042653     1  0.0146      0.968 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2042652     6  0.3620      0.991 0.352 0.000 0.000 0.000 0.000 0.648
#> SRR2042650     1  0.0405      0.966 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR2042649     5  0.3050      0.742 0.000 0.092 0.044 0.000 0.852 0.012
#> SRR2042647     4  0.0291      0.871 0.000 0.000 0.000 0.992 0.004 0.004
#> SRR2042648     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042646     3  0.3529      0.851 0.000 0.000 0.764 0.000 0.208 0.028
#> SRR2042645     4  0.4929      0.794 0.000 0.000 0.056 0.720 0.088 0.136
#> SRR2042644     5  0.3890      0.613 0.000 0.400 0.000 0.000 0.596 0.004
#> SRR2042643     1  0.2051      0.841 0.896 0.000 0.004 0.000 0.004 0.096
#> SRR2042642     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     4  0.2941      0.678 0.000 0.220 0.000 0.780 0.000 0.000
#> SRR2042641     5  0.3604      0.744 0.000 0.104 0.032 0.000 0.820 0.044
#> SRR2042639     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042638     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     5  0.2871      0.789 0.000 0.192 0.000 0.000 0.804 0.004
#> SRR2042636     4  0.4402      0.817 0.000 0.000 0.048 0.764 0.068 0.120
#> SRR2042634     4  0.3949      0.836 0.008 0.000 0.020 0.804 0.076 0.092
#> SRR2042635     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     5  0.3601      0.749 0.000 0.312 0.000 0.000 0.684 0.004
#> SRR2042631     4  0.0146      0.871 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2042632     5  0.2887      0.755 0.000 0.104 0.032 0.000 0.856 0.008
#> SRR2042630     5  0.3615      0.764 0.000 0.292 0.000 0.000 0.700 0.008
#> SRR2042629     4  0.0291      0.871 0.000 0.000 0.000 0.992 0.004 0.004
#> SRR2042628     3  0.2308      0.913 0.000 0.000 0.892 0.000 0.068 0.040
#> SRR2042626     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042627     1  0.0146      0.967 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042624     3  0.1444      0.926 0.000 0.000 0.928 0.000 0.072 0.000
#> SRR2042625     1  0.0520      0.966 0.984 0.000 0.008 0.000 0.008 0.000
#> SRR2042623     6  0.3620      0.991 0.352 0.000 0.000 0.000 0.000 0.648
#> SRR2042622     6  0.3819      0.964 0.372 0.000 0.000 0.000 0.004 0.624
#> SRR2042620     4  0.2163      0.808 0.000 0.096 0.000 0.892 0.008 0.004
#> SRR2042621     3  0.1701      0.926 0.000 0.000 0.920 0.000 0.072 0.008
#> SRR2042619     4  0.0717      0.871 0.000 0.000 0.000 0.976 0.008 0.016
#> SRR2042618     2  0.0363      0.982 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR2042617     1  0.0806      0.951 0.972 0.000 0.000 0.000 0.008 0.020
#> SRR2042616     2  0.0790      0.966 0.000 0.968 0.000 0.000 0.032 0.000
#> SRR2042615     2  0.0865      0.961 0.000 0.964 0.000 0.000 0.036 0.000
#> SRR2042614     2  0.0632      0.973 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR2042613     5  0.3351      0.775 0.000 0.288 0.000 0.000 0.712 0.000
#> SRR2042612     1  0.0870      0.958 0.972 0.000 0.012 0.000 0.012 0.004
#> SRR2042610     1  0.0146      0.968 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2042611     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     4  0.0291      0.869 0.000 0.004 0.000 0.992 0.004 0.000
#> SRR2042609     6  0.3620      0.991 0.352 0.000 0.000 0.000 0.000 0.648
#> SRR2042608     5  0.5023      0.327 0.000 0.000 0.220 0.000 0.636 0.144
#> SRR2042656     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042658     3  0.3740      0.886 0.000 0.000 0.784 0.000 0.120 0.096
#> SRR2042659     1  0.0405      0.967 0.988 0.000 0.004 0.000 0.008 0.000
#> SRR2042657     4  0.4908      0.794 0.000 0.000 0.052 0.720 0.088 0.140
#> SRR2042655     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.959           0.942       0.976         0.4988 0.502   0.502
#> 3 3 0.741           0.842       0.915         0.2944 0.803   0.624
#> 4 4 0.793           0.786       0.909         0.1121 0.873   0.667
#> 5 5 0.736           0.590       0.821         0.0439 0.974   0.912
#> 6 6 0.738           0.560       0.781         0.0292 0.968   0.885

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1   0.000      0.974 1.000 0.000
#> SRR2042653     1   0.000      0.974 1.000 0.000
#> SRR2042652     1   0.000      0.974 1.000 0.000
#> SRR2042650     1   0.000      0.974 1.000 0.000
#> SRR2042649     2   0.000      0.975 0.000 1.000
#> SRR2042647     2   0.000      0.975 0.000 1.000
#> SRR2042648     2   0.000      0.975 0.000 1.000
#> SRR2042646     2   0.000      0.975 0.000 1.000
#> SRR2042645     1   0.000      0.974 1.000 0.000
#> SRR2042644     2   0.000      0.975 0.000 1.000
#> SRR2042643     1   0.000      0.974 1.000 0.000
#> SRR2042642     2   0.000      0.975 0.000 1.000
#> SRR2042640     2   0.000      0.975 0.000 1.000
#> SRR2042641     2   0.000      0.975 0.000 1.000
#> SRR2042639     2   0.000      0.975 0.000 1.000
#> SRR2042638     2   0.000      0.975 0.000 1.000
#> SRR2042637     2   0.000      0.975 0.000 1.000
#> SRR2042636     1   0.000      0.974 1.000 0.000
#> SRR2042634     1   0.000      0.974 1.000 0.000
#> SRR2042635     2   0.000      0.975 0.000 1.000
#> SRR2042633     2   0.000      0.975 0.000 1.000
#> SRR2042631     2   0.936      0.456 0.352 0.648
#> SRR2042632     2   0.000      0.975 0.000 1.000
#> SRR2042630     2   0.000      0.975 0.000 1.000
#> SRR2042629     2   0.000      0.975 0.000 1.000
#> SRR2042628     1   0.000      0.974 1.000 0.000
#> SRR2042626     2   0.000      0.975 0.000 1.000
#> SRR2042627     1   0.000      0.974 1.000 0.000
#> SRR2042624     1   0.802      0.682 0.756 0.244
#> SRR2042625     1   0.000      0.974 1.000 0.000
#> SRR2042623     1   0.000      0.974 1.000 0.000
#> SRR2042622     1   0.000      0.974 1.000 0.000
#> SRR2042620     2   0.000      0.975 0.000 1.000
#> SRR2042621     2   0.000      0.975 0.000 1.000
#> SRR2042619     2   0.943      0.443 0.360 0.640
#> SRR2042618     2   0.000      0.975 0.000 1.000
#> SRR2042617     1   0.000      0.974 1.000 0.000
#> SRR2042616     2   0.000      0.975 0.000 1.000
#> SRR2042615     2   0.000      0.975 0.000 1.000
#> SRR2042614     2   0.000      0.975 0.000 1.000
#> SRR2042613     2   0.000      0.975 0.000 1.000
#> SRR2042612     1   0.000      0.974 1.000 0.000
#> SRR2042610     1   0.000      0.974 1.000 0.000
#> SRR2042611     2   0.000      0.975 0.000 1.000
#> SRR2042607     2   0.000      0.975 0.000 1.000
#> SRR2042609     1   0.000      0.974 1.000 0.000
#> SRR2042608     2   0.000      0.975 0.000 1.000
#> SRR2042656     2   0.000      0.975 0.000 1.000
#> SRR2042658     1   0.850      0.626 0.724 0.276
#> SRR2042659     1   0.000      0.974 1.000 0.000
#> SRR2042657     1   0.000      0.974 1.000 0.000
#> SRR2042655     1   0.000      0.974 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042653     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042652     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042650     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042649     3  0.0000      0.908 0.000 0.000 1.000
#> SRR2042647     2  0.0424      0.829 0.000 0.992 0.008
#> SRR2042648     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042646     3  0.0424      0.903 0.000 0.008 0.992
#> SRR2042645     2  0.4452      0.729 0.192 0.808 0.000
#> SRR2042644     3  0.0424      0.911 0.000 0.008 0.992
#> SRR2042643     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042642     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042640     2  0.5560      0.422 0.000 0.700 0.300
#> SRR2042641     3  0.0424      0.911 0.000 0.008 0.992
#> SRR2042639     3  0.3816      0.901 0.000 0.148 0.852
#> SRR2042638     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042637     3  0.0000      0.908 0.000 0.000 1.000
#> SRR2042636     2  0.4235      0.738 0.176 0.824 0.000
#> SRR2042634     2  0.6260      0.307 0.448 0.552 0.000
#> SRR2042635     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042633     3  0.0424      0.911 0.000 0.008 0.992
#> SRR2042631     2  0.0424      0.829 0.000 0.992 0.008
#> SRR2042632     3  0.0000      0.908 0.000 0.000 1.000
#> SRR2042630     3  0.1411      0.914 0.000 0.036 0.964
#> SRR2042629     2  0.0424      0.829 0.000 0.992 0.008
#> SRR2042628     1  0.2173      0.872 0.944 0.008 0.048
#> SRR2042626     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042627     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042624     1  0.6771      0.315 0.548 0.012 0.440
#> SRR2042625     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042623     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042620     2  0.3340      0.741 0.000 0.880 0.120
#> SRR2042621     3  0.0424      0.903 0.000 0.008 0.992
#> SRR2042619     2  0.0475      0.828 0.004 0.992 0.004
#> SRR2042618     3  0.3267      0.911 0.000 0.116 0.884
#> SRR2042617     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042616     3  0.3192      0.912 0.000 0.112 0.888
#> SRR2042615     3  0.2796      0.914 0.000 0.092 0.908
#> SRR2042614     3  0.3192      0.912 0.000 0.112 0.888
#> SRR2042613     3  0.0237      0.910 0.000 0.004 0.996
#> SRR2042612     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042610     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042611     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042607     2  0.1289      0.818 0.000 0.968 0.032
#> SRR2042609     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042608     3  0.0424      0.905 0.000 0.008 0.992
#> SRR2042656     3  0.4178      0.890 0.000 0.172 0.828
#> SRR2042658     1  0.6672      0.228 0.520 0.008 0.472
#> SRR2042659     1  0.0000      0.925 1.000 0.000 0.000
#> SRR2042657     2  0.5138      0.668 0.252 0.748 0.000
#> SRR2042655     1  0.0000      0.925 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042650     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042649     2  0.4998     0.1797 0.000 0.512 0.488 0.000
#> SRR2042647     4  0.0592     0.8070 0.000 0.016 0.000 0.984
#> SRR2042648     2  0.0188     0.8774 0.000 0.996 0.000 0.004
#> SRR2042646     3  0.0921     0.7994 0.000 0.028 0.972 0.000
#> SRR2042645     4  0.3335     0.7276 0.128 0.000 0.016 0.856
#> SRR2042644     2  0.1716     0.8595 0.000 0.936 0.064 0.000
#> SRR2042643     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042642     2  0.0188     0.8774 0.000 0.996 0.000 0.004
#> SRR2042640     2  0.4730     0.3521 0.000 0.636 0.000 0.364
#> SRR2042641     2  0.3837     0.7263 0.000 0.776 0.224 0.000
#> SRR2042639     2  0.0376     0.8780 0.000 0.992 0.004 0.004
#> SRR2042638     2  0.0000     0.8775 0.000 1.000 0.000 0.000
#> SRR2042637     2  0.4250     0.6619 0.000 0.724 0.276 0.000
#> SRR2042636     4  0.1488     0.7968 0.032 0.000 0.012 0.956
#> SRR2042634     1  0.5167    -0.0243 0.508 0.000 0.004 0.488
#> SRR2042635     2  0.0188     0.8774 0.000 0.996 0.000 0.004
#> SRR2042633     2  0.3074     0.8052 0.000 0.848 0.152 0.000
#> SRR2042631     4  0.0188     0.8058 0.000 0.004 0.000 0.996
#> SRR2042632     2  0.4776     0.4807 0.000 0.624 0.376 0.000
#> SRR2042630     2  0.1557     0.8638 0.000 0.944 0.056 0.000
#> SRR2042629     4  0.0469     0.8073 0.000 0.012 0.000 0.988
#> SRR2042628     3  0.4741     0.4473 0.328 0.000 0.668 0.004
#> SRR2042626     2  0.0188     0.8774 0.000 0.996 0.000 0.004
#> SRR2042627     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042624     3  0.0992     0.8012 0.008 0.012 0.976 0.004
#> SRR2042625     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042623     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042620     4  0.4866     0.3345 0.000 0.404 0.000 0.596
#> SRR2042621     3  0.0707     0.8028 0.000 0.020 0.980 0.000
#> SRR2042619     4  0.0657     0.8071 0.000 0.012 0.004 0.984
#> SRR2042618     2  0.0188     0.8775 0.000 0.996 0.004 0.000
#> SRR2042617     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042616     2  0.0469     0.8770 0.000 0.988 0.012 0.000
#> SRR2042615     2  0.0921     0.8729 0.000 0.972 0.028 0.000
#> SRR2042614     2  0.0592     0.8763 0.000 0.984 0.016 0.000
#> SRR2042613     2  0.3172     0.7962 0.000 0.840 0.160 0.000
#> SRR2042612     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042610     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042611     2  0.0188     0.8774 0.000 0.996 0.000 0.004
#> SRR2042607     4  0.4008     0.6158 0.000 0.244 0.000 0.756
#> SRR2042609     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042608     3  0.5355     0.2923 0.000 0.360 0.620 0.020
#> SRR2042656     2  0.0188     0.8774 0.000 0.996 0.000 0.004
#> SRR2042658     3  0.0376     0.7991 0.004 0.004 0.992 0.000
#> SRR2042659     1  0.0000     0.9636 1.000 0.000 0.000 0.000
#> SRR2042657     4  0.4857     0.5517 0.284 0.000 0.016 0.700
#> SRR2042655     1  0.0000     0.9636 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042652     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.0404     0.9421 0.988 0.000 0.000 0.000 0.012
#> SRR2042649     3  0.6040     0.0787 0.000 0.372 0.504 0.000 0.124
#> SRR2042647     4  0.2193     0.2371 0.000 0.028 0.000 0.912 0.060
#> SRR2042648     2  0.0992     0.8171 0.000 0.968 0.000 0.024 0.008
#> SRR2042646     3  0.2074     0.6143 0.000 0.036 0.920 0.000 0.044
#> SRR2042645     5  0.6110     0.0000 0.108 0.000 0.004 0.436 0.452
#> SRR2042644     2  0.3814     0.7373 0.000 0.808 0.124 0.000 0.068
#> SRR2042643     1  0.0880     0.9242 0.968 0.000 0.000 0.000 0.032
#> SRR2042642     2  0.1106     0.8164 0.000 0.964 0.000 0.024 0.012
#> SRR2042640     2  0.5119     0.2864 0.000 0.592 0.000 0.360 0.048
#> SRR2042641     2  0.5961     0.4293 0.000 0.580 0.260 0.000 0.160
#> SRR2042639     2  0.1106     0.8183 0.000 0.964 0.000 0.024 0.012
#> SRR2042638     2  0.0992     0.8171 0.000 0.968 0.000 0.024 0.008
#> SRR2042637     2  0.5952     0.3777 0.000 0.548 0.324 0.000 0.128
#> SRR2042636     4  0.4583    -0.3128 0.032 0.000 0.000 0.672 0.296
#> SRR2042634     1  0.6763    -0.4253 0.396 0.000 0.000 0.324 0.280
#> SRR2042635     2  0.0992     0.8171 0.000 0.968 0.000 0.024 0.008
#> SRR2042633     2  0.4953     0.6605 0.000 0.712 0.164 0.000 0.124
#> SRR2042631     4  0.2439     0.1625 0.000 0.004 0.000 0.876 0.120
#> SRR2042632     2  0.6059     0.1155 0.000 0.468 0.412 0.000 0.120
#> SRR2042630     2  0.3849     0.7421 0.000 0.808 0.080 0.000 0.112
#> SRR2042629     4  0.2359     0.2481 0.000 0.036 0.000 0.904 0.060
#> SRR2042628     3  0.6522     0.1729 0.300 0.000 0.476 0.000 0.224
#> SRR2042626     2  0.1364     0.8120 0.000 0.952 0.000 0.036 0.012
#> SRR2042627     1  0.0162     0.9466 0.996 0.000 0.000 0.000 0.004
#> SRR2042624     3  0.3308     0.5632 0.020 0.000 0.832 0.004 0.144
#> SRR2042625     1  0.0162     0.9468 0.996 0.000 0.000 0.000 0.004
#> SRR2042623     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     4  0.6298     0.1513 0.000 0.412 0.000 0.436 0.152
#> SRR2042621     3  0.2519     0.6085 0.000 0.016 0.884 0.000 0.100
#> SRR2042619     4  0.3783     0.0322 0.000 0.008 0.000 0.740 0.252
#> SRR2042618     2  0.0451     0.8165 0.000 0.988 0.004 0.000 0.008
#> SRR2042617     1  0.0510     0.9399 0.984 0.000 0.000 0.000 0.016
#> SRR2042616     2  0.1399     0.8128 0.000 0.952 0.020 0.000 0.028
#> SRR2042615     2  0.1300     0.8129 0.000 0.956 0.016 0.000 0.028
#> SRR2042614     2  0.1579     0.8105 0.000 0.944 0.024 0.000 0.032
#> SRR2042613     2  0.4923     0.6275 0.000 0.700 0.212 0.000 0.088
#> SRR2042612     1  0.0671     0.9357 0.980 0.000 0.004 0.000 0.016
#> SRR2042610     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042611     2  0.0992     0.8171 0.000 0.968 0.000 0.024 0.008
#> SRR2042607     4  0.6089     0.1977 0.000 0.256 0.004 0.580 0.160
#> SRR2042609     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     3  0.7650     0.3697 0.000 0.264 0.412 0.056 0.268
#> SRR2042656     2  0.1372     0.8176 0.000 0.956 0.004 0.024 0.016
#> SRR2042658     3  0.1965     0.6076 0.000 0.000 0.904 0.000 0.096
#> SRR2042659     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000
#> SRR2042657     4  0.6635    -0.5489 0.224 0.000 0.000 0.416 0.360
#> SRR2042655     1  0.0000     0.9485 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000     0.9739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.0291     0.9742 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR2042652     1  0.0000     0.9739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     1  0.1176     0.9586 0.956 0.000 0.000 0.000 0.020 0.024
#> SRR2042649     5  0.6459     0.3828 0.000 0.340 0.280 0.000 0.364 0.016
#> SRR2042647     4  0.4060     0.3643 0.000 0.028 0.000 0.760 0.032 0.180
#> SRR2042648     2  0.0972     0.6914 0.000 0.964 0.000 0.028 0.008 0.000
#> SRR2042646     3  0.3830     0.4189 0.000 0.036 0.760 0.000 0.196 0.008
#> SRR2042645     6  0.5958     0.2992 0.080 0.000 0.012 0.260 0.052 0.596
#> SRR2042644     2  0.4418     0.4981 0.000 0.716 0.072 0.000 0.204 0.008
#> SRR2042643     1  0.2384     0.8788 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR2042642     2  0.0858     0.6905 0.000 0.968 0.000 0.028 0.004 0.000
#> SRR2042640     2  0.5503    -0.1010 0.000 0.484 0.000 0.428 0.056 0.032
#> SRR2042641     2  0.6904    -0.3687 0.000 0.444 0.208 0.012 0.292 0.044
#> SRR2042639     2  0.1624     0.6893 0.000 0.936 0.000 0.008 0.044 0.012
#> SRR2042638     2  0.0777     0.6914 0.000 0.972 0.000 0.024 0.004 0.000
#> SRR2042637     2  0.6105    -0.1991 0.000 0.476 0.180 0.000 0.328 0.016
#> SRR2042636     6  0.5564     0.0935 0.020 0.000 0.000 0.420 0.080 0.480
#> SRR2042634     6  0.7092     0.3253 0.344 0.000 0.000 0.176 0.100 0.380
#> SRR2042635     2  0.0935     0.6892 0.000 0.964 0.000 0.032 0.004 0.000
#> SRR2042633     2  0.6333     0.0899 0.000 0.552 0.168 0.016 0.236 0.028
#> SRR2042631     4  0.3717     0.3207 0.000 0.000 0.000 0.776 0.064 0.160
#> SRR2042632     2  0.6007    -0.3573 0.000 0.444 0.208 0.000 0.344 0.004
#> SRR2042630     2  0.3960     0.5432 0.000 0.752 0.032 0.004 0.204 0.008
#> SRR2042629     4  0.3672     0.4399 0.000 0.060 0.000 0.824 0.052 0.064
#> SRR2042628     3  0.7368     0.1565 0.276 0.000 0.416 0.012 0.200 0.096
#> SRR2042626     2  0.1531     0.6660 0.000 0.928 0.000 0.068 0.004 0.000
#> SRR2042627     1  0.0862     0.9690 0.972 0.000 0.004 0.000 0.016 0.008
#> SRR2042624     3  0.3119     0.5759 0.020 0.000 0.860 0.008 0.080 0.032
#> SRR2042625     1  0.0725     0.9709 0.976 0.000 0.000 0.000 0.012 0.012
#> SRR2042623     1  0.0000     0.9739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0146     0.9741 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2042620     4  0.6402     0.2863 0.000 0.368 0.000 0.452 0.056 0.124
#> SRR2042621     3  0.3031     0.5408 0.000 0.016 0.852 0.000 0.100 0.032
#> SRR2042619     4  0.5421     0.1167 0.000 0.012 0.000 0.544 0.092 0.352
#> SRR2042618     2  0.1410     0.6892 0.000 0.944 0.008 0.004 0.044 0.000
#> SRR2042617     1  0.1480     0.9456 0.940 0.000 0.000 0.000 0.020 0.040
#> SRR2042616     2  0.2458     0.6721 0.000 0.888 0.016 0.004 0.084 0.008
#> SRR2042615     2  0.2617     0.6615 0.000 0.872 0.016 0.000 0.100 0.012
#> SRR2042614     2  0.2356     0.6701 0.000 0.884 0.016 0.000 0.096 0.004
#> SRR2042613     2  0.5118     0.4150 0.000 0.664 0.108 0.000 0.208 0.020
#> SRR2042612     1  0.0951     0.9598 0.968 0.000 0.008 0.000 0.020 0.004
#> SRR2042610     1  0.0622     0.9713 0.980 0.000 0.000 0.000 0.012 0.008
#> SRR2042611     2  0.0858     0.6905 0.000 0.968 0.000 0.028 0.004 0.000
#> SRR2042607     4  0.5904     0.4100 0.000 0.224 0.012 0.620 0.052 0.092
#> SRR2042609     1  0.0000     0.9739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     5  0.7399     0.2789 0.000 0.212 0.256 0.032 0.436 0.064
#> SRR2042656     2  0.1743     0.6926 0.000 0.936 0.008 0.028 0.024 0.004
#> SRR2042658     3  0.4067     0.5144 0.004 0.004 0.752 0.004 0.196 0.040
#> SRR2042659     1  0.0291     0.9739 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR2042657     6  0.5587     0.4239 0.156 0.000 0.000 0.192 0.028 0.624
#> SRR2042655     1  0.0622     0.9705 0.980 0.000 0.000 0.000 0.008 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.998         0.4206 0.581   0.581
#> 3 3 0.904           0.882       0.946         0.3556 0.778   0.634
#> 4 4 0.805           0.801       0.897         0.0703 0.980   0.951
#> 5 5 0.844           0.768       0.896         0.0416 0.989   0.973
#> 6 6 0.849           0.814       0.903         0.0128 0.988   0.969

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.0000      1.000 1.000 0.000
#> SRR2042653     1  0.0000      1.000 1.000 0.000
#> SRR2042652     1  0.0000      1.000 1.000 0.000
#> SRR2042650     1  0.0000      1.000 1.000 0.000
#> SRR2042649     2  0.0000      0.997 0.000 1.000
#> SRR2042647     2  0.0000      0.997 0.000 1.000
#> SRR2042648     2  0.0000      0.997 0.000 1.000
#> SRR2042646     2  0.0000      0.997 0.000 1.000
#> SRR2042645     2  0.0000      0.997 0.000 1.000
#> SRR2042644     2  0.0000      0.997 0.000 1.000
#> SRR2042643     1  0.0000      1.000 1.000 0.000
#> SRR2042642     2  0.0000      0.997 0.000 1.000
#> SRR2042640     2  0.0000      0.997 0.000 1.000
#> SRR2042641     2  0.0000      0.997 0.000 1.000
#> SRR2042639     2  0.0000      0.997 0.000 1.000
#> SRR2042638     2  0.0000      0.997 0.000 1.000
#> SRR2042637     2  0.0000      0.997 0.000 1.000
#> SRR2042636     2  0.0000      0.997 0.000 1.000
#> SRR2042634     2  0.4298      0.904 0.088 0.912
#> SRR2042635     2  0.0000      0.997 0.000 1.000
#> SRR2042633     2  0.0000      0.997 0.000 1.000
#> SRR2042631     2  0.0000      0.997 0.000 1.000
#> SRR2042632     2  0.0000      0.997 0.000 1.000
#> SRR2042630     2  0.0000      0.997 0.000 1.000
#> SRR2042629     2  0.0000      0.997 0.000 1.000
#> SRR2042628     2  0.0376      0.994 0.004 0.996
#> SRR2042626     2  0.0000      0.997 0.000 1.000
#> SRR2042627     1  0.0000      1.000 1.000 0.000
#> SRR2042624     2  0.0000      0.997 0.000 1.000
#> SRR2042625     1  0.0000      1.000 1.000 0.000
#> SRR2042623     1  0.0000      1.000 1.000 0.000
#> SRR2042622     1  0.0000      1.000 1.000 0.000
#> SRR2042620     2  0.0000      0.997 0.000 1.000
#> SRR2042621     2  0.0000      0.997 0.000 1.000
#> SRR2042619     2  0.0000      0.997 0.000 1.000
#> SRR2042618     2  0.0000      0.997 0.000 1.000
#> SRR2042617     1  0.0000      1.000 1.000 0.000
#> SRR2042616     2  0.0000      0.997 0.000 1.000
#> SRR2042615     2  0.0000      0.997 0.000 1.000
#> SRR2042614     2  0.0000      0.997 0.000 1.000
#> SRR2042613     2  0.0000      0.997 0.000 1.000
#> SRR2042612     1  0.0000      1.000 1.000 0.000
#> SRR2042610     1  0.0000      1.000 1.000 0.000
#> SRR2042611     2  0.0000      0.997 0.000 1.000
#> SRR2042607     2  0.0000      0.997 0.000 1.000
#> SRR2042609     1  0.0000      1.000 1.000 0.000
#> SRR2042608     2  0.0000      0.997 0.000 1.000
#> SRR2042656     2  0.0000      0.997 0.000 1.000
#> SRR2042658     2  0.0000      0.997 0.000 1.000
#> SRR2042659     1  0.0000      1.000 1.000 0.000
#> SRR2042657     2  0.0000      0.997 0.000 1.000
#> SRR2042655     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0000      0.901 1.000 0.000 0.000
#> SRR2042653     1  0.3879      0.828 0.848 0.000 0.152
#> SRR2042652     1  0.0000      0.901 1.000 0.000 0.000
#> SRR2042650     3  0.3267      0.727 0.116 0.000 0.884
#> SRR2042649     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042647     2  0.0747      0.980 0.000 0.984 0.016
#> SRR2042648     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042646     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042645     3  0.5497      0.538 0.000 0.292 0.708
#> SRR2042644     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042643     3  0.2537      0.745 0.080 0.000 0.920
#> SRR2042642     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042640     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042641     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042639     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042638     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042637     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042636     3  0.0747      0.756 0.000 0.016 0.984
#> SRR2042634     3  0.0000      0.752 0.000 0.000 1.000
#> SRR2042635     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042633     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042631     2  0.2448      0.918 0.000 0.924 0.076
#> SRR2042632     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042630     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042629     2  0.0747      0.980 0.000 0.984 0.016
#> SRR2042628     3  0.0747      0.758 0.000 0.016 0.984
#> SRR2042626     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042627     3  0.3192      0.730 0.112 0.000 0.888
#> SRR2042624     3  0.6291      0.261 0.000 0.468 0.532
#> SRR2042625     1  0.4178      0.816 0.828 0.000 0.172
#> SRR2042623     1  0.0000      0.901 1.000 0.000 0.000
#> SRR2042622     1  0.0000      0.901 1.000 0.000 0.000
#> SRR2042620     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042621     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042619     2  0.2448      0.917 0.000 0.924 0.076
#> SRR2042618     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042617     3  0.2796      0.741 0.092 0.000 0.908
#> SRR2042616     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042615     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042614     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042613     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042612     1  0.6026      0.489 0.624 0.000 0.376
#> SRR2042610     1  0.2165      0.889 0.936 0.000 0.064
#> SRR2042611     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042607     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042609     1  0.0000      0.901 1.000 0.000 0.000
#> SRR2042608     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042656     2  0.0000      0.993 0.000 1.000 0.000
#> SRR2042658     3  0.6140      0.437 0.000 0.404 0.596
#> SRR2042659     1  0.2796      0.876 0.908 0.000 0.092
#> SRR2042657     3  0.0592      0.756 0.000 0.012 0.988
#> SRR2042655     3  0.4346      0.656 0.184 0.000 0.816

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.0000      0.887 1.000 0.000 0.000 0.000
#> SRR2042653     1  0.4030      0.814 0.836 0.000 0.072 0.092
#> SRR2042652     1  0.0000      0.887 1.000 0.000 0.000 0.000
#> SRR2042650     4  0.6597      0.651 0.108 0.000 0.304 0.588
#> SRR2042649     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042647     2  0.0707      0.942 0.000 0.980 0.000 0.020
#> SRR2042648     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042646     2  0.2216      0.862 0.000 0.908 0.092 0.000
#> SRR2042645     4  0.2255      0.393 0.000 0.068 0.012 0.920
#> SRR2042644     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042643     4  0.6222      0.652 0.080 0.000 0.304 0.616
#> SRR2042642     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042640     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042641     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042639     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042638     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042637     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042636     4  0.0188      0.543 0.000 0.000 0.004 0.996
#> SRR2042634     4  0.1474      0.565 0.000 0.000 0.052 0.948
#> SRR2042635     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042633     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042631     2  0.4155      0.621 0.000 0.756 0.004 0.240
#> SRR2042632     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042630     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042629     2  0.1867      0.884 0.000 0.928 0.000 0.072
#> SRR2042628     3  0.4877     -0.215 0.000 0.000 0.592 0.408
#> SRR2042626     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042627     4  0.6548      0.654 0.104 0.000 0.304 0.592
#> SRR2042624     3  0.7875      0.426 0.000 0.296 0.388 0.316
#> SRR2042625     1  0.4879      0.770 0.780 0.000 0.128 0.092
#> SRR2042623     1  0.0000      0.887 1.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.887 1.000 0.000 0.000 0.000
#> SRR2042620     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042621     2  0.3172      0.763 0.000 0.840 0.160 0.000
#> SRR2042619     2  0.4837      0.379 0.000 0.648 0.004 0.348
#> SRR2042618     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042617     4  0.6497      0.655 0.100 0.000 0.304 0.596
#> SRR2042616     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042615     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042614     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042613     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042612     1  0.6571      0.502 0.612 0.000 0.264 0.124
#> SRR2042610     1  0.2224      0.872 0.928 0.000 0.040 0.032
#> SRR2042611     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042607     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042609     1  0.0000      0.887 1.000 0.000 0.000 0.000
#> SRR2042608     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042656     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> SRR2042658     3  0.6422      0.463 0.000 0.248 0.632 0.120
#> SRR2042659     1  0.3052      0.839 0.860 0.000 0.136 0.004
#> SRR2042657     4  0.0336      0.546 0.000 0.000 0.008 0.992
#> SRR2042655     4  0.7013      0.607 0.152 0.000 0.292 0.556

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.0000      0.873 1.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.2813      0.804 0.832 0.000 0.000 0.168 0.000
#> SRR2042652     1  0.0000      0.873 1.000 0.000 0.000 0.000 0.000
#> SRR2042650     4  0.1197      0.686 0.048 0.000 0.000 0.952 0.000
#> SRR2042649     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042647     2  0.0794      0.930 0.000 0.972 0.000 0.000 0.028
#> SRR2042648     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042646     2  0.2570      0.840 0.000 0.880 0.108 0.004 0.008
#> SRR2042645     5  0.4767      0.847 0.000 0.020 0.000 0.420 0.560
#> SRR2042644     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042643     4  0.0794      0.677 0.028 0.000 0.000 0.972 0.000
#> SRR2042642     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042640     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042641     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042639     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042638     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042637     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042636     5  0.4300      0.834 0.000 0.000 0.000 0.476 0.524
#> SRR2042634     4  0.4182     -0.631 0.000 0.000 0.000 0.600 0.400
#> SRR2042635     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042633     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042631     2  0.3857      0.565 0.000 0.688 0.000 0.000 0.312
#> SRR2042632     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042630     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042629     2  0.1544      0.894 0.000 0.932 0.000 0.000 0.068
#> SRR2042628     3  0.6070      0.569 0.000 0.000 0.440 0.120 0.440
#> SRR2042626     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042627     4  0.1121      0.687 0.044 0.000 0.000 0.956 0.000
#> SRR2042624     3  0.7150      0.312 0.000 0.116 0.460 0.360 0.064
#> SRR2042625     1  0.3274      0.767 0.780 0.000 0.000 0.220 0.000
#> SRR2042623     1  0.0000      0.873 1.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.873 1.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042621     2  0.4858      0.472 0.000 0.656 0.308 0.012 0.024
#> SRR2042619     2  0.4227      0.345 0.000 0.580 0.000 0.000 0.420
#> SRR2042618     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042617     4  0.0963      0.685 0.036 0.000 0.000 0.964 0.000
#> SRR2042616     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042615     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042614     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042613     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042612     1  0.4262      0.408 0.560 0.000 0.000 0.440 0.000
#> SRR2042610     1  0.1608      0.859 0.928 0.000 0.000 0.072 0.000
#> SRR2042611     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042607     2  0.0162      0.949 0.000 0.996 0.000 0.000 0.004
#> SRR2042609     1  0.0000      0.873 1.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042656     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000
#> SRR2042658     3  0.0566      0.545 0.000 0.012 0.984 0.004 0.000
#> SRR2042659     1  0.2561      0.825 0.856 0.000 0.000 0.144 0.000
#> SRR2042657     4  0.4304     -0.837 0.000 0.000 0.000 0.516 0.484
#> SRR2042655     4  0.1851      0.640 0.088 0.000 0.000 0.912 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0000      0.870 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042653     1  0.3078      0.803 0.836 0.000 0.000 0.056 0.000 0.108
#> SRR2042652     1  0.0000      0.870 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042650     6  0.4615      0.952 0.040 0.000 0.000 0.424 0.000 0.536
#> SRR2042649     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042647     2  0.0713      0.926 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR2042648     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042646     2  0.2393      0.840 0.000 0.884 0.092 0.000 0.020 0.004
#> SRR2042645     4  0.2389      0.717 0.000 0.000 0.000 0.864 0.008 0.128
#> SRR2042644     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042643     6  0.4300      0.942 0.020 0.000 0.000 0.432 0.000 0.548
#> SRR2042642     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042641     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042639     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042638     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042637     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042636     4  0.2100      0.738 0.000 0.000 0.000 0.884 0.004 0.112
#> SRR2042634     4  0.2416      0.570 0.000 0.000 0.000 0.844 0.000 0.156
#> SRR2042635     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042631     2  0.3531      0.527 0.000 0.672 0.000 0.328 0.000 0.000
#> SRR2042632     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042630     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042629     2  0.1387      0.889 0.000 0.932 0.000 0.068 0.000 0.000
#> SRR2042628     3  0.0405      0.198 0.000 0.000 0.988 0.004 0.000 0.008
#> SRR2042626     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042627     6  0.4561      0.954 0.036 0.000 0.000 0.428 0.000 0.536
#> SRR2042624     3  0.7778      0.279 0.000 0.088 0.412 0.136 0.068 0.296
#> SRR2042625     1  0.3746      0.762 0.780 0.000 0.000 0.080 0.000 0.140
#> SRR2042623     1  0.0000      0.870 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042622     1  0.0000      0.870 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042620     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042621     2  0.5915      0.260 0.000 0.576 0.268 0.000 0.052 0.104
#> SRR2042619     2  0.3823      0.297 0.000 0.564 0.000 0.436 0.000 0.000
#> SRR2042618     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042617     6  0.4366      0.949 0.024 0.000 0.000 0.428 0.000 0.548
#> SRR2042616     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042615     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042614     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042613     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042612     1  0.5448      0.377 0.556 0.000 0.012 0.028 0.040 0.364
#> SRR2042610     1  0.1720      0.856 0.928 0.000 0.000 0.032 0.000 0.040
#> SRR2042611     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     2  0.0146      0.945 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2042609     1  0.0000      0.870 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2042608     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042656     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042658     5  0.1141      0.000 0.000 0.000 0.052 0.000 0.948 0.000
#> SRR2042659     1  0.2300      0.821 0.856 0.000 0.000 0.000 0.000 0.144
#> SRR2042657     4  0.1444      0.716 0.000 0.000 0.000 0.928 0.000 0.072
#> SRR2042655     6  0.5123      0.880 0.084 0.000 0.000 0.408 0.000 0.508

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.571           0.840       0.898         0.4753 0.491   0.491
#> 3 3 0.492           0.665       0.753         0.3461 0.652   0.404
#> 4 4 0.668           0.733       0.797         0.1373 0.830   0.542
#> 5 5 0.776           0.799       0.859         0.0689 0.982   0.925
#> 6 6 0.807           0.721       0.824         0.0476 0.950   0.788

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     1  0.1633     0.9261 0.976 0.024
#> SRR2042653     1  0.2423     0.9351 0.960 0.040
#> SRR2042652     1  0.1633     0.9261 0.976 0.024
#> SRR2042650     1  0.2423     0.9351 0.960 0.040
#> SRR2042649     2  0.1633     0.8512 0.024 0.976
#> SRR2042647     1  0.3274     0.9153 0.940 0.060
#> SRR2042648     2  0.8016     0.7894 0.244 0.756
#> SRR2042646     2  0.2423     0.8507 0.040 0.960
#> SRR2042645     1  0.3114     0.9185 0.944 0.056
#> SRR2042644     2  0.0376     0.8446 0.004 0.996
#> SRR2042643     1  0.2603     0.9349 0.956 0.044
#> SRR2042642     2  0.8016     0.7894 0.244 0.756
#> SRR2042640     1  0.9044     0.4768 0.680 0.320
#> SRR2042641     2  0.2043     0.8500 0.032 0.968
#> SRR2042639     2  0.7528     0.8092 0.216 0.784
#> SRR2042638     2  0.7883     0.7960 0.236 0.764
#> SRR2042637     2  0.0938     0.8476 0.012 0.988
#> SRR2042636     1  0.2043     0.9272 0.968 0.032
#> SRR2042634     1  0.2043     0.9272 0.968 0.032
#> SRR2042635     2  0.8016     0.7894 0.244 0.756
#> SRR2042633     2  0.3274     0.8499 0.060 0.940
#> SRR2042631     1  0.2948     0.9208 0.948 0.052
#> SRR2042632     2  0.2043     0.8516 0.032 0.968
#> SRR2042630     2  0.1414     0.8495 0.020 0.980
#> SRR2042629     1  0.2948     0.9208 0.948 0.052
#> SRR2042628     2  0.2423     0.8509 0.040 0.960
#> SRR2042626     2  0.8016     0.7894 0.244 0.756
#> SRR2042627     1  0.2603     0.9344 0.956 0.044
#> SRR2042624     2  0.2423     0.8477 0.040 0.960
#> SRR2042625     1  0.2423     0.9351 0.960 0.040
#> SRR2042623     1  0.1633     0.9261 0.976 0.024
#> SRR2042622     1  0.2423     0.9351 0.960 0.040
#> SRR2042620     1  0.7745     0.6818 0.772 0.228
#> SRR2042621     2  0.2423     0.8479 0.040 0.960
#> SRR2042619     1  0.2948     0.9208 0.948 0.052
#> SRR2042618     2  0.7219     0.8134 0.200 0.800
#> SRR2042617     1  0.2603     0.9349 0.956 0.044
#> SRR2042616     2  0.7219     0.8134 0.200 0.800
#> SRR2042615     2  0.5629     0.8372 0.132 0.868
#> SRR2042614     2  0.7219     0.8134 0.200 0.800
#> SRR2042613     2  0.0376     0.8444 0.004 0.996
#> SRR2042612     2  0.9983     0.0513 0.476 0.524
#> SRR2042610     1  0.2423     0.9351 0.960 0.040
#> SRR2042611     2  0.8016     0.7894 0.244 0.756
#> SRR2042607     1  0.8713     0.5378 0.708 0.292
#> SRR2042609     1  0.1633     0.9261 0.976 0.024
#> SRR2042608     2  0.2423     0.8484 0.040 0.960
#> SRR2042656     2  0.8144     0.7840 0.252 0.748
#> SRR2042658     2  0.2423     0.8507 0.040 0.960
#> SRR2042659     1  0.2423     0.9351 0.960 0.040
#> SRR2042657     1  0.2778     0.9226 0.952 0.048
#> SRR2042655     1  0.2423     0.9351 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.0661      0.847 0.988 0.008 0.004
#> SRR2042653     1  0.2955      0.889 0.912 0.008 0.080
#> SRR2042652     1  0.0424      0.849 0.992 0.008 0.000
#> SRR2042650     1  0.3120      0.888 0.908 0.012 0.080
#> SRR2042649     3  0.1525      0.862 0.004 0.032 0.964
#> SRR2042647     2  0.7298      0.398 0.220 0.692 0.088
#> SRR2042648     2  0.5591      0.525 0.000 0.696 0.304
#> SRR2042646     3  0.1491      0.860 0.016 0.016 0.968
#> SRR2042645     2  0.7078      0.436 0.200 0.712 0.088
#> SRR2042644     3  0.5529      0.609 0.000 0.296 0.704
#> SRR2042643     1  0.3765      0.880 0.888 0.028 0.084
#> SRR2042642     2  0.5591      0.525 0.000 0.696 0.304
#> SRR2042640     2  0.4749      0.546 0.076 0.852 0.072
#> SRR2042641     3  0.1453      0.855 0.024 0.008 0.968
#> SRR2042639     2  0.5591      0.525 0.000 0.696 0.304
#> SRR2042638     2  0.5621      0.520 0.000 0.692 0.308
#> SRR2042637     3  0.3573      0.825 0.004 0.120 0.876
#> SRR2042636     1  0.8404      0.244 0.464 0.452 0.084
#> SRR2042634     1  0.8250      0.416 0.528 0.392 0.080
#> SRR2042635     2  0.5591      0.525 0.000 0.696 0.304
#> SRR2042633     3  0.5678      0.548 0.000 0.316 0.684
#> SRR2042631     2  0.7124      0.430 0.204 0.708 0.088
#> SRR2042632     3  0.2096      0.859 0.004 0.052 0.944
#> SRR2042630     3  0.3030      0.836 0.004 0.092 0.904
#> SRR2042629     2  0.6835      0.461 0.180 0.732 0.088
#> SRR2042628     3  0.2879      0.850 0.024 0.052 0.924
#> SRR2042626     2  0.5397      0.535 0.000 0.720 0.280
#> SRR2042627     1  0.3610      0.884 0.888 0.016 0.096
#> SRR2042624     3  0.2636      0.857 0.020 0.048 0.932
#> SRR2042625     1  0.3377      0.885 0.896 0.012 0.092
#> SRR2042623     1  0.0424      0.849 0.992 0.008 0.000
#> SRR2042622     1  0.2584      0.885 0.928 0.008 0.064
#> SRR2042620     2  0.6984      0.450 0.192 0.720 0.088
#> SRR2042621     3  0.3325      0.852 0.020 0.076 0.904
#> SRR2042619     2  0.7078      0.436 0.200 0.712 0.088
#> SRR2042618     2  0.6008      0.432 0.000 0.628 0.372
#> SRR2042617     1  0.3502      0.884 0.896 0.020 0.084
#> SRR2042616     2  0.5988      0.443 0.000 0.632 0.368
#> SRR2042615     2  0.6062      0.403 0.000 0.616 0.384
#> SRR2042614     2  0.6008      0.435 0.000 0.628 0.372
#> SRR2042613     3  0.4887      0.713 0.000 0.228 0.772
#> SRR2042612     1  0.6416      0.644 0.676 0.020 0.304
#> SRR2042610     1  0.3120      0.888 0.908 0.012 0.080
#> SRR2042611     2  0.5465      0.532 0.000 0.712 0.288
#> SRR2042607     2  0.5662      0.534 0.100 0.808 0.092
#> SRR2042609     1  0.0424      0.849 0.992 0.008 0.000
#> SRR2042608     3  0.2063      0.835 0.044 0.008 0.948
#> SRR2042656     2  0.6189      0.484 0.004 0.632 0.364
#> SRR2042658     3  0.1482      0.854 0.020 0.012 0.968
#> SRR2042659     1  0.2955      0.889 0.912 0.008 0.080
#> SRR2042657     2  0.7889      0.253 0.288 0.624 0.088
#> SRR2042655     1  0.2955      0.889 0.912 0.008 0.080

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2042654     1  0.1822      0.879 0.944 0.004 0.044 0.008
#> SRR2042653     1  0.2412      0.928 0.908 0.000 0.008 0.084
#> SRR2042652     1  0.1822      0.879 0.944 0.004 0.044 0.008
#> SRR2042650     1  0.2610      0.926 0.900 0.000 0.012 0.088
#> SRR2042649     3  0.4281      0.766 0.000 0.180 0.792 0.028
#> SRR2042647     4  0.0992      0.965 0.012 0.008 0.004 0.976
#> SRR2042648     2  0.2589      0.616 0.000 0.884 0.000 0.116
#> SRR2042646     3  0.3943      0.764 0.004 0.136 0.832 0.028
#> SRR2042645     4  0.0859      0.966 0.008 0.008 0.004 0.980
#> SRR2042644     2  0.4817      0.223 0.000 0.612 0.388 0.000
#> SRR2042643     1  0.3377      0.885 0.848 0.000 0.012 0.140
#> SRR2042642     2  0.2704      0.611 0.000 0.876 0.000 0.124
#> SRR2042640     4  0.2266      0.899 0.000 0.084 0.004 0.912
#> SRR2042641     3  0.4289      0.761 0.000 0.172 0.796 0.032
#> SRR2042639     2  0.4017      0.575 0.000 0.828 0.128 0.044
#> SRR2042638     2  0.3453      0.613 0.000 0.868 0.052 0.080
#> SRR2042637     3  0.5523      0.506 0.000 0.380 0.596 0.024
#> SRR2042636     4  0.2124      0.923 0.068 0.000 0.008 0.924
#> SRR2042634     4  0.1807      0.939 0.052 0.000 0.008 0.940
#> SRR2042635     2  0.2589      0.616 0.000 0.884 0.000 0.116
#> SRR2042633     2  0.5060      0.138 0.000 0.584 0.412 0.004
#> SRR2042631     4  0.0672      0.965 0.008 0.008 0.000 0.984
#> SRR2042632     3  0.4323      0.765 0.000 0.184 0.788 0.028
#> SRR2042630     3  0.4509      0.642 0.000 0.288 0.708 0.004
#> SRR2042629     4  0.0779      0.963 0.004 0.016 0.000 0.980
#> SRR2042628     3  0.6099      0.588 0.012 0.220 0.688 0.080
#> SRR2042626     2  0.3569      0.538 0.000 0.804 0.000 0.196
#> SRR2042627     1  0.2593      0.926 0.904 0.000 0.016 0.080
#> SRR2042624     3  0.5778      0.592 0.008 0.256 0.684 0.052
#> SRR2042625     1  0.2635      0.925 0.904 0.000 0.020 0.076
#> SRR2042623     1  0.1822      0.879 0.944 0.004 0.044 0.008
#> SRR2042622     1  0.2342      0.928 0.912 0.000 0.008 0.080
#> SRR2042620     4  0.1486      0.960 0.008 0.024 0.008 0.960
#> SRR2042621     3  0.6509      0.496 0.008 0.312 0.604 0.076
#> SRR2042619     4  0.0672      0.965 0.008 0.008 0.000 0.984
#> SRR2042618     2  0.4477      0.415 0.000 0.688 0.312 0.000
#> SRR2042617     1  0.2610      0.927 0.900 0.000 0.012 0.088
#> SRR2042616     2  0.4406      0.430 0.000 0.700 0.300 0.000
#> SRR2042615     2  0.4522      0.396 0.000 0.680 0.320 0.000
#> SRR2042614     2  0.4431      0.427 0.000 0.696 0.304 0.000
#> SRR2042613     2  0.4898      0.116 0.000 0.584 0.416 0.000
#> SRR2042612     1  0.6221      0.559 0.608 0.000 0.316 0.076
#> SRR2042610     1  0.2342      0.928 0.912 0.000 0.008 0.080
#> SRR2042611     2  0.2647      0.614 0.000 0.880 0.000 0.120
#> SRR2042607     4  0.1635      0.944 0.000 0.044 0.008 0.948
#> SRR2042609     1  0.1822      0.879 0.944 0.004 0.044 0.008
#> SRR2042608     3  0.3877      0.748 0.004 0.124 0.840 0.032
#> SRR2042656     2  0.3219      0.616 0.000 0.868 0.020 0.112
#> SRR2042658     3  0.4567      0.771 0.008 0.160 0.796 0.036
#> SRR2042659     1  0.2546      0.926 0.900 0.000 0.008 0.092
#> SRR2042657     4  0.1256      0.957 0.028 0.000 0.008 0.964
#> SRR2042655     1  0.2412      0.928 0.908 0.000 0.008 0.084

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1  0.3636      0.778 0.728 0.000 0.000 0.000 0.272
#> SRR2042653     1  0.0162      0.872 0.996 0.000 0.000 0.000 0.004
#> SRR2042652     1  0.3636      0.778 0.728 0.000 0.000 0.000 0.272
#> SRR2042650     1  0.1197      0.860 0.952 0.000 0.000 0.048 0.000
#> SRR2042649     3  0.4210      0.704 0.000 0.124 0.780 0.000 0.096
#> SRR2042647     4  0.0854      0.960 0.012 0.008 0.000 0.976 0.004
#> SRR2042648     2  0.1331      0.803 0.000 0.952 0.000 0.040 0.008
#> SRR2042646     3  0.4959      0.633 0.004 0.144 0.724 0.000 0.128
#> SRR2042645     4  0.0510      0.961 0.016 0.000 0.000 0.984 0.000
#> SRR2042644     2  0.5305      0.605 0.000 0.672 0.196 0.000 0.132
#> SRR2042643     1  0.3047      0.761 0.832 0.000 0.004 0.160 0.004
#> SRR2042642     2  0.1408      0.801 0.000 0.948 0.000 0.044 0.008
#> SRR2042640     4  0.2471      0.830 0.000 0.136 0.000 0.864 0.000
#> SRR2042641     3  0.1300      0.633 0.000 0.028 0.956 0.000 0.016
#> SRR2042639     2  0.2835      0.803 0.000 0.880 0.080 0.036 0.004
#> SRR2042638     2  0.1492      0.807 0.000 0.948 0.004 0.040 0.008
#> SRR2042637     3  0.5873      0.425 0.000 0.312 0.564 0.000 0.124
#> SRR2042636     4  0.1446      0.946 0.036 0.004 0.004 0.952 0.004
#> SRR2042634     4  0.1124      0.946 0.036 0.000 0.000 0.960 0.004
#> SRR2042635     2  0.1331      0.803 0.000 0.952 0.000 0.040 0.008
#> SRR2042633     2  0.5562      0.572 0.000 0.644 0.200 0.000 0.156
#> SRR2042631     4  0.0451      0.961 0.004 0.008 0.000 0.988 0.000
#> SRR2042632     3  0.4507      0.697 0.004 0.132 0.764 0.000 0.100
#> SRR2042630     3  0.3319      0.588 0.000 0.160 0.820 0.000 0.020
#> SRR2042629     4  0.0451      0.961 0.004 0.008 0.000 0.988 0.000
#> SRR2042628     5  0.4380      0.970 0.004 0.016 0.292 0.000 0.688
#> SRR2042626     2  0.1894      0.779 0.000 0.920 0.000 0.072 0.008
#> SRR2042627     1  0.0579      0.874 0.984 0.000 0.000 0.008 0.008
#> SRR2042624     5  0.4359      0.972 0.004 0.016 0.288 0.000 0.692
#> SRR2042625     1  0.0727      0.871 0.980 0.000 0.004 0.004 0.012
#> SRR2042623     1  0.3636      0.778 0.728 0.000 0.000 0.000 0.272
#> SRR2042622     1  0.1341      0.868 0.944 0.000 0.000 0.000 0.056
#> SRR2042620     4  0.1012      0.959 0.012 0.020 0.000 0.968 0.000
#> SRR2042621     5  0.4581      0.951 0.004 0.032 0.268 0.000 0.696
#> SRR2042619     4  0.0579      0.962 0.008 0.008 0.000 0.984 0.000
#> SRR2042618     2  0.3558      0.775 0.000 0.828 0.108 0.000 0.064
#> SRR2042617     1  0.0865      0.873 0.972 0.000 0.004 0.024 0.000
#> SRR2042616     2  0.3569      0.775 0.000 0.828 0.104 0.000 0.068
#> SRR2042615     2  0.4411      0.726 0.000 0.764 0.116 0.000 0.120
#> SRR2042614     2  0.3620      0.773 0.000 0.824 0.108 0.000 0.068
#> SRR2042613     2  0.5883      0.466 0.004 0.604 0.256 0.000 0.136
#> SRR2042612     1  0.4481      0.546 0.668 0.000 0.312 0.004 0.016
#> SRR2042610     1  0.1216      0.872 0.960 0.000 0.000 0.020 0.020
#> SRR2042611     2  0.1408      0.801 0.000 0.948 0.000 0.044 0.008
#> SRR2042607     4  0.1443      0.942 0.004 0.044 0.000 0.948 0.004
#> SRR2042609     1  0.3636      0.778 0.728 0.000 0.000 0.000 0.272
#> SRR2042608     3  0.0833      0.595 0.004 0.004 0.976 0.000 0.016
#> SRR2042656     2  0.2575      0.806 0.000 0.904 0.036 0.044 0.016
#> SRR2042658     3  0.3338      0.672 0.004 0.068 0.852 0.000 0.076
#> SRR2042659     1  0.1403      0.867 0.952 0.000 0.000 0.024 0.024
#> SRR2042657     4  0.0451      0.961 0.008 0.000 0.000 0.988 0.004
#> SRR2042655     1  0.0162      0.872 0.996 0.000 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1  0.0146    0.69633 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR2042653     1  0.3742    0.83326 0.648 0.000 0.000 0.000 0.004 0.348
#> SRR2042652     1  0.0146    0.69633 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR2042650     1  0.4652    0.81788 0.600 0.000 0.000 0.044 0.004 0.352
#> SRR2042649     5  0.5505    0.28051 0.000 0.012 0.144 0.000 0.596 0.248
#> SRR2042647     4  0.0405    0.96402 0.000 0.000 0.008 0.988 0.004 0.000
#> SRR2042648     2  0.0260    0.79232 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR2042646     5  0.5525    0.27008 0.000 0.004 0.224 0.000 0.580 0.192
#> SRR2042645     4  0.0551    0.96392 0.004 0.004 0.000 0.984 0.008 0.000
#> SRR2042644     5  0.2389    0.44864 0.000 0.128 0.008 0.000 0.864 0.000
#> SRR2042643     1  0.7204    0.56593 0.420 0.000 0.028 0.252 0.040 0.260
#> SRR2042642     2  0.0000    0.79244 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042640     4  0.1858    0.90564 0.000 0.076 0.000 0.912 0.012 0.000
#> SRR2042641     6  0.5343    0.70385 0.000 0.012 0.184 0.000 0.172 0.632
#> SRR2042639     2  0.2772    0.75705 0.000 0.816 0.000 0.000 0.180 0.004
#> SRR2042638     2  0.0632    0.79422 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR2042637     5  0.4243    0.43283 0.000 0.032 0.076 0.000 0.772 0.120
#> SRR2042636     4  0.1856    0.93649 0.000 0.000 0.032 0.920 0.048 0.000
#> SRR2042634     4  0.1908    0.93350 0.000 0.000 0.028 0.916 0.056 0.000
#> SRR2042635     2  0.0000    0.79244 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042633     5  0.4338    0.34848 0.000 0.208 0.072 0.000 0.716 0.004
#> SRR2042631     4  0.0146    0.96359 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR2042632     5  0.5507    0.30723 0.000 0.016 0.144 0.000 0.608 0.232
#> SRR2042630     6  0.5430    0.41534 0.000 0.092 0.024 0.000 0.284 0.600
#> SRR2042629     4  0.0291    0.96338 0.004 0.000 0.000 0.992 0.004 0.000
#> SRR2042628     3  0.2009    0.88308 0.000 0.000 0.904 0.004 0.084 0.008
#> SRR2042626     2  0.0717    0.78338 0.000 0.976 0.000 0.016 0.008 0.000
#> SRR2042627     1  0.4196    0.83323 0.640 0.000 0.008 0.008 0.004 0.340
#> SRR2042624     3  0.1007    0.92301 0.000 0.000 0.956 0.000 0.044 0.000
#> SRR2042625     1  0.4091    0.83389 0.644 0.000 0.008 0.004 0.004 0.340
#> SRR2042623     1  0.0146    0.69633 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR2042622     1  0.3626    0.82718 0.704 0.000 0.004 0.000 0.004 0.288
#> SRR2042620     4  0.0909    0.95639 0.000 0.020 0.000 0.968 0.012 0.000
#> SRR2042621     3  0.1584    0.91676 0.000 0.008 0.928 0.000 0.064 0.000
#> SRR2042619     4  0.0000    0.96376 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2042618     2  0.3890    0.61181 0.000 0.596 0.000 0.000 0.400 0.004
#> SRR2042617     1  0.5229    0.81814 0.644 0.000 0.032 0.012 0.044 0.268
#> SRR2042616     2  0.3915    0.59900 0.000 0.584 0.000 0.000 0.412 0.004
#> SRR2042615     2  0.3961    0.55950 0.000 0.556 0.000 0.000 0.440 0.004
#> SRR2042614     2  0.3950    0.57729 0.000 0.564 0.000 0.000 0.432 0.004
#> SRR2042613     5  0.2588    0.45178 0.000 0.124 0.012 0.000 0.860 0.004
#> SRR2042612     1  0.6308    0.52803 0.452 0.000 0.116 0.000 0.052 0.380
#> SRR2042610     1  0.3756    0.83409 0.644 0.000 0.000 0.004 0.000 0.352
#> SRR2042611     2  0.0000    0.79244 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2042607     4  0.0909    0.95626 0.000 0.020 0.000 0.968 0.012 0.000
#> SRR2042609     1  0.0146    0.69633 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR2042608     6  0.4989    0.67818 0.000 0.000 0.220 0.000 0.140 0.640
#> SRR2042656     2  0.2431    0.76822 0.000 0.860 0.008 0.000 0.132 0.000
#> SRR2042658     5  0.5886   -0.00901 0.000 0.000 0.236 0.000 0.472 0.292
#> SRR2042659     1  0.4328    0.82794 0.620 0.000 0.000 0.024 0.004 0.352
#> SRR2042657     4  0.1257    0.95220 0.000 0.000 0.020 0.952 0.028 0.000
#> SRR2042655     1  0.3756    0.83272 0.644 0.000 0.000 0.000 0.004 0.352

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 4352 rows and 52 columns.
#>   Top rows (435, 870, 1306, 1741, 2176) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.560           0.775       0.904         0.4966 0.491   0.491
#> 3 3 0.681           0.795       0.896         0.3347 0.688   0.446
#> 4 4 0.569           0.734       0.802         0.0832 0.976   0.928
#> 5 5 0.523           0.533       0.739         0.0543 0.967   0.899
#> 6 6 0.534           0.384       0.675         0.0370 0.947   0.823

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2042654     2  0.8327     0.6016 0.264 0.736
#> SRR2042653     1  0.0000     0.8651 1.000 0.000
#> SRR2042652     1  0.1414     0.8595 0.980 0.020
#> SRR2042650     1  0.0000     0.8651 1.000 0.000
#> SRR2042649     2  0.0000     0.8966 0.000 1.000
#> SRR2042647     1  0.6887     0.7958 0.816 0.184
#> SRR2042648     2  0.9983    -0.1023 0.476 0.524
#> SRR2042646     2  0.0000     0.8966 0.000 1.000
#> SRR2042645     1  0.6247     0.8158 0.844 0.156
#> SRR2042644     2  0.0000     0.8966 0.000 1.000
#> SRR2042643     1  0.0000     0.8651 1.000 0.000
#> SRR2042642     1  0.9933     0.3053 0.548 0.452
#> SRR2042640     1  0.7674     0.7555 0.776 0.224
#> SRR2042641     2  0.0000     0.8966 0.000 1.000
#> SRR2042639     2  0.3584     0.8409 0.068 0.932
#> SRR2042638     2  0.4562     0.8124 0.096 0.904
#> SRR2042637     2  0.0000     0.8966 0.000 1.000
#> SRR2042636     1  0.0938     0.8656 0.988 0.012
#> SRR2042634     1  0.0000     0.8651 1.000 0.000
#> SRR2042635     2  0.9983    -0.1023 0.476 0.524
#> SRR2042633     2  0.0000     0.8966 0.000 1.000
#> SRR2042631     1  0.6148     0.8177 0.848 0.152
#> SRR2042632     2  0.0000     0.8966 0.000 1.000
#> SRR2042630     2  0.0000     0.8966 0.000 1.000
#> SRR2042629     1  0.6973     0.7928 0.812 0.188
#> SRR2042628     2  0.0376     0.8936 0.004 0.996
#> SRR2042626     1  0.9209     0.5872 0.664 0.336
#> SRR2042627     1  0.2423     0.8582 0.960 0.040
#> SRR2042624     2  0.0000     0.8966 0.000 1.000
#> SRR2042625     1  0.7453     0.6959 0.788 0.212
#> SRR2042623     1  0.2603     0.8477 0.956 0.044
#> SRR2042622     1  0.0376     0.8644 0.996 0.004
#> SRR2042620     1  0.7219     0.7818 0.800 0.200
#> SRR2042621     2  0.0000     0.8966 0.000 1.000
#> SRR2042619     1  0.4431     0.8452 0.908 0.092
#> SRR2042618     2  0.0000     0.8966 0.000 1.000
#> SRR2042617     1  0.0000     0.8651 1.000 0.000
#> SRR2042616     2  0.0000     0.8966 0.000 1.000
#> SRR2042615     2  0.0000     0.8966 0.000 1.000
#> SRR2042614     2  0.0000     0.8966 0.000 1.000
#> SRR2042613     2  0.0000     0.8966 0.000 1.000
#> SRR2042612     2  0.7299     0.6811 0.204 0.796
#> SRR2042610     1  0.0000     0.8651 1.000 0.000
#> SRR2042611     1  0.9552     0.5063 0.624 0.376
#> SRR2042607     1  0.7219     0.7818 0.800 0.200
#> SRR2042609     1  0.4431     0.8178 0.908 0.092
#> SRR2042608     2  0.0000     0.8966 0.000 1.000
#> SRR2042656     2  0.9881     0.0556 0.436 0.564
#> SRR2042658     2  0.0000     0.8966 0.000 1.000
#> SRR2042659     1  0.0000     0.8651 1.000 0.000
#> SRR2042657     1  0.0376     0.8656 0.996 0.004
#> SRR2042655     1  0.0000     0.8651 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2042654     1  0.6647      0.240 0.540 0.008 0.452
#> SRR2042653     1  0.1411      0.874 0.964 0.036 0.000
#> SRR2042652     1  0.1289      0.875 0.968 0.032 0.000
#> SRR2042650     1  0.2261      0.875 0.932 0.068 0.000
#> SRR2042649     3  0.0000      0.845 0.000 0.000 1.000
#> SRR2042647     2  0.0747      0.927 0.016 0.984 0.000
#> SRR2042648     2  0.2772      0.897 0.004 0.916 0.080
#> SRR2042646     3  0.0424      0.842 0.008 0.000 0.992
#> SRR2042645     2  0.1031      0.924 0.024 0.976 0.000
#> SRR2042644     3  0.0829      0.846 0.004 0.012 0.984
#> SRR2042643     1  0.5678      0.603 0.684 0.316 0.000
#> SRR2042642     2  0.2301      0.909 0.004 0.936 0.060
#> SRR2042640     2  0.1182      0.929 0.012 0.976 0.012
#> SRR2042641     3  0.0000      0.845 0.000 0.000 1.000
#> SRR2042639     2  0.5012      0.734 0.008 0.788 0.204
#> SRR2042638     2  0.4629      0.765 0.004 0.808 0.188
#> SRR2042637     3  0.0000      0.845 0.000 0.000 1.000
#> SRR2042636     2  0.1163      0.922 0.028 0.972 0.000
#> SRR2042634     2  0.3267      0.839 0.116 0.884 0.000
#> SRR2042635     2  0.2772      0.896 0.004 0.916 0.080
#> SRR2042633     3  0.2796      0.811 0.000 0.092 0.908
#> SRR2042631     2  0.0661      0.928 0.008 0.988 0.004
#> SRR2042632     3  0.0000      0.845 0.000 0.000 1.000
#> SRR2042630     3  0.1289      0.842 0.000 0.032 0.968
#> SRR2042629     2  0.0475      0.928 0.004 0.992 0.004
#> SRR2042628     3  0.4178      0.697 0.172 0.000 0.828
#> SRR2042626     2  0.1453      0.926 0.008 0.968 0.024
#> SRR2042627     1  0.3267      0.848 0.884 0.116 0.000
#> SRR2042624     3  0.0592      0.844 0.012 0.000 0.988
#> SRR2042625     1  0.1182      0.867 0.976 0.012 0.012
#> SRR2042623     1  0.1289      0.875 0.968 0.032 0.000
#> SRR2042622     1  0.1289      0.874 0.968 0.032 0.000
#> SRR2042620     2  0.0983      0.928 0.016 0.980 0.004
#> SRR2042621     3  0.0592      0.844 0.012 0.000 0.988
#> SRR2042619     2  0.0592      0.927 0.012 0.988 0.000
#> SRR2042618     3  0.6298      0.414 0.004 0.388 0.608
#> SRR2042617     1  0.2959      0.862 0.900 0.100 0.000
#> SRR2042616     3  0.6442      0.307 0.004 0.432 0.564
#> SRR2042615     3  0.6314      0.410 0.004 0.392 0.604
#> SRR2042614     3  0.6680      0.135 0.008 0.484 0.508
#> SRR2042613     3  0.1399      0.843 0.004 0.028 0.968
#> SRR2042612     1  0.6345      0.364 0.596 0.004 0.400
#> SRR2042610     1  0.4887      0.731 0.772 0.228 0.000
#> SRR2042611     2  0.1399      0.925 0.004 0.968 0.028
#> SRR2042607     2  0.0829      0.929 0.012 0.984 0.004
#> SRR2042609     1  0.1399      0.874 0.968 0.028 0.004
#> SRR2042608     3  0.2711      0.814 0.000 0.088 0.912
#> SRR2042656     2  0.3618      0.878 0.012 0.884 0.104
#> SRR2042658     3  0.0747      0.837 0.016 0.000 0.984
#> SRR2042659     1  0.1964      0.876 0.944 0.056 0.000
#> SRR2042657     2  0.3551      0.826 0.132 0.868 0.000
#> SRR2042655     1  0.2165      0.875 0.936 0.064 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR2042654     1  0.5442      0.498 0.672 0.000 0.288 NA
#> SRR2042653     1  0.4250      0.805 0.724 0.000 0.000 NA
#> SRR2042652     1  0.1474      0.812 0.948 0.000 0.000 NA
#> SRR2042650     1  0.5123      0.807 0.724 0.044 0.000 NA
#> SRR2042649     3  0.0469      0.801 0.000 0.000 0.988 NA
#> SRR2042647     2  0.2999      0.845 0.004 0.864 0.000 NA
#> SRR2042648     2  0.2224      0.842 0.000 0.928 0.040 NA
#> SRR2042646     3  0.1305      0.798 0.004 0.000 0.960 NA
#> SRR2042645     2  0.4820      0.746 0.012 0.692 0.000 NA
#> SRR2042644     3  0.1042      0.804 0.000 0.008 0.972 NA
#> SRR2042643     1  0.7115      0.639 0.452 0.128 0.000 NA
#> SRR2042642     2  0.2408      0.839 0.000 0.920 0.044 NA
#> SRR2042640     2  0.1743      0.856 0.000 0.940 0.004 NA
#> SRR2042641     3  0.1837      0.802 0.000 0.028 0.944 NA
#> SRR2042639     2  0.4793      0.660 0.000 0.756 0.204 NA
#> SRR2042638     2  0.4467      0.708 0.000 0.788 0.172 NA
#> SRR2042637     3  0.0895      0.803 0.000 0.004 0.976 NA
#> SRR2042636     2  0.4516      0.762 0.012 0.736 0.000 NA
#> SRR2042634     2  0.5790      0.682 0.080 0.684 0.000 NA
#> SRR2042635     2  0.2644      0.830 0.000 0.908 0.060 NA
#> SRR2042633     3  0.2376      0.796 0.000 0.068 0.916 NA
#> SRR2042631     2  0.2773      0.846 0.004 0.880 0.000 NA
#> SRR2042632     3  0.0469      0.802 0.000 0.000 0.988 NA
#> SRR2042630     3  0.2542      0.791 0.000 0.084 0.904 NA
#> SRR2042629     2  0.2593      0.848 0.004 0.892 0.000 NA
#> SRR2042628     3  0.6090      0.608 0.092 0.008 0.688 NA
#> SRR2042626     2  0.1174      0.854 0.000 0.968 0.012 NA
#> SRR2042627     1  0.4925      0.816 0.752 0.036 0.004 NA
#> SRR2042624     3  0.2796      0.785 0.008 0.004 0.892 NA
#> SRR2042625     1  0.5699      0.748 0.588 0.000 0.032 NA
#> SRR2042623     1  0.1305      0.808 0.960 0.000 0.004 NA
#> SRR2042622     1  0.4485      0.808 0.740 0.012 0.000 NA
#> SRR2042620     2  0.2773      0.852 0.000 0.880 0.004 NA
#> SRR2042621     3  0.2048      0.800 0.000 0.008 0.928 NA
#> SRR2042619     2  0.3208      0.840 0.004 0.848 0.000 NA
#> SRR2042618     3  0.5989      0.384 0.000 0.400 0.556 NA
#> SRR2042617     1  0.6356      0.764 0.596 0.084 0.000 NA
#> SRR2042616     3  0.5827      0.392 0.000 0.396 0.568 NA
#> SRR2042615     3  0.5596      0.526 0.000 0.332 0.632 NA
#> SRR2042614     3  0.5869      0.467 0.000 0.360 0.596 NA
#> SRR2042613     3  0.2131      0.801 0.000 0.036 0.932 NA
#> SRR2042612     3  0.7896     -0.250 0.352 0.000 0.356 NA
#> SRR2042610     1  0.6351      0.743 0.588 0.080 0.000 NA
#> SRR2042611     2  0.1798      0.847 0.000 0.944 0.016 NA
#> SRR2042607     2  0.2647      0.849 0.000 0.880 0.000 NA
#> SRR2042609     1  0.0895      0.809 0.976 0.000 0.004 NA
#> SRR2042608     3  0.4966      0.726 0.000 0.156 0.768 NA
#> SRR2042656     2  0.3812      0.769 0.000 0.832 0.140 NA
#> SRR2042658     3  0.1305      0.798 0.004 0.000 0.960 NA
#> SRR2042659     1  0.5712      0.767 0.644 0.048 0.000 NA
#> SRR2042657     2  0.5599      0.661 0.040 0.644 0.000 NA
#> SRR2042655     1  0.5010      0.797 0.700 0.024 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2042654     1   0.445     0.2399 0.752 0.000 0.192 0.048 0.008
#> SRR2042653     1   0.585     0.2319 0.564 0.000 0.000 0.316 0.120
#> SRR2042652     1   0.177     0.4380 0.932 0.000 0.000 0.052 0.016
#> SRR2042650     1   0.693     0.2228 0.548 0.048 0.000 0.168 0.236
#> SRR2042649     3   0.219     0.7666 0.000 0.000 0.904 0.084 0.012
#> SRR2042647     2   0.349     0.7295 0.000 0.796 0.000 0.016 0.188
#> SRR2042648     2   0.267     0.7414 0.000 0.892 0.072 0.008 0.028
#> SRR2042646     3   0.284     0.7582 0.004 0.000 0.868 0.112 0.016
#> SRR2042645     2   0.616     0.4023 0.040 0.516 0.000 0.052 0.392
#> SRR2042644     3   0.136     0.7825 0.000 0.028 0.956 0.004 0.012
#> SRR2042643     5   0.812     0.0000 0.304 0.096 0.000 0.276 0.324
#> SRR2042642     2   0.265     0.7444 0.000 0.896 0.056 0.008 0.040
#> SRR2042640     2   0.198     0.7588 0.000 0.920 0.000 0.016 0.064
#> SRR2042641     3   0.365     0.7373 0.000 0.028 0.816 0.148 0.008
#> SRR2042639     2   0.505     0.4702 0.000 0.644 0.304 0.004 0.048
#> SRR2042638     2   0.434     0.6492 0.000 0.760 0.188 0.008 0.044
#> SRR2042637     3   0.107     0.7812 0.000 0.012 0.968 0.016 0.004
#> SRR2042636     2   0.505     0.5325 0.004 0.588 0.000 0.032 0.376
#> SRR2042634     2   0.649     0.4833 0.048 0.564 0.000 0.088 0.300
#> SRR2042635     2   0.261     0.7433 0.000 0.892 0.076 0.004 0.028
#> SRR2042633     3   0.269     0.7789 0.000 0.044 0.900 0.028 0.028
#> SRR2042631     2   0.325     0.7345 0.000 0.808 0.000 0.008 0.184
#> SRR2042632     3   0.157     0.7732 0.000 0.000 0.936 0.060 0.004
#> SRR2042630     3   0.359     0.7574 0.000 0.096 0.840 0.052 0.012
#> SRR2042629     2   0.391     0.7100 0.000 0.760 0.000 0.024 0.216
#> SRR2042628     3   0.713     0.3407 0.044 0.012 0.556 0.228 0.160
#> SRR2042626     2   0.140     0.7593 0.000 0.952 0.020 0.000 0.028
#> SRR2042627     1   0.644     0.2259 0.580 0.012 0.016 0.280 0.112
#> SRR2042624     3   0.427     0.6992 0.004 0.004 0.792 0.112 0.088
#> SRR2042625     4   0.577     0.0554 0.308 0.000 0.020 0.604 0.068
#> SRR2042623     1   0.177     0.4495 0.932 0.000 0.000 0.052 0.016
#> SRR2042622     1   0.654     0.2140 0.588 0.016 0.008 0.188 0.200
#> SRR2042620     2   0.289     0.7493 0.000 0.844 0.000 0.008 0.148
#> SRR2042621     3   0.307     0.7607 0.004 0.012 0.880 0.048 0.056
#> SRR2042619     2   0.453     0.6773 0.000 0.724 0.000 0.056 0.220
#> SRR2042618     3   0.450     0.5731 0.000 0.316 0.664 0.004 0.016
#> SRR2042617     1   0.734    -0.1064 0.428 0.036 0.000 0.312 0.224
#> SRR2042616     3   0.470     0.6035 0.000 0.292 0.676 0.016 0.016
#> SRR2042615     3   0.424     0.6714 0.000 0.228 0.740 0.004 0.028
#> SRR2042614     3   0.455     0.6455 0.000 0.256 0.708 0.008 0.028
#> SRR2042613     3   0.176     0.7818 0.000 0.036 0.940 0.008 0.016
#> SRR2042612     4   0.604     0.3381 0.180 0.000 0.188 0.620 0.012
#> SRR2042610     1   0.748    -0.2719 0.452 0.052 0.000 0.248 0.248
#> SRR2042611     2   0.215     0.7523 0.000 0.920 0.032 0.004 0.044
#> SRR2042607     2   0.379     0.7236 0.004 0.776 0.000 0.016 0.204
#> SRR2042609     1   0.201     0.4449 0.916 0.000 0.000 0.072 0.012
#> SRR2042608     3   0.649     0.5318 0.004 0.160 0.604 0.204 0.028
#> SRR2042656     2   0.393     0.7155 0.000 0.816 0.120 0.016 0.048
#> SRR2042658     3   0.313     0.7297 0.000 0.000 0.820 0.172 0.008
#> SRR2042659     1   0.667     0.1563 0.528 0.024 0.000 0.152 0.296
#> SRR2042657     2   0.635     0.3028 0.024 0.476 0.000 0.088 0.412
#> SRR2042655     1   0.695     0.1993 0.560 0.044 0.012 0.116 0.268

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2042654     1   0.310     0.3889 0.852 0.004 0.104 0.004 0.008 0.028
#> SRR2042653     5   0.577     0.1387 0.436 0.016 0.000 0.024 0.468 0.056
#> SRR2042652     1   0.274     0.4077 0.880 0.000 0.000 0.032 0.060 0.028
#> SRR2042650     1   0.751    -0.0724 0.396 0.040 0.000 0.180 0.320 0.064
#> SRR2042649     3   0.254     0.6953 0.000 0.004 0.852 0.004 0.000 0.140
#> SRR2042647     2   0.425     0.1891 0.000 0.696 0.000 0.260 0.036 0.008
#> SRR2042648     2   0.201     0.5309 0.000 0.904 0.084 0.008 0.000 0.004
#> SRR2042646     3   0.230     0.6935 0.000 0.000 0.856 0.000 0.000 0.144
#> SRR2042645     2   0.666    -0.3473 0.024 0.440 0.000 0.388 0.100 0.048
#> SRR2042644     3   0.199     0.7307 0.000 0.052 0.912 0.000 0.000 0.036
#> SRR2042643     5   0.755     0.1991 0.148 0.036 0.000 0.272 0.440 0.104
#> SRR2042642     2   0.312     0.5232 0.000 0.856 0.088 0.024 0.004 0.028
#> SRR2042640     2   0.304     0.4636 0.000 0.864 0.012 0.084 0.020 0.020
#> SRR2042641     3   0.479     0.6436 0.000 0.072 0.708 0.008 0.016 0.196
#> SRR2042639     2   0.478     0.3353 0.000 0.656 0.284 0.024 0.004 0.032
#> SRR2042638     2   0.426     0.4390 0.000 0.740 0.192 0.020 0.000 0.048
#> SRR2042637     3   0.194     0.7327 0.000 0.040 0.920 0.004 0.000 0.036
#> SRR2042636     4   0.564     0.4547 0.000 0.428 0.000 0.468 0.080 0.024
#> SRR2042634     2   0.751    -0.4217 0.036 0.384 0.000 0.332 0.180 0.068
#> SRR2042635     2   0.331     0.5185 0.000 0.840 0.108 0.020 0.008 0.024
#> SRR2042633     3   0.252     0.7225 0.000 0.032 0.888 0.012 0.000 0.068
#> SRR2042631     2   0.389     0.2489 0.000 0.752 0.000 0.208 0.024 0.016
#> SRR2042632     3   0.170     0.7185 0.000 0.000 0.916 0.004 0.000 0.080
#> SRR2042630     3   0.451     0.6795 0.000 0.148 0.748 0.012 0.012 0.080
#> SRR2042629     2   0.436    -0.0493 0.000 0.644 0.000 0.324 0.016 0.016
#> SRR2042628     3   0.726     0.1848 0.048 0.000 0.496 0.112 0.088 0.256
#> SRR2042626     2   0.172     0.5008 0.000 0.932 0.016 0.044 0.000 0.008
#> SRR2042627     5   0.609     0.1828 0.404 0.016 0.012 0.048 0.488 0.032
#> SRR2042624     3   0.455     0.5839 0.000 0.004 0.716 0.064 0.012 0.204
#> SRR2042625     6   0.694     0.1169 0.240 0.000 0.012 0.044 0.260 0.444
#> SRR2042623     1   0.146     0.4430 0.944 0.000 0.000 0.004 0.036 0.016
#> SRR2042622     1   0.721     0.1587 0.512 0.032 0.000 0.124 0.216 0.116
#> SRR2042620     2   0.353     0.3717 0.000 0.792 0.004 0.176 0.016 0.012
#> SRR2042621     3   0.359     0.6557 0.000 0.004 0.800 0.044 0.004 0.148
#> SRR2042619     2   0.552     0.0861 0.000 0.656 0.000 0.180 0.104 0.060
#> SRR2042618     3   0.488     0.5031 0.000 0.332 0.608 0.008 0.004 0.048
#> SRR2042617     5   0.745     0.3119 0.248 0.052 0.000 0.164 0.468 0.068
#> SRR2042616     3   0.480     0.4751 0.000 0.356 0.592 0.012 0.000 0.040
#> SRR2042615     3   0.445     0.6422 0.000 0.240 0.704 0.016 0.004 0.036
#> SRR2042614     3   0.406     0.6427 0.000 0.240 0.720 0.008 0.000 0.032
#> SRR2042613     3   0.224     0.7316 0.000 0.072 0.900 0.008 0.000 0.020
#> SRR2042612     6   0.647     0.3534 0.152 0.000 0.160 0.012 0.088 0.588
#> SRR2042610     5   0.699     0.3446 0.260 0.036 0.000 0.128 0.512 0.064
#> SRR2042611     2   0.248     0.5213 0.000 0.904 0.036 0.024 0.016 0.020
#> SRR2042607     2   0.461     0.0715 0.000 0.664 0.000 0.280 0.020 0.036
#> SRR2042609     1   0.137     0.4337 0.948 0.000 0.000 0.004 0.036 0.012
#> SRR2042608     3   0.688     0.4123 0.000 0.168 0.512 0.060 0.020 0.240
#> SRR2042656     2   0.423     0.4785 0.000 0.768 0.152 0.044 0.004 0.032
#> SRR2042658     3   0.351     0.6232 0.008 0.004 0.740 0.000 0.000 0.248
#> SRR2042659     1   0.773     0.0884 0.436 0.040 0.004 0.244 0.188 0.088
#> SRR2042657     4   0.680     0.5301 0.020 0.384 0.000 0.392 0.176 0.028
#> SRR2042655     1   0.787    -0.0385 0.340 0.052 0.000 0.232 0.304 0.072

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0