Date: 2019-12-26 01:07:35 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 15040 73
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
SD:skmeans | 5 | 1.000 | 0.997 | 0.999 | ** | 2,4 |
SD:NMF | 3 | 1.000 | 0.975 | 0.988 | ** | |
CV:pam | 6 | 1.000 | 0.955 | 0.983 | ** | 2,3,4,5 |
MAD:NMF | 3 | 1.000 | 0.970 | 0.986 | ** | |
ATC:kmeans | 3 | 1.000 | 0.994 | 0.997 | ** | |
ATC:pam | 6 | 1.000 | 0.960 | 0.987 | ** | 2,3,4,5 |
ATC:NMF | 3 | 0.997 | 0.980 | 0.990 | ** | 2 |
SD:mclust | 5 | 0.992 | 0.946 | 0.975 | ** | 2,4 |
SD:pam | 6 | 0.988 | 0.952 | 0.979 | ** | 2,3,4,5 |
MAD:pam | 6 | 0.975 | 0.962 | 0.981 | ** | 2,4,5 |
MAD:skmeans | 6 | 0.971 | 0.908 | 0.938 | ** | 2,4,5 |
MAD:hclust | 6 | 0.945 | 0.797 | 0.907 | * | |
CV:skmeans | 6 | 0.931 | 0.914 | 0.927 | * | 3,4,5 |
MAD:mclust | 5 | 0.928 | 0.918 | 0.954 | * | 3,4 |
ATC:mclust | 6 | 0.926 | 0.918 | 0.913 | * | 2,5 |
CV:mclust | 6 | 0.926 | 0.913 | 0.934 | * | 5 |
SD:hclust | 6 | 0.920 | 0.864 | 0.942 | * | |
ATC:hclust | 6 | 0.919 | 0.877 | 0.916 | * | 5 |
CV:NMF | 5 | 0.918 | 0.855 | 0.942 | * | 2 |
MAD:kmeans | 6 | 0.915 | 0.847 | 0.887 | * | |
ATC:skmeans | 6 | 0.907 | 0.848 | 0.909 | * | 2,4 |
SD:kmeans | 5 | 0.906 | 0.965 | 0.938 | * | |
CV:kmeans | 6 | 0.903 | 0.713 | 0.851 | * | |
CV:hclust | 4 | 0.843 | 0.801 | 0.890 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 0.861 0.935 0.969 0.486 0.521 0.521
#> CV:NMF 2 0.942 0.898 0.962 0.490 0.514 0.514
#> MAD:NMF 2 0.860 0.915 0.965 0.498 0.498 0.498
#> ATC:NMF 2 0.971 0.955 0.980 0.452 0.543 0.543
#> SD:skmeans 2 1.000 0.977 0.990 0.507 0.493 0.493
#> CV:skmeans 2 0.861 0.920 0.968 0.479 0.521 0.521
#> MAD:skmeans 2 1.000 0.979 0.991 0.507 0.493 0.493
#> ATC:skmeans 2 1.000 0.929 0.974 0.507 0.493 0.493
#> SD:mclust 2 1.000 0.978 0.990 0.384 0.610 0.610
#> CV:mclust 2 0.503 0.785 0.835 0.400 0.638 0.638
#> MAD:mclust 2 0.888 0.902 0.961 0.409 0.573 0.573
#> ATC:mclust 2 1.000 1.000 1.000 0.348 0.653 0.653
#> SD:kmeans 2 0.370 0.586 0.769 0.428 0.653 0.653
#> CV:kmeans 2 0.766 0.946 0.944 0.419 0.584 0.584
#> MAD:kmeans 2 0.427 0.767 0.888 0.465 0.493 0.493
#> ATC:kmeans 2 0.597 0.804 0.893 0.478 0.501 0.501
#> SD:pam 2 1.000 1.000 1.000 0.348 0.653 0.653
#> CV:pam 2 1.000 0.983 0.993 0.410 0.597 0.597
#> MAD:pam 2 1.000 0.971 0.965 0.353 0.653 0.653
#> ATC:pam 2 1.000 0.965 0.982 0.406 0.597 0.597
#> SD:hclust 2 0.529 0.828 0.917 0.476 0.509 0.509
#> CV:hclust 2 0.888 0.919 0.967 0.384 0.610 0.610
#> MAD:hclust 2 0.571 0.752 0.895 0.486 0.505 0.505
#> ATC:hclust 2 0.550 0.748 0.850 0.455 0.521 0.521
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 1.000 0.975 0.988 0.330 0.734 0.535
#> CV:NMF 3 0.892 0.869 0.925 0.344 0.779 0.587
#> MAD:NMF 3 1.000 0.970 0.986 0.297 0.780 0.590
#> ATC:NMF 3 0.997 0.980 0.990 0.428 0.716 0.520
#> SD:skmeans 3 0.888 0.897 0.956 0.295 0.830 0.664
#> CV:skmeans 3 1.000 0.965 0.986 0.384 0.782 0.594
#> MAD:skmeans 3 0.890 0.955 0.971 0.286 0.830 0.664
#> ATC:skmeans 3 0.743 0.740 0.823 0.275 0.750 0.533
#> SD:mclust 3 0.848 0.884 0.948 0.630 0.670 0.489
#> CV:mclust 3 0.827 0.931 0.948 0.646 0.655 0.475
#> MAD:mclust 3 1.000 0.973 0.989 0.467 0.670 0.495
#> ATC:mclust 3 0.733 0.938 0.960 0.803 0.712 0.559
#> SD:kmeans 3 0.611 0.853 0.903 0.478 0.699 0.538
#> CV:kmeans 3 0.637 0.784 0.857 0.503 0.737 0.556
#> MAD:kmeans 3 0.831 0.861 0.918 0.365 0.654 0.421
#> ATC:kmeans 3 1.000 0.994 0.997 0.319 0.615 0.387
#> SD:pam 3 0.918 0.965 0.983 0.839 0.712 0.559
#> CV:pam 3 1.000 0.976 0.983 0.543 0.775 0.622
#> MAD:pam 3 0.898 0.948 0.976 0.813 0.712 0.559
#> ATC:pam 3 1.000 0.987 0.994 0.558 0.674 0.496
#> SD:hclust 3 0.656 0.833 0.918 0.360 0.836 0.677
#> CV:hclust 3 0.555 0.673 0.806 0.460 0.890 0.821
#> MAD:hclust 3 0.625 0.748 0.876 0.334 0.842 0.686
#> ATC:hclust 3 0.780 0.810 0.911 0.425 0.812 0.639
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.787 0.842 0.905 0.1244 0.916 0.768
#> CV:NMF 4 0.809 0.857 0.931 0.1324 0.821 0.535
#> MAD:NMF 4 0.788 0.773 0.872 0.1360 0.916 0.768
#> ATC:NMF 4 0.793 0.809 0.887 0.1507 0.848 0.594
#> SD:skmeans 4 1.000 0.993 0.997 0.1400 0.877 0.660
#> CV:skmeans 4 1.000 0.984 0.989 0.1297 0.898 0.704
#> MAD:skmeans 4 1.000 0.984 0.994 0.1456 0.877 0.660
#> ATC:skmeans 4 0.983 0.944 0.975 0.1399 0.882 0.664
#> SD:mclust 4 0.981 0.910 0.959 0.1346 0.955 0.871
#> CV:mclust 4 0.779 0.747 0.863 0.0848 0.917 0.773
#> MAD:mclust 4 1.000 0.996 0.996 0.1616 0.883 0.715
#> ATC:mclust 4 0.850 0.936 0.892 0.1763 0.835 0.576
#> SD:kmeans 4 0.762 0.765 0.869 0.1634 0.901 0.726
#> CV:kmeans 4 0.676 0.679 0.799 0.1589 0.960 0.884
#> MAD:kmeans 4 0.737 0.786 0.837 0.1632 0.862 0.625
#> ATC:kmeans 4 0.817 0.802 0.868 0.1632 0.870 0.650
#> SD:pam 4 1.000 0.966 0.984 0.1834 0.877 0.664
#> CV:pam 4 0.985 0.948 0.977 0.1975 0.871 0.652
#> MAD:pam 4 0.965 0.932 0.968 0.1771 0.867 0.644
#> ATC:pam 4 0.938 0.909 0.962 0.1879 0.877 0.670
#> SD:hclust 4 0.750 0.841 0.925 0.1025 0.935 0.812
#> CV:hclust 4 0.843 0.801 0.890 0.2877 0.760 0.548
#> MAD:hclust 4 0.755 0.684 0.863 0.0973 0.847 0.624
#> ATC:hclust 4 0.881 0.852 0.927 0.1472 0.875 0.644
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.845 0.774 0.877 0.0839 0.821 0.467
#> CV:NMF 5 0.918 0.855 0.942 0.0758 0.893 0.617
#> MAD:NMF 5 0.889 0.866 0.918 0.0691 0.829 0.499
#> ATC:NMF 5 0.818 0.736 0.867 0.0590 0.853 0.507
#> SD:skmeans 5 1.000 0.997 0.999 0.0666 0.919 0.696
#> CV:skmeans 5 0.965 0.927 0.963 0.0636 0.955 0.820
#> MAD:skmeans 5 1.000 0.987 0.993 0.0659 0.919 0.696
#> ATC:skmeans 5 0.891 0.889 0.923 0.0483 0.959 0.844
#> SD:mclust 5 0.992 0.946 0.975 0.1335 0.859 0.561
#> CV:mclust 5 0.940 0.920 0.944 0.1170 0.879 0.620
#> MAD:mclust 5 0.928 0.918 0.954 0.1398 0.858 0.559
#> ATC:mclust 5 0.973 0.973 0.980 0.0824 0.949 0.793
#> SD:kmeans 5 0.906 0.965 0.938 0.0717 0.919 0.707
#> CV:kmeans 5 0.792 0.873 0.851 0.0678 0.865 0.589
#> MAD:kmeans 5 0.887 0.947 0.931 0.0719 0.931 0.727
#> ATC:kmeans 5 0.772 0.804 0.862 0.0685 0.917 0.691
#> SD:pam 5 1.000 0.986 0.994 0.0617 0.933 0.736
#> CV:pam 5 0.922 0.930 0.953 0.0452 0.951 0.803
#> MAD:pam 5 0.919 0.951 0.956 0.0634 0.930 0.728
#> ATC:pam 5 1.000 0.968 0.981 0.0582 0.937 0.755
#> SD:hclust 5 0.798 0.798 0.882 0.0517 0.992 0.971
#> CV:hclust 5 0.838 0.852 0.864 0.0676 0.881 0.627
#> MAD:hclust 5 0.863 0.828 0.905 0.1122 0.884 0.630
#> ATC:hclust 5 0.922 0.817 0.920 0.0578 0.953 0.811
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.835 0.750 0.856 0.0215 0.961 0.839
#> CV:NMF 6 0.895 0.845 0.906 0.0326 0.952 0.769
#> MAD:NMF 6 0.859 0.780 0.869 0.0248 0.971 0.880
#> ATC:NMF 6 0.894 0.838 0.908 0.0212 0.960 0.825
#> SD:skmeans 6 0.951 0.892 0.886 0.0236 0.992 0.962
#> CV:skmeans 6 0.931 0.914 0.927 0.0359 0.970 0.852
#> MAD:skmeans 6 0.971 0.908 0.938 0.0273 0.968 0.844
#> ATC:skmeans 6 0.907 0.848 0.909 0.0329 0.971 0.875
#> SD:mclust 6 0.908 0.865 0.915 0.0175 1.000 1.000
#> CV:mclust 6 0.926 0.913 0.934 0.0325 0.975 0.876
#> MAD:mclust 6 0.886 0.803 0.863 0.0123 0.942 0.744
#> ATC:mclust 6 0.926 0.918 0.913 0.0209 0.936 0.718
#> SD:kmeans 6 0.942 0.885 0.897 0.0337 1.000 1.000
#> CV:kmeans 6 0.903 0.713 0.851 0.0538 0.977 0.887
#> MAD:kmeans 6 0.915 0.847 0.887 0.0367 0.983 0.913
#> ATC:kmeans 6 0.798 0.754 0.822 0.0388 0.970 0.863
#> SD:pam 6 0.988 0.952 0.979 0.0292 0.976 0.878
#> CV:pam 6 1.000 0.955 0.983 0.0472 0.945 0.745
#> MAD:pam 6 0.975 0.962 0.981 0.0327 0.976 0.878
#> ATC:pam 6 1.000 0.960 0.987 0.0323 0.968 0.845
#> SD:hclust 6 0.920 0.864 0.942 0.0784 0.868 0.556
#> CV:hclust 6 0.781 0.845 0.849 0.0410 0.970 0.854
#> MAD:hclust 6 0.945 0.797 0.907 0.0235 0.952 0.780
#> ATC:hclust 6 0.919 0.877 0.916 0.0286 0.960 0.810
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.529 0.828 0.917 0.4764 0.509 0.509
#> 3 3 0.656 0.833 0.918 0.3603 0.836 0.677
#> 4 4 0.750 0.841 0.925 0.1025 0.935 0.812
#> 5 5 0.798 0.798 0.882 0.0517 0.992 0.971
#> 6 6 0.920 0.864 0.942 0.0784 0.868 0.556
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.862 0.000 1.000
#> SRR2050427 1 0.0376 0.928 0.996 0.004
#> SRR2050426 1 0.0376 0.928 0.996 0.004
#> SRR2050425 2 0.0000 0.862 0.000 1.000
#> SRR2050424 1 0.0000 0.928 1.000 0.000
#> SRR2050423 2 0.9580 0.541 0.380 0.620
#> SRR2050422 1 0.7602 0.723 0.780 0.220
#> SRR2050421 1 0.0376 0.928 0.996 0.004
#> SRR2050420 1 0.0376 0.928 0.996 0.004
#> SRR2050419 2 0.0000 0.862 0.000 1.000
#> SRR2050418 1 0.0376 0.928 0.996 0.004
#> SRR2050417 1 0.6712 0.751 0.824 0.176
#> SRR2050416 2 0.0672 0.860 0.008 0.992
#> SRR2050415 1 0.0000 0.928 1.000 0.000
#> SRR2050414 2 0.9580 0.541 0.380 0.620
#> SRR2050413 1 0.7602 0.723 0.780 0.220
#> SRR2050412 1 0.0376 0.928 0.996 0.004
#> SRR2050411 1 0.6712 0.751 0.824 0.176
#> SRR2050409 2 0.0000 0.862 0.000 1.000
#> SRR2050408 1 0.6712 0.751 0.824 0.176
#> SRR2050407 2 0.0000 0.862 0.000 1.000
#> SRR2050406 1 0.0000 0.928 1.000 0.000
#> SRR2050405 2 0.9580 0.541 0.380 0.620
#> SRR2050404 2 0.0000 0.862 0.000 1.000
#> SRR2050403 1 0.6712 0.751 0.824 0.176
#> SRR2050402 2 0.0000 0.862 0.000 1.000
#> SRR2050401 1 0.0376 0.928 0.996 0.004
#> SRR2050400 1 0.0376 0.928 0.996 0.004
#> SRR2050399 1 0.8861 0.584 0.696 0.304
#> SRR2050398 1 0.0376 0.928 0.996 0.004
#> SRR2050397 1 0.6712 0.751 0.824 0.176
#> SRR2050396 1 0.0000 0.928 1.000 0.000
#> SRR2050395 2 0.9580 0.541 0.380 0.620
#> SRR2050394 2 0.0000 0.862 0.000 1.000
#> SRR2050393 1 0.0000 0.928 1.000 0.000
#> SRR2050392 2 0.1843 0.853 0.028 0.972
#> SRR2050465 2 0.0000 0.862 0.000 1.000
#> SRR2050464 1 0.0000 0.928 1.000 0.000
#> SRR2050463 2 0.9580 0.541 0.380 0.620
#> SRR2050462 2 0.0000 0.862 0.000 1.000
#> SRR2050461 1 0.0000 0.928 1.000 0.000
#> SRR2050460 2 0.9580 0.541 0.380 0.620
#> SRR2050459 2 0.0000 0.862 0.000 1.000
#> SRR2050458 1 0.0000 0.928 1.000 0.000
#> SRR2050457 2 0.1184 0.857 0.016 0.984
#> SRR2050456 2 0.0000 0.862 0.000 1.000
#> SRR2050455 1 0.0000 0.928 1.000 0.000
#> SRR2050454 2 0.1843 0.853 0.028 0.972
#> SRR2050453 2 0.0000 0.862 0.000 1.000
#> SRR2050452 1 0.0000 0.928 1.000 0.000
#> SRR2050451 2 0.9580 0.541 0.380 0.620
#> SRR2050450 2 0.0000 0.862 0.000 1.000
#> SRR2050449 1 0.0000 0.928 1.000 0.000
#> SRR2050448 2 0.9580 0.541 0.380 0.620
#> SRR2050447 1 0.0000 0.928 1.000 0.000
#> SRR2050446 2 0.9580 0.541 0.380 0.620
#> SRR2050445 2 0.0000 0.862 0.000 1.000
#> SRR2050444 1 0.0000 0.928 1.000 0.000
#> SRR2050443 2 0.1843 0.853 0.028 0.972
#> SRR2050442 1 0.7299 0.741 0.796 0.204
#> SRR2050441 1 0.0000 0.928 1.000 0.000
#> SRR2050440 1 0.0376 0.928 0.996 0.004
#> SRR2050439 1 0.7299 0.741 0.796 0.204
#> SRR2050438 1 0.0000 0.928 1.000 0.000
#> SRR2050437 1 0.0376 0.928 0.996 0.004
#> SRR2050436 1 0.7299 0.741 0.796 0.204
#> SRR2050435 1 0.0000 0.928 1.000 0.000
#> SRR2050434 1 0.7299 0.741 0.796 0.204
#> SRR2050433 2 0.0000 0.862 0.000 1.000
#> SRR2050432 1 0.0376 0.928 0.996 0.004
#> SRR2050431 1 0.0376 0.928 0.996 0.004
#> SRR2050430 1 0.0376 0.928 0.996 0.004
#> SRR2050429 1 0.0376 0.928 0.996 0.004
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.854 0.000 1.000 0
#> SRR2050427 1 0.0000 0.884 1.000 0.000 0
#> SRR2050426 1 0.0000 0.884 1.000 0.000 0
#> SRR2050425 2 0.0000 0.854 0.000 1.000 0
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1
#> SRR2050423 2 0.6062 0.528 0.384 0.616 0
#> SRR2050422 1 0.4750 0.743 0.784 0.216 0
#> SRR2050421 1 0.0000 0.884 1.000 0.000 0
#> SRR2050420 1 0.0000 0.884 1.000 0.000 0
#> SRR2050419 2 0.0000 0.854 0.000 1.000 0
#> SRR2050418 1 0.0000 0.884 1.000 0.000 0
#> SRR2050417 1 0.4178 0.747 0.828 0.172 0
#> SRR2050416 2 0.0424 0.851 0.008 0.992 0
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1
#> SRR2050414 2 0.6062 0.528 0.384 0.616 0
#> SRR2050413 1 0.4750 0.743 0.784 0.216 0
#> SRR2050412 1 0.0000 0.884 1.000 0.000 0
#> SRR2050411 1 0.4178 0.747 0.828 0.172 0
#> SRR2050409 2 0.0000 0.854 0.000 1.000 0
#> SRR2050408 1 0.4178 0.747 0.828 0.172 0
#> SRR2050407 2 0.0000 0.854 0.000 1.000 0
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1
#> SRR2050405 2 0.6062 0.528 0.384 0.616 0
#> SRR2050404 2 0.0000 0.854 0.000 1.000 0
#> SRR2050403 1 0.4178 0.747 0.828 0.172 0
#> SRR2050402 2 0.0000 0.854 0.000 1.000 0
#> SRR2050401 1 0.0000 0.884 1.000 0.000 0
#> SRR2050400 1 0.0000 0.884 1.000 0.000 0
#> SRR2050399 1 0.5560 0.622 0.700 0.300 0
#> SRR2050398 1 0.0000 0.884 1.000 0.000 0
#> SRR2050397 1 0.4178 0.747 0.828 0.172 0
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1
#> SRR2050395 2 0.6062 0.528 0.384 0.616 0
#> SRR2050394 2 0.0000 0.854 0.000 1.000 0
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1
#> SRR2050392 2 0.1163 0.845 0.028 0.972 0
#> SRR2050465 2 0.0000 0.854 0.000 1.000 0
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1
#> SRR2050463 2 0.6062 0.528 0.384 0.616 0
#> SRR2050462 2 0.0000 0.854 0.000 1.000 0
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1
#> SRR2050460 2 0.6062 0.528 0.384 0.616 0
#> SRR2050459 2 0.0000 0.854 0.000 1.000 0
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1
#> SRR2050457 2 0.0747 0.848 0.016 0.984 0
#> SRR2050456 2 0.0000 0.854 0.000 1.000 0
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1
#> SRR2050454 2 0.1163 0.845 0.028 0.972 0
#> SRR2050453 2 0.0000 0.854 0.000 1.000 0
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1
#> SRR2050451 2 0.6062 0.528 0.384 0.616 0
#> SRR2050450 2 0.0000 0.854 0.000 1.000 0
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1
#> SRR2050448 2 0.6062 0.528 0.384 0.616 0
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1
#> SRR2050446 2 0.6062 0.528 0.384 0.616 0
#> SRR2050445 2 0.0000 0.854 0.000 1.000 0
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1
#> SRR2050443 2 0.1163 0.845 0.028 0.972 0
#> SRR2050442 1 0.4555 0.757 0.800 0.200 0
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1
#> SRR2050440 1 0.0000 0.884 1.000 0.000 0
#> SRR2050439 1 0.4555 0.757 0.800 0.200 0
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1
#> SRR2050437 1 0.0000 0.884 1.000 0.000 0
#> SRR2050436 1 0.4555 0.757 0.800 0.200 0
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1
#> SRR2050434 1 0.4555 0.757 0.800 0.200 0
#> SRR2050433 2 0.0000 0.854 0.000 1.000 0
#> SRR2050432 1 0.0000 0.884 1.000 0.000 0
#> SRR2050431 1 0.0000 0.884 1.000 0.000 0
#> SRR2050430 1 0.0000 0.884 1.000 0.000 0
#> SRR2050429 1 0.0000 0.884 1.000 0.000 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050427 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050426 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050425 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050423 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050422 4 0.1520 0.892 0.024 0.020 0 0.956
#> SRR2050421 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050420 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050419 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050418 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050417 1 0.3311 0.798 0.828 0.172 0 0.000
#> SRR2050416 2 0.0336 0.843 0.000 0.992 0 0.008
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050414 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050413 4 0.1520 0.892 0.024 0.020 0 0.956
#> SRR2050412 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050411 1 0.3311 0.798 0.828 0.172 0 0.000
#> SRR2050409 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050408 1 0.3311 0.798 0.828 0.172 0 0.000
#> SRR2050407 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050405 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050404 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050403 1 0.3311 0.798 0.828 0.172 0 0.000
#> SRR2050402 2 0.0188 0.846 0.000 0.996 0 0.004
#> SRR2050401 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050400 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050399 4 0.2408 0.830 0.000 0.104 0 0.896
#> SRR2050398 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050397 1 0.3311 0.798 0.828 0.172 0 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050395 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050394 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050392 2 0.1109 0.839 0.028 0.968 0 0.004
#> SRR2050465 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050463 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050462 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050460 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050459 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050457 2 0.0779 0.843 0.016 0.980 0 0.004
#> SRR2050456 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050454 2 0.1109 0.839 0.028 0.968 0 0.004
#> SRR2050453 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050451 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050450 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050448 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050446 2 0.4978 0.490 0.384 0.612 0 0.004
#> SRR2050445 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050443 2 0.1109 0.839 0.028 0.968 0 0.004
#> SRR2050442 4 0.0188 0.896 0.000 0.004 0 0.996
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050440 4 0.3610 0.768 0.200 0.000 0 0.800
#> SRR2050439 4 0.0188 0.896 0.000 0.004 0 0.996
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050437 4 0.3610 0.768 0.200 0.000 0 0.800
#> SRR2050436 4 0.0188 0.896 0.000 0.004 0 0.996
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050434 4 0.0188 0.896 0.000 0.004 0 0.996
#> SRR2050433 2 0.0000 0.847 0.000 1.000 0 0.000
#> SRR2050432 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050431 1 0.0000 0.908 1.000 0.000 0 0.000
#> SRR2050430 1 0.3219 0.739 0.836 0.000 0 0.164
#> SRR2050429 4 0.3610 0.768 0.200 0.000 0 0.800
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050427 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050426 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050425 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050423 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050422 5 0.0798 0.933 0.008 0.000 0 0.016 0.976
#> SRR2050421 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050420 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050419 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050418 1 0.0162 0.909 0.996 0.000 0 0.004 0.000
#> SRR2050417 1 0.3074 0.810 0.804 0.000 0 0.196 0.000
#> SRR2050416 2 0.0703 0.724 0.000 0.976 0 0.000 0.024
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050414 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050413 5 0.0798 0.933 0.008 0.000 0 0.016 0.976
#> SRR2050412 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050411 1 0.3003 0.815 0.812 0.000 0 0.188 0.000
#> SRR2050409 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050408 1 0.3074 0.810 0.804 0.000 0 0.196 0.000
#> SRR2050407 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050405 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050404 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050403 1 0.3074 0.810 0.804 0.000 0 0.196 0.000
#> SRR2050402 2 0.0609 0.727 0.000 0.980 0 0.000 0.020
#> SRR2050401 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050400 1 0.0162 0.910 0.996 0.000 0 0.004 0.000
#> SRR2050399 5 0.1792 0.799 0.000 0.084 0 0.000 0.916
#> SRR2050398 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050397 1 0.3003 0.815 0.812 0.000 0 0.188 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050395 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050394 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050392 2 0.3395 0.661 0.000 0.764 0 0.236 0.000
#> SRR2050465 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050463 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050462 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050460 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050459 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050457 2 0.3305 0.666 0.000 0.776 0 0.224 0.000
#> SRR2050456 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050454 2 0.3395 0.661 0.000 0.764 0 0.236 0.000
#> SRR2050453 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050451 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050450 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050448 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050446 2 0.6694 0.311 0.348 0.408 0 0.244 0.000
#> SRR2050445 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050443 2 0.3395 0.661 0.000 0.764 0 0.236 0.000
#> SRR2050442 5 0.0510 0.948 0.000 0.000 0 0.016 0.984
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050440 4 0.3912 1.000 0.020 0.000 0 0.752 0.228
#> SRR2050439 5 0.0510 0.948 0.000 0.000 0 0.016 0.984
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050437 4 0.3912 1.000 0.020 0.000 0 0.752 0.228
#> SRR2050436 5 0.0510 0.948 0.000 0.000 0 0.016 0.984
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050434 5 0.0510 0.948 0.000 0.000 0 0.016 0.984
#> SRR2050433 2 0.0000 0.740 0.000 1.000 0 0.000 0.000
#> SRR2050432 1 0.0000 0.910 1.000 0.000 0 0.000 0.000
#> SRR2050431 1 0.0794 0.901 0.972 0.000 0 0.028 0.000
#> SRR2050430 1 0.3241 0.760 0.832 0.000 0 0.144 0.024
#> SRR2050429 4 0.3912 1.000 0.020 0.000 0 0.752 0.228
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050427 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050425 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050423 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050422 5 0.0000 0.951 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050421 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050418 1 0.0146 0.975 0.996 0.000 0 0.004 0.000 0.000
#> SRR2050417 4 0.3847 0.255 0.456 0.000 0 0.544 0.000 0.000
#> SRR2050416 2 0.0632 0.977 0.000 0.976 0 0.000 0.024 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050414 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050413 5 0.0000 0.951 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050412 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050411 4 0.3854 0.237 0.464 0.000 0 0.536 0.000 0.000
#> SRR2050409 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050408 4 0.3847 0.255 0.456 0.000 0 0.544 0.000 0.000
#> SRR2050407 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050405 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050404 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050403 4 0.3847 0.255 0.456 0.000 0 0.544 0.000 0.000
#> SRR2050402 2 0.0547 0.981 0.000 0.980 0 0.000 0.020 0.000
#> SRR2050401 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050400 1 0.0146 0.975 0.996 0.000 0 0.004 0.000 0.000
#> SRR2050399 5 0.1610 0.859 0.000 0.084 0 0.000 0.916 0.000
#> SRR2050398 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050397 4 0.3854 0.237 0.464 0.000 0 0.536 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050395 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050394 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050392 4 0.3634 0.416 0.000 0.356 0 0.644 0.000 0.000
#> SRR2050465 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050463 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050462 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050460 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050459 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050457 4 0.3672 0.393 0.000 0.368 0 0.632 0.000 0.000
#> SRR2050456 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050454 4 0.3634 0.416 0.000 0.356 0 0.644 0.000 0.000
#> SRR2050453 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050451 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050450 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050448 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050446 4 0.0000 0.685 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050445 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050443 4 0.3634 0.416 0.000 0.356 0 0.644 0.000 0.000
#> SRR2050442 5 0.0937 0.962 0.000 0.000 0 0.000 0.960 0.040
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050440 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050439 5 0.0937 0.962 0.000 0.000 0 0.000 0.960 0.040
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050437 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050436 5 0.0937 0.962 0.000 0.000 0 0.000 0.960 0.040
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050434 5 0.0937 0.962 0.000 0.000 0 0.000 0.960 0.040
#> SRR2050433 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050432 1 0.0000 0.978 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050431 1 0.0993 0.952 0.964 0.000 0 0.012 0.024 0.000
#> SRR2050430 1 0.2632 0.776 0.832 0.000 0 0.004 0.000 0.164
#> SRR2050429 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.370 0.586 0.769 0.4278 0.653 0.653
#> 3 3 0.611 0.853 0.903 0.4778 0.699 0.538
#> 4 4 0.762 0.765 0.869 0.1634 0.901 0.726
#> 5 5 0.906 0.965 0.938 0.0717 0.919 0.707
#> 6 6 0.942 0.885 0.897 0.0337 1.000 1.000
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.9635 0.660 0.388 0.612
#> SRR2050427 2 0.8267 0.085 0.260 0.740
#> SRR2050426 2 0.7950 0.151 0.240 0.760
#> SRR2050425 2 0.9635 0.660 0.388 0.612
#> SRR2050424 1 0.9129 0.998 0.672 0.328
#> SRR2050423 2 0.8608 0.203 0.284 0.716
#> SRR2050422 2 0.9323 0.659 0.348 0.652
#> SRR2050421 2 0.8267 0.085 0.260 0.740
#> SRR2050420 2 0.7950 0.151 0.240 0.760
#> SRR2050419 2 0.9635 0.660 0.388 0.612
#> SRR2050418 2 0.0000 0.561 0.000 1.000
#> SRR2050417 2 0.0000 0.561 0.000 1.000
#> SRR2050416 2 0.9635 0.660 0.388 0.612
#> SRR2050415 1 0.9129 0.998 0.672 0.328
#> SRR2050414 2 0.3274 0.577 0.060 0.940
#> SRR2050413 2 0.9635 0.660 0.388 0.612
#> SRR2050412 2 0.8267 0.085 0.260 0.740
#> SRR2050411 2 0.4431 0.461 0.092 0.908
#> SRR2050409 2 0.9635 0.660 0.388 0.612
#> SRR2050408 2 0.0672 0.555 0.008 0.992
#> SRR2050407 2 0.9635 0.660 0.388 0.612
#> SRR2050406 1 0.9129 0.998 0.672 0.328
#> SRR2050405 2 0.3274 0.577 0.060 0.940
#> SRR2050404 2 0.9635 0.660 0.388 0.612
#> SRR2050403 2 0.4431 0.461 0.092 0.908
#> SRR2050402 2 0.9635 0.660 0.388 0.612
#> SRR2050401 2 0.8267 0.085 0.260 0.740
#> SRR2050400 2 0.5059 0.430 0.112 0.888
#> SRR2050399 2 0.9635 0.660 0.388 0.612
#> SRR2050398 2 0.8267 0.085 0.260 0.740
#> SRR2050397 2 0.4431 0.461 0.092 0.908
#> SRR2050396 1 0.9129 0.998 0.672 0.328
#> SRR2050395 2 0.5408 0.517 0.124 0.876
#> SRR2050394 2 0.9635 0.660 0.388 0.612
#> SRR2050393 1 0.9129 0.998 0.672 0.328
#> SRR2050392 2 0.8713 0.649 0.292 0.708
#> SRR2050465 2 0.9635 0.660 0.388 0.612
#> SRR2050464 1 0.9129 0.998 0.672 0.328
#> SRR2050463 2 0.3274 0.577 0.060 0.940
#> SRR2050462 2 0.9635 0.660 0.388 0.612
#> SRR2050461 1 0.9129 0.998 0.672 0.328
#> SRR2050460 2 0.6148 0.481 0.152 0.848
#> SRR2050459 2 0.9635 0.660 0.388 0.612
#> SRR2050458 1 0.9129 0.998 0.672 0.328
#> SRR2050457 2 0.8608 0.649 0.284 0.716
#> SRR2050456 2 0.9635 0.660 0.388 0.612
#> SRR2050455 1 0.9129 0.998 0.672 0.328
#> SRR2050454 2 0.3274 0.577 0.060 0.940
#> SRR2050453 2 0.9635 0.660 0.388 0.612
#> SRR2050452 1 0.9129 0.998 0.672 0.328
#> SRR2050451 2 0.3274 0.577 0.060 0.940
#> SRR2050450 2 0.9635 0.660 0.388 0.612
#> SRR2050449 1 0.9129 0.998 0.672 0.328
#> SRR2050448 2 0.3274 0.577 0.060 0.940
#> SRR2050447 1 0.9129 0.998 0.672 0.328
#> SRR2050446 2 0.3274 0.577 0.060 0.940
#> SRR2050445 2 0.9635 0.660 0.388 0.612
#> SRR2050444 1 0.9129 0.998 0.672 0.328
#> SRR2050443 2 0.3274 0.577 0.060 0.940
#> SRR2050442 2 0.9635 0.660 0.388 0.612
#> SRR2050441 1 0.9129 0.998 0.672 0.328
#> SRR2050440 2 0.9850 -0.431 0.428 0.572
#> SRR2050439 2 0.9635 0.660 0.388 0.612
#> SRR2050438 1 0.9323 0.965 0.652 0.348
#> SRR2050437 2 0.9850 -0.431 0.428 0.572
#> SRR2050436 2 0.9323 0.659 0.348 0.652
#> SRR2050435 1 0.9129 0.998 0.672 0.328
#> SRR2050434 2 0.9323 0.659 0.348 0.652
#> SRR2050433 2 0.9635 0.660 0.388 0.612
#> SRR2050432 2 0.8267 0.085 0.260 0.740
#> SRR2050431 2 0.7745 0.184 0.228 0.772
#> SRR2050430 2 0.8016 0.139 0.244 0.756
#> SRR2050429 2 0.7950 0.151 0.240 0.760
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050427 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050425 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050424 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050423 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050422 2 0.8153 0.504 0.240 0.632 0.128
#> SRR2050421 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050419 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050418 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050416 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050415 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050414 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050413 2 0.1636 0.930 0.016 0.964 0.020
#> SRR2050412 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050409 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050408 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050407 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050406 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050405 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050404 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050403 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050402 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050401 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050399 2 0.1636 0.930 0.016 0.964 0.020
#> SRR2050398 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050396 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050395 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050394 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050393 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050392 1 0.6235 0.336 0.564 0.436 0.000
#> SRR2050465 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050464 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050463 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050462 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050461 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050460 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050459 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050458 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050457 2 0.5835 0.442 0.340 0.660 0.000
#> SRR2050456 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050455 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050454 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050453 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050452 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050451 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050450 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050449 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050448 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050447 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050446 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050445 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050444 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050443 1 0.5254 0.688 0.736 0.264 0.000
#> SRR2050442 2 0.3482 0.850 0.000 0.872 0.128
#> SRR2050441 3 0.3482 0.983 0.128 0.000 0.872
#> SRR2050440 1 0.3846 0.788 0.876 0.016 0.108
#> SRR2050439 2 0.3482 0.850 0.000 0.872 0.128
#> SRR2050438 3 0.1289 0.886 0.032 0.000 0.968
#> SRR2050437 1 0.3846 0.788 0.876 0.016 0.108
#> SRR2050436 2 0.8117 0.513 0.236 0.636 0.128
#> SRR2050435 3 0.1289 0.886 0.032 0.000 0.968
#> SRR2050434 1 0.8850 0.383 0.516 0.356 0.128
#> SRR2050433 2 0.0747 0.939 0.016 0.984 0.000
#> SRR2050432 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.863 1.000 0.000 0.000
#> SRR2050430 1 0.3846 0.788 0.876 0.016 0.108
#> SRR2050429 1 0.3846 0.788 0.876 0.016 0.108
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050427 1 0.1474 0.662 0.948 0.000 0.000 0.052
#> SRR2050426 1 0.1474 0.662 0.948 0.000 0.000 0.052
#> SRR2050425 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050424 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.5256 0.506 0.596 0.000 0.012 0.392
#> SRR2050422 4 0.3249 0.698 0.008 0.140 0.000 0.852
#> SRR2050421 1 0.1474 0.662 0.948 0.000 0.000 0.052
#> SRR2050420 1 0.1474 0.662 0.948 0.000 0.000 0.052
#> SRR2050419 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050418 1 0.0000 0.675 1.000 0.000 0.000 0.000
#> SRR2050417 1 0.1022 0.668 0.968 0.000 0.000 0.032
#> SRR2050416 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050415 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050414 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050413 2 0.2266 0.888 0.004 0.912 0.000 0.084
#> SRR2050412 1 0.1302 0.667 0.956 0.000 0.000 0.044
#> SRR2050411 1 0.0000 0.675 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050408 1 0.0000 0.675 1.000 0.000 0.000 0.000
#> SRR2050407 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050406 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050405 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050404 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050403 1 0.0000 0.675 1.000 0.000 0.000 0.000
#> SRR2050402 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050401 1 0.1302 0.667 0.956 0.000 0.000 0.044
#> SRR2050400 1 0.1474 0.662 0.948 0.000 0.000 0.052
#> SRR2050399 2 0.1004 0.969 0.004 0.972 0.000 0.024
#> SRR2050398 1 0.1302 0.667 0.956 0.000 0.000 0.044
#> SRR2050397 1 0.0000 0.675 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050395 1 0.6596 0.483 0.540 0.056 0.012 0.392
#> SRR2050394 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050393 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050392 1 0.7264 0.429 0.460 0.148 0.000 0.392
#> SRR2050465 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050464 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050463 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050462 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050461 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.5256 0.506 0.596 0.000 0.012 0.392
#> SRR2050459 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050458 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050457 4 0.8219 -0.293 0.344 0.264 0.012 0.380
#> SRR2050456 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050455 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050454 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050453 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050452 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050451 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050450 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050449 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050448 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050447 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050446 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050445 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050444 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050443 1 0.7565 0.440 0.460 0.136 0.012 0.392
#> SRR2050442 4 0.4661 0.470 0.000 0.348 0.000 0.652
#> SRR2050441 3 0.0188 0.996 0.000 0.004 0.996 0.000
#> SRR2050440 4 0.2704 0.645 0.124 0.000 0.000 0.876
#> SRR2050439 4 0.4661 0.470 0.000 0.348 0.000 0.652
#> SRR2050438 3 0.0524 0.989 0.000 0.004 0.988 0.008
#> SRR2050437 4 0.2704 0.645 0.124 0.000 0.000 0.876
#> SRR2050436 4 0.3249 0.698 0.008 0.140 0.000 0.852
#> SRR2050435 3 0.0524 0.989 0.000 0.004 0.988 0.008
#> SRR2050434 4 0.1807 0.667 0.008 0.052 0.000 0.940
#> SRR2050433 2 0.0188 0.993 0.004 0.996 0.000 0.000
#> SRR2050432 1 0.1302 0.667 0.956 0.000 0.000 0.044
#> SRR2050431 1 0.1867 0.660 0.928 0.000 0.000 0.072
#> SRR2050430 4 0.4304 0.547 0.284 0.000 0.000 0.716
#> SRR2050429 4 0.4564 0.493 0.328 0.000 0.000 0.672
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050427 1 0.3608 0.971 0.812 0.000 0.000 0.148 0.040
#> SRR2050426 1 0.2763 0.976 0.848 0.000 0.000 0.148 0.004
#> SRR2050425 2 0.0000 0.977 0.000 1.000 0.000 0.000 0.000
#> SRR2050424 3 0.0404 0.981 0.000 0.000 0.988 0.012 0.000
#> SRR2050423 4 0.1522 0.957 0.044 0.000 0.012 0.944 0.000
#> SRR2050422 5 0.2338 0.936 0.032 0.016 0.000 0.036 0.916
#> SRR2050421 1 0.3608 0.971 0.812 0.000 0.000 0.148 0.040
#> SRR2050420 1 0.2763 0.976 0.848 0.000 0.000 0.148 0.004
#> SRR2050419 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050418 1 0.3608 0.969 0.812 0.000 0.000 0.148 0.040
#> SRR2050417 1 0.2890 0.964 0.836 0.000 0.000 0.160 0.004
#> SRR2050416 2 0.0510 0.971 0.016 0.984 0.000 0.000 0.000
#> SRR2050415 3 0.0404 0.981 0.000 0.000 0.988 0.012 0.000
#> SRR2050414 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050413 2 0.3052 0.873 0.032 0.868 0.000 0.008 0.092
#> SRR2050412 1 0.3521 0.972 0.820 0.000 0.000 0.140 0.040
#> SRR2050411 1 0.2798 0.975 0.852 0.000 0.000 0.140 0.008
#> SRR2050409 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050408 1 0.2843 0.974 0.848 0.000 0.000 0.144 0.008
#> SRR2050407 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050406 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050405 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050404 2 0.0000 0.977 0.000 1.000 0.000 0.000 0.000
#> SRR2050403 1 0.2798 0.975 0.852 0.000 0.000 0.140 0.008
#> SRR2050402 2 0.0703 0.966 0.024 0.976 0.000 0.000 0.000
#> SRR2050401 1 0.3521 0.972 0.820 0.000 0.000 0.140 0.040
#> SRR2050400 1 0.2763 0.976 0.848 0.000 0.000 0.148 0.004
#> SRR2050399 2 0.2654 0.890 0.032 0.884 0.000 0.000 0.084
#> SRR2050398 1 0.3521 0.972 0.820 0.000 0.000 0.140 0.040
#> SRR2050397 1 0.2798 0.975 0.852 0.000 0.000 0.140 0.008
#> SRR2050396 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050395 4 0.1651 0.967 0.036 0.008 0.012 0.944 0.000
#> SRR2050394 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050393 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050392 4 0.1041 0.956 0.000 0.032 0.004 0.964 0.000
#> SRR2050465 2 0.0000 0.977 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050463 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050462 2 0.0000 0.977 0.000 1.000 0.000 0.000 0.000
#> SRR2050461 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050460 4 0.1522 0.957 0.044 0.000 0.012 0.944 0.000
#> SRR2050459 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050458 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050457 4 0.2414 0.894 0.008 0.080 0.012 0.900 0.000
#> SRR2050456 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050455 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050454 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050453 2 0.0000 0.977 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050451 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050450 2 0.0000 0.977 0.000 1.000 0.000 0.000 0.000
#> SRR2050449 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050448 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050447 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050446 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050445 2 0.0609 0.977 0.000 0.980 0.000 0.020 0.000
#> SRR2050444 3 0.0290 0.983 0.000 0.000 0.992 0.008 0.000
#> SRR2050443 4 0.1710 0.980 0.020 0.024 0.012 0.944 0.000
#> SRR2050442 5 0.1549 0.938 0.000 0.040 0.000 0.016 0.944
#> SRR2050441 3 0.2036 0.932 0.056 0.000 0.920 0.024 0.000
#> SRR2050440 5 0.3065 0.938 0.072 0.000 0.008 0.048 0.872
#> SRR2050439 5 0.1549 0.938 0.000 0.040 0.000 0.016 0.944
#> SRR2050438 3 0.2673 0.911 0.072 0.000 0.892 0.028 0.008
#> SRR2050437 5 0.3065 0.938 0.072 0.000 0.008 0.048 0.872
#> SRR2050436 5 0.1300 0.946 0.000 0.016 0.000 0.028 0.956
#> SRR2050435 3 0.2409 0.923 0.056 0.000 0.908 0.028 0.008
#> SRR2050434 5 0.1121 0.942 0.000 0.000 0.000 0.044 0.956
#> SRR2050433 2 0.0290 0.978 0.000 0.992 0.000 0.008 0.000
#> SRR2050432 1 0.3521 0.972 0.820 0.000 0.000 0.140 0.040
#> SRR2050431 1 0.2763 0.976 0.848 0.000 0.000 0.148 0.004
#> SRR2050430 5 0.2673 0.935 0.072 0.000 0.008 0.028 0.892
#> SRR2050429 5 0.2746 0.922 0.112 0.000 0.008 0.008 0.872
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050427 1 0.2491 0.9197 0.836 0.000 0.000 0.000 0.000 0.164
#> SRR2050426 1 0.1714 0.9291 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR2050425 2 0.0508 0.9102 0.000 0.984 0.000 0.004 0.000 0.012
#> SRR2050424 3 0.0260 0.9427 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR2050423 4 0.1700 0.9700 0.080 0.000 0.000 0.916 0.000 0.004
#> SRR2050422 5 0.3518 0.6984 0.000 0.000 0.000 0.012 0.732 0.256
#> SRR2050421 1 0.2491 0.9197 0.836 0.000 0.000 0.000 0.000 0.164
#> SRR2050420 1 0.1714 0.9291 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR2050419 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050418 1 0.1753 0.9246 0.912 0.000 0.000 0.004 0.000 0.084
#> SRR2050417 1 0.0717 0.9219 0.976 0.000 0.000 0.008 0.000 0.016
#> SRR2050416 2 0.2333 0.8363 0.000 0.872 0.000 0.004 0.004 0.120
#> SRR2050415 3 0.0260 0.9427 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR2050414 4 0.2011 0.9844 0.064 0.020 0.000 0.912 0.000 0.004
#> SRR2050413 2 0.6342 0.0948 0.000 0.388 0.000 0.012 0.344 0.256
#> SRR2050412 1 0.2300 0.9213 0.856 0.000 0.000 0.000 0.000 0.144
#> SRR2050411 1 0.0508 0.9250 0.984 0.000 0.000 0.004 0.000 0.012
#> SRR2050409 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050408 1 0.0603 0.9237 0.980 0.000 0.000 0.004 0.000 0.016
#> SRR2050407 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050406 3 0.0260 0.9434 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2050405 4 0.2123 0.9845 0.064 0.020 0.000 0.908 0.000 0.008
#> SRR2050404 2 0.0508 0.9102 0.000 0.984 0.000 0.004 0.000 0.012
#> SRR2050403 1 0.0508 0.9250 0.984 0.000 0.000 0.004 0.000 0.012
#> SRR2050402 2 0.3431 0.7314 0.000 0.756 0.000 0.016 0.000 0.228
#> SRR2050401 1 0.2300 0.9213 0.856 0.000 0.000 0.000 0.000 0.144
#> SRR2050400 1 0.0632 0.9281 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR2050399 2 0.6336 0.1132 0.000 0.396 0.000 0.012 0.336 0.256
#> SRR2050398 1 0.2491 0.9197 0.836 0.000 0.000 0.000 0.000 0.164
#> SRR2050397 1 0.0508 0.9250 0.984 0.000 0.000 0.004 0.000 0.012
#> SRR2050396 3 0.0725 0.9355 0.000 0.000 0.976 0.012 0.000 0.012
#> SRR2050395 4 0.1843 0.9730 0.080 0.004 0.000 0.912 0.000 0.004
#> SRR2050394 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050393 3 0.0260 0.9434 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2050392 4 0.2247 0.9807 0.060 0.024 0.000 0.904 0.000 0.012
#> SRR2050465 2 0.0508 0.9102 0.000 0.984 0.000 0.004 0.000 0.012
#> SRR2050464 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.2011 0.9850 0.064 0.020 0.000 0.912 0.000 0.004
#> SRR2050462 2 0.0508 0.9102 0.000 0.984 0.000 0.004 0.000 0.012
#> SRR2050461 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.1700 0.9706 0.080 0.000 0.000 0.916 0.000 0.004
#> SRR2050459 2 0.0000 0.9117 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.2316 0.9549 0.040 0.040 0.000 0.904 0.000 0.016
#> SRR2050456 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050455 3 0.0260 0.9434 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2050454 4 0.2224 0.9831 0.064 0.020 0.000 0.904 0.000 0.012
#> SRR2050453 2 0.0508 0.9102 0.000 0.984 0.000 0.004 0.000 0.012
#> SRR2050452 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.2011 0.9850 0.064 0.020 0.000 0.912 0.000 0.004
#> SRR2050450 2 0.0508 0.9102 0.000 0.984 0.000 0.004 0.000 0.012
#> SRR2050449 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.2011 0.9850 0.064 0.020 0.000 0.912 0.000 0.004
#> SRR2050447 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.2011 0.9850 0.064 0.020 0.000 0.912 0.000 0.004
#> SRR2050445 2 0.0146 0.9117 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050444 3 0.0000 0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.2224 0.9831 0.064 0.020 0.000 0.904 0.000 0.012
#> SRR2050442 5 0.0937 0.8258 0.000 0.000 0.000 0.000 0.960 0.040
#> SRR2050441 3 0.3806 0.7774 0.000 0.000 0.752 0.048 0.000 0.200
#> SRR2050440 5 0.4214 0.8095 0.024 0.000 0.000 0.004 0.652 0.320
#> SRR2050439 5 0.0937 0.8258 0.000 0.000 0.000 0.000 0.960 0.040
#> SRR2050438 3 0.4575 0.5973 0.000 0.000 0.600 0.048 0.000 0.352
#> SRR2050437 5 0.4214 0.8095 0.024 0.000 0.000 0.004 0.652 0.320
#> SRR2050436 5 0.0000 0.8335 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050435 3 0.3835 0.7740 0.000 0.000 0.748 0.048 0.000 0.204
#> SRR2050434 5 0.0000 0.8335 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.9117 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050432 1 0.2491 0.9197 0.836 0.000 0.000 0.000 0.000 0.164
#> SRR2050431 1 0.0777 0.9274 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR2050430 5 0.4198 0.8099 0.024 0.000 0.000 0.004 0.656 0.316
#> SRR2050429 5 0.4405 0.8052 0.036 0.000 0.000 0.004 0.644 0.316
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.977 0.990 0.5067 0.493 0.493
#> 3 3 0.888 0.897 0.956 0.2951 0.830 0.664
#> 4 4 1.000 0.993 0.997 0.1400 0.877 0.660
#> 5 5 1.000 0.997 0.999 0.0666 0.919 0.696
#> 6 6 0.951 0.892 0.886 0.0236 0.992 0.962
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4
There is also optional best \(k\) = 2 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.986 0.000 1.000
#> SRR2050427 1 0.000 0.992 1.000 0.000
#> SRR2050426 1 0.000 0.992 1.000 0.000
#> SRR2050425 2 0.000 0.986 0.000 1.000
#> SRR2050424 1 0.000 0.992 1.000 0.000
#> SRR2050423 1 0.000 0.992 1.000 0.000
#> SRR2050422 2 0.000 0.986 0.000 1.000
#> SRR2050421 1 0.000 0.992 1.000 0.000
#> SRR2050420 1 0.000 0.992 1.000 0.000
#> SRR2050419 2 0.000 0.986 0.000 1.000
#> SRR2050418 2 0.775 0.715 0.228 0.772
#> SRR2050417 2 0.615 0.825 0.152 0.848
#> SRR2050416 2 0.000 0.986 0.000 1.000
#> SRR2050415 1 0.000 0.992 1.000 0.000
#> SRR2050414 2 0.000 0.986 0.000 1.000
#> SRR2050413 2 0.000 0.986 0.000 1.000
#> SRR2050412 1 0.000 0.992 1.000 0.000
#> SRR2050411 1 0.000 0.992 1.000 0.000
#> SRR2050409 2 0.000 0.986 0.000 1.000
#> SRR2050408 1 0.163 0.969 0.976 0.024
#> SRR2050407 2 0.000 0.986 0.000 1.000
#> SRR2050406 1 0.000 0.992 1.000 0.000
#> SRR2050405 2 0.482 0.883 0.104 0.896
#> SRR2050404 2 0.000 0.986 0.000 1.000
#> SRR2050403 1 0.000 0.992 1.000 0.000
#> SRR2050402 2 0.000 0.986 0.000 1.000
#> SRR2050401 1 0.000 0.992 1.000 0.000
#> SRR2050400 1 0.000 0.992 1.000 0.000
#> SRR2050399 2 0.000 0.986 0.000 1.000
#> SRR2050398 1 0.000 0.992 1.000 0.000
#> SRR2050397 1 0.000 0.992 1.000 0.000
#> SRR2050396 1 0.000 0.992 1.000 0.000
#> SRR2050395 1 0.802 0.669 0.756 0.244
#> SRR2050394 2 0.000 0.986 0.000 1.000
#> SRR2050393 1 0.000 0.992 1.000 0.000
#> SRR2050392 2 0.000 0.986 0.000 1.000
#> SRR2050465 2 0.000 0.986 0.000 1.000
#> SRR2050464 1 0.000 0.992 1.000 0.000
#> SRR2050463 2 0.000 0.986 0.000 1.000
#> SRR2050462 2 0.000 0.986 0.000 1.000
#> SRR2050461 1 0.000 0.992 1.000 0.000
#> SRR2050460 1 0.000 0.992 1.000 0.000
#> SRR2050459 2 0.000 0.986 0.000 1.000
#> SRR2050458 1 0.000 0.992 1.000 0.000
#> SRR2050457 2 0.000 0.986 0.000 1.000
#> SRR2050456 2 0.000 0.986 0.000 1.000
#> SRR2050455 1 0.000 0.992 1.000 0.000
#> SRR2050454 2 0.000 0.986 0.000 1.000
#> SRR2050453 2 0.000 0.986 0.000 1.000
#> SRR2050452 1 0.000 0.992 1.000 0.000
#> SRR2050451 2 0.000 0.986 0.000 1.000
#> SRR2050450 2 0.000 0.986 0.000 1.000
#> SRR2050449 1 0.000 0.992 1.000 0.000
#> SRR2050448 2 0.000 0.986 0.000 1.000
#> SRR2050447 1 0.000 0.992 1.000 0.000
#> SRR2050446 2 0.000 0.986 0.000 1.000
#> SRR2050445 2 0.000 0.986 0.000 1.000
#> SRR2050444 1 0.000 0.992 1.000 0.000
#> SRR2050443 2 0.000 0.986 0.000 1.000
#> SRR2050442 2 0.000 0.986 0.000 1.000
#> SRR2050441 1 0.000 0.992 1.000 0.000
#> SRR2050440 1 0.000 0.992 1.000 0.000
#> SRR2050439 2 0.000 0.986 0.000 1.000
#> SRR2050438 1 0.000 0.992 1.000 0.000
#> SRR2050437 1 0.000 0.992 1.000 0.000
#> SRR2050436 2 0.000 0.986 0.000 1.000
#> SRR2050435 1 0.000 0.992 1.000 0.000
#> SRR2050434 2 0.000 0.986 0.000 1.000
#> SRR2050433 2 0.000 0.986 0.000 1.000
#> SRR2050432 1 0.000 0.992 1.000 0.000
#> SRR2050431 1 0.000 0.992 1.000 0.000
#> SRR2050430 1 0.000 0.992 1.000 0.000
#> SRR2050429 1 0.000 0.992 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050427 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050425 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050423 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050422 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050421 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050419 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050416 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050414 2 0.6244 0.361 0.440 0.560 0.000
#> SRR2050413 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050412 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050405 2 0.6244 0.361 0.440 0.560 0.000
#> SRR2050404 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050402 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050401 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050399 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050398 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050395 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050394 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050392 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050465 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050463 2 0.6235 0.371 0.436 0.564 0.000
#> SRR2050462 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050460 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050459 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050457 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050456 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050454 2 0.6235 0.371 0.436 0.564 0.000
#> SRR2050453 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050451 2 0.6235 0.371 0.436 0.564 0.000
#> SRR2050450 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050448 2 0.6235 0.371 0.436 0.564 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050446 2 0.6235 0.371 0.436 0.564 0.000
#> SRR2050445 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050443 2 0.0747 0.889 0.016 0.984 0.000
#> SRR2050442 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050440 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050439 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050437 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050436 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050434 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.900 0.000 1.000 0.000
#> SRR2050432 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.992 1.000 0.000 0.000
#> SRR2050430 1 0.3941 0.801 0.844 0.000 0.156
#> SRR2050429 1 0.0000 0.992 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050427 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050426 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050425 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050424 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050423 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050422 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050421 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050420 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050419 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050418 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050417 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050416 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050415 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050414 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050413 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050412 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050411 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050409 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050408 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050407 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050406 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050405 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050404 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050403 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050402 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050401 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050400 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050399 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050398 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050397 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050396 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050395 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050394 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050393 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050392 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050465 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050464 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050463 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050462 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050461 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050460 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050459 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050458 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050457 4 0.369 0.737 0 0.208 0 0.792
#> SRR2050456 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050455 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050454 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050453 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050452 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050451 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050450 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050449 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050448 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050447 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050446 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050445 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050444 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050443 4 0.000 0.981 0 0.000 0 1.000
#> SRR2050442 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050441 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050440 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050439 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050438 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050437 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050436 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050435 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050434 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050433 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050432 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050431 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050430 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050429 1 0.000 1.000 1 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050427 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050426 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050425 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050424 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050423 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050422 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050421 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050420 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050419 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050418 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050417 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050416 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050415 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050414 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050413 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050412 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050411 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050409 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050408 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050407 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050406 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050405 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050404 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050403 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050402 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050401 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050400 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050399 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050398 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050397 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050396 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050395 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050394 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050393 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050392 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050465 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050464 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050463 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050462 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050461 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050460 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050459 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050458 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050457 2 0.185 0.902 0 0.912 0 0.088 0
#> SRR2050456 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050455 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050454 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050453 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050452 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050451 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050450 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050449 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050448 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050447 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050446 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050445 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050444 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050443 4 0.000 1.000 0 0.000 0 1.000 0
#> SRR2050442 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050441 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050440 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050439 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050438 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050437 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050436 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050435 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR2050434 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050433 2 0.000 0.995 0 1.000 0 0.000 0
#> SRR2050432 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050431 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR2050430 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR2050429 5 0.000 1.000 0 0.000 0 0.000 1
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050427 1 0.3266 0.847 0.728 0.000 0.000 0.000 0.272 0.000
#> SRR2050426 1 0.0146 0.880 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2050425 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.0632 0.834 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR2050422 5 0.3266 0.673 0.000 0.000 0.000 0.000 0.728 0.272
#> SRR2050421 1 0.3266 0.847 0.728 0.000 0.000 0.000 0.272 0.000
#> SRR2050420 1 0.0146 0.880 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2050419 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050418 1 0.3244 0.847 0.732 0.000 0.000 0.000 0.268 0.000
#> SRR2050417 1 0.0000 0.880 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050416 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050415 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.0547 0.834 0.000 0.000 0.000 0.980 0.000 0.020
#> SRR2050413 2 0.3515 0.604 0.000 0.676 0.000 0.000 0.324 0.000
#> SRR2050412 1 0.3244 0.847 0.732 0.000 0.000 0.000 0.268 0.000
#> SRR2050411 1 0.0000 0.880 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050408 1 0.0000 0.880 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.0000 0.831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050404 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050403 1 0.0000 0.880 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050402 2 0.0458 0.939 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR2050401 1 0.3244 0.847 0.732 0.000 0.000 0.000 0.268 0.000
#> SRR2050400 1 0.0146 0.880 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2050399 2 0.3126 0.714 0.000 0.752 0.000 0.000 0.248 0.000
#> SRR2050398 1 0.3266 0.847 0.728 0.000 0.000 0.000 0.272 0.000
#> SRR2050397 1 0.0000 0.880 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050395 4 0.0458 0.833 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR2050394 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.0000 0.831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050465 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.3765 0.763 0.000 0.000 0.000 0.596 0.000 0.404
#> SRR2050462 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.3765 0.763 0.000 0.000 0.000 0.596 0.000 0.404
#> SRR2050459 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 2 0.3717 0.440 0.000 0.616 0.000 0.384 0.000 0.000
#> SRR2050456 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.0000 0.831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050453 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.3765 0.763 0.000 0.000 0.000 0.596 0.000 0.404
#> SRR2050450 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.3765 0.763 0.000 0.000 0.000 0.596 0.000 0.404
#> SRR2050447 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.3765 0.763 0.000 0.000 0.000 0.596 0.000 0.404
#> SRR2050445 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.0000 0.831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050442 5 0.3647 0.907 0.000 0.000 0.000 0.000 0.640 0.360
#> SRR2050441 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 6 0.3765 0.914 0.000 0.000 0.000 0.000 0.404 0.596
#> SRR2050439 5 0.3647 0.907 0.000 0.000 0.000 0.000 0.640 0.360
#> SRR2050438 3 0.0260 0.992 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR2050437 6 0.3765 0.914 0.000 0.000 0.000 0.000 0.404 0.596
#> SRR2050436 5 0.3647 0.907 0.000 0.000 0.000 0.000 0.640 0.360
#> SRR2050435 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050434 5 0.3647 0.907 0.000 0.000 0.000 0.000 0.640 0.360
#> SRR2050433 2 0.0000 0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050432 1 0.3266 0.847 0.728 0.000 0.000 0.000 0.272 0.000
#> SRR2050431 1 0.1219 0.849 0.948 0.000 0.000 0.000 0.004 0.048
#> SRR2050430 6 0.3765 0.914 0.000 0.000 0.000 0.000 0.404 0.596
#> SRR2050429 6 0.4697 0.761 0.048 0.000 0.000 0.000 0.404 0.548
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3477 0.653 0.653
#> 3 3 0.918 0.965 0.983 0.8390 0.712 0.559
#> 4 4 1.000 0.966 0.984 0.1834 0.877 0.664
#> 5 5 1.000 0.986 0.994 0.0617 0.933 0.736
#> 6 6 0.988 0.952 0.979 0.0292 0.976 0.878
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0 1 0 1
#> SRR2050427 2 0 1 0 1
#> SRR2050426 2 0 1 0 1
#> SRR2050425 2 0 1 0 1
#> SRR2050424 1 0 1 1 0
#> SRR2050423 2 0 1 0 1
#> SRR2050422 2 0 1 0 1
#> SRR2050421 2 0 1 0 1
#> SRR2050420 2 0 1 0 1
#> SRR2050419 2 0 1 0 1
#> SRR2050418 2 0 1 0 1
#> SRR2050417 2 0 1 0 1
#> SRR2050416 2 0 1 0 1
#> SRR2050415 1 0 1 1 0
#> SRR2050414 2 0 1 0 1
#> SRR2050413 2 0 1 0 1
#> SRR2050412 2 0 1 0 1
#> SRR2050411 2 0 1 0 1
#> SRR2050409 2 0 1 0 1
#> SRR2050408 2 0 1 0 1
#> SRR2050407 2 0 1 0 1
#> SRR2050406 1 0 1 1 0
#> SRR2050405 2 0 1 0 1
#> SRR2050404 2 0 1 0 1
#> SRR2050403 2 0 1 0 1
#> SRR2050402 2 0 1 0 1
#> SRR2050401 2 0 1 0 1
#> SRR2050400 2 0 1 0 1
#> SRR2050399 2 0 1 0 1
#> SRR2050398 2 0 1 0 1
#> SRR2050397 2 0 1 0 1
#> SRR2050396 1 0 1 1 0
#> SRR2050395 2 0 1 0 1
#> SRR2050394 2 0 1 0 1
#> SRR2050393 1 0 1 1 0
#> SRR2050392 2 0 1 0 1
#> SRR2050465 2 0 1 0 1
#> SRR2050464 1 0 1 1 0
#> SRR2050463 2 0 1 0 1
#> SRR2050462 2 0 1 0 1
#> SRR2050461 1 0 1 1 0
#> SRR2050460 2 0 1 0 1
#> SRR2050459 2 0 1 0 1
#> SRR2050458 1 0 1 1 0
#> SRR2050457 2 0 1 0 1
#> SRR2050456 2 0 1 0 1
#> SRR2050455 1 0 1 1 0
#> SRR2050454 2 0 1 0 1
#> SRR2050453 2 0 1 0 1
#> SRR2050452 1 0 1 1 0
#> SRR2050451 2 0 1 0 1
#> SRR2050450 2 0 1 0 1
#> SRR2050449 1 0 1 1 0
#> SRR2050448 2 0 1 0 1
#> SRR2050447 1 0 1 1 0
#> SRR2050446 2 0 1 0 1
#> SRR2050445 2 0 1 0 1
#> SRR2050444 1 0 1 1 0
#> SRR2050443 2 0 1 0 1
#> SRR2050442 2 0 1 0 1
#> SRR2050441 1 0 1 1 0
#> SRR2050440 2 0 1 0 1
#> SRR2050439 2 0 1 0 1
#> SRR2050438 1 0 1 1 0
#> SRR2050437 2 0 1 0 1
#> SRR2050436 2 0 1 0 1
#> SRR2050435 1 0 1 1 0
#> SRR2050434 2 0 1 0 1
#> SRR2050433 2 0 1 0 1
#> SRR2050432 2 0 1 0 1
#> SRR2050431 2 0 1 0 1
#> SRR2050430 2 0 1 0 1
#> SRR2050429 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 0.993 0.000 1.000 0
#> SRR2050427 1 0.000 0.966 1.000 0.000 0
#> SRR2050426 1 0.000 0.966 1.000 0.000 0
#> SRR2050425 2 0.000 0.993 0.000 1.000 0
#> SRR2050424 3 0.000 1.000 0.000 0.000 1
#> SRR2050423 1 0.000 0.966 1.000 0.000 0
#> SRR2050422 1 0.254 0.905 0.920 0.080 0
#> SRR2050421 1 0.000 0.966 1.000 0.000 0
#> SRR2050420 1 0.000 0.966 1.000 0.000 0
#> SRR2050419 2 0.000 0.993 0.000 1.000 0
#> SRR2050418 1 0.000 0.966 1.000 0.000 0
#> SRR2050417 1 0.000 0.966 1.000 0.000 0
#> SRR2050416 2 0.000 0.993 0.000 1.000 0
#> SRR2050415 3 0.000 1.000 0.000 0.000 1
#> SRR2050414 1 0.000 0.966 1.000 0.000 0
#> SRR2050413 2 0.319 0.854 0.112 0.888 0
#> SRR2050412 1 0.000 0.966 1.000 0.000 0
#> SRR2050411 1 0.000 0.966 1.000 0.000 0
#> SRR2050409 2 0.000 0.993 0.000 1.000 0
#> SRR2050408 1 0.000 0.966 1.000 0.000 0
#> SRR2050407 2 0.000 0.993 0.000 1.000 0
#> SRR2050406 3 0.000 1.000 0.000 0.000 1
#> SRR2050405 1 0.319 0.883 0.888 0.112 0
#> SRR2050404 2 0.000 0.993 0.000 1.000 0
#> SRR2050403 1 0.000 0.966 1.000 0.000 0
#> SRR2050402 2 0.000 0.993 0.000 1.000 0
#> SRR2050401 1 0.000 0.966 1.000 0.000 0
#> SRR2050400 1 0.000 0.966 1.000 0.000 0
#> SRR2050399 2 0.000 0.993 0.000 1.000 0
#> SRR2050398 1 0.000 0.966 1.000 0.000 0
#> SRR2050397 1 0.000 0.966 1.000 0.000 0
#> SRR2050396 3 0.000 1.000 0.000 0.000 1
#> SRR2050395 1 0.000 0.966 1.000 0.000 0
#> SRR2050394 2 0.000 0.993 0.000 1.000 0
#> SRR2050393 3 0.000 1.000 0.000 0.000 1
#> SRR2050392 1 0.319 0.883 0.888 0.112 0
#> SRR2050465 2 0.000 0.993 0.000 1.000 0
#> SRR2050464 3 0.000 1.000 0.000 0.000 1
#> SRR2050463 1 0.271 0.904 0.912 0.088 0
#> SRR2050462 2 0.000 0.993 0.000 1.000 0
#> SRR2050461 3 0.000 1.000 0.000 0.000 1
#> SRR2050460 1 0.000 0.966 1.000 0.000 0
#> SRR2050459 2 0.000 0.993 0.000 1.000 0
#> SRR2050458 3 0.000 1.000 0.000 0.000 1
#> SRR2050457 1 0.565 0.602 0.688 0.312 0
#> SRR2050456 2 0.000 0.993 0.000 1.000 0
#> SRR2050455 3 0.000 1.000 0.000 0.000 1
#> SRR2050454 1 0.319 0.883 0.888 0.112 0
#> SRR2050453 2 0.000 0.993 0.000 1.000 0
#> SRR2050452 3 0.000 1.000 0.000 0.000 1
#> SRR2050451 1 0.000 0.966 1.000 0.000 0
#> SRR2050450 2 0.000 0.993 0.000 1.000 0
#> SRR2050449 3 0.000 1.000 0.000 0.000 1
#> SRR2050448 1 0.000 0.966 1.000 0.000 0
#> SRR2050447 3 0.000 1.000 0.000 0.000 1
#> SRR2050446 1 0.000 0.966 1.000 0.000 0
#> SRR2050445 2 0.000 0.993 0.000 1.000 0
#> SRR2050444 3 0.000 1.000 0.000 0.000 1
#> SRR2050443 1 0.319 0.883 0.888 0.112 0
#> SRR2050442 2 0.000 0.993 0.000 1.000 0
#> SRR2050441 3 0.000 1.000 0.000 0.000 1
#> SRR2050440 1 0.000 0.966 1.000 0.000 0
#> SRR2050439 2 0.000 0.993 0.000 1.000 0
#> SRR2050438 3 0.000 1.000 0.000 0.000 1
#> SRR2050437 1 0.000 0.966 1.000 0.000 0
#> SRR2050436 1 0.455 0.761 0.800 0.200 0
#> SRR2050435 3 0.000 1.000 0.000 0.000 1
#> SRR2050434 1 0.000 0.966 1.000 0.000 0
#> SRR2050433 2 0.000 0.993 0.000 1.000 0
#> SRR2050432 1 0.000 0.966 1.000 0.000 0
#> SRR2050431 1 0.000 0.966 1.000 0.000 0
#> SRR2050430 1 0.000 0.966 1.000 0.000 0
#> SRR2050429 1 0.000 0.966 1.000 0.000 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050427 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050426 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050425 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050423 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050422 4 0.6350 0.381 0.072 0.364 0 0.564
#> SRR2050421 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050420 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050419 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050418 1 0.3528 0.757 0.808 0.000 0 0.192
#> SRR2050417 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050416 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050414 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050413 2 0.1867 0.918 0.072 0.928 0 0.000
#> SRR2050412 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050411 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050409 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050408 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050407 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050405 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050404 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050403 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050402 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050401 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050400 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050399 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050398 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050397 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050395 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050394 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050392 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050465 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050463 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050462 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050460 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050459 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050457 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050456 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050454 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050453 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050451 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050450 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050448 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050446 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050445 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050443 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050442 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050440 4 0.0188 0.949 0.004 0.000 0 0.996
#> SRR2050439 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050437 4 0.1867 0.895 0.072 0.000 0 0.928
#> SRR2050436 4 0.5464 0.682 0.072 0.212 0 0.716
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050434 4 0.0000 0.952 0.000 0.000 0 1.000
#> SRR2050433 2 0.0000 0.996 0.000 1.000 0 0.000
#> SRR2050432 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050431 1 0.0000 0.988 1.000 0.000 0 0.000
#> SRR2050430 4 0.1867 0.895 0.072 0.000 0 0.928
#> SRR2050429 1 0.0000 0.988 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050427 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050426 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050425 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050423 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050422 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050421 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050420 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050419 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050418 1 0.3039 0.763 0.808 0.0 0 0.192 0.000
#> SRR2050417 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050416 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050414 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050413 5 0.3109 0.750 0.000 0.2 0 0.000 0.800
#> SRR2050412 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050411 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050409 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050408 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050407 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050405 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050404 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050403 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050402 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050401 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050400 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050399 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050398 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050397 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050395 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050394 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050392 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050465 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050463 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050462 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050460 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050459 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050457 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050456 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050454 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050453 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050451 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050450 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050448 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050446 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050445 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050443 4 0.0000 1.000 0.000 0.0 0 1.000 0.000
#> SRR2050442 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050441 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050440 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050439 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050438 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050437 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050436 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050435 3 0.0000 1.000 0.000 0.0 1 0.000 0.000
#> SRR2050434 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050433 2 0.0000 1.000 0.000 1.0 0 0.000 0.000
#> SRR2050432 1 0.0000 0.984 1.000 0.0 0 0.000 0.000
#> SRR2050431 1 0.0963 0.951 0.964 0.0 0 0.000 0.036
#> SRR2050430 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
#> SRR2050429 5 0.0000 0.975 0.000 0.0 0 0.000 1.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050427 6 0.000 0.888 0.000 0.0 0 0.000 0.0 1.000
#> SRR2050426 1 0.359 0.536 0.656 0.0 0 0.000 0.0 0.344
#> SRR2050425 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050423 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050422 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050421 6 0.000 0.888 0.000 0.0 0 0.000 0.0 1.000
#> SRR2050420 1 0.359 0.536 0.656 0.0 0 0.000 0.0 0.344
#> SRR2050419 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050418 6 0.480 0.610 0.212 0.0 0 0.124 0.0 0.664
#> SRR2050417 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050414 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050413 5 0.279 0.708 0.000 0.2 0 0.000 0.8 0.000
#> SRR2050412 6 0.000 0.888 0.000 0.0 0 0.000 0.0 1.000
#> SRR2050411 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050408 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050405 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050404 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050403 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050402 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050401 6 0.335 0.602 0.288 0.0 0 0.000 0.0 0.712
#> SRR2050400 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050399 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050398 6 0.000 0.888 0.000 0.0 0 0.000 0.0 1.000
#> SRR2050397 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050395 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050394 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050392 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050465 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050463 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050462 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050460 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050459 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050457 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050456 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050454 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050453 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050451 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050450 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050448 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050446 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050445 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050443 4 0.000 1.000 0.000 0.0 0 1.000 0.0 0.000
#> SRR2050442 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050440 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050439 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050437 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050436 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.0 1 0.000 0.0 0.000
#> SRR2050434 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050433 2 0.000 1.000 0.000 1.0 0 0.000 0.0 0.000
#> SRR2050432 6 0.000 0.888 0.000 0.0 0 0.000 0.0 1.000
#> SRR2050431 1 0.000 0.902 1.000 0.0 0 0.000 0.0 0.000
#> SRR2050430 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
#> SRR2050429 5 0.000 0.970 0.000 0.0 0 0.000 1.0 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.978 0.990 0.3836 0.610 0.610
#> 3 3 0.848 0.884 0.948 0.6303 0.670 0.489
#> 4 4 0.981 0.910 0.959 0.1346 0.955 0.871
#> 5 5 0.992 0.946 0.975 0.1335 0.859 0.561
#> 6 6 0.908 0.865 0.915 0.0175 1.000 1.000
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4
There is also optional best \(k\) = 2 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.967 0.000 1.000
#> SRR2050427 1 0.0376 0.997 0.996 0.004
#> SRR2050426 1 0.0376 0.997 0.996 0.004
#> SRR2050425 2 0.0000 0.967 0.000 1.000
#> SRR2050424 1 0.0000 0.997 1.000 0.000
#> SRR2050423 1 0.0000 0.997 1.000 0.000
#> SRR2050422 1 0.2603 0.955 0.956 0.044
#> SRR2050421 1 0.0376 0.997 0.996 0.004
#> SRR2050420 1 0.0376 0.997 0.996 0.004
#> SRR2050419 2 0.0000 0.967 0.000 1.000
#> SRR2050418 1 0.0376 0.997 0.996 0.004
#> SRR2050417 1 0.0376 0.997 0.996 0.004
#> SRR2050416 2 0.9635 0.383 0.388 0.612
#> SRR2050415 1 0.0000 0.997 1.000 0.000
#> SRR2050414 1 0.0000 0.997 1.000 0.000
#> SRR2050413 2 0.5737 0.839 0.136 0.864
#> SRR2050412 1 0.0376 0.997 0.996 0.004
#> SRR2050411 1 0.0376 0.997 0.996 0.004
#> SRR2050409 2 0.0000 0.967 0.000 1.000
#> SRR2050408 1 0.0376 0.997 0.996 0.004
#> SRR2050407 2 0.0000 0.967 0.000 1.000
#> SRR2050406 1 0.0000 0.997 1.000 0.000
#> SRR2050405 1 0.0000 0.997 1.000 0.000
#> SRR2050404 2 0.0000 0.967 0.000 1.000
#> SRR2050403 1 0.0376 0.997 0.996 0.004
#> SRR2050402 2 0.2043 0.945 0.032 0.968
#> SRR2050401 1 0.0376 0.997 0.996 0.004
#> SRR2050400 1 0.0376 0.997 0.996 0.004
#> SRR2050399 2 0.2043 0.945 0.032 0.968
#> SRR2050398 1 0.0376 0.997 0.996 0.004
#> SRR2050397 1 0.0376 0.997 0.996 0.004
#> SRR2050396 1 0.0000 0.997 1.000 0.000
#> SRR2050395 1 0.0000 0.997 1.000 0.000
#> SRR2050394 2 0.0000 0.967 0.000 1.000
#> SRR2050393 1 0.0000 0.997 1.000 0.000
#> SRR2050392 1 0.0000 0.997 1.000 0.000
#> SRR2050465 2 0.0000 0.967 0.000 1.000
#> SRR2050464 1 0.0000 0.997 1.000 0.000
#> SRR2050463 1 0.0000 0.997 1.000 0.000
#> SRR2050462 2 0.0000 0.967 0.000 1.000
#> SRR2050461 1 0.0000 0.997 1.000 0.000
#> SRR2050460 1 0.0000 0.997 1.000 0.000
#> SRR2050459 2 0.0000 0.967 0.000 1.000
#> SRR2050458 1 0.0000 0.997 1.000 0.000
#> SRR2050457 1 0.0000 0.997 1.000 0.000
#> SRR2050456 2 0.0000 0.967 0.000 1.000
#> SRR2050455 1 0.0000 0.997 1.000 0.000
#> SRR2050454 1 0.0000 0.997 1.000 0.000
#> SRR2050453 2 0.0000 0.967 0.000 1.000
#> SRR2050452 1 0.0000 0.997 1.000 0.000
#> SRR2050451 1 0.0000 0.997 1.000 0.000
#> SRR2050450 2 0.0000 0.967 0.000 1.000
#> SRR2050449 1 0.0000 0.997 1.000 0.000
#> SRR2050448 1 0.0000 0.997 1.000 0.000
#> SRR2050447 1 0.0000 0.997 1.000 0.000
#> SRR2050446 1 0.0000 0.997 1.000 0.000
#> SRR2050445 2 0.0000 0.967 0.000 1.000
#> SRR2050444 1 0.0000 0.997 1.000 0.000
#> SRR2050443 1 0.0000 0.997 1.000 0.000
#> SRR2050442 1 0.0376 0.997 0.996 0.004
#> SRR2050441 1 0.0000 0.997 1.000 0.000
#> SRR2050440 1 0.0000 0.997 1.000 0.000
#> SRR2050439 1 0.0376 0.997 0.996 0.004
#> SRR2050438 1 0.0000 0.997 1.000 0.000
#> SRR2050437 1 0.0000 0.997 1.000 0.000
#> SRR2050436 1 0.0376 0.997 0.996 0.004
#> SRR2050435 1 0.0000 0.997 1.000 0.000
#> SRR2050434 1 0.0376 0.997 0.996 0.004
#> SRR2050433 2 0.0000 0.967 0.000 1.000
#> SRR2050432 1 0.0376 0.997 0.996 0.004
#> SRR2050431 1 0.0376 0.997 0.996 0.004
#> SRR2050430 1 0.0376 0.997 0.996 0.004
#> SRR2050429 1 0.0376 0.997 0.996 0.004
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050427 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050425 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050424 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050423 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050422 2 0.6819 0.344 0.476 0.512 0.012
#> SRR2050421 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050419 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050416 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050415 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050414 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050413 2 0.6676 0.347 0.476 0.516 0.008
#> SRR2050412 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050406 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050405 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050404 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050402 2 0.5678 0.585 0.316 0.684 0.000
#> SRR2050401 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050399 2 0.6299 0.352 0.476 0.524 0.000
#> SRR2050398 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050396 3 0.1643 0.942 0.044 0.000 0.956
#> SRR2050395 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050394 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050393 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050392 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050465 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050464 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050463 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050462 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050461 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050460 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050459 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050458 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050457 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050456 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050455 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050454 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050453 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050452 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050451 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050450 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050449 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050448 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050447 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050446 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050445 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050444 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050443 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050442 2 0.6819 0.344 0.476 0.512 0.012
#> SRR2050441 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050440 1 0.0592 0.987 0.988 0.000 0.012
#> SRR2050439 2 0.6819 0.344 0.476 0.512 0.012
#> SRR2050438 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050437 1 0.0592 0.987 0.988 0.000 0.012
#> SRR2050436 2 0.6819 0.344 0.476 0.512 0.012
#> SRR2050435 3 0.0000 0.996 0.000 0.000 1.000
#> SRR2050434 2 0.6819 0.344 0.476 0.512 0.012
#> SRR2050433 2 0.0000 0.795 0.000 1.000 0.000
#> SRR2050432 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.998 1.000 0.000 0.000
#> SRR2050430 1 0.0592 0.987 0.988 0.000 0.012
#> SRR2050429 1 0.0424 0.991 0.992 0.000 0.008
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050424 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.0921 0.926 0.972 0.000 0.000 0.028
#> SRR2050422 4 0.0336 0.942 0.000 0.008 0.000 0.992
#> SRR2050421 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.1211 0.924 0.960 0.000 0.000 0.040
#> SRR2050417 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050416 2 0.3356 0.770 0.000 0.824 0.000 0.176
#> SRR2050415 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050414 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050413 4 0.0336 0.942 0.000 0.008 0.000 0.992
#> SRR2050412 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050409 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050407 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050405 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050404 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050403 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050402 2 0.2081 0.895 0.000 0.916 0.000 0.084
#> SRR2050401 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050399 4 0.4522 0.492 0.000 0.320 0.000 0.680
#> SRR2050398 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050396 3 0.2124 0.917 0.028 0.000 0.932 0.040
#> SRR2050395 1 0.0921 0.926 0.972 0.000 0.000 0.028
#> SRR2050394 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050392 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050465 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050463 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050462 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050459 2 0.0469 0.972 0.000 0.988 0.000 0.012
#> SRR2050458 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050457 1 0.1211 0.921 0.960 0.000 0.000 0.040
#> SRR2050456 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050454 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050453 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050451 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050450 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050448 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050447 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050446 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050445 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050443 1 0.1022 0.926 0.968 0.000 0.000 0.032
#> SRR2050442 4 0.0336 0.942 0.000 0.008 0.000 0.992
#> SRR2050441 3 0.0000 0.993 0.000 0.000 1.000 0.000
#> SRR2050440 1 0.4972 0.315 0.544 0.000 0.000 0.456
#> SRR2050439 4 0.0336 0.942 0.000 0.008 0.000 0.992
#> SRR2050438 3 0.0592 0.979 0.000 0.000 0.984 0.016
#> SRR2050437 1 0.4972 0.315 0.544 0.000 0.000 0.456
#> SRR2050436 4 0.0336 0.942 0.000 0.008 0.000 0.992
#> SRR2050435 3 0.0336 0.987 0.000 0.000 0.992 0.008
#> SRR2050434 4 0.0336 0.942 0.000 0.008 0.000 0.992
#> SRR2050433 2 0.0000 0.981 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.0000 0.926 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0336 0.925 0.992 0.000 0.000 0.008
#> SRR2050430 1 0.4972 0.315 0.544 0.000 0.000 0.456
#> SRR2050429 1 0.4888 0.359 0.588 0.000 0.000 0.412
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050427 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> SRR2050426 1 0.0880 0.931 0.968 0.000 0.000 0.032 0.000
#> SRR2050425 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.0162 0.989 0.004 0.000 0.000 0.996 0.000
#> SRR2050422 5 0.0162 0.942 0.000 0.004 0.000 0.000 0.996
#> SRR2050421 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> SRR2050420 1 0.0880 0.931 0.968 0.000 0.000 0.032 0.000
#> SRR2050419 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050418 1 0.3109 0.758 0.800 0.000 0.000 0.200 0.000
#> SRR2050417 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> SRR2050416 2 0.1270 0.932 0.000 0.948 0.000 0.000 0.052
#> SRR2050415 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050413 5 0.0162 0.942 0.000 0.004 0.000 0.000 0.996
#> SRR2050412 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> SRR2050411 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050408 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050403 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> SRR2050402 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050401 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> SRR2050400 1 0.1197 0.918 0.952 0.000 0.000 0.048 0.000
#> SRR2050399 2 0.3816 0.578 0.000 0.696 0.000 0.000 0.304
#> SRR2050398 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> SRR2050397 1 0.0000 0.946 1.000 0.000 0.000 0.000 0.000
#> SRR2050396 3 0.2659 0.877 0.000 0.000 0.888 0.060 0.052
#> SRR2050395 4 0.0510 0.979 0.016 0.000 0.000 0.984 0.000
#> SRR2050394 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 4 0.0794 0.974 0.000 0.000 0.000 0.972 0.028
#> SRR2050465 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.0794 0.974 0.000 0.000 0.000 0.972 0.028
#> SRR2050456 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.0000 0.991 0.000 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.0794 0.974 0.000 0.000 0.000 0.972 0.028
#> SRR2050442 5 0.0703 0.939 0.000 0.024 0.000 0.000 0.976
#> SRR2050441 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 5 0.1410 0.923 0.000 0.000 0.000 0.060 0.940
#> SRR2050439 5 0.0703 0.939 0.000 0.024 0.000 0.000 0.976
#> SRR2050438 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 5 0.1410 0.923 0.000 0.000 0.000 0.060 0.940
#> SRR2050436 5 0.0703 0.939 0.000 0.024 0.000 0.000 0.976
#> SRR2050435 3 0.0000 0.993 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 5 0.0000 0.941 0.000 0.000 0.000 0.000 1.000
#> SRR2050433 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> SRR2050432 1 0.0162 0.947 0.996 0.000 0.000 0.004 0.000
#> SRR2050431 1 0.5185 0.273 0.568 0.000 0.000 0.048 0.384
#> SRR2050430 5 0.1410 0.923 0.000 0.000 0.000 0.060 0.940
#> SRR2050429 5 0.3521 0.688 0.232 0.000 0.000 0.004 0.764
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050427 1 0.3766 0.8334 0.748 0.000 0.000 0.040 0.000 NA
#> SRR2050426 1 0.2258 0.8501 0.896 0.000 0.000 0.044 0.000 NA
#> SRR2050425 2 0.0790 0.9161 0.000 0.968 0.000 0.000 0.000 NA
#> SRR2050424 3 0.1075 0.9136 0.000 0.000 0.952 0.000 0.000 NA
#> SRR2050423 4 0.0363 0.9885 0.012 0.000 0.000 0.988 0.000 NA
#> SRR2050422 5 0.2092 0.8499 0.000 0.124 0.000 0.000 0.876 NA
#> SRR2050421 1 0.3766 0.8334 0.748 0.000 0.000 0.040 0.000 NA
#> SRR2050420 1 0.2112 0.8205 0.896 0.000 0.000 0.088 0.000 NA
#> SRR2050419 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050418 1 0.3043 0.7542 0.792 0.000 0.000 0.200 0.000 NA
#> SRR2050417 1 0.0000 0.8531 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050416 2 0.4523 0.0787 0.000 0.516 0.000 0.000 0.452 NA
#> SRR2050415 3 0.0146 0.9222 0.000 0.000 0.996 0.000 0.000 NA
#> SRR2050414 4 0.0000 0.9948 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050413 5 0.2706 0.8383 0.000 0.124 0.000 0.000 0.852 NA
#> SRR2050412 1 0.3679 0.8344 0.760 0.000 0.000 0.040 0.000 NA
#> SRR2050411 1 0.0000 0.8531 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050409 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050408 1 0.0000 0.8531 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050407 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050406 3 0.0547 0.9203 0.000 0.000 0.980 0.000 0.000 NA
#> SRR2050405 4 0.0000 0.9948 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050404 2 0.0146 0.9289 0.000 0.996 0.000 0.000 0.000 NA
#> SRR2050403 1 0.0000 0.8531 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050402 2 0.1049 0.9118 0.000 0.960 0.000 0.000 0.008 NA
#> SRR2050401 1 0.3679 0.8344 0.760 0.000 0.000 0.040 0.000 NA
#> SRR2050400 1 0.2432 0.8065 0.876 0.000 0.000 0.100 0.000 NA
#> SRR2050399 2 0.4529 0.0518 0.000 0.508 0.000 0.000 0.460 NA
#> SRR2050398 1 0.3679 0.8344 0.760 0.000 0.000 0.040 0.000 NA
#> SRR2050397 1 0.0000 0.8531 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050396 3 0.2699 0.8743 0.000 0.000 0.856 0.008 0.012 NA
#> SRR2050395 4 0.0260 0.9919 0.008 0.000 0.000 0.992 0.000 NA
#> SRR2050394 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050393 3 0.1501 0.8927 0.000 0.000 0.924 0.000 0.000 NA
#> SRR2050392 4 0.0260 0.9916 0.000 0.000 0.000 0.992 0.008 NA
#> SRR2050465 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050464 3 0.0000 0.9223 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050463 4 0.0000 0.9948 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050462 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050461 3 0.0146 0.9222 0.000 0.000 0.996 0.000 0.000 NA
#> SRR2050460 4 0.0260 0.9915 0.008 0.000 0.000 0.992 0.000 NA
#> SRR2050459 2 0.0865 0.9072 0.000 0.964 0.000 0.000 0.036 NA
#> SRR2050458 3 0.1501 0.8927 0.000 0.000 0.924 0.000 0.000 NA
#> SRR2050457 4 0.0363 0.9887 0.000 0.000 0.000 0.988 0.012 NA
#> SRR2050456 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050455 3 0.0000 0.9223 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050454 4 0.0000 0.9948 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050453 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050452 3 0.0000 0.9223 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050451 4 0.0000 0.9948 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050450 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050449 3 0.0000 0.9223 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050448 4 0.0000 0.9948 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050447 3 0.1075 0.9136 0.000 0.000 0.952 0.000 0.000 NA
#> SRR2050446 4 0.0146 0.9935 0.000 0.000 0.000 0.996 0.004 NA
#> SRR2050445 2 0.0000 0.9302 0.000 1.000 0.000 0.000 0.000 NA
#> SRR2050444 3 0.0000 0.9223 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050443 4 0.0260 0.9916 0.000 0.000 0.000 0.992 0.008 NA
#> SRR2050442 5 0.0000 0.9001 0.000 0.000 0.000 0.000 1.000 NA
#> SRR2050441 3 0.1007 0.9152 0.000 0.000 0.956 0.000 0.000 NA
#> SRR2050440 5 0.1267 0.8933 0.000 0.000 0.000 0.000 0.940 NA
#> SRR2050439 5 0.0000 0.9001 0.000 0.000 0.000 0.000 1.000 NA
#> SRR2050438 3 0.3998 0.5343 0.000 0.000 0.504 0.000 0.004 NA
#> SRR2050437 5 0.1267 0.8933 0.000 0.000 0.000 0.000 0.940 NA
#> SRR2050436 5 0.0000 0.9001 0.000 0.000 0.000 0.000 1.000 NA
#> SRR2050435 3 0.3999 0.5323 0.000 0.000 0.500 0.000 0.004 NA
#> SRR2050434 5 0.1957 0.8597 0.000 0.112 0.000 0.000 0.888 NA
#> SRR2050433 2 0.0790 0.9161 0.000 0.968 0.000 0.000 0.000 NA
#> SRR2050432 1 0.3679 0.8344 0.760 0.000 0.000 0.040 0.000 NA
#> SRR2050431 1 0.6848 0.3501 0.484 0.000 0.000 0.100 0.248 NA
#> SRR2050430 5 0.2597 0.8494 0.000 0.000 0.000 0.000 0.824 NA
#> SRR2050429 5 0.5556 0.7231 0.092 0.000 0.000 0.080 0.660 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.861 0.935 0.969 0.4860 0.521 0.521
#> 3 3 1.000 0.975 0.988 0.3301 0.734 0.535
#> 4 4 0.787 0.842 0.905 0.1244 0.916 0.768
#> 5 5 0.845 0.774 0.877 0.0839 0.821 0.467
#> 6 6 0.835 0.750 0.856 0.0215 0.961 0.839
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.954 0.000 1.000
#> SRR2050427 1 0.0000 0.990 1.000 0.000
#> SRR2050426 1 0.1633 0.967 0.976 0.024
#> SRR2050425 2 0.0000 0.954 0.000 1.000
#> SRR2050424 1 0.0000 0.990 1.000 0.000
#> SRR2050423 1 0.0000 0.990 1.000 0.000
#> SRR2050422 2 0.0000 0.954 0.000 1.000
#> SRR2050421 1 0.0000 0.990 1.000 0.000
#> SRR2050420 1 0.3584 0.921 0.932 0.068
#> SRR2050419 2 0.0000 0.954 0.000 1.000
#> SRR2050418 2 0.0000 0.954 0.000 1.000
#> SRR2050417 2 0.0000 0.954 0.000 1.000
#> SRR2050416 2 0.0000 0.954 0.000 1.000
#> SRR2050415 1 0.0000 0.990 1.000 0.000
#> SRR2050414 2 0.1184 0.943 0.016 0.984
#> SRR2050413 2 0.0000 0.954 0.000 1.000
#> SRR2050412 1 0.0000 0.990 1.000 0.000
#> SRR2050411 2 0.9170 0.563 0.332 0.668
#> SRR2050409 2 0.0000 0.954 0.000 1.000
#> SRR2050408 2 0.0000 0.954 0.000 1.000
#> SRR2050407 2 0.0000 0.954 0.000 1.000
#> SRR2050406 1 0.0000 0.990 1.000 0.000
#> SRR2050405 2 0.8608 0.650 0.284 0.716
#> SRR2050404 2 0.0000 0.954 0.000 1.000
#> SRR2050403 2 0.5737 0.844 0.136 0.864
#> SRR2050402 2 0.0000 0.954 0.000 1.000
#> SRR2050401 1 0.0000 0.990 1.000 0.000
#> SRR2050400 2 0.4022 0.895 0.080 0.920
#> SRR2050399 2 0.0000 0.954 0.000 1.000
#> SRR2050398 1 0.0000 0.990 1.000 0.000
#> SRR2050397 2 0.8909 0.608 0.308 0.692
#> SRR2050396 1 0.0000 0.990 1.000 0.000
#> SRR2050395 1 0.6438 0.790 0.836 0.164
#> SRR2050394 2 0.0000 0.954 0.000 1.000
#> SRR2050393 1 0.0000 0.990 1.000 0.000
#> SRR2050392 2 0.0000 0.954 0.000 1.000
#> SRR2050465 2 0.0000 0.954 0.000 1.000
#> SRR2050464 1 0.0000 0.990 1.000 0.000
#> SRR2050463 2 0.0376 0.951 0.004 0.996
#> SRR2050462 2 0.0000 0.954 0.000 1.000
#> SRR2050461 1 0.0000 0.990 1.000 0.000
#> SRR2050460 2 0.7674 0.740 0.224 0.776
#> SRR2050459 2 0.0000 0.954 0.000 1.000
#> SRR2050458 1 0.0000 0.990 1.000 0.000
#> SRR2050457 2 0.0000 0.954 0.000 1.000
#> SRR2050456 2 0.0000 0.954 0.000 1.000
#> SRR2050455 1 0.0000 0.990 1.000 0.000
#> SRR2050454 2 0.0000 0.954 0.000 1.000
#> SRR2050453 2 0.0000 0.954 0.000 1.000
#> SRR2050452 1 0.0000 0.990 1.000 0.000
#> SRR2050451 2 0.0000 0.954 0.000 1.000
#> SRR2050450 2 0.0000 0.954 0.000 1.000
#> SRR2050449 1 0.0000 0.990 1.000 0.000
#> SRR2050448 2 0.0000 0.954 0.000 1.000
#> SRR2050447 1 0.0000 0.990 1.000 0.000
#> SRR2050446 2 0.0000 0.954 0.000 1.000
#> SRR2050445 2 0.0000 0.954 0.000 1.000
#> SRR2050444 1 0.0000 0.990 1.000 0.000
#> SRR2050443 2 0.0000 0.954 0.000 1.000
#> SRR2050442 2 0.0000 0.954 0.000 1.000
#> SRR2050441 1 0.0000 0.990 1.000 0.000
#> SRR2050440 1 0.0000 0.990 1.000 0.000
#> SRR2050439 2 0.0000 0.954 0.000 1.000
#> SRR2050438 1 0.0000 0.990 1.000 0.000
#> SRR2050437 1 0.0000 0.990 1.000 0.000
#> SRR2050436 2 0.0000 0.954 0.000 1.000
#> SRR2050435 1 0.0000 0.990 1.000 0.000
#> SRR2050434 2 0.0000 0.954 0.000 1.000
#> SRR2050433 2 0.0000 0.954 0.000 1.000
#> SRR2050432 1 0.0000 0.990 1.000 0.000
#> SRR2050431 2 0.5178 0.864 0.116 0.884
#> SRR2050430 2 0.5294 0.861 0.120 0.880
#> SRR2050429 2 0.9522 0.476 0.372 0.628
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050427 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050425 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050423 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050422 2 0.1964 0.931 0.056 0.944 0.000
#> SRR2050421 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050419 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050416 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050414 2 0.4605 0.759 0.204 0.796 0.000
#> SRR2050413 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050412 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050405 2 0.5053 0.795 0.164 0.812 0.024
#> SRR2050404 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050402 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050401 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050399 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050398 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050395 1 0.5180 0.771 0.812 0.156 0.032
#> SRR2050394 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050392 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050465 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050463 2 0.1031 0.960 0.024 0.976 0.000
#> SRR2050462 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050460 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050459 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050457 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050456 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050454 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050453 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050451 2 0.0424 0.973 0.008 0.992 0.000
#> SRR2050450 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050448 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050446 2 0.4235 0.800 0.176 0.824 0.000
#> SRR2050445 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050443 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050442 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050440 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050439 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050437 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050436 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050434 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.979 0.000 1.000 0.000
#> SRR2050432 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050430 1 0.0000 0.991 1.000 0.000 0.000
#> SRR2050429 1 0.0000 0.991 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.2647 0.819 0.000 0.880 0.000 0.120
#> SRR2050427 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.3074 0.796 0.000 0.848 0.000 0.152
#> SRR2050424 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.1022 0.941 0.968 0.000 0.000 0.032
#> SRR2050422 4 0.4019 0.808 0.012 0.196 0.000 0.792
#> SRR2050421 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.0707 0.823 0.000 0.980 0.000 0.020
#> SRR2050418 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050417 1 0.0921 0.943 0.972 0.000 0.000 0.028
#> SRR2050416 2 0.3400 0.771 0.000 0.820 0.000 0.180
#> SRR2050415 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050414 2 0.5397 0.600 0.212 0.720 0.000 0.068
#> SRR2050413 2 0.4941 0.241 0.000 0.564 0.000 0.436
#> SRR2050412 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0188 0.953 0.996 0.000 0.000 0.004
#> SRR2050409 2 0.2530 0.821 0.000 0.888 0.000 0.112
#> SRR2050408 1 0.0817 0.944 0.976 0.000 0.000 0.024
#> SRR2050407 2 0.0188 0.827 0.000 0.996 0.000 0.004
#> SRR2050406 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050405 2 0.5793 0.639 0.096 0.712 0.004 0.188
#> SRR2050404 2 0.2647 0.819 0.000 0.880 0.000 0.120
#> SRR2050403 1 0.0707 0.947 0.980 0.000 0.000 0.020
#> SRR2050402 2 0.2647 0.819 0.000 0.880 0.000 0.120
#> SRR2050401 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.4164 0.662 0.000 0.736 0.000 0.264
#> SRR2050398 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050395 1 0.4784 0.729 0.788 0.112 0.000 0.100
#> SRR2050394 2 0.2281 0.826 0.000 0.904 0.000 0.096
#> SRR2050393 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050392 2 0.2647 0.783 0.000 0.880 0.000 0.120
#> SRR2050465 2 0.2647 0.819 0.000 0.880 0.000 0.120
#> SRR2050464 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050463 2 0.3372 0.780 0.036 0.868 0.000 0.096
#> SRR2050462 2 0.2647 0.819 0.000 0.880 0.000 0.120
#> SRR2050461 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.1022 0.941 0.968 0.000 0.000 0.032
#> SRR2050459 2 0.0469 0.828 0.000 0.988 0.000 0.012
#> SRR2050458 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050457 2 0.3400 0.741 0.000 0.820 0.000 0.180
#> SRR2050456 2 0.0188 0.826 0.000 0.996 0.000 0.004
#> SRR2050455 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050454 2 0.3486 0.736 0.000 0.812 0.000 0.188
#> SRR2050453 2 0.2081 0.828 0.000 0.916 0.000 0.084
#> SRR2050452 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050451 2 0.3667 0.775 0.056 0.856 0.000 0.088
#> SRR2050450 2 0.2216 0.827 0.000 0.908 0.000 0.092
#> SRR2050449 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050448 2 0.2021 0.807 0.012 0.932 0.000 0.056
#> SRR2050447 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050446 2 0.5830 0.459 0.332 0.620 0.000 0.048
#> SRR2050445 2 0.0592 0.824 0.000 0.984 0.000 0.016
#> SRR2050444 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050443 2 0.3219 0.755 0.000 0.836 0.000 0.164
#> SRR2050442 4 0.3610 0.810 0.000 0.200 0.000 0.800
#> SRR2050441 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050440 4 0.5628 0.654 0.144 0.000 0.132 0.724
#> SRR2050439 4 0.3688 0.801 0.000 0.208 0.000 0.792
#> SRR2050438 3 0.2530 0.869 0.000 0.000 0.888 0.112
#> SRR2050437 4 0.4604 0.710 0.180 0.028 0.008 0.784
#> SRR2050436 4 0.3610 0.810 0.000 0.200 0.000 0.800
#> SRR2050435 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.3610 0.810 0.000 0.200 0.000 0.800
#> SRR2050433 2 0.2647 0.819 0.000 0.880 0.000 0.120
#> SRR2050432 1 0.0000 0.954 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0469 0.950 0.988 0.000 0.000 0.012
#> SRR2050430 4 0.4697 0.422 0.356 0.000 0.000 0.644
#> SRR2050429 1 0.4933 0.194 0.568 0.000 0.000 0.432
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.3424 0.6777 0.000 0.760 0.000 0.000 0.240
#> SRR2050427 1 0.0162 0.9471 0.996 0.000 0.000 0.004 0.000
#> SRR2050426 1 0.0290 0.9472 0.992 0.000 0.000 0.008 0.000
#> SRR2050425 2 0.2424 0.6978 0.000 0.868 0.000 0.000 0.132
#> SRR2050424 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.0932 0.9103 0.020 0.000 0.004 0.972 0.004
#> SRR2050422 2 0.3038 0.5769 0.040 0.872 0.000 0.008 0.080
#> SRR2050421 1 0.0000 0.9469 1.000 0.000 0.000 0.000 0.000
#> SRR2050420 1 0.0290 0.9469 0.992 0.000 0.000 0.008 0.000
#> SRR2050419 5 0.4262 0.1349 0.000 0.440 0.000 0.000 0.560
#> SRR2050418 1 0.0324 0.9464 0.992 0.000 0.000 0.004 0.004
#> SRR2050417 1 0.3916 0.6782 0.732 0.000 0.000 0.256 0.012
#> SRR2050416 2 0.1197 0.6763 0.000 0.952 0.000 0.000 0.048
#> SRR2050415 3 0.0162 0.9915 0.000 0.000 0.996 0.004 0.000
#> SRR2050414 4 0.1329 0.9168 0.000 0.008 0.004 0.956 0.032
#> SRR2050413 2 0.0290 0.6549 0.000 0.992 0.000 0.000 0.008
#> SRR2050412 1 0.0000 0.9469 1.000 0.000 0.000 0.000 0.000
#> SRR2050411 1 0.0404 0.9459 0.988 0.000 0.000 0.012 0.000
#> SRR2050409 2 0.3816 0.6002 0.000 0.696 0.000 0.000 0.304
#> SRR2050408 1 0.3336 0.7336 0.772 0.000 0.000 0.228 0.000
#> SRR2050407 2 0.4283 0.1573 0.000 0.544 0.000 0.000 0.456
#> SRR2050406 3 0.0290 0.9904 0.000 0.000 0.992 0.000 0.008
#> SRR2050405 4 0.2911 0.8734 0.004 0.000 0.008 0.852 0.136
#> SRR2050404 2 0.3274 0.6898 0.000 0.780 0.000 0.000 0.220
#> SRR2050403 1 0.0671 0.9437 0.980 0.000 0.000 0.016 0.004
#> SRR2050402 2 0.2813 0.6999 0.000 0.832 0.000 0.000 0.168
#> SRR2050401 1 0.0000 0.9469 1.000 0.000 0.000 0.000 0.000
#> SRR2050400 1 0.0290 0.9472 0.992 0.000 0.000 0.008 0.000
#> SRR2050399 2 0.0404 0.6652 0.000 0.988 0.000 0.000 0.012
#> SRR2050398 1 0.0162 0.9471 0.996 0.000 0.000 0.004 0.000
#> SRR2050397 1 0.0404 0.9459 0.988 0.000 0.000 0.012 0.000
#> SRR2050396 3 0.0290 0.9904 0.000 0.000 0.992 0.000 0.008
#> SRR2050395 4 0.1934 0.9116 0.016 0.000 0.004 0.928 0.052
#> SRR2050394 2 0.3561 0.6668 0.000 0.740 0.000 0.000 0.260
#> SRR2050393 3 0.0162 0.9924 0.000 0.000 0.996 0.000 0.004
#> SRR2050392 5 0.2623 0.5902 0.000 0.016 0.004 0.096 0.884
#> SRR2050465 2 0.3480 0.6726 0.000 0.752 0.000 0.000 0.248
#> SRR2050464 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.1864 0.9107 0.000 0.004 0.004 0.924 0.068
#> SRR2050462 2 0.3109 0.6963 0.000 0.800 0.000 0.000 0.200
#> SRR2050461 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.0833 0.9119 0.016 0.004 0.004 0.976 0.000
#> SRR2050459 2 0.4242 0.2720 0.000 0.572 0.000 0.000 0.428
#> SRR2050458 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 5 0.2248 0.5656 0.000 0.088 0.000 0.012 0.900
#> SRR2050456 5 0.4273 0.1009 0.000 0.448 0.000 0.000 0.552
#> SRR2050455 3 0.0290 0.9904 0.000 0.000 0.992 0.000 0.008
#> SRR2050454 5 0.4240 0.2948 0.004 0.000 0.008 0.304 0.684
#> SRR2050453 2 0.3837 0.5928 0.000 0.692 0.000 0.000 0.308
#> SRR2050452 3 0.0162 0.9924 0.000 0.000 0.996 0.000 0.004
#> SRR2050451 4 0.2706 0.8767 0.004 0.004 0.004 0.872 0.116
#> SRR2050450 2 0.3612 0.6522 0.000 0.732 0.000 0.000 0.268
#> SRR2050449 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.2392 0.8881 0.000 0.004 0.004 0.888 0.104
#> SRR2050447 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.1877 0.9145 0.008 0.004 0.004 0.932 0.052
#> SRR2050445 5 0.4304 -0.0446 0.000 0.484 0.000 0.000 0.516
#> SRR2050444 3 0.0000 0.9934 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 5 0.3053 0.5757 0.000 0.008 0.012 0.128 0.852
#> SRR2050442 2 0.2595 0.5885 0.000 0.888 0.000 0.032 0.080
#> SRR2050441 3 0.0162 0.9915 0.000 0.000 0.996 0.004 0.000
#> SRR2050440 4 0.2289 0.8699 0.012 0.004 0.000 0.904 0.080
#> SRR2050439 2 0.2595 0.5885 0.000 0.888 0.000 0.032 0.080
#> SRR2050438 3 0.1731 0.9438 0.008 0.000 0.940 0.012 0.040
#> SRR2050437 4 0.2689 0.8597 0.016 0.012 0.000 0.888 0.084
#> SRR2050436 2 0.3110 0.5599 0.000 0.860 0.000 0.060 0.080
#> SRR2050435 3 0.0162 0.9915 0.000 0.000 0.996 0.004 0.000
#> SRR2050434 2 0.4818 0.3389 0.000 0.708 0.000 0.212 0.080
#> SRR2050433 2 0.3366 0.6839 0.000 0.768 0.000 0.000 0.232
#> SRR2050432 1 0.0162 0.9471 0.996 0.000 0.000 0.004 0.000
#> SRR2050431 1 0.0609 0.9447 0.980 0.000 0.000 0.020 0.000
#> SRR2050430 1 0.5538 0.6952 0.716 0.140 0.000 0.060 0.084
#> SRR2050429 4 0.2535 0.8657 0.032 0.000 0.000 0.892 0.076
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.2595 0.6273 0.000 0.836 0.000 0.000 NA 0.160
#> SRR2050427 1 0.0717 0.9263 0.976 0.000 0.000 0.000 NA 0.016
#> SRR2050426 1 0.1088 0.9198 0.960 0.000 0.000 0.000 NA 0.016
#> SRR2050425 2 0.0937 0.7078 0.000 0.960 0.000 0.000 NA 0.000
#> SRR2050424 3 0.0146 0.9738 0.000 0.000 0.996 0.000 NA 0.004
#> SRR2050423 4 0.0547 0.7990 0.000 0.000 0.000 0.980 NA 0.000
#> SRR2050422 2 0.4245 0.5665 0.024 0.644 0.000 0.000 NA 0.004
#> SRR2050421 1 0.0146 0.9306 0.996 0.000 0.000 0.000 NA 0.004
#> SRR2050420 1 0.0000 0.9303 1.000 0.000 0.000 0.000 NA 0.000
#> SRR2050419 2 0.3989 0.0881 0.000 0.528 0.000 0.000 NA 0.468
#> SRR2050418 1 0.0717 0.9263 0.976 0.000 0.000 0.000 NA 0.016
#> SRR2050417 1 0.4089 0.6806 0.744 0.000 0.000 0.204 NA 0.032
#> SRR2050416 2 0.1866 0.6977 0.000 0.908 0.000 0.000 NA 0.008
#> SRR2050415 3 0.0260 0.9731 0.000 0.000 0.992 0.000 NA 0.008
#> SRR2050414 4 0.0458 0.7997 0.000 0.000 0.000 0.984 NA 0.000
#> SRR2050413 2 0.3512 0.6183 0.000 0.720 0.000 0.000 NA 0.008
#> SRR2050412 1 0.0146 0.9306 0.996 0.000 0.000 0.000 NA 0.004
#> SRR2050411 1 0.0000 0.9303 1.000 0.000 0.000 0.000 NA 0.000
#> SRR2050409 2 0.2941 0.5677 0.000 0.780 0.000 0.000 NA 0.220
#> SRR2050408 1 0.4184 0.6402 0.720 0.000 0.000 0.228 NA 0.008
#> SRR2050407 2 0.3607 0.3795 0.000 0.652 0.000 0.000 NA 0.348
#> SRR2050406 3 0.0000 0.9744 0.000 0.000 1.000 0.000 NA 0.000
#> SRR2050405 4 0.1053 0.8001 0.000 0.000 0.004 0.964 NA 0.020
#> SRR2050404 2 0.0405 0.7061 0.000 0.988 0.000 0.000 NA 0.008
#> SRR2050403 1 0.0520 0.9274 0.984 0.000 0.000 0.000 NA 0.008
#> SRR2050402 2 0.1858 0.6995 0.000 0.912 0.000 0.000 NA 0.012
#> SRR2050401 1 0.0260 0.9288 0.992 0.000 0.000 0.000 NA 0.000
#> SRR2050400 1 0.1908 0.8929 0.916 0.000 0.000 0.000 NA 0.028
#> SRR2050399 2 0.3490 0.6197 0.000 0.724 0.000 0.000 NA 0.008
#> SRR2050398 1 0.0146 0.9306 0.996 0.000 0.000 0.000 NA 0.004
#> SRR2050397 1 0.0146 0.9296 0.996 0.000 0.000 0.000 NA 0.004
#> SRR2050396 3 0.1620 0.9397 0.000 0.000 0.940 0.012 NA 0.024
#> SRR2050395 4 0.0260 0.8015 0.000 0.000 0.000 0.992 NA 0.008
#> SRR2050394 2 0.4570 0.5244 0.000 0.668 0.000 0.000 NA 0.252
#> SRR2050393 3 0.1327 0.9364 0.000 0.000 0.936 0.000 NA 0.064
#> SRR2050392 6 0.4056 0.7165 0.000 0.064 0.004 0.184 NA 0.748
#> SRR2050465 2 0.0520 0.7065 0.000 0.984 0.000 0.000 NA 0.008
#> SRR2050464 3 0.0000 0.9744 0.000 0.000 1.000 0.000 NA 0.000
#> SRR2050463 4 0.2320 0.7763 0.000 0.000 0.004 0.864 NA 0.000
#> SRR2050462 2 0.0458 0.7081 0.000 0.984 0.000 0.000 NA 0.000
#> SRR2050461 3 0.0000 0.9744 0.000 0.000 1.000 0.000 NA 0.000
#> SRR2050460 4 0.1765 0.7920 0.000 0.000 0.000 0.904 NA 0.000
#> SRR2050459 2 0.2358 0.6559 0.000 0.876 0.000 0.000 NA 0.108
#> SRR2050458 3 0.0000 0.9744 0.000 0.000 1.000 0.000 NA 0.000
#> SRR2050457 6 0.5362 0.7398 0.000 0.148 0.004 0.028 NA 0.668
#> SRR2050456 2 0.3869 0.0191 0.000 0.500 0.000 0.000 NA 0.500
#> SRR2050455 3 0.0363 0.9698 0.000 0.000 0.988 0.000 NA 0.012
#> SRR2050454 4 0.2257 0.7714 0.000 0.012 0.004 0.900 NA 0.076
#> SRR2050453 2 0.1408 0.6959 0.000 0.944 0.000 0.000 NA 0.020
#> SRR2050452 3 0.0146 0.9737 0.000 0.000 0.996 0.000 NA 0.000
#> SRR2050451 4 0.4512 0.6449 0.000 0.028 0.004 0.676 NA 0.016
#> SRR2050450 2 0.0363 0.7059 0.000 0.988 0.000 0.000 NA 0.012
#> SRR2050449 3 0.0000 0.9744 0.000 0.000 1.000 0.000 NA 0.000
#> SRR2050448 4 0.4151 0.6869 0.000 0.024 0.004 0.720 NA 0.012
#> SRR2050447 3 0.0291 0.9737 0.000 0.000 0.992 0.000 NA 0.004
#> SRR2050446 4 0.3406 0.7401 0.000 0.020 0.000 0.792 NA 0.008
#> SRR2050445 2 0.3966 0.1549 0.000 0.552 0.000 0.000 NA 0.444
#> SRR2050444 3 0.0146 0.9738 0.000 0.000 0.996 0.000 NA 0.004
#> SRR2050443 4 0.6914 0.1901 0.000 0.132 0.004 0.516 NA 0.184
#> SRR2050442 2 0.3717 0.5364 0.000 0.616 0.000 0.000 NA 0.000
#> SRR2050441 3 0.1333 0.9481 0.000 0.000 0.944 0.000 NA 0.008
#> SRR2050440 4 0.3331 0.7087 0.020 0.000 0.000 0.808 NA 0.012
#> SRR2050439 2 0.3578 0.5751 0.000 0.660 0.000 0.000 NA 0.000
#> SRR2050438 3 0.2402 0.8813 0.000 0.000 0.868 0.000 NA 0.012
#> SRR2050437 4 0.3375 0.7087 0.024 0.000 0.000 0.808 NA 0.012
#> SRR2050436 2 0.4002 0.5087 0.000 0.588 0.000 0.008 NA 0.000
#> SRR2050435 3 0.1462 0.9428 0.000 0.000 0.936 0.000 NA 0.008
#> SRR2050434 2 0.5791 0.3378 0.000 0.472 0.000 0.160 NA 0.004
#> SRR2050433 2 0.1088 0.7073 0.000 0.960 0.000 0.000 NA 0.024
#> SRR2050432 1 0.0260 0.9300 0.992 0.000 0.000 0.000 NA 0.008
#> SRR2050431 1 0.1173 0.9189 0.960 0.000 0.000 0.016 NA 0.008
#> SRR2050430 1 0.4042 0.6496 0.708 0.004 0.000 0.012 NA 0.012
#> SRR2050429 4 0.4081 0.6627 0.092 0.000 0.000 0.772 NA 0.012
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.888 0.919 0.967 0.3835 0.610 0.610
#> 3 3 0.555 0.673 0.806 0.4604 0.890 0.821
#> 4 4 0.843 0.801 0.890 0.2877 0.760 0.548
#> 5 5 0.838 0.852 0.864 0.0676 0.881 0.627
#> 6 6 0.781 0.845 0.849 0.0410 0.970 0.854
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.919 0.000 1.000
#> SRR2050427 1 0.000 0.978 1.000 0.000
#> SRR2050426 1 0.000 0.978 1.000 0.000
#> SRR2050425 2 0.000 0.919 0.000 1.000
#> SRR2050424 1 0.000 0.978 1.000 0.000
#> SRR2050423 1 0.000 0.978 1.000 0.000
#> SRR2050422 1 0.745 0.712 0.788 0.212
#> SRR2050421 1 0.000 0.978 1.000 0.000
#> SRR2050420 1 0.000 0.978 1.000 0.000
#> SRR2050419 2 0.000 0.919 0.000 1.000
#> SRR2050418 1 0.000 0.978 1.000 0.000
#> SRR2050417 1 0.000 0.978 1.000 0.000
#> SRR2050416 2 0.000 0.919 0.000 1.000
#> SRR2050415 1 0.000 0.978 1.000 0.000
#> SRR2050414 1 0.000 0.978 1.000 0.000
#> SRR2050413 1 0.753 0.705 0.784 0.216
#> SRR2050412 1 0.000 0.978 1.000 0.000
#> SRR2050411 1 0.000 0.978 1.000 0.000
#> SRR2050409 2 0.000 0.919 0.000 1.000
#> SRR2050408 1 0.000 0.978 1.000 0.000
#> SRR2050407 2 0.000 0.919 0.000 1.000
#> SRR2050406 1 0.000 0.978 1.000 0.000
#> SRR2050405 1 0.000 0.978 1.000 0.000
#> SRR2050404 2 0.000 0.919 0.000 1.000
#> SRR2050403 1 0.000 0.978 1.000 0.000
#> SRR2050402 2 0.917 0.539 0.332 0.668
#> SRR2050401 1 0.000 0.978 1.000 0.000
#> SRR2050400 1 0.000 0.978 1.000 0.000
#> SRR2050399 1 0.952 0.355 0.628 0.372
#> SRR2050398 1 0.000 0.978 1.000 0.000
#> SRR2050397 1 0.000 0.978 1.000 0.000
#> SRR2050396 1 0.000 0.978 1.000 0.000
#> SRR2050395 1 0.000 0.978 1.000 0.000
#> SRR2050394 2 0.000 0.919 0.000 1.000
#> SRR2050393 1 0.000 0.978 1.000 0.000
#> SRR2050392 1 0.000 0.978 1.000 0.000
#> SRR2050465 2 0.000 0.919 0.000 1.000
#> SRR2050464 1 0.000 0.978 1.000 0.000
#> SRR2050463 1 0.000 0.978 1.000 0.000
#> SRR2050462 2 0.000 0.919 0.000 1.000
#> SRR2050461 1 0.000 0.978 1.000 0.000
#> SRR2050460 1 0.000 0.978 1.000 0.000
#> SRR2050459 2 0.000 0.919 0.000 1.000
#> SRR2050458 1 0.000 0.978 1.000 0.000
#> SRR2050457 1 0.000 0.978 1.000 0.000
#> SRR2050456 2 0.000 0.919 0.000 1.000
#> SRR2050455 1 0.000 0.978 1.000 0.000
#> SRR2050454 1 0.000 0.978 1.000 0.000
#> SRR2050453 2 0.000 0.919 0.000 1.000
#> SRR2050452 1 0.000 0.978 1.000 0.000
#> SRR2050451 1 0.000 0.978 1.000 0.000
#> SRR2050450 2 0.000 0.919 0.000 1.000
#> SRR2050449 1 0.000 0.978 1.000 0.000
#> SRR2050448 1 0.000 0.978 1.000 0.000
#> SRR2050447 1 0.000 0.978 1.000 0.000
#> SRR2050446 1 0.000 0.978 1.000 0.000
#> SRR2050445 2 0.000 0.919 0.000 1.000
#> SRR2050444 1 0.000 0.978 1.000 0.000
#> SRR2050443 1 0.000 0.978 1.000 0.000
#> SRR2050442 2 0.975 0.370 0.408 0.592
#> SRR2050441 1 0.000 0.978 1.000 0.000
#> SRR2050440 1 0.000 0.978 1.000 0.000
#> SRR2050439 2 0.975 0.370 0.408 0.592
#> SRR2050438 1 0.000 0.978 1.000 0.000
#> SRR2050437 1 0.000 0.978 1.000 0.000
#> SRR2050436 1 0.680 0.763 0.820 0.180
#> SRR2050435 1 0.000 0.978 1.000 0.000
#> SRR2050434 1 0.416 0.889 0.916 0.084
#> SRR2050433 2 0.767 0.707 0.224 0.776
#> SRR2050432 1 0.000 0.978 1.000 0.000
#> SRR2050431 1 0.000 0.978 1.000 0.000
#> SRR2050430 1 0.000 0.978 1.000 0.000
#> SRR2050429 1 0.000 0.978 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050427 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050425 2 0.0592 0.9359 0.000 0.988 0.012
#> SRR2050424 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050423 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050422 3 0.5497 0.5948 0.292 0.000 0.708
#> SRR2050421 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050419 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050416 2 0.0592 0.9359 0.000 0.988 0.012
#> SRR2050415 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050414 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050413 3 0.5722 0.5978 0.292 0.004 0.704
#> SRR2050412 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050406 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050405 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050404 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050402 2 0.8628 0.2213 0.116 0.544 0.340
#> SRR2050401 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050399 3 0.8322 0.5292 0.212 0.160 0.628
#> SRR2050398 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050396 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050395 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050394 2 0.1289 0.9184 0.000 0.968 0.032
#> SRR2050393 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050392 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050465 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050464 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050463 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050462 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050461 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050460 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050459 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050458 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050457 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050456 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050455 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050454 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050453 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050452 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050451 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050450 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050449 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050448 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050447 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050446 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050445 2 0.0000 0.9431 0.000 1.000 0.000
#> SRR2050444 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050443 1 0.5327 0.7160 0.728 0.000 0.272
#> SRR2050442 3 0.8283 0.0772 0.084 0.380 0.536
#> SRR2050441 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050440 1 0.6225 0.4763 0.568 0.000 0.432
#> SRR2050439 3 0.8283 0.0772 0.084 0.380 0.536
#> SRR2050438 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050437 1 0.6225 0.4763 0.568 0.000 0.432
#> SRR2050436 3 0.5810 0.2482 0.336 0.000 0.664
#> SRR2050435 1 0.6286 0.6604 0.536 0.000 0.464
#> SRR2050434 3 0.6235 -0.1445 0.436 0.000 0.564
#> SRR2050433 2 0.6075 0.5319 0.008 0.676 0.316
#> SRR2050432 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050430 1 0.0000 0.6383 1.000 0.000 0.000
#> SRR2050429 1 0.0000 0.6383 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.0469 0.9251 0.000 0.988 0.000 0.012
#> SRR2050424 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050423 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050422 4 0.4748 0.6979 0.016 0.000 0.268 0.716
#> SRR2050421 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050417 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050416 2 0.0469 0.9251 0.000 0.988 0.000 0.012
#> SRR2050415 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050414 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050413 4 0.4898 0.7024 0.016 0.004 0.264 0.716
#> SRR2050412 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050405 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050403 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050402 2 0.5968 -0.0860 0.016 0.544 0.016 0.424
#> SRR2050401 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050399 4 0.6669 0.6996 0.016 0.160 0.160 0.664
#> SRR2050398 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050395 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050394 2 0.1022 0.9039 0.000 0.968 0.000 0.032
#> SRR2050393 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050392 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050465 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050463 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050460 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050457 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050456 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050454 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050451 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050448 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050446 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.0000 0.9337 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050443 3 0.0000 0.7661 0.000 0.000 1.000 0.000
#> SRR2050442 4 0.4790 0.4760 0.000 0.380 0.000 0.620
#> SRR2050441 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050440 3 0.4164 0.4065 0.000 0.000 0.736 0.264
#> SRR2050439 4 0.4790 0.4760 0.000 0.380 0.000 0.620
#> SRR2050438 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050437 3 0.4164 0.4065 0.000 0.000 0.736 0.264
#> SRR2050436 3 0.5000 -0.3042 0.000 0.000 0.504 0.496
#> SRR2050435 3 0.4304 0.7914 0.000 0.000 0.716 0.284
#> SRR2050434 3 0.4843 0.0313 0.000 0.000 0.604 0.396
#> SRR2050433 2 0.4543 0.3662 0.000 0.676 0.000 0.324
#> SRR2050432 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050430 1 0.0000 1.0000 1.000 0.000 0.000 0.000
#> SRR2050429 1 0.0000 1.0000 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050427 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050426 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050425 2 0.0510 0.9240 0.000 0.984 0.000 0.000 0.016
#> SRR2050424 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050422 5 0.0162 0.6665 0.000 0.000 0.000 0.004 0.996
#> SRR2050421 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050420 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050418 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050417 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050416 2 0.0510 0.9240 0.000 0.984 0.000 0.000 0.016
#> SRR2050415 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050413 5 0.0000 0.6660 0.000 0.000 0.000 0.000 1.000
#> SRR2050412 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050411 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050408 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050404 2 0.0162 0.9312 0.000 0.996 0.000 0.000 0.004
#> SRR2050403 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050402 2 0.4965 0.0518 0.000 0.520 0.000 0.028 0.452
#> SRR2050401 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050400 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050399 5 0.2690 0.6030 0.000 0.156 0.000 0.000 0.844
#> SRR2050398 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050397 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050394 2 0.1809 0.8755 0.000 0.928 0.000 0.060 0.012
#> SRR2050393 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050465 2 0.0162 0.9312 0.000 0.996 0.000 0.000 0.004
#> SRR2050464 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050462 2 0.0162 0.9312 0.000 0.996 0.000 0.000 0.004
#> SRR2050461 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050459 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050456 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050453 2 0.0162 0.9312 0.000 0.996 0.000 0.000 0.004
#> SRR2050452 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050450 2 0.0162 0.9312 0.000 0.996 0.000 0.000 0.004
#> SRR2050449 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050447 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050445 2 0.0000 0.9314 0.000 1.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.4088 0.9022 0.000 0.000 0.368 0.632 0.000
#> SRR2050442 5 0.4470 0.3105 0.000 0.372 0.000 0.012 0.616
#> SRR2050441 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 4 0.6652 0.1106 0.000 0.000 0.232 0.420 0.348
#> SRR2050439 5 0.4251 0.3139 0.000 0.372 0.000 0.004 0.624
#> SRR2050438 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 4 0.6652 0.1106 0.000 0.000 0.232 0.420 0.348
#> SRR2050436 5 0.4227 0.3983 0.000 0.000 0.000 0.420 0.580
#> SRR2050435 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 5 0.5884 0.1545 0.000 0.000 0.100 0.420 0.480
#> SRR2050433 2 0.4620 0.4176 0.000 0.652 0.000 0.028 0.320
#> SRR2050432 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050431 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
#> SRR2050430 1 0.2561 0.9211 0.856 0.000 0.000 0.144 0.000
#> SRR2050429 1 0.0000 0.9377 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050427 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050426 1 0.0000 0.804 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050425 2 0.2219 0.878 0.000 0.864 0.000 0.000 0.136 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050422 5 0.3620 0.221 0.000 0.000 0.000 0.000 0.648 0.352
#> SRR2050421 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050420 1 0.0000 0.804 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050418 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050417 1 0.2003 0.762 0.884 0.000 0.000 0.000 0.116 0.000
#> SRR2050416 2 0.2219 0.878 0.000 0.864 0.000 0.000 0.136 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050413 5 0.3592 0.237 0.000 0.000 0.000 0.000 0.656 0.344
#> SRR2050412 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050411 1 0.0547 0.800 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR2050409 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050408 1 0.2003 0.762 0.884 0.000 0.000 0.000 0.116 0.000
#> SRR2050407 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050404 2 0.2092 0.886 0.000 0.876 0.000 0.000 0.124 0.000
#> SRR2050403 1 0.2003 0.762 0.884 0.000 0.000 0.000 0.116 0.000
#> SRR2050402 5 0.5208 0.513 0.000 0.296 0.000 0.004 0.592 0.108
#> SRR2050401 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050400 1 0.0000 0.804 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050399 5 0.4420 0.494 0.000 0.088 0.000 0.004 0.716 0.192
#> SRR2050398 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050397 1 0.0547 0.800 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050395 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050394 2 0.3393 0.644 0.000 0.784 0.000 0.004 0.020 0.192
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.2969 0.995 0.000 0.000 0.224 0.776 0.000 0.000
#> SRR2050465 2 0.2092 0.886 0.000 0.876 0.000 0.000 0.124 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050462 2 0.2092 0.886 0.000 0.876 0.000 0.000 0.124 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050459 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.2969 0.995 0.000 0.000 0.224 0.776 0.000 0.000
#> SRR2050456 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.2969 0.995 0.000 0.000 0.224 0.776 0.000 0.000
#> SRR2050453 2 0.2092 0.886 0.000 0.876 0.000 0.000 0.124 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050450 2 0.2092 0.886 0.000 0.876 0.000 0.000 0.124 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.2996 0.998 0.000 0.000 0.228 0.772 0.000 0.000
#> SRR2050445 2 0.0000 0.896 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.2969 0.995 0.000 0.000 0.224 0.776 0.000 0.000
#> SRR2050442 5 0.3245 0.638 0.000 0.228 0.000 0.000 0.764 0.008
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 6 0.3023 0.747 0.000 0.000 0.232 0.000 0.000 0.768
#> SRR2050439 5 0.2996 0.639 0.000 0.228 0.000 0.000 0.772 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050437 6 0.3023 0.747 0.000 0.000 0.232 0.000 0.000 0.768
#> SRR2050436 6 0.3023 0.473 0.000 0.000 0.000 0.000 0.232 0.768
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050434 6 0.3908 0.700 0.000 0.000 0.100 0.000 0.132 0.768
#> SRR2050433 5 0.5486 0.191 0.000 0.428 0.000 0.004 0.460 0.108
#> SRR2050432 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050431 1 0.1075 0.791 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR2050430 1 0.5236 0.771 0.660 0.000 0.000 0.220 0.080 0.040
#> SRR2050429 1 0.2003 0.762 0.884 0.000 0.000 0.000 0.116 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.766 0.946 0.944 0.4192 0.584 0.584
#> 3 3 0.637 0.784 0.857 0.5028 0.737 0.556
#> 4 4 0.676 0.679 0.799 0.1589 0.960 0.884
#> 5 5 0.792 0.873 0.851 0.0678 0.865 0.589
#> 6 6 0.903 0.713 0.851 0.0538 0.977 0.887
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.999 0.000 1.000
#> SRR2050427 1 0.224 0.937 0.964 0.036
#> SRR2050426 1 0.224 0.937 0.964 0.036
#> SRR2050425 2 0.000 0.999 0.000 1.000
#> SRR2050424 1 0.358 0.944 0.932 0.068
#> SRR2050423 1 0.482 0.945 0.896 0.104
#> SRR2050422 1 0.963 0.530 0.612 0.388
#> SRR2050421 1 0.224 0.937 0.964 0.036
#> SRR2050420 1 0.224 0.937 0.964 0.036
#> SRR2050419 2 0.000 0.999 0.000 1.000
#> SRR2050418 1 0.224 0.937 0.964 0.036
#> SRR2050417 1 0.224 0.937 0.964 0.036
#> SRR2050416 2 0.000 0.999 0.000 1.000
#> SRR2050415 1 0.358 0.944 0.932 0.068
#> SRR2050414 1 0.482 0.945 0.896 0.104
#> SRR2050413 2 0.141 0.977 0.020 0.980
#> SRR2050412 1 0.224 0.937 0.964 0.036
#> SRR2050411 1 0.224 0.937 0.964 0.036
#> SRR2050409 2 0.000 0.999 0.000 1.000
#> SRR2050408 1 0.224 0.937 0.964 0.036
#> SRR2050407 2 0.000 0.999 0.000 1.000
#> SRR2050406 1 0.358 0.944 0.932 0.068
#> SRR2050405 1 0.482 0.945 0.896 0.104
#> SRR2050404 2 0.000 0.999 0.000 1.000
#> SRR2050403 1 0.224 0.937 0.964 0.036
#> SRR2050402 2 0.000 0.999 0.000 1.000
#> SRR2050401 1 0.224 0.937 0.964 0.036
#> SRR2050400 1 0.224 0.937 0.964 0.036
#> SRR2050399 2 0.000 0.999 0.000 1.000
#> SRR2050398 1 0.224 0.937 0.964 0.036
#> SRR2050397 1 0.224 0.937 0.964 0.036
#> SRR2050396 1 0.358 0.944 0.932 0.068
#> SRR2050395 1 0.482 0.945 0.896 0.104
#> SRR2050394 2 0.000 0.999 0.000 1.000
#> SRR2050393 1 0.358 0.944 0.932 0.068
#> SRR2050392 1 0.482 0.945 0.896 0.104
#> SRR2050465 2 0.000 0.999 0.000 1.000
#> SRR2050464 1 0.358 0.944 0.932 0.068
#> SRR2050463 1 0.482 0.945 0.896 0.104
#> SRR2050462 2 0.000 0.999 0.000 1.000
#> SRR2050461 1 0.358 0.944 0.932 0.068
#> SRR2050460 1 0.482 0.945 0.896 0.104
#> SRR2050459 2 0.000 0.999 0.000 1.000
#> SRR2050458 1 0.358 0.944 0.932 0.068
#> SRR2050457 1 0.482 0.945 0.896 0.104
#> SRR2050456 2 0.000 0.999 0.000 1.000
#> SRR2050455 1 0.358 0.944 0.932 0.068
#> SRR2050454 1 0.482 0.945 0.896 0.104
#> SRR2050453 2 0.000 0.999 0.000 1.000
#> SRR2050452 1 0.358 0.944 0.932 0.068
#> SRR2050451 1 0.482 0.945 0.896 0.104
#> SRR2050450 2 0.000 0.999 0.000 1.000
#> SRR2050449 1 0.358 0.944 0.932 0.068
#> SRR2050448 1 0.482 0.945 0.896 0.104
#> SRR2050447 1 0.358 0.944 0.932 0.068
#> SRR2050446 1 0.482 0.945 0.896 0.104
#> SRR2050445 2 0.000 0.999 0.000 1.000
#> SRR2050444 1 0.358 0.944 0.932 0.068
#> SRR2050443 1 0.482 0.945 0.896 0.104
#> SRR2050442 2 0.000 0.999 0.000 1.000
#> SRR2050441 1 0.358 0.944 0.932 0.068
#> SRR2050440 1 0.373 0.945 0.928 0.072
#> SRR2050439 2 0.000 0.999 0.000 1.000
#> SRR2050438 1 0.242 0.941 0.960 0.040
#> SRR2050437 1 0.242 0.942 0.960 0.040
#> SRR2050436 1 0.975 0.482 0.592 0.408
#> SRR2050435 1 0.358 0.944 0.932 0.068
#> SRR2050434 1 0.518 0.939 0.884 0.116
#> SRR2050433 2 0.000 0.999 0.000 1.000
#> SRR2050432 1 0.224 0.937 0.964 0.036
#> SRR2050431 1 0.224 0.937 0.964 0.036
#> SRR2050430 1 0.224 0.937 0.964 0.036
#> SRR2050429 1 0.224 0.937 0.964 0.036
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050427 1 0.400 0.851 0.840 0.000 0.160
#> SRR2050426 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050425 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050424 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050423 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050422 1 0.546 0.419 0.712 0.288 0.000
#> SRR2050421 1 0.400 0.851 0.840 0.000 0.160
#> SRR2050420 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050419 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050418 1 0.394 0.852 0.844 0.000 0.156
#> SRR2050417 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050416 2 0.288 0.934 0.096 0.904 0.000
#> SRR2050415 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050414 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050413 1 0.615 0.129 0.592 0.408 0.000
#> SRR2050412 1 0.400 0.851 0.840 0.000 0.160
#> SRR2050411 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050409 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050408 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050407 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050406 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050405 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050404 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050403 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050402 2 0.355 0.918 0.132 0.868 0.000
#> SRR2050401 1 0.400 0.851 0.840 0.000 0.160
#> SRR2050400 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050399 2 0.355 0.918 0.132 0.868 0.000
#> SRR2050398 1 0.400 0.851 0.840 0.000 0.160
#> SRR2050397 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050396 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050395 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050394 2 0.141 0.957 0.036 0.964 0.000
#> SRR2050393 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050392 3 0.680 0.615 0.344 0.024 0.632
#> SRR2050465 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050464 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050463 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050462 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050461 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050460 3 0.588 0.641 0.348 0.000 0.652
#> SRR2050459 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050458 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050457 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050456 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050455 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050454 3 0.670 0.614 0.348 0.020 0.632
#> SRR2050453 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050452 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050451 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050450 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050449 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050448 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050447 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050446 3 0.588 0.641 0.348 0.000 0.652
#> SRR2050445 2 0.000 0.968 0.000 1.000 0.000
#> SRR2050444 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050443 3 0.586 0.646 0.344 0.000 0.656
#> SRR2050442 2 0.355 0.918 0.132 0.868 0.000
#> SRR2050441 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050440 3 0.588 0.641 0.348 0.000 0.652
#> SRR2050439 2 0.355 0.918 0.132 0.868 0.000
#> SRR2050438 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050437 3 0.588 0.641 0.348 0.000 0.652
#> SRR2050436 1 0.784 0.174 0.560 0.380 0.060
#> SRR2050435 3 0.000 0.757 0.000 0.000 1.000
#> SRR2050434 1 0.835 0.330 0.628 0.184 0.188
#> SRR2050433 2 0.280 0.938 0.092 0.908 0.000
#> SRR2050432 1 0.400 0.851 0.840 0.000 0.160
#> SRR2050431 1 0.362 0.857 0.864 0.000 0.136
#> SRR2050430 1 0.418 0.842 0.828 0.000 0.172
#> SRR2050429 1 0.362 0.857 0.864 0.000 0.136
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.2376 0.940 0.916 0.000 0.016 0.068
#> SRR2050426 1 0.0707 0.949 0.980 0.000 0.020 0.000
#> SRR2050425 2 0.0336 0.841 0.008 0.992 0.000 0.000
#> SRR2050424 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050423 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050422 4 0.9296 0.895 0.176 0.140 0.248 0.436
#> SRR2050421 1 0.2376 0.940 0.916 0.000 0.016 0.068
#> SRR2050420 1 0.0707 0.949 0.980 0.000 0.020 0.000
#> SRR2050419 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.2255 0.940 0.920 0.000 0.012 0.068
#> SRR2050417 1 0.1297 0.948 0.964 0.000 0.020 0.016
#> SRR2050416 2 0.4697 0.569 0.008 0.696 0.000 0.296
#> SRR2050415 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050414 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050413 4 0.9340 0.887 0.176 0.152 0.236 0.436
#> SRR2050412 1 0.2376 0.940 0.916 0.000 0.016 0.068
#> SRR2050411 1 0.1297 0.948 0.964 0.000 0.020 0.016
#> SRR2050409 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.1297 0.948 0.964 0.000 0.020 0.016
#> SRR2050407 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050405 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050404 2 0.0336 0.841 0.008 0.992 0.000 0.000
#> SRR2050403 1 0.1297 0.948 0.964 0.000 0.020 0.016
#> SRR2050402 2 0.4907 0.390 0.000 0.580 0.000 0.420
#> SRR2050401 1 0.2376 0.940 0.916 0.000 0.016 0.068
#> SRR2050400 1 0.0707 0.949 0.980 0.000 0.020 0.000
#> SRR2050399 2 0.4941 0.356 0.000 0.564 0.000 0.436
#> SRR2050398 1 0.2376 0.940 0.916 0.000 0.016 0.068
#> SRR2050397 1 0.1297 0.948 0.964 0.000 0.020 0.016
#> SRR2050396 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050395 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050394 2 0.2345 0.776 0.000 0.900 0.000 0.100
#> SRR2050393 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050392 3 0.3052 0.455 0.136 0.004 0.860 0.000
#> SRR2050465 2 0.0336 0.841 0.008 0.992 0.000 0.000
#> SRR2050464 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050463 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050462 2 0.0336 0.841 0.008 0.992 0.000 0.000
#> SRR2050461 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050460 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050459 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050457 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050456 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050454 3 0.3647 0.416 0.152 0.000 0.832 0.016
#> SRR2050453 2 0.0336 0.841 0.008 0.992 0.000 0.000
#> SRR2050452 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050451 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050450 2 0.0336 0.841 0.008 0.992 0.000 0.000
#> SRR2050449 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050448 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050447 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050446 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050445 2 0.0000 0.842 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050443 3 0.2868 0.460 0.136 0.000 0.864 0.000
#> SRR2050442 2 0.4941 0.356 0.000 0.564 0.000 0.436
#> SRR2050441 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050440 3 0.3881 0.408 0.172 0.000 0.812 0.016
#> SRR2050439 2 0.4941 0.356 0.000 0.564 0.000 0.436
#> SRR2050438 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050437 3 0.3925 0.401 0.176 0.000 0.808 0.016
#> SRR2050436 4 0.8614 0.812 0.072 0.140 0.352 0.436
#> SRR2050435 3 0.5292 0.599 0.008 0.000 0.512 0.480
#> SRR2050434 3 0.7270 -0.724 0.072 0.028 0.464 0.436
#> SRR2050433 2 0.4250 0.612 0.000 0.724 0.000 0.276
#> SRR2050432 1 0.2376 0.940 0.916 0.000 0.016 0.068
#> SRR2050431 1 0.1297 0.948 0.964 0.000 0.020 0.016
#> SRR2050430 1 0.2635 0.932 0.904 0.000 0.020 0.076
#> SRR2050429 1 0.1297 0.948 0.964 0.000 0.020 0.016
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0703 0.858 0.024 0.976 0.000 0.000 0.000
#> SRR2050427 1 0.2522 0.844 0.896 0.000 0.024 0.076 0.004
#> SRR2050426 1 0.6017 0.874 0.684 0.000 0.100 0.092 0.124
#> SRR2050425 2 0.2913 0.849 0.040 0.876 0.080 0.000 0.004
#> SRR2050424 3 0.3944 0.981 0.000 0.000 0.768 0.200 0.032
#> SRR2050423 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050422 5 0.3935 0.834 0.040 0.060 0.000 0.068 0.832
#> SRR2050421 1 0.2522 0.844 0.896 0.000 0.024 0.076 0.004
#> SRR2050420 1 0.6017 0.874 0.684 0.000 0.100 0.092 0.124
#> SRR2050419 2 0.0703 0.858 0.024 0.976 0.000 0.000 0.000
#> SRR2050418 1 0.2490 0.844 0.896 0.000 0.020 0.080 0.004
#> SRR2050417 1 0.6292 0.871 0.656 0.000 0.100 0.092 0.152
#> SRR2050416 2 0.6471 0.139 0.040 0.512 0.080 0.000 0.368
#> SRR2050415 3 0.3944 0.981 0.000 0.000 0.768 0.200 0.032
#> SRR2050414 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050413 5 0.4093 0.835 0.040 0.060 0.004 0.068 0.828
#> SRR2050412 1 0.2522 0.844 0.896 0.000 0.024 0.076 0.004
#> SRR2050411 1 0.6292 0.871 0.656 0.000 0.100 0.092 0.152
#> SRR2050409 2 0.0703 0.858 0.024 0.976 0.000 0.000 0.000
#> SRR2050408 1 0.6292 0.871 0.656 0.000 0.100 0.092 0.152
#> SRR2050407 2 0.0290 0.859 0.000 0.992 0.008 0.000 0.000
#> SRR2050406 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050405 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050404 2 0.2913 0.849 0.040 0.876 0.080 0.000 0.004
#> SRR2050403 1 0.6292 0.871 0.656 0.000 0.100 0.092 0.152
#> SRR2050402 5 0.4774 0.557 0.012 0.328 0.016 0.000 0.644
#> SRR2050401 1 0.2522 0.844 0.896 0.000 0.024 0.076 0.004
#> SRR2050400 1 0.6017 0.874 0.684 0.000 0.100 0.092 0.124
#> SRR2050399 5 0.3778 0.807 0.012 0.188 0.012 0.000 0.788
#> SRR2050398 1 0.2522 0.844 0.896 0.000 0.024 0.076 0.004
#> SRR2050397 1 0.6292 0.871 0.656 0.000 0.100 0.092 0.152
#> SRR2050396 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050395 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050394 2 0.3001 0.724 0.004 0.844 0.008 0.000 0.144
#> SRR2050393 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050392 4 0.0794 0.937 0.000 0.028 0.000 0.972 0.000
#> SRR2050465 2 0.2913 0.849 0.040 0.876 0.080 0.000 0.004
#> SRR2050464 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050463 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050462 2 0.2913 0.849 0.040 0.876 0.080 0.000 0.004
#> SRR2050461 3 0.3944 0.981 0.000 0.000 0.768 0.200 0.032
#> SRR2050460 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050459 2 0.0865 0.857 0.024 0.972 0.000 0.004 0.000
#> SRR2050458 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050457 4 0.0000 0.962 0.000 0.000 0.000 1.000 0.000
#> SRR2050456 2 0.0865 0.857 0.024 0.972 0.000 0.004 0.000
#> SRR2050455 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050454 4 0.0727 0.952 0.004 0.004 0.012 0.980 0.000
#> SRR2050453 2 0.2913 0.849 0.040 0.876 0.080 0.000 0.004
#> SRR2050452 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050451 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050450 2 0.2913 0.849 0.040 0.876 0.080 0.000 0.004
#> SRR2050449 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050448 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050447 3 0.3863 0.982 0.000 0.000 0.772 0.200 0.028
#> SRR2050446 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050445 2 0.0865 0.857 0.024 0.972 0.000 0.004 0.000
#> SRR2050444 3 0.3109 0.986 0.000 0.000 0.800 0.200 0.000
#> SRR2050443 4 0.0162 0.966 0.004 0.000 0.000 0.996 0.000
#> SRR2050442 5 0.3972 0.811 0.012 0.188 0.020 0.000 0.780
#> SRR2050441 3 0.3910 0.979 0.000 0.000 0.772 0.196 0.032
#> SRR2050440 4 0.3769 0.777 0.028 0.000 0.004 0.796 0.172
#> SRR2050439 5 0.3670 0.815 0.008 0.188 0.012 0.000 0.792
#> SRR2050438 3 0.3910 0.979 0.000 0.000 0.772 0.196 0.032
#> SRR2050437 4 0.3769 0.777 0.028 0.000 0.004 0.796 0.172
#> SRR2050436 5 0.4294 0.826 0.024 0.060 0.008 0.096 0.812
#> SRR2050435 3 0.3910 0.979 0.000 0.000 0.772 0.196 0.032
#> SRR2050434 5 0.3757 0.761 0.024 0.000 0.012 0.156 0.808
#> SRR2050433 2 0.5045 0.319 0.020 0.628 0.012 0.004 0.336
#> SRR2050432 1 0.2522 0.844 0.896 0.000 0.024 0.076 0.004
#> SRR2050431 1 0.6292 0.871 0.656 0.000 0.100 0.092 0.152
#> SRR2050430 1 0.3201 0.808 0.872 0.000 0.028 0.064 0.036
#> SRR2050429 1 0.6140 0.865 0.668 0.000 0.100 0.080 0.152
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.3110 0.8491 0.000 0.792 0.000 0.012 0.000 0.196
#> SRR2050427 1 0.4255 -0.1720 0.512 0.000 0.004 0.004 0.004 0.476
#> SRR2050426 1 0.1148 0.6116 0.960 0.000 0.000 0.016 0.004 0.020
#> SRR2050425 2 0.1511 0.8222 0.000 0.940 0.000 0.012 0.044 0.004
#> SRR2050424 3 0.0520 0.9860 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR2050423 4 0.2939 0.9238 0.008 0.000 0.080 0.864 0.004 0.044
#> SRR2050422 5 0.1536 0.8035 0.000 0.016 0.000 0.004 0.940 0.040
#> SRR2050421 1 0.4255 -0.1720 0.512 0.000 0.004 0.004 0.004 0.476
#> SRR2050420 1 0.1148 0.6116 0.960 0.000 0.000 0.016 0.004 0.020
#> SRR2050419 2 0.3078 0.8491 0.000 0.796 0.000 0.012 0.000 0.192
#> SRR2050418 1 0.4534 -0.1955 0.516 0.000 0.004 0.012 0.008 0.460
#> SRR2050417 1 0.0547 0.6141 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR2050416 5 0.4312 0.2509 0.000 0.476 0.000 0.012 0.508 0.004
#> SRR2050415 3 0.0520 0.9860 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR2050414 4 0.2200 0.9232 0.012 0.000 0.080 0.900 0.004 0.004
#> SRR2050413 5 0.1785 0.8039 0.000 0.016 0.000 0.008 0.928 0.048
#> SRR2050412 1 0.4122 -0.1619 0.520 0.000 0.004 0.004 0.000 0.472
#> SRR2050411 1 0.0363 0.6153 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR2050409 2 0.3110 0.8491 0.000 0.792 0.000 0.012 0.000 0.196
#> SRR2050408 1 0.0547 0.6141 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR2050407 2 0.2300 0.8508 0.000 0.856 0.000 0.000 0.000 0.144
#> SRR2050406 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.2312 0.9222 0.012 0.000 0.080 0.896 0.004 0.008
#> SRR2050404 2 0.1265 0.8261 0.000 0.948 0.000 0.008 0.044 0.000
#> SRR2050403 1 0.0547 0.6141 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR2050402 5 0.3002 0.7415 0.000 0.136 0.000 0.008 0.836 0.020
#> SRR2050401 1 0.4122 -0.1619 0.520 0.000 0.004 0.004 0.000 0.472
#> SRR2050400 1 0.1148 0.6116 0.960 0.000 0.000 0.016 0.004 0.020
#> SRR2050399 5 0.1138 0.8072 0.000 0.024 0.000 0.004 0.960 0.012
#> SRR2050398 1 0.4122 -0.1619 0.520 0.000 0.004 0.004 0.000 0.472
#> SRR2050397 1 0.0260 0.6152 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR2050396 3 0.0291 0.9844 0.000 0.000 0.992 0.000 0.004 0.004
#> SRR2050395 4 0.2200 0.9232 0.012 0.000 0.080 0.900 0.004 0.004
#> SRR2050394 2 0.5082 0.6590 0.000 0.648 0.000 0.004 0.160 0.188
#> SRR2050393 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.2001 0.9193 0.012 0.000 0.068 0.912 0.000 0.008
#> SRR2050465 2 0.1265 0.8261 0.000 0.948 0.000 0.008 0.044 0.000
#> SRR2050464 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.2925 0.9228 0.008 0.000 0.080 0.860 0.000 0.052
#> SRR2050462 2 0.1265 0.8261 0.000 0.948 0.000 0.008 0.044 0.000
#> SRR2050461 3 0.0520 0.9860 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR2050460 4 0.2987 0.9221 0.008 0.000 0.080 0.856 0.000 0.056
#> SRR2050459 2 0.3345 0.8436 0.000 0.776 0.000 0.020 0.000 0.204
#> SRR2050458 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.1946 0.9212 0.012 0.000 0.072 0.912 0.000 0.004
#> SRR2050456 2 0.3345 0.8436 0.000 0.776 0.000 0.020 0.000 0.204
#> SRR2050455 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.2011 0.9169 0.020 0.000 0.064 0.912 0.000 0.004
#> SRR2050453 2 0.1265 0.8261 0.000 0.948 0.000 0.008 0.044 0.000
#> SRR2050452 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.2987 0.9221 0.008 0.000 0.080 0.856 0.000 0.056
#> SRR2050450 2 0.1265 0.8261 0.000 0.948 0.000 0.008 0.044 0.000
#> SRR2050449 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.2987 0.9221 0.008 0.000 0.080 0.856 0.000 0.056
#> SRR2050447 3 0.0520 0.9860 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR2050446 4 0.2987 0.9221 0.008 0.000 0.080 0.856 0.000 0.056
#> SRR2050445 2 0.3345 0.8436 0.000 0.776 0.000 0.020 0.000 0.204
#> SRR2050444 3 0.0000 0.9884 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.2056 0.9232 0.012 0.000 0.080 0.904 0.000 0.004
#> SRR2050442 5 0.2084 0.8106 0.000 0.024 0.000 0.016 0.916 0.044
#> SRR2050441 3 0.0767 0.9822 0.000 0.000 0.976 0.004 0.008 0.012
#> SRR2050440 4 0.6217 0.6229 0.004 0.000 0.068 0.568 0.108 0.252
#> SRR2050439 5 0.1959 0.8114 0.000 0.024 0.000 0.020 0.924 0.032
#> SRR2050438 3 0.1901 0.9277 0.000 0.000 0.912 0.004 0.008 0.076
#> SRR2050437 4 0.6217 0.6229 0.004 0.000 0.068 0.568 0.108 0.252
#> SRR2050436 5 0.3050 0.7824 0.000 0.016 0.000 0.028 0.848 0.108
#> SRR2050435 3 0.0767 0.9822 0.000 0.000 0.976 0.004 0.008 0.012
#> SRR2050434 5 0.3395 0.7463 0.000 0.000 0.004 0.056 0.816 0.124
#> SRR2050433 5 0.6339 0.0913 0.000 0.304 0.000 0.028 0.472 0.196
#> SRR2050432 1 0.4124 -0.1657 0.516 0.000 0.004 0.004 0.000 0.476
#> SRR2050431 1 0.0622 0.6131 0.980 0.000 0.000 0.012 0.000 0.008
#> SRR2050430 6 0.4214 0.0000 0.280 0.000 0.004 0.016 0.012 0.688
#> SRR2050429 1 0.1970 0.5479 0.912 0.000 0.000 0.028 0.000 0.060
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.861 0.920 0.968 0.4792 0.521 0.521
#> 3 3 1.000 0.965 0.986 0.3835 0.782 0.594
#> 4 4 1.000 0.984 0.989 0.1297 0.898 0.704
#> 5 5 0.965 0.927 0.963 0.0636 0.955 0.820
#> 6 6 0.931 0.914 0.927 0.0359 0.970 0.852
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5
There is also optional best \(k\) = 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.961 0.000 1.000
#> SRR2050427 1 0.000 0.967 1.000 0.000
#> SRR2050426 1 0.000 0.967 1.000 0.000
#> SRR2050425 2 0.000 0.961 0.000 1.000
#> SRR2050424 1 0.000 0.967 1.000 0.000
#> SRR2050423 1 0.000 0.967 1.000 0.000
#> SRR2050422 2 0.000 0.961 0.000 1.000
#> SRR2050421 1 0.000 0.967 1.000 0.000
#> SRR2050420 1 0.000 0.967 1.000 0.000
#> SRR2050419 2 0.000 0.961 0.000 1.000
#> SRR2050418 1 0.697 0.760 0.812 0.188
#> SRR2050417 2 0.971 0.329 0.400 0.600
#> SRR2050416 2 0.000 0.961 0.000 1.000
#> SRR2050415 1 0.000 0.967 1.000 0.000
#> SRR2050414 1 0.000 0.967 1.000 0.000
#> SRR2050413 2 0.000 0.961 0.000 1.000
#> SRR2050412 1 0.000 0.967 1.000 0.000
#> SRR2050411 1 0.697 0.760 0.812 0.188
#> SRR2050409 2 0.000 0.961 0.000 1.000
#> SRR2050408 1 0.996 0.117 0.536 0.464
#> SRR2050407 2 0.000 0.961 0.000 1.000
#> SRR2050406 1 0.000 0.967 1.000 0.000
#> SRR2050405 1 0.000 0.967 1.000 0.000
#> SRR2050404 2 0.000 0.961 0.000 1.000
#> SRR2050403 1 0.929 0.471 0.656 0.344
#> SRR2050402 2 0.000 0.961 0.000 1.000
#> SRR2050401 1 0.000 0.967 1.000 0.000
#> SRR2050400 1 0.000 0.967 1.000 0.000
#> SRR2050399 2 0.000 0.961 0.000 1.000
#> SRR2050398 1 0.000 0.967 1.000 0.000
#> SRR2050397 1 0.697 0.760 0.812 0.188
#> SRR2050396 1 0.000 0.967 1.000 0.000
#> SRR2050395 1 0.000 0.967 1.000 0.000
#> SRR2050394 2 0.000 0.961 0.000 1.000
#> SRR2050393 1 0.000 0.967 1.000 0.000
#> SRR2050392 2 0.605 0.815 0.148 0.852
#> SRR2050465 2 0.000 0.961 0.000 1.000
#> SRR2050464 1 0.000 0.967 1.000 0.000
#> SRR2050463 1 0.000 0.967 1.000 0.000
#> SRR2050462 2 0.000 0.961 0.000 1.000
#> SRR2050461 1 0.000 0.967 1.000 0.000
#> SRR2050460 1 0.000 0.967 1.000 0.000
#> SRR2050459 2 0.000 0.961 0.000 1.000
#> SRR2050458 1 0.000 0.967 1.000 0.000
#> SRR2050457 2 0.644 0.797 0.164 0.836
#> SRR2050456 2 0.000 0.961 0.000 1.000
#> SRR2050455 1 0.000 0.967 1.000 0.000
#> SRR2050454 2 0.861 0.604 0.284 0.716
#> SRR2050453 2 0.000 0.961 0.000 1.000
#> SRR2050452 1 0.000 0.967 1.000 0.000
#> SRR2050451 1 0.000 0.967 1.000 0.000
#> SRR2050450 2 0.000 0.961 0.000 1.000
#> SRR2050449 1 0.000 0.967 1.000 0.000
#> SRR2050448 1 0.000 0.967 1.000 0.000
#> SRR2050447 1 0.000 0.967 1.000 0.000
#> SRR2050446 1 0.000 0.967 1.000 0.000
#> SRR2050445 2 0.000 0.961 0.000 1.000
#> SRR2050444 1 0.000 0.967 1.000 0.000
#> SRR2050443 1 0.000 0.967 1.000 0.000
#> SRR2050442 2 0.000 0.961 0.000 1.000
#> SRR2050441 1 0.000 0.967 1.000 0.000
#> SRR2050440 1 0.000 0.967 1.000 0.000
#> SRR2050439 2 0.000 0.961 0.000 1.000
#> SRR2050438 1 0.000 0.967 1.000 0.000
#> SRR2050437 1 0.000 0.967 1.000 0.000
#> SRR2050436 2 0.000 0.961 0.000 1.000
#> SRR2050435 1 0.000 0.967 1.000 0.000
#> SRR2050434 2 0.000 0.961 0.000 1.000
#> SRR2050433 2 0.000 0.961 0.000 1.000
#> SRR2050432 1 0.000 0.967 1.000 0.000
#> SRR2050431 1 0.000 0.967 1.000 0.000
#> SRR2050430 1 0.000 0.967 1.000 0.000
#> SRR2050429 1 0.000 0.967 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050427 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050426 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050425 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050423 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050422 2 0.465 0.712 0.208 0.792 0.000
#> SRR2050421 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050420 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050419 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050418 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050417 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050416 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050414 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050413 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050412 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050411 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050409 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050408 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050407 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050405 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050404 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050403 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050402 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050401 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050400 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050399 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050398 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050397 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050395 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050394 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050392 2 0.611 0.370 0.000 0.604 0.396
#> SRR2050465 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050463 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050462 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050460 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050459 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050457 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050456 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050454 2 0.611 0.370 0.000 0.604 0.396
#> SRR2050453 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050451 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050450 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050448 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050446 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050445 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050443 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050442 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050440 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050439 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050437 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050436 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050434 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050433 2 0.000 0.955 0.000 1.000 0.000
#> SRR2050432 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050431 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050430 1 0.000 1.000 1.000 0.000 0.000
#> SRR2050429 1 0.000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050427 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050426 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050425 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050424 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050423 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050422 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050421 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050420 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050418 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050417 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050416 2 0.0336 0.993 0 0.992 0.000 0.008
#> SRR2050415 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050414 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050413 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050412 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050411 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050408 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050406 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050405 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050404 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050403 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050402 2 0.0336 0.993 0 0.992 0.000 0.008
#> SRR2050401 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050400 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050399 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050398 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050397 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050395 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050394 2 0.0188 0.994 0 0.996 0.000 0.004
#> SRR2050393 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050392 4 0.0779 0.983 0 0.016 0.004 0.980
#> SRR2050465 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050464 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050463 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050462 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050461 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050460 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050459 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050458 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050457 4 0.0779 0.983 0 0.016 0.004 0.980
#> SRR2050456 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050455 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050454 4 0.0779 0.983 0 0.016 0.004 0.980
#> SRR2050453 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050452 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050451 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050450 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050449 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050448 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050447 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050446 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050445 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050444 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050443 4 0.0707 0.995 0 0.000 0.020 0.980
#> SRR2050442 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050441 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050440 3 0.3569 0.765 0 0.000 0.804 0.196
#> SRR2050439 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050438 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050437 3 0.3569 0.765 0 0.000 0.804 0.196
#> SRR2050436 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050435 3 0.0000 0.976 0 0.000 1.000 0.000
#> SRR2050434 2 0.0707 0.989 0 0.980 0.000 0.020
#> SRR2050433 2 0.0000 0.994 0 1.000 0.000 0.000
#> SRR2050432 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050431 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050430 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR2050429 1 0.0000 1.000 1 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050427 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050426 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050425 2 0.0162 0.974 0.000 0.996 0.000 0.000 0.004
#> SRR2050424 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050422 5 0.0963 0.906 0.000 0.036 0.000 0.000 0.964
#> SRR2050421 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050420 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050418 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050417 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050416 2 0.0290 0.971 0.000 0.992 0.000 0.000 0.008
#> SRR2050415 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050413 5 0.0963 0.906 0.000 0.036 0.000 0.000 0.964
#> SRR2050412 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050411 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050408 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.0162 0.974 0.000 0.996 0.000 0.000 0.004
#> SRR2050403 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050402 2 0.3210 0.704 0.000 0.788 0.000 0.000 0.212
#> SRR2050401 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050400 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050399 5 0.3636 0.700 0.000 0.272 0.000 0.000 0.728
#> SRR2050398 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050397 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050394 2 0.2230 0.851 0.000 0.884 0.000 0.000 0.116
#> SRR2050393 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 4 0.0162 0.995 0.000 0.004 0.000 0.996 0.000
#> SRR2050465 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.0162 0.974 0.000 0.996 0.000 0.000 0.004
#> SRR2050461 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.0290 0.992 0.000 0.008 0.000 0.992 0.000
#> SRR2050456 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.0162 0.995 0.000 0.004 0.000 0.996 0.000
#> SRR2050453 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.0162 0.974 0.000 0.996 0.000 0.000 0.004
#> SRR2050449 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.0000 0.998 0.000 0.000 0.000 1.000 0.000
#> SRR2050442 5 0.3636 0.700 0.000 0.272 0.000 0.000 0.728
#> SRR2050441 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 3 0.6503 0.191 0.000 0.000 0.464 0.204 0.332
#> SRR2050439 5 0.1121 0.903 0.000 0.044 0.000 0.000 0.956
#> SRR2050438 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 3 0.6503 0.191 0.000 0.000 0.464 0.204 0.332
#> SRR2050436 5 0.0963 0.906 0.000 0.036 0.000 0.000 0.964
#> SRR2050435 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 5 0.0963 0.906 0.000 0.036 0.000 0.000 0.964
#> SRR2050433 2 0.0000 0.975 0.000 1.000 0.000 0.000 0.000
#> SRR2050432 1 0.0963 0.967 0.964 0.000 0.000 0.000 0.036
#> SRR2050431 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
#> SRR2050430 1 0.3586 0.698 0.736 0.000 0.000 0.000 0.264
#> SRR2050429 1 0.0000 0.973 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050427 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050426 1 0.0260 0.9867 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2050425 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.2300 0.8995 0.000 0.000 0.000 0.856 0.000 0.144
#> SRR2050422 5 0.0000 0.9464 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050421 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050420 1 0.0260 0.9867 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2050419 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050418 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050417 1 0.0000 0.9918 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050416 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050415 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.0000 0.9099 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050413 5 0.0000 0.9464 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050412 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050411 1 0.0000 0.9918 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050409 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050408 1 0.0000 0.9918 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.0713 0.9060 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR2050404 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050403 1 0.0000 0.9918 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050402 2 0.3266 0.6307 0.000 0.728 0.000 0.000 0.272 0.000
#> SRR2050401 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050400 1 0.0146 0.9898 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2050399 5 0.1863 0.8820 0.000 0.104 0.000 0.000 0.896 0.000
#> SRR2050398 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050397 1 0.0000 0.9918 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050395 4 0.0146 0.9101 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050394 2 0.2092 0.8492 0.000 0.876 0.000 0.000 0.124 0.000
#> SRR2050393 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.0713 0.9060 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR2050465 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.2631 0.8930 0.000 0.000 0.000 0.820 0.000 0.180
#> SRR2050462 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.2664 0.8909 0.000 0.000 0.000 0.816 0.000 0.184
#> SRR2050459 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050458 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.0790 0.9039 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR2050456 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050455 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.0713 0.9060 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR2050453 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.2631 0.8930 0.000 0.000 0.000 0.820 0.000 0.180
#> SRR2050450 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.2631 0.8930 0.000 0.000 0.000 0.820 0.000 0.180
#> SRR2050447 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.2631 0.8930 0.000 0.000 0.000 0.820 0.000 0.180
#> SRR2050445 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050444 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.0713 0.9060 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR2050442 5 0.1910 0.8805 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR2050441 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 3 0.7582 0.0102 0.000 0.000 0.348 0.184 0.236 0.232
#> SRR2050439 5 0.0146 0.9467 0.000 0.004 0.000 0.000 0.996 0.000
#> SRR2050438 3 0.0260 0.9198 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR2050437 3 0.7582 0.0102 0.000 0.000 0.348 0.184 0.236 0.232
#> SRR2050436 5 0.0632 0.9415 0.000 0.000 0.000 0.000 0.976 0.024
#> SRR2050435 3 0.0000 0.9255 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050434 5 0.0713 0.9398 0.000 0.000 0.000 0.000 0.972 0.028
#> SRR2050433 2 0.0146 0.9724 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050432 6 0.3244 0.9860 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR2050431 1 0.0000 0.9918 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050430 6 0.3141 0.9041 0.200 0.000 0.000 0.000 0.012 0.788
#> SRR2050429 1 0.0790 0.9523 0.968 0.000 0.000 0.000 0.000 0.032
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.983 0.993 0.4102 0.597 0.597
#> 3 3 1.000 0.976 0.983 0.5428 0.775 0.622
#> 4 4 0.985 0.948 0.977 0.1975 0.871 0.652
#> 5 5 0.922 0.930 0.953 0.0452 0.951 0.803
#> 6 6 1.000 0.955 0.983 0.0472 0.945 0.745
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 1.000 0.000 1.000
#> SRR2050427 1 0.0000 0.990 1.000 0.000
#> SRR2050426 1 0.0000 0.990 1.000 0.000
#> SRR2050425 2 0.0000 1.000 0.000 1.000
#> SRR2050424 1 0.0000 0.990 1.000 0.000
#> SRR2050423 1 0.0000 0.990 1.000 0.000
#> SRR2050422 1 0.2236 0.956 0.964 0.036
#> SRR2050421 1 0.0000 0.990 1.000 0.000
#> SRR2050420 1 0.0000 0.990 1.000 0.000
#> SRR2050419 2 0.0000 1.000 0.000 1.000
#> SRR2050418 1 0.0000 0.990 1.000 0.000
#> SRR2050417 1 0.0000 0.990 1.000 0.000
#> SRR2050416 2 0.0000 1.000 0.000 1.000
#> SRR2050415 1 0.0000 0.990 1.000 0.000
#> SRR2050414 1 0.0000 0.990 1.000 0.000
#> SRR2050413 1 0.9170 0.513 0.668 0.332
#> SRR2050412 1 0.0000 0.990 1.000 0.000
#> SRR2050411 1 0.0000 0.990 1.000 0.000
#> SRR2050409 2 0.0000 1.000 0.000 1.000
#> SRR2050408 1 0.0000 0.990 1.000 0.000
#> SRR2050407 2 0.0000 1.000 0.000 1.000
#> SRR2050406 1 0.0000 0.990 1.000 0.000
#> SRR2050405 1 0.0000 0.990 1.000 0.000
#> SRR2050404 2 0.0000 1.000 0.000 1.000
#> SRR2050403 1 0.0000 0.990 1.000 0.000
#> SRR2050402 2 0.0000 1.000 0.000 1.000
#> SRR2050401 1 0.0000 0.990 1.000 0.000
#> SRR2050400 1 0.0000 0.990 1.000 0.000
#> SRR2050399 2 0.0000 1.000 0.000 1.000
#> SRR2050398 1 0.0000 0.990 1.000 0.000
#> SRR2050397 1 0.0000 0.990 1.000 0.000
#> SRR2050396 1 0.0000 0.990 1.000 0.000
#> SRR2050395 1 0.0000 0.990 1.000 0.000
#> SRR2050394 2 0.0000 1.000 0.000 1.000
#> SRR2050393 1 0.0000 0.990 1.000 0.000
#> SRR2050392 1 0.0000 0.990 1.000 0.000
#> SRR2050465 2 0.0000 1.000 0.000 1.000
#> SRR2050464 1 0.0000 0.990 1.000 0.000
#> SRR2050463 1 0.0000 0.990 1.000 0.000
#> SRR2050462 2 0.0000 1.000 0.000 1.000
#> SRR2050461 1 0.0000 0.990 1.000 0.000
#> SRR2050460 1 0.0000 0.990 1.000 0.000
#> SRR2050459 2 0.0000 1.000 0.000 1.000
#> SRR2050458 1 0.0000 0.990 1.000 0.000
#> SRR2050457 1 0.0000 0.990 1.000 0.000
#> SRR2050456 2 0.0000 1.000 0.000 1.000
#> SRR2050455 1 0.0000 0.990 1.000 0.000
#> SRR2050454 1 0.0000 0.990 1.000 0.000
#> SRR2050453 2 0.0000 1.000 0.000 1.000
#> SRR2050452 1 0.0000 0.990 1.000 0.000
#> SRR2050451 1 0.0000 0.990 1.000 0.000
#> SRR2050450 2 0.0000 1.000 0.000 1.000
#> SRR2050449 1 0.0000 0.990 1.000 0.000
#> SRR2050448 1 0.0000 0.990 1.000 0.000
#> SRR2050447 1 0.0000 0.990 1.000 0.000
#> SRR2050446 1 0.0000 0.990 1.000 0.000
#> SRR2050445 2 0.0000 1.000 0.000 1.000
#> SRR2050444 1 0.0000 0.990 1.000 0.000
#> SRR2050443 1 0.0000 0.990 1.000 0.000
#> SRR2050442 2 0.0000 1.000 0.000 1.000
#> SRR2050441 1 0.0000 0.990 1.000 0.000
#> SRR2050440 1 0.0000 0.990 1.000 0.000
#> SRR2050439 2 0.0000 1.000 0.000 1.000
#> SRR2050438 1 0.0000 0.990 1.000 0.000
#> SRR2050437 1 0.0000 0.990 1.000 0.000
#> SRR2050436 1 0.6247 0.816 0.844 0.156
#> SRR2050435 1 0.0000 0.990 1.000 0.000
#> SRR2050434 1 0.0376 0.986 0.996 0.004
#> SRR2050433 2 0.0000 1.000 0.000 1.000
#> SRR2050432 1 0.0000 0.990 1.000 0.000
#> SRR2050431 1 0.0000 0.990 1.000 0.000
#> SRR2050430 1 0.0000 0.990 1.000 0.000
#> SRR2050429 1 0.0000 0.990 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050427 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050426 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050425 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050423 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050422 1 0.207 0.937 0.940 0.060 0.000
#> SRR2050421 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050420 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050419 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050418 1 0.129 0.966 0.968 0.000 0.032
#> SRR2050417 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050414 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050413 1 0.489 0.735 0.772 0.228 0.000
#> SRR2050412 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050411 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050408 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050405 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050404 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050403 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050402 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050401 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050400 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050399 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050398 1 0.263 0.906 0.916 0.000 0.084
#> SRR2050397 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050395 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050394 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050392 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050465 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050463 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050462 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050460 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050459 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050457 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050456 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050454 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050453 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050451 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050450 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050448 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050447 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050446 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050445 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050443 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050442 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050440 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050439 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050437 1 0.153 0.965 0.960 0.000 0.040
#> SRR2050436 1 0.400 0.832 0.840 0.160 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050434 1 0.153 0.952 0.960 0.040 0.000
#> SRR2050433 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050432 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050431 1 0.000 0.966 1.000 0.000 0.000
#> SRR2050430 1 0.254 0.936 0.920 0.000 0.080
#> SRR2050429 1 0.000 0.966 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050423 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050422 1 0.609 0.369 0.564 0.052 0.000 0.384
#> SRR2050421 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.353 0.746 0.808 0.000 0.000 0.192
#> SRR2050417 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050414 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050413 1 0.670 0.422 0.564 0.328 0.000 0.108
#> SRR2050412 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050405 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050404 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050403 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050402 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050401 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050398 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050395 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050394 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050392 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050465 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050463 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050462 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050460 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050459 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050457 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050456 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050454 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050453 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050451 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050450 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050448 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050446 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050445 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050443 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050442 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050440 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050439 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050437 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050436 4 0.292 0.830 0.000 0.140 0.000 0.860
#> SRR2050435 3 0.000 1.000 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.000 0.990 0.000 0.000 0.000 1.000
#> SRR2050433 2 0.000 1.000 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.000 0.922 1.000 0.000 0.000 0.000
#> SRR2050430 1 0.666 0.274 0.512 0.000 0.088 0.400
#> SRR2050429 1 0.000 0.922 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050427 5 0.000 0.837 0.000 0.000 0.000 0.000 1.000
#> SRR2050426 1 0.311 0.919 0.800 0.000 0.000 0.000 0.200
#> SRR2050425 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050422 5 0.697 0.384 0.140 0.044 0.000 0.312 0.504
#> SRR2050421 5 0.000 0.837 0.000 0.000 0.000 0.000 1.000
#> SRR2050420 5 0.407 0.204 0.364 0.000 0.000 0.000 0.636
#> SRR2050419 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050418 5 0.233 0.757 0.000 0.000 0.000 0.124 0.876
#> SRR2050417 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050416 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050413 2 0.485 0.746 0.140 0.724 0.000 0.136 0.000
#> SRR2050412 5 0.000 0.837 0.000 0.000 0.000 0.000 1.000
#> SRR2050411 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050409 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050408 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050407 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050403 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050402 2 0.252 0.896 0.140 0.860 0.000 0.000 0.000
#> SRR2050401 5 0.000 0.837 0.000 0.000 0.000 0.000 1.000
#> SRR2050400 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050399 2 0.252 0.896 0.140 0.860 0.000 0.000 0.000
#> SRR2050398 5 0.000 0.837 0.000 0.000 0.000 0.000 1.000
#> SRR2050397 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050396 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050394 2 0.252 0.896 0.140 0.860 0.000 0.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050465 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050456 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.000 0.948 0.000 1.000 0.000 0.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050442 2 0.252 0.896 0.140 0.860 0.000 0.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050439 2 0.252 0.896 0.140 0.860 0.000 0.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050436 4 0.387 0.750 0.140 0.060 0.000 0.800 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 4 0.000 0.986 0.000 0.000 0.000 1.000 0.000
#> SRR2050433 2 0.252 0.896 0.140 0.860 0.000 0.000 0.000
#> SRR2050432 5 0.000 0.837 0.000 0.000 0.000 0.000 1.000
#> SRR2050431 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
#> SRR2050430 5 0.379 0.731 0.000 0.000 0.076 0.112 0.812
#> SRR2050429 1 0.252 0.991 0.860 0.000 0.000 0.000 0.140
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050427 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050426 1 0.127 0.898 0.940 0.000 0.00 0.0 0.000 0.060
#> SRR2050425 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050423 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050422 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050421 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050420 1 0.377 0.328 0.596 0.000 0.00 0.0 0.000 0.404
#> SRR2050419 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050418 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050417 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050416 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050414 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050413 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050412 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050411 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050409 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050408 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050407 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050405 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050404 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050403 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050402 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050401 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050400 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050399 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050398 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050397 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050395 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050394 2 0.308 0.655 0.000 0.760 0.00 0.0 0.240 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050392 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050465 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050463 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050462 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050460 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050459 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050457 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050456 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050454 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050453 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050451 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050450 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050448 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050446 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050445 2 0.000 0.981 0.000 1.000 0.00 0.0 0.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050443 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050442 5 0.374 0.324 0.000 0.392 0.00 0.0 0.608 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050440 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050439 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050437 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050436 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.000 1.00 0.0 0.000 0.000
#> SRR2050434 4 0.000 1.000 0.000 0.000 0.00 1.0 0.000 0.000
#> SRR2050433 5 0.000 0.931 0.000 0.000 0.00 0.0 1.000 0.000
#> SRR2050432 6 0.000 0.976 0.000 0.000 0.00 0.0 0.000 1.000
#> SRR2050431 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
#> SRR2050430 6 0.304 0.824 0.000 0.000 0.06 0.1 0.000 0.840
#> SRR2050429 1 0.000 0.947 1.000 0.000 0.00 0.0 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.503 0.785 0.835 0.3995 0.638 0.638
#> 3 3 0.827 0.931 0.948 0.6464 0.655 0.475
#> 4 4 0.779 0.747 0.863 0.0848 0.917 0.773
#> 5 5 0.940 0.920 0.944 0.1170 0.879 0.620
#> 6 6 0.926 0.913 0.934 0.0325 0.975 0.876
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5
There is also optional best \(k\) = 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.723 0.000 1.000
#> SRR2050427 1 0.000 1.000 1.000 0.000
#> SRR2050426 1 0.000 1.000 1.000 0.000
#> SRR2050425 2 0.000 0.723 0.000 1.000
#> SRR2050424 2 0.936 0.734 0.352 0.648
#> SRR2050423 2 0.971 0.700 0.400 0.600
#> SRR2050422 2 0.000 0.723 0.000 1.000
#> SRR2050421 1 0.000 1.000 1.000 0.000
#> SRR2050420 1 0.000 1.000 1.000 0.000
#> SRR2050419 2 0.000 0.723 0.000 1.000
#> SRR2050418 1 0.000 1.000 1.000 0.000
#> SRR2050417 1 0.000 1.000 1.000 0.000
#> SRR2050416 2 0.000 0.723 0.000 1.000
#> SRR2050415 2 0.936 0.734 0.352 0.648
#> SRR2050414 2 0.971 0.700 0.400 0.600
#> SRR2050413 2 0.000 0.723 0.000 1.000
#> SRR2050412 1 0.000 1.000 1.000 0.000
#> SRR2050411 1 0.000 1.000 1.000 0.000
#> SRR2050409 2 0.000 0.723 0.000 1.000
#> SRR2050408 1 0.000 1.000 1.000 0.000
#> SRR2050407 2 0.000 0.723 0.000 1.000
#> SRR2050406 2 0.936 0.734 0.352 0.648
#> SRR2050405 2 0.971 0.700 0.400 0.600
#> SRR2050404 2 0.000 0.723 0.000 1.000
#> SRR2050403 1 0.000 1.000 1.000 0.000
#> SRR2050402 2 0.000 0.723 0.000 1.000
#> SRR2050401 1 0.000 1.000 1.000 0.000
#> SRR2050400 1 0.000 1.000 1.000 0.000
#> SRR2050399 2 0.000 0.723 0.000 1.000
#> SRR2050398 1 0.000 1.000 1.000 0.000
#> SRR2050397 1 0.000 1.000 1.000 0.000
#> SRR2050396 2 0.939 0.731 0.356 0.644
#> SRR2050395 2 0.971 0.700 0.400 0.600
#> SRR2050394 2 0.000 0.723 0.000 1.000
#> SRR2050393 2 0.936 0.734 0.352 0.648
#> SRR2050392 2 0.969 0.702 0.396 0.604
#> SRR2050465 2 0.000 0.723 0.000 1.000
#> SRR2050464 2 0.936 0.734 0.352 0.648
#> SRR2050463 2 0.971 0.700 0.400 0.600
#> SRR2050462 2 0.000 0.723 0.000 1.000
#> SRR2050461 2 0.936 0.734 0.352 0.648
#> SRR2050460 2 0.971 0.700 0.400 0.600
#> SRR2050459 2 0.000 0.723 0.000 1.000
#> SRR2050458 2 0.936 0.734 0.352 0.648
#> SRR2050457 2 0.971 0.700 0.400 0.600
#> SRR2050456 2 0.000 0.723 0.000 1.000
#> SRR2050455 2 0.936 0.734 0.352 0.648
#> SRR2050454 2 0.971 0.700 0.400 0.600
#> SRR2050453 2 0.000 0.723 0.000 1.000
#> SRR2050452 2 0.936 0.734 0.352 0.648
#> SRR2050451 2 0.971 0.700 0.400 0.600
#> SRR2050450 2 0.000 0.723 0.000 1.000
#> SRR2050449 2 0.936 0.734 0.352 0.648
#> SRR2050448 2 0.971 0.700 0.400 0.600
#> SRR2050447 2 0.936 0.734 0.352 0.648
#> SRR2050446 2 0.971 0.700 0.400 0.600
#> SRR2050445 2 0.000 0.723 0.000 1.000
#> SRR2050444 2 0.936 0.734 0.352 0.648
#> SRR2050443 2 0.971 0.700 0.400 0.600
#> SRR2050442 2 0.000 0.723 0.000 1.000
#> SRR2050441 2 0.936 0.734 0.352 0.648
#> SRR2050440 2 0.966 0.706 0.392 0.608
#> SRR2050439 2 0.000 0.723 0.000 1.000
#> SRR2050438 2 0.936 0.734 0.352 0.648
#> SRR2050437 2 0.971 0.700 0.400 0.600
#> SRR2050436 2 0.000 0.723 0.000 1.000
#> SRR2050435 2 0.936 0.734 0.352 0.648
#> SRR2050434 2 0.000 0.723 0.000 1.000
#> SRR2050433 2 0.000 0.723 0.000 1.000
#> SRR2050432 1 0.000 1.000 1.000 0.000
#> SRR2050431 1 0.000 1.000 1.000 0.000
#> SRR2050430 2 0.973 0.694 0.404 0.596
#> SRR2050429 1 0.000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050427 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050425 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050424 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050423 3 0.3989 0.924 0.124 0.012 0.864
#> SRR2050422 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050421 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050419 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050418 1 0.3816 0.812 0.852 0.000 0.148
#> SRR2050417 1 0.0892 0.924 0.980 0.000 0.020
#> SRR2050416 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050415 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050414 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050413 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050412 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050409 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050408 1 0.0892 0.924 0.980 0.000 0.020
#> SRR2050407 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050406 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050405 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050404 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050403 1 0.0892 0.924 0.980 0.000 0.020
#> SRR2050402 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050401 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050400 1 0.1031 0.917 0.976 0.000 0.024
#> SRR2050399 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050398 1 0.0000 0.926 1.000 0.000 0.000
#> SRR2050397 1 0.0892 0.924 0.980 0.000 0.020
#> SRR2050396 3 0.3377 0.930 0.092 0.012 0.896
#> SRR2050395 3 0.3989 0.924 0.124 0.012 0.864
#> SRR2050394 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050393 3 0.2448 0.927 0.076 0.000 0.924
#> SRR2050392 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050465 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050464 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050463 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050462 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050461 3 0.2066 0.923 0.060 0.000 0.940
#> SRR2050460 3 0.3918 0.924 0.120 0.012 0.868
#> SRR2050459 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050458 3 0.0747 0.920 0.016 0.000 0.984
#> SRR2050457 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050456 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050455 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050454 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050453 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050452 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050451 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050450 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050449 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050448 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050447 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050446 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050445 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050444 3 0.0424 0.917 0.008 0.000 0.992
#> SRR2050443 3 0.3845 0.927 0.116 0.012 0.872
#> SRR2050442 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050441 3 0.2165 0.924 0.064 0.000 0.936
#> SRR2050440 1 0.6172 0.543 0.680 0.012 0.308
#> SRR2050439 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050438 3 0.3038 0.925 0.104 0.000 0.896
#> SRR2050437 1 0.6172 0.543 0.680 0.012 0.308
#> SRR2050436 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050435 3 0.1964 0.921 0.056 0.000 0.944
#> SRR2050434 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050433 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050432 1 0.0424 0.926 0.992 0.000 0.008
#> SRR2050431 1 0.0892 0.924 0.980 0.000 0.020
#> SRR2050430 1 0.6172 0.543 0.680 0.012 0.308
#> SRR2050429 1 0.0892 0.924 0.980 0.000 0.020
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.2704 0.560 0.000 0.876 0.000 0.124
#> SRR2050427 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.4164 0.422 0.000 0.736 0.000 0.264
#> SRR2050424 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050423 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050422 4 0.4522 1.000 0.000 0.320 0.000 0.680
#> SRR2050421 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.2704 0.560 0.000 0.876 0.000 0.124
#> SRR2050418 1 0.4250 0.583 0.724 0.000 0.276 0.000
#> SRR2050417 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050416 2 0.4981 -0.202 0.000 0.536 0.000 0.464
#> SRR2050415 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050414 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050413 4 0.4522 1.000 0.000 0.320 0.000 0.680
#> SRR2050412 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.2704 0.560 0.000 0.876 0.000 0.124
#> SRR2050408 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050407 2 0.0000 0.577 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050405 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.4564 0.288 0.000 0.672 0.000 0.328
#> SRR2050403 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050402 2 0.4994 -0.266 0.000 0.520 0.000 0.480
#> SRR2050401 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.4994 -0.266 0.000 0.520 0.000 0.480
#> SRR2050398 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.1938 0.890 0.012 0.000 0.936 0.052
#> SRR2050395 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050394 2 0.1940 0.577 0.000 0.924 0.000 0.076
#> SRR2050393 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050392 3 0.0336 0.884 0.000 0.008 0.992 0.000
#> SRR2050465 2 0.1940 0.577 0.000 0.924 0.000 0.076
#> SRR2050464 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050463 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.3764 0.486 0.000 0.784 0.000 0.216
#> SRR2050461 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050460 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.2704 0.560 0.000 0.876 0.000 0.124
#> SRR2050458 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050457 3 0.0336 0.884 0.000 0.008 0.992 0.000
#> SRR2050456 2 0.2704 0.560 0.000 0.876 0.000 0.124
#> SRR2050455 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050454 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.2081 0.574 0.000 0.916 0.000 0.084
#> SRR2050452 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050451 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.3764 0.486 0.000 0.784 0.000 0.216
#> SRR2050449 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050448 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050446 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.2704 0.560 0.000 0.876 0.000 0.124
#> SRR2050444 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050443 3 0.0000 0.887 0.000 0.000 1.000 0.000
#> SRR2050442 2 0.4981 -0.202 0.000 0.536 0.000 0.464
#> SRR2050441 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050440 3 0.5548 0.679 0.084 0.000 0.716 0.200
#> SRR2050439 2 0.4981 -0.202 0.000 0.536 0.000 0.464
#> SRR2050438 3 0.4344 0.870 0.076 0.000 0.816 0.108
#> SRR2050437 3 0.5548 0.679 0.084 0.000 0.716 0.200
#> SRR2050436 4 0.4522 1.000 0.000 0.320 0.000 0.680
#> SRR2050435 3 0.3569 0.888 0.000 0.000 0.804 0.196
#> SRR2050434 4 0.4522 1.000 0.000 0.320 0.000 0.680
#> SRR2050433 2 0.4406 0.359 0.000 0.700 0.000 0.300
#> SRR2050432 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 0.977 1.000 0.000 0.000 0.000
#> SRR2050430 3 0.5548 0.679 0.084 0.000 0.716 0.200
#> SRR2050429 1 0.0000 0.977 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.2020 0.766 0.000 0.900 0.000 0.000 0.100
#> SRR2050427 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050425 2 0.2516 0.856 0.000 0.860 0.000 0.000 0.140
#> SRR2050424 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050422 5 0.1965 0.873 0.000 0.096 0.000 0.000 0.904
#> SRR2050421 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050419 2 0.1121 0.803 0.000 0.956 0.000 0.000 0.044
#> SRR2050418 1 0.1704 0.913 0.928 0.000 0.000 0.068 0.004
#> SRR2050417 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050416 2 0.2561 0.854 0.000 0.856 0.000 0.000 0.144
#> SRR2050415 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050413 5 0.1544 0.871 0.000 0.068 0.000 0.000 0.932
#> SRR2050412 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050411 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050409 2 0.2020 0.766 0.000 0.900 0.000 0.000 0.100
#> SRR2050408 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050407 2 0.2280 0.855 0.000 0.880 0.000 0.000 0.120
#> SRR2050406 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.2516 0.856 0.000 0.860 0.000 0.000 0.140
#> SRR2050403 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050402 5 0.2127 0.855 0.000 0.108 0.000 0.000 0.892
#> SRR2050401 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050399 5 0.2020 0.872 0.000 0.100 0.000 0.000 0.900
#> SRR2050398 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050396 3 0.2583 0.834 0.000 0.000 0.864 0.132 0.004
#> SRR2050395 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050394 2 0.2732 0.842 0.000 0.840 0.000 0.000 0.160
#> SRR2050393 3 0.0324 0.984 0.000 0.000 0.992 0.004 0.004
#> SRR2050392 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050465 2 0.1908 0.851 0.000 0.908 0.000 0.000 0.092
#> SRR2050464 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.2516 0.856 0.000 0.860 0.000 0.000 0.140
#> SRR2050461 3 0.0162 0.986 0.000 0.000 0.996 0.000 0.004
#> SRR2050460 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.0880 0.808 0.000 0.968 0.000 0.000 0.032
#> SRR2050458 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050456 2 0.2020 0.766 0.000 0.900 0.000 0.000 0.100
#> SRR2050455 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.2516 0.856 0.000 0.860 0.000 0.000 0.140
#> SRR2050452 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.2516 0.856 0.000 0.860 0.000 0.000 0.140
#> SRR2050449 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.0880 0.808 0.000 0.968 0.000 0.000 0.032
#> SRR2050444 3 0.0000 0.988 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.0000 0.987 0.000 0.000 0.000 1.000 0.000
#> SRR2050442 2 0.3752 0.678 0.000 0.708 0.000 0.000 0.292
#> SRR2050441 3 0.0162 0.986 0.000 0.000 0.996 0.000 0.004
#> SRR2050440 4 0.1741 0.943 0.024 0.000 0.000 0.936 0.040
#> SRR2050439 2 0.4138 0.481 0.000 0.616 0.000 0.000 0.384
#> SRR2050438 3 0.0451 0.979 0.008 0.000 0.988 0.000 0.004
#> SRR2050437 4 0.1741 0.943 0.024 0.000 0.000 0.936 0.040
#> SRR2050436 5 0.2074 0.869 0.000 0.104 0.000 0.000 0.896
#> SRR2050435 3 0.0162 0.986 0.000 0.000 0.996 0.000 0.004
#> SRR2050434 5 0.2929 0.787 0.000 0.180 0.000 0.000 0.820
#> SRR2050433 5 0.4291 0.365 0.000 0.464 0.000 0.000 0.536
#> SRR2050432 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
#> SRR2050430 4 0.1741 0.943 0.024 0.000 0.000 0.936 0.040
#> SRR2050429 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 6 0.2092 0.99868 0.000 0.124 0.000 0.000 0.000 0.876
#> SRR2050427 1 0.0520 0.94028 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR2050426 1 0.1528 0.93765 0.936 0.000 0.000 0.000 0.016 0.048
#> SRR2050425 2 0.0547 0.83238 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR2050424 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050422 5 0.1204 0.90723 0.000 0.056 0.000 0.000 0.944 0.000
#> SRR2050421 1 0.0717 0.93812 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR2050420 1 0.1633 0.93803 0.932 0.000 0.000 0.000 0.024 0.044
#> SRR2050419 6 0.2092 0.99868 0.000 0.124 0.000 0.000 0.000 0.876
#> SRR2050418 1 0.2389 0.81895 0.864 0.000 0.000 0.128 0.000 0.008
#> SRR2050417 1 0.2358 0.92172 0.876 0.000 0.000 0.000 0.016 0.108
#> SRR2050416 2 0.1858 0.79643 0.000 0.904 0.000 0.000 0.004 0.092
#> SRR2050415 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050413 5 0.1204 0.90723 0.000 0.056 0.000 0.000 0.944 0.000
#> SRR2050412 1 0.0520 0.94028 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR2050411 1 0.2358 0.92172 0.876 0.000 0.000 0.000 0.016 0.108
#> SRR2050409 6 0.2092 0.99868 0.000 0.124 0.000 0.000 0.000 0.876
#> SRR2050408 1 0.2358 0.92172 0.876 0.000 0.000 0.000 0.016 0.108
#> SRR2050407 2 0.2416 0.73209 0.000 0.844 0.000 0.000 0.000 0.156
#> SRR2050406 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050404 2 0.0000 0.83483 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050403 1 0.2358 0.92172 0.876 0.000 0.000 0.000 0.016 0.108
#> SRR2050402 5 0.1957 0.87666 0.000 0.112 0.000 0.000 0.888 0.000
#> SRR2050401 1 0.0520 0.94028 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR2050400 1 0.0914 0.93528 0.968 0.000 0.000 0.000 0.016 0.016
#> SRR2050399 5 0.1663 0.89736 0.000 0.088 0.000 0.000 0.912 0.000
#> SRR2050398 1 0.0520 0.94028 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR2050397 1 0.2358 0.92172 0.876 0.000 0.000 0.000 0.016 0.108
#> SRR2050396 3 0.2706 0.77849 0.000 0.000 0.832 0.160 0.000 0.008
#> SRR2050395 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050394 2 0.1957 0.77695 0.000 0.888 0.000 0.000 0.000 0.112
#> SRR2050393 3 0.0260 0.97924 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR2050392 4 0.0146 0.99497 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050465 2 0.3862 0.00543 0.000 0.524 0.000 0.000 0.000 0.476
#> SRR2050464 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050462 2 0.0000 0.83483 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050461 3 0.0547 0.97480 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR2050460 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050459 6 0.2135 0.99339 0.000 0.128 0.000 0.000 0.000 0.872
#> SRR2050458 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.0146 0.99497 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050456 6 0.2092 0.99868 0.000 0.124 0.000 0.000 0.000 0.876
#> SRR2050455 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.0146 0.99497 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050453 2 0.0260 0.83450 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR2050452 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050450 2 0.0000 0.83483 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050447 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.0000 0.99618 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050445 6 0.2092 0.99868 0.000 0.124 0.000 0.000 0.000 0.876
#> SRR2050444 3 0.0000 0.98164 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.0146 0.99497 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050442 2 0.2597 0.70257 0.000 0.824 0.000 0.000 0.176 0.000
#> SRR2050441 3 0.0547 0.97480 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR2050440 4 0.0508 0.98771 0.000 0.000 0.000 0.984 0.012 0.004
#> SRR2050439 2 0.3592 0.42247 0.000 0.656 0.000 0.000 0.344 0.000
#> SRR2050438 3 0.0547 0.97480 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR2050437 4 0.0508 0.98771 0.000 0.000 0.000 0.984 0.012 0.004
#> SRR2050436 5 0.1204 0.90723 0.000 0.056 0.000 0.000 0.944 0.000
#> SRR2050435 3 0.0547 0.97480 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR2050434 5 0.1333 0.87973 0.000 0.008 0.000 0.000 0.944 0.048
#> SRR2050433 5 0.4597 0.53303 0.000 0.072 0.000 0.000 0.652 0.276
#> SRR2050432 1 0.0520 0.94028 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR2050431 1 0.0000 0.94132 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050430 4 0.0508 0.98771 0.000 0.000 0.000 0.984 0.012 0.004
#> SRR2050429 1 0.1528 0.93765 0.936 0.000 0.000 0.000 0.016 0.048
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.942 0.898 0.962 0.4902 0.514 0.514
#> 3 3 0.892 0.869 0.925 0.3442 0.779 0.587
#> 4 4 0.809 0.857 0.931 0.1324 0.821 0.535
#> 5 5 0.918 0.855 0.942 0.0758 0.893 0.617
#> 6 6 0.895 0.845 0.906 0.0326 0.952 0.769
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.974 0.000 1.000
#> SRR2050427 1 0.0000 0.949 1.000 0.000
#> SRR2050426 1 0.0000 0.949 1.000 0.000
#> SRR2050425 2 0.0000 0.974 0.000 1.000
#> SRR2050424 1 0.0000 0.949 1.000 0.000
#> SRR2050423 1 0.0000 0.949 1.000 0.000
#> SRR2050422 2 0.0000 0.974 0.000 1.000
#> SRR2050421 1 0.0000 0.949 1.000 0.000
#> SRR2050420 1 0.0000 0.949 1.000 0.000
#> SRR2050419 2 0.0000 0.974 0.000 1.000
#> SRR2050418 1 0.2948 0.905 0.948 0.052
#> SRR2050417 1 0.4022 0.878 0.920 0.080
#> SRR2050416 2 0.0000 0.974 0.000 1.000
#> SRR2050415 1 0.0000 0.949 1.000 0.000
#> SRR2050414 1 0.9977 0.135 0.528 0.472
#> SRR2050413 2 0.0000 0.974 0.000 1.000
#> SRR2050412 1 0.0000 0.949 1.000 0.000
#> SRR2050411 1 0.0000 0.949 1.000 0.000
#> SRR2050409 2 0.0000 0.974 0.000 1.000
#> SRR2050408 1 0.3431 0.894 0.936 0.064
#> SRR2050407 2 0.0000 0.974 0.000 1.000
#> SRR2050406 1 0.0000 0.949 1.000 0.000
#> SRR2050405 1 0.0376 0.946 0.996 0.004
#> SRR2050404 2 0.0000 0.974 0.000 1.000
#> SRR2050403 1 0.0000 0.949 1.000 0.000
#> SRR2050402 2 0.0000 0.974 0.000 1.000
#> SRR2050401 1 0.0000 0.949 1.000 0.000
#> SRR2050400 1 0.0000 0.949 1.000 0.000
#> SRR2050399 2 0.0000 0.974 0.000 1.000
#> SRR2050398 1 0.0000 0.949 1.000 0.000
#> SRR2050397 1 0.0000 0.949 1.000 0.000
#> SRR2050396 1 0.0000 0.949 1.000 0.000
#> SRR2050395 1 0.0000 0.949 1.000 0.000
#> SRR2050394 2 0.0000 0.974 0.000 1.000
#> SRR2050393 1 0.0000 0.949 1.000 0.000
#> SRR2050392 2 0.0376 0.971 0.004 0.996
#> SRR2050465 2 0.0000 0.974 0.000 1.000
#> SRR2050464 1 0.0000 0.949 1.000 0.000
#> SRR2050463 1 0.9988 0.106 0.520 0.480
#> SRR2050462 2 0.0000 0.974 0.000 1.000
#> SRR2050461 1 0.0000 0.949 1.000 0.000
#> SRR2050460 1 0.0000 0.949 1.000 0.000
#> SRR2050459 2 0.0000 0.974 0.000 1.000
#> SRR2050458 1 0.0000 0.949 1.000 0.000
#> SRR2050457 2 0.0000 0.974 0.000 1.000
#> SRR2050456 2 0.0000 0.974 0.000 1.000
#> SRR2050455 1 0.0000 0.949 1.000 0.000
#> SRR2050454 1 0.9933 0.199 0.548 0.452
#> SRR2050453 2 0.0000 0.974 0.000 1.000
#> SRR2050452 1 0.0000 0.949 1.000 0.000
#> SRR2050451 2 0.9881 0.162 0.436 0.564
#> SRR2050450 2 0.0000 0.974 0.000 1.000
#> SRR2050449 1 0.0000 0.949 1.000 0.000
#> SRR2050448 2 0.5737 0.825 0.136 0.864
#> SRR2050447 1 0.0000 0.949 1.000 0.000
#> SRR2050446 1 0.9988 0.107 0.520 0.480
#> SRR2050445 2 0.0000 0.974 0.000 1.000
#> SRR2050444 1 0.0000 0.949 1.000 0.000
#> SRR2050443 2 0.4431 0.881 0.092 0.908
#> SRR2050442 2 0.0000 0.974 0.000 1.000
#> SRR2050441 1 0.0000 0.949 1.000 0.000
#> SRR2050440 1 0.0000 0.949 1.000 0.000
#> SRR2050439 2 0.0000 0.974 0.000 1.000
#> SRR2050438 1 0.0000 0.949 1.000 0.000
#> SRR2050437 1 0.0000 0.949 1.000 0.000
#> SRR2050436 2 0.0000 0.974 0.000 1.000
#> SRR2050435 1 0.0000 0.949 1.000 0.000
#> SRR2050434 2 0.0000 0.974 0.000 1.000
#> SRR2050433 2 0.0000 0.974 0.000 1.000
#> SRR2050432 1 0.0000 0.949 1.000 0.000
#> SRR2050431 1 0.0000 0.949 1.000 0.000
#> SRR2050430 1 0.0000 0.949 1.000 0.000
#> SRR2050429 1 0.0000 0.949 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050427 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050425 2 0.0000 0.91534 0.000 1.000 0.000
#> SRR2050424 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050423 3 0.6235 0.35939 0.436 0.000 0.564
#> SRR2050422 2 0.4887 0.82553 0.096 0.844 0.060
#> SRR2050421 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050419 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050418 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050416 2 0.0237 0.91507 0.000 0.996 0.004
#> SRR2050415 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050414 2 0.8196 0.34538 0.084 0.560 0.356
#> SRR2050413 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050412 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050409 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050408 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050407 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050406 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050405 3 0.2280 0.92602 0.052 0.008 0.940
#> SRR2050404 2 0.0237 0.91507 0.000 0.996 0.004
#> SRR2050403 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050402 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050401 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050399 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050398 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050396 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050395 3 0.2711 0.92828 0.088 0.000 0.912
#> SRR2050394 2 0.1860 0.90542 0.000 0.948 0.052
#> SRR2050393 3 0.2066 0.93360 0.060 0.000 0.940
#> SRR2050392 2 0.5138 0.68730 0.000 0.748 0.252
#> SRR2050465 2 0.0424 0.91514 0.000 0.992 0.008
#> SRR2050464 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050463 3 0.7054 -0.00875 0.020 0.456 0.524
#> SRR2050462 2 0.0000 0.91534 0.000 1.000 0.000
#> SRR2050461 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050460 1 0.1031 0.93760 0.976 0.000 0.024
#> SRR2050459 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050458 3 0.2066 0.93360 0.060 0.000 0.940
#> SRR2050457 2 0.1031 0.91148 0.000 0.976 0.024
#> SRR2050456 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050455 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050454 2 0.5497 0.78997 0.064 0.812 0.124
#> SRR2050453 2 0.0000 0.91534 0.000 1.000 0.000
#> SRR2050452 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050451 2 0.5896 0.61341 0.008 0.700 0.292
#> SRR2050450 2 0.0000 0.91534 0.000 1.000 0.000
#> SRR2050449 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050448 2 0.3983 0.81647 0.004 0.852 0.144
#> SRR2050447 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050446 1 0.7752 0.01364 0.496 0.456 0.048
#> SRR2050445 2 0.0747 0.91434 0.000 0.984 0.016
#> SRR2050444 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050443 2 0.6308 0.11789 0.000 0.508 0.492
#> SRR2050442 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050441 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050440 1 0.2804 0.88958 0.924 0.016 0.060
#> SRR2050439 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050438 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050437 1 0.1964 0.90934 0.944 0.000 0.056
#> SRR2050436 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050435 3 0.2448 0.94498 0.076 0.000 0.924
#> SRR2050434 2 0.2066 0.90315 0.000 0.940 0.060
#> SRR2050433 2 0.0237 0.91534 0.000 0.996 0.004
#> SRR2050432 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050430 1 0.0000 0.96266 1.000 0.000 0.000
#> SRR2050429 1 0.0000 0.96266 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050427 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050425 4 0.4605 0.4603 0.000 0.336 0.000 0.664
#> SRR2050424 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.2345 0.9039 0.900 0.100 0.000 0.000
#> SRR2050422 4 0.0469 0.8417 0.012 0.000 0.000 0.988
#> SRR2050421 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050418 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050417 1 0.2345 0.9039 0.900 0.100 0.000 0.000
#> SRR2050416 4 0.3444 0.7102 0.000 0.184 0.000 0.816
#> SRR2050415 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050414 2 0.3123 0.7187 0.156 0.844 0.000 0.000
#> SRR2050413 4 0.0000 0.8476 0.000 0.000 0.000 1.000
#> SRR2050412 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050408 1 0.2281 0.9072 0.904 0.096 0.000 0.000
#> SRR2050407 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050406 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050405 2 0.3015 0.7699 0.024 0.884 0.092 0.000
#> SRR2050404 4 0.4564 0.4798 0.000 0.328 0.000 0.672
#> SRR2050403 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050402 4 0.2216 0.7840 0.000 0.092 0.000 0.908
#> SRR2050401 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050399 4 0.0000 0.8476 0.000 0.000 0.000 1.000
#> SRR2050398 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050395 2 0.5558 0.4335 0.324 0.640 0.036 0.000
#> SRR2050394 2 0.4522 0.6301 0.000 0.680 0.000 0.320
#> SRR2050393 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050392 2 0.0000 0.8363 0.000 1.000 0.000 0.000
#> SRR2050465 2 0.2408 0.8437 0.000 0.896 0.000 0.104
#> SRR2050464 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050463 2 0.0707 0.8310 0.000 0.980 0.020 0.000
#> SRR2050462 2 0.4989 0.1226 0.000 0.528 0.000 0.472
#> SRR2050461 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.2345 0.9039 0.900 0.100 0.000 0.000
#> SRR2050459 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050458 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050457 2 0.0000 0.8363 0.000 1.000 0.000 0.000
#> SRR2050456 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050455 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050454 2 0.2081 0.7879 0.084 0.916 0.000 0.000
#> SRR2050453 2 0.2408 0.8437 0.000 0.896 0.000 0.104
#> SRR2050452 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050451 2 0.0000 0.8363 0.000 1.000 0.000 0.000
#> SRR2050450 2 0.4697 0.4777 0.000 0.644 0.000 0.356
#> SRR2050449 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050448 2 0.0000 0.8363 0.000 1.000 0.000 0.000
#> SRR2050447 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050446 2 0.3172 0.7169 0.160 0.840 0.000 0.000
#> SRR2050445 2 0.2345 0.8457 0.000 0.900 0.000 0.100
#> SRR2050444 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050443 2 0.0707 0.8309 0.000 0.980 0.020 0.000
#> SRR2050442 4 0.0000 0.8476 0.000 0.000 0.000 1.000
#> SRR2050441 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050440 4 0.2345 0.7735 0.100 0.000 0.000 0.900
#> SRR2050439 4 0.0000 0.8476 0.000 0.000 0.000 1.000
#> SRR2050438 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050437 4 0.4996 0.0746 0.484 0.000 0.000 0.516
#> SRR2050436 4 0.0000 0.8476 0.000 0.000 0.000 1.000
#> SRR2050435 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.0000 0.8476 0.000 0.000 0.000 1.000
#> SRR2050433 2 0.2408 0.8437 0.000 0.896 0.000 0.104
#> SRR2050432 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 0.9768 1.000 0.000 0.000 0.000
#> SRR2050430 1 0.0188 0.9737 0.996 0.000 0.000 0.004
#> SRR2050429 1 0.0000 0.9768 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0162 0.8266 0.000 0.996 0 0.004 0.000
#> SRR2050427 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050426 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050425 2 0.4161 0.3115 0.000 0.608 0 0.000 0.392
#> SRR2050424 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050423 4 0.0290 0.9172 0.008 0.000 0 0.992 0.000
#> SRR2050422 5 0.0000 0.8745 0.000 0.000 0 0.000 1.000
#> SRR2050421 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050420 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050419 2 0.0162 0.8266 0.000 0.996 0 0.004 0.000
#> SRR2050418 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050417 1 0.2020 0.8925 0.900 0.000 0 0.100 0.000
#> SRR2050416 5 0.4150 0.3191 0.000 0.388 0 0.000 0.612
#> SRR2050415 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050414 4 0.0000 0.9216 0.000 0.000 0 1.000 0.000
#> SRR2050413 5 0.0404 0.8708 0.000 0.012 0 0.000 0.988
#> SRR2050412 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050411 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050409 2 0.0162 0.8266 0.000 0.996 0 0.004 0.000
#> SRR2050408 1 0.1792 0.9093 0.916 0.000 0 0.084 0.000
#> SRR2050407 2 0.0000 0.8255 0.000 1.000 0 0.000 0.000
#> SRR2050406 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050405 4 0.0290 0.9182 0.000 0.008 0 0.992 0.000
#> SRR2050404 2 0.4126 0.3409 0.000 0.620 0 0.000 0.380
#> SRR2050403 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050402 5 0.4227 0.2199 0.000 0.420 0 0.000 0.580
#> SRR2050401 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050400 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050399 5 0.0609 0.8660 0.000 0.020 0 0.000 0.980
#> SRR2050398 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050397 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050396 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050395 4 0.0000 0.9216 0.000 0.000 0 1.000 0.000
#> SRR2050394 2 0.1597 0.8071 0.000 0.940 0 0.012 0.048
#> SRR2050393 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050392 2 0.4305 -0.0625 0.000 0.512 0 0.488 0.000
#> SRR2050465 2 0.0290 0.8235 0.000 0.992 0 0.000 0.008
#> SRR2050464 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050463 4 0.0000 0.9216 0.000 0.000 0 1.000 0.000
#> SRR2050462 2 0.3876 0.4786 0.000 0.684 0 0.000 0.316
#> SRR2050461 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050460 4 0.0404 0.9146 0.012 0.000 0 0.988 0.000
#> SRR2050459 2 0.0290 0.8263 0.000 0.992 0 0.008 0.000
#> SRR2050458 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050457 2 0.3336 0.6147 0.000 0.772 0 0.228 0.000
#> SRR2050456 2 0.0404 0.8244 0.000 0.988 0 0.012 0.000
#> SRR2050455 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050454 4 0.1792 0.8623 0.000 0.084 0 0.916 0.000
#> SRR2050453 2 0.0794 0.8139 0.000 0.972 0 0.000 0.028
#> SRR2050452 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050451 4 0.0000 0.9216 0.000 0.000 0 1.000 0.000
#> SRR2050450 2 0.3586 0.5649 0.000 0.736 0 0.000 0.264
#> SRR2050449 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050448 4 0.0000 0.9216 0.000 0.000 0 1.000 0.000
#> SRR2050447 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050446 4 0.0000 0.9216 0.000 0.000 0 1.000 0.000
#> SRR2050445 2 0.0290 0.8263 0.000 0.992 0 0.008 0.000
#> SRR2050444 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050443 4 0.3684 0.5980 0.000 0.280 0 0.720 0.000
#> SRR2050442 5 0.0000 0.8745 0.000 0.000 0 0.000 1.000
#> SRR2050441 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050440 4 0.3730 0.6253 0.000 0.000 0 0.712 0.288
#> SRR2050439 5 0.0000 0.8745 0.000 0.000 0 0.000 1.000
#> SRR2050438 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050437 4 0.3003 0.7639 0.000 0.000 0 0.812 0.188
#> SRR2050436 5 0.0000 0.8745 0.000 0.000 0 0.000 1.000
#> SRR2050435 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000
#> SRR2050434 5 0.0000 0.8745 0.000 0.000 0 0.000 1.000
#> SRR2050433 2 0.0290 0.8263 0.000 0.992 0 0.008 0.000
#> SRR2050432 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050431 1 0.0000 0.9802 1.000 0.000 0 0.000 0.000
#> SRR2050430 1 0.0404 0.9722 0.988 0.000 0 0.000 0.012
#> SRR2050429 1 0.2230 0.8721 0.884 0.000 0 0.116 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 6 0.3634 0.657 0.000 0.356 0.000 0.000 0.000 0.644
#> SRR2050427 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050426 1 0.0260 0.908 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR2050425 2 0.1225 0.836 0.000 0.952 0.000 0.000 0.036 0.012
#> SRR2050424 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050422 5 0.2793 0.668 0.000 0.200 0.000 0.000 0.800 0.000
#> SRR2050421 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050420 1 0.0363 0.907 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR2050419 6 0.2996 0.819 0.000 0.228 0.000 0.000 0.000 0.772
#> SRR2050418 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050417 1 0.0909 0.903 0.968 0.000 0.000 0.012 0.020 0.000
#> SRR2050416 2 0.1663 0.788 0.000 0.912 0.000 0.000 0.088 0.000
#> SRR2050415 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050413 5 0.3847 0.087 0.000 0.456 0.000 0.000 0.544 0.000
#> SRR2050412 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050411 1 0.0363 0.907 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR2050409 6 0.3351 0.764 0.000 0.288 0.000 0.000 0.000 0.712
#> SRR2050408 1 0.0909 0.903 0.968 0.000 0.000 0.012 0.020 0.000
#> SRR2050407 2 0.2562 0.688 0.000 0.828 0.000 0.000 0.000 0.172
#> SRR2050406 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.0260 0.946 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR2050404 2 0.1151 0.838 0.000 0.956 0.000 0.000 0.032 0.012
#> SRR2050403 1 0.0820 0.904 0.972 0.000 0.000 0.012 0.016 0.000
#> SRR2050402 2 0.2378 0.721 0.000 0.848 0.000 0.000 0.152 0.000
#> SRR2050401 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050400 1 0.0363 0.907 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR2050399 2 0.3868 -0.130 0.000 0.504 0.000 0.000 0.496 0.000
#> SRR2050398 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050397 1 0.0508 0.907 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR2050396 3 0.0146 0.995 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2050395 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050394 6 0.4663 0.631 0.000 0.092 0.000 0.000 0.244 0.664
#> SRR2050393 3 0.0146 0.996 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2050392 6 0.2301 0.766 0.000 0.020 0.000 0.096 0.000 0.884
#> SRR2050465 2 0.1714 0.808 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR2050464 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050462 2 0.1007 0.840 0.000 0.956 0.000 0.000 0.000 0.044
#> SRR2050461 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050459 6 0.2300 0.847 0.000 0.144 0.000 0.000 0.000 0.856
#> SRR2050458 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 6 0.2258 0.813 0.000 0.060 0.000 0.044 0.000 0.896
#> SRR2050456 6 0.2003 0.843 0.000 0.116 0.000 0.000 0.000 0.884
#> SRR2050455 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.1075 0.917 0.000 0.000 0.000 0.952 0.000 0.048
#> SRR2050453 2 0.1714 0.808 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR2050452 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050450 2 0.1285 0.837 0.000 0.944 0.000 0.000 0.004 0.052
#> SRR2050449 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050447 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050445 6 0.2178 0.847 0.000 0.132 0.000 0.000 0.000 0.868
#> SRR2050444 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.1267 0.905 0.000 0.000 0.000 0.940 0.000 0.060
#> SRR2050442 5 0.1610 0.783 0.000 0.084 0.000 0.000 0.916 0.000
#> SRR2050441 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 5 0.3659 0.262 0.000 0.000 0.000 0.364 0.636 0.000
#> SRR2050439 5 0.1610 0.783 0.000 0.084 0.000 0.000 0.916 0.000
#> SRR2050438 3 0.0146 0.996 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR2050437 4 0.3852 0.365 0.004 0.000 0.000 0.612 0.384 0.000
#> SRR2050436 5 0.1204 0.774 0.000 0.056 0.000 0.000 0.944 0.000
#> SRR2050435 3 0.0000 0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050434 5 0.1806 0.778 0.000 0.088 0.000 0.004 0.908 0.000
#> SRR2050433 6 0.3050 0.807 0.000 0.236 0.000 0.000 0.000 0.764
#> SRR2050432 1 0.3374 0.888 0.836 0.036 0.000 0.000 0.032 0.096
#> SRR2050431 1 0.0909 0.903 0.968 0.000 0.000 0.012 0.020 0.000
#> SRR2050430 1 0.5278 0.750 0.676 0.036 0.000 0.004 0.188 0.096
#> SRR2050429 1 0.2197 0.859 0.900 0.000 0.000 0.044 0.056 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.571 0.752 0.895 0.4861 0.505 0.505
#> 3 3 0.625 0.748 0.876 0.3337 0.842 0.686
#> 4 4 0.755 0.684 0.863 0.0973 0.847 0.624
#> 5 5 0.863 0.828 0.905 0.1122 0.884 0.630
#> 6 6 0.945 0.797 0.907 0.0235 0.952 0.780
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.8327 0.000 1.000
#> SRR2050427 1 0.000 0.8926 1.000 0.000
#> SRR2050426 1 0.000 0.8926 1.000 0.000
#> SRR2050425 2 0.000 0.8327 0.000 1.000
#> SRR2050424 1 0.000 0.8926 1.000 0.000
#> SRR2050423 2 0.963 0.4941 0.388 0.612
#> SRR2050422 1 0.992 0.2541 0.552 0.448
#> SRR2050421 1 0.000 0.8926 1.000 0.000
#> SRR2050420 1 0.000 0.8926 1.000 0.000
#> SRR2050419 2 0.000 0.8327 0.000 1.000
#> SRR2050418 1 0.000 0.8926 1.000 0.000
#> SRR2050417 1 0.706 0.6942 0.808 0.192
#> SRR2050416 2 0.163 0.8196 0.024 0.976
#> SRR2050415 1 0.000 0.8926 1.000 0.000
#> SRR2050414 2 0.963 0.4941 0.388 0.612
#> SRR2050413 1 0.992 0.2541 0.552 0.448
#> SRR2050412 1 0.000 0.8926 1.000 0.000
#> SRR2050411 1 0.706 0.6942 0.808 0.192
#> SRR2050409 2 0.000 0.8327 0.000 1.000
#> SRR2050408 1 0.706 0.6942 0.808 0.192
#> SRR2050407 2 0.000 0.8327 0.000 1.000
#> SRR2050406 1 0.000 0.8926 1.000 0.000
#> SRR2050405 2 0.963 0.4941 0.388 0.612
#> SRR2050404 2 0.000 0.8327 0.000 1.000
#> SRR2050403 1 0.706 0.6942 0.808 0.192
#> SRR2050402 2 0.000 0.8327 0.000 1.000
#> SRR2050401 1 0.000 0.8926 1.000 0.000
#> SRR2050400 1 0.000 0.8926 1.000 0.000
#> SRR2050399 2 0.988 0.0962 0.436 0.564
#> SRR2050398 1 0.000 0.8926 1.000 0.000
#> SRR2050397 1 0.706 0.6942 0.808 0.192
#> SRR2050396 1 0.000 0.8926 1.000 0.000
#> SRR2050395 2 0.963 0.4941 0.388 0.612
#> SRR2050394 2 0.000 0.8327 0.000 1.000
#> SRR2050393 1 0.000 0.8926 1.000 0.000
#> SRR2050392 2 0.260 0.8172 0.044 0.956
#> SRR2050465 2 0.000 0.8327 0.000 1.000
#> SRR2050464 1 0.000 0.8926 1.000 0.000
#> SRR2050463 2 0.963 0.4941 0.388 0.612
#> SRR2050462 2 0.000 0.8327 0.000 1.000
#> SRR2050461 1 0.000 0.8926 1.000 0.000
#> SRR2050460 2 0.963 0.4941 0.388 0.612
#> SRR2050459 2 0.000 0.8327 0.000 1.000
#> SRR2050458 1 0.000 0.8926 1.000 0.000
#> SRR2050457 2 0.163 0.8238 0.024 0.976
#> SRR2050456 2 0.000 0.8327 0.000 1.000
#> SRR2050455 1 0.000 0.8926 1.000 0.000
#> SRR2050454 2 0.260 0.8172 0.044 0.956
#> SRR2050453 2 0.000 0.8327 0.000 1.000
#> SRR2050452 1 0.000 0.8926 1.000 0.000
#> SRR2050451 2 0.963 0.4941 0.388 0.612
#> SRR2050450 2 0.000 0.8327 0.000 1.000
#> SRR2050449 1 0.000 0.8926 1.000 0.000
#> SRR2050448 2 0.963 0.4941 0.388 0.612
#> SRR2050447 1 0.000 0.8926 1.000 0.000
#> SRR2050446 2 0.963 0.4941 0.388 0.612
#> SRR2050445 2 0.000 0.8327 0.000 1.000
#> SRR2050444 1 0.000 0.8926 1.000 0.000
#> SRR2050443 2 0.260 0.8172 0.044 0.956
#> SRR2050442 1 0.983 0.3141 0.576 0.424
#> SRR2050441 1 0.000 0.8926 1.000 0.000
#> SRR2050440 1 0.000 0.8926 1.000 0.000
#> SRR2050439 1 0.983 0.3141 0.576 0.424
#> SRR2050438 1 0.000 0.8926 1.000 0.000
#> SRR2050437 1 0.000 0.8926 1.000 0.000
#> SRR2050436 1 0.983 0.3141 0.576 0.424
#> SRR2050435 1 0.000 0.8926 1.000 0.000
#> SRR2050434 1 0.983 0.3141 0.576 0.424
#> SRR2050433 2 0.000 0.8327 0.000 1.000
#> SRR2050432 1 0.000 0.8926 1.000 0.000
#> SRR2050431 1 0.000 0.8926 1.000 0.000
#> SRR2050430 1 0.000 0.8926 1.000 0.000
#> SRR2050429 1 0.000 0.8926 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050427 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050426 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050425 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050424 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050423 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050422 1 0.618 0.3443 0.584 0.416 0.000
#> SRR2050421 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050420 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050419 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050418 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050417 1 0.412 0.6680 0.832 0.168 0.000
#> SRR2050416 2 0.103 0.7909 0.024 0.976 0.000
#> SRR2050415 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050414 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050413 1 0.618 0.3443 0.584 0.416 0.000
#> SRR2050412 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050411 1 0.412 0.6680 0.832 0.168 0.000
#> SRR2050409 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050408 1 0.412 0.6680 0.832 0.168 0.000
#> SRR2050407 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050406 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050405 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050404 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050403 1 0.412 0.6680 0.832 0.168 0.000
#> SRR2050402 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050401 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050400 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050399 2 0.629 -0.0672 0.468 0.532 0.000
#> SRR2050398 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050397 1 0.412 0.6680 0.832 0.168 0.000
#> SRR2050396 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050395 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050394 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050393 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050392 2 0.226 0.7845 0.068 0.932 0.000
#> SRR2050465 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050464 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050463 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050462 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050461 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050460 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050459 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050458 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050457 2 0.175 0.7927 0.048 0.952 0.000
#> SRR2050456 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050455 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050454 2 0.226 0.7845 0.068 0.932 0.000
#> SRR2050453 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050452 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050451 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050450 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050449 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050448 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050447 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050446 2 0.617 0.4596 0.412 0.588 0.000
#> SRR2050445 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050444 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050443 2 0.226 0.7845 0.068 0.932 0.000
#> SRR2050442 1 0.610 0.3901 0.608 0.392 0.000
#> SRR2050441 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050440 1 0.196 0.7956 0.944 0.000 0.056
#> SRR2050439 1 0.610 0.3901 0.608 0.392 0.000
#> SRR2050438 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050437 1 0.196 0.7956 0.944 0.000 0.056
#> SRR2050436 1 0.610 0.3901 0.608 0.392 0.000
#> SRR2050435 3 0.000 1.0000 0.000 0.000 1.000
#> SRR2050434 1 0.610 0.3901 0.608 0.392 0.000
#> SRR2050433 2 0.000 0.8082 0.000 1.000 0.000
#> SRR2050432 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050431 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050430 1 0.296 0.8076 0.900 0.000 0.100
#> SRR2050429 1 0.196 0.7956 0.944 0.000 0.056
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050427 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050426 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050425 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050423 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050422 4 0.0817 0.798 0.000 0.024 0 0.976
#> SRR2050421 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050420 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050419 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050418 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050417 2 0.4907 -0.658 0.420 0.580 0 0.000
#> SRR2050416 2 0.6147 0.695 0.380 0.564 0 0.056
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050414 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050413 4 0.0817 0.798 0.000 0.024 0 0.976
#> SRR2050412 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050411 2 0.4907 -0.658 0.420 0.580 0 0.000
#> SRR2050409 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050408 2 0.4907 -0.658 0.420 0.580 0 0.000
#> SRR2050407 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050405 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050404 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050403 2 0.4907 -0.658 0.420 0.580 0 0.000
#> SRR2050402 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050401 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050400 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050399 4 0.2921 0.702 0.000 0.140 0 0.860
#> SRR2050398 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050397 2 0.4907 -0.658 0.420 0.580 0 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050395 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050394 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050392 2 0.4643 0.701 0.344 0.656 0 0.000
#> SRR2050465 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050463 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050462 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050460 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050459 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050457 2 0.5007 0.705 0.356 0.636 0 0.008
#> SRR2050456 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050454 2 0.4643 0.701 0.344 0.656 0 0.000
#> SRR2050453 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050451 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050450 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050448 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050446 2 0.0000 0.467 0.000 1.000 0 0.000
#> SRR2050445 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050443 2 0.4643 0.701 0.344 0.656 0 0.000
#> SRR2050442 4 0.0000 0.802 0.000 0.000 0 1.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050440 4 0.6468 0.312 0.084 0.348 0 0.568
#> SRR2050439 4 0.0000 0.802 0.000 0.000 0 1.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050437 4 0.6468 0.312 0.084 0.348 0 0.568
#> SRR2050436 4 0.0000 0.802 0.000 0.000 0 1.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050434 4 0.0000 0.802 0.000 0.000 0 1.000
#> SRR2050433 2 0.5699 0.712 0.380 0.588 0 0.032
#> SRR2050432 1 0.4790 0.986 0.620 0.380 0 0.000
#> SRR2050431 1 0.6079 0.935 0.568 0.380 0 0.052
#> SRR2050430 1 0.6454 0.903 0.544 0.380 0 0.076
#> SRR2050429 4 0.6468 0.312 0.084 0.348 0 0.568
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050427 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050426 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050425 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050423 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050422 5 0.0703 0.802 0.000 0.000 0 0.024 0.976
#> SRR2050421 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050420 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050419 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050418 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050417 4 0.4227 0.340 0.420 0.000 0 0.580 0.000
#> SRR2050416 2 0.1403 0.939 0.000 0.952 0 0.024 0.024
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050414 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050413 5 0.0703 0.802 0.000 0.000 0 0.024 0.976
#> SRR2050412 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050411 4 0.4227 0.340 0.420 0.000 0 0.580 0.000
#> SRR2050409 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050408 4 0.4227 0.340 0.420 0.000 0 0.580 0.000
#> SRR2050407 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050405 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050404 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050403 4 0.4227 0.340 0.420 0.000 0 0.580 0.000
#> SRR2050402 2 0.0703 0.969 0.000 0.976 0 0.024 0.000
#> SRR2050401 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050400 1 0.0703 0.957 0.976 0.000 0 0.024 0.000
#> SRR2050399 5 0.2915 0.714 0.000 0.116 0 0.024 0.860
#> SRR2050398 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050397 4 0.4227 0.340 0.420 0.000 0 0.580 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050395 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050394 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050392 4 0.4287 0.310 0.000 0.460 0 0.540 0.000
#> SRR2050465 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050463 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050462 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050460 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050459 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050457 4 0.4302 0.256 0.000 0.480 0 0.520 0.000
#> SRR2050456 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050454 4 0.4287 0.310 0.000 0.460 0 0.540 0.000
#> SRR2050453 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050451 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050450 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050448 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050446 4 0.2179 0.735 0.000 0.112 0 0.888 0.000
#> SRR2050445 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050443 4 0.4287 0.310 0.000 0.460 0 0.540 0.000
#> SRR2050442 5 0.0000 0.807 0.000 0.000 0 0.000 1.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050440 5 0.5771 0.322 0.432 0.000 0 0.088 0.480
#> SRR2050439 5 0.0000 0.807 0.000 0.000 0 0.000 1.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050437 5 0.5771 0.322 0.432 0.000 0 0.088 0.480
#> SRR2050436 5 0.0000 0.807 0.000 0.000 0 0.000 1.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050434 5 0.0000 0.807 0.000 0.000 0 0.000 1.000
#> SRR2050433 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050432 1 0.0000 0.981 1.000 0.000 0 0.000 0.000
#> SRR2050431 1 0.1965 0.916 0.924 0.000 0 0.024 0.052
#> SRR2050430 1 0.1981 0.902 0.924 0.000 0 0.028 0.048
#> SRR2050429 5 0.5771 0.322 0.432 0.000 0 0.088 0.480
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050427 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050426 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050425 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050423 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050422 5 0.0000 0.916 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050421 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050420 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050419 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050418 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050417 4 0.0000 0.471 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050416 2 0.1075 0.952 0.000 0.952 0 0.000 0.048 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050414 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050413 5 0.0000 0.916 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050412 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050411 4 0.0000 0.471 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050408 4 0.0000 0.471 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050405 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050404 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050403 4 0.0000 0.471 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050402 2 0.0632 0.976 0.000 0.976 0 0.000 0.024 0.000
#> SRR2050401 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050400 1 0.3833 0.658 0.556 0.000 0 0.444 0.000 0.000
#> SRR2050399 5 0.2003 0.799 0.000 0.116 0 0.000 0.884 0.000
#> SRR2050398 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050397 4 0.0000 0.471 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050395 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050394 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050392 1 0.5975 -0.345 0.420 0.348 0 0.232 0.000 0.000
#> SRR2050465 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050463 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050462 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050460 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050459 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050457 1 0.5922 -0.325 0.420 0.368 0 0.212 0.000 0.000
#> SRR2050456 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050454 1 0.5975 -0.345 0.420 0.348 0 0.232 0.000 0.000
#> SRR2050453 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050451 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050450 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050448 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050446 4 0.3797 0.777 0.420 0.000 0 0.580 0.000 0.000
#> SRR2050445 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050443 1 0.5975 -0.345 0.420 0.348 0 0.232 0.000 0.000
#> SRR2050442 5 0.1501 0.938 0.000 0.000 0 0.000 0.924 0.076
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050440 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050439 5 0.1501 0.938 0.000 0.000 0 0.000 0.924 0.076
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050437 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050436 5 0.1501 0.938 0.000 0.000 0 0.000 0.924 0.076
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050434 5 0.1501 0.938 0.000 0.000 0 0.000 0.924 0.076
#> SRR2050433 2 0.0000 0.996 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050432 1 0.3797 0.672 0.580 0.000 0 0.420 0.000 0.000
#> SRR2050431 1 0.4728 0.629 0.556 0.000 0 0.392 0.052 0.000
#> SRR2050430 1 0.4905 0.604 0.580 0.000 0 0.344 0.000 0.076
#> SRR2050429 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.427 0.767 0.888 0.4652 0.493 0.493
#> 3 3 0.831 0.861 0.918 0.3649 0.654 0.421
#> 4 4 0.737 0.786 0.837 0.1632 0.862 0.625
#> 5 5 0.887 0.947 0.931 0.0719 0.931 0.727
#> 6 6 0.915 0.847 0.887 0.0367 0.983 0.913
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.836 0.000 1.000
#> SRR2050427 1 0.6048 0.864 0.852 0.148
#> SRR2050426 1 0.6048 0.864 0.852 0.148
#> SRR2050425 2 0.0000 0.836 0.000 1.000
#> SRR2050424 1 0.0376 0.873 0.996 0.004
#> SRR2050423 1 0.6148 0.862 0.848 0.152
#> SRR2050422 2 0.3584 0.800 0.068 0.932
#> SRR2050421 1 0.6048 0.864 0.852 0.148
#> SRR2050420 1 0.6048 0.864 0.852 0.148
#> SRR2050419 2 0.0000 0.836 0.000 1.000
#> SRR2050418 2 0.9896 0.274 0.440 0.560
#> SRR2050417 2 0.9815 0.339 0.420 0.580
#> SRR2050416 2 0.0000 0.836 0.000 1.000
#> SRR2050415 1 0.0376 0.873 0.996 0.004
#> SRR2050414 2 0.9795 0.345 0.416 0.584
#> SRR2050413 2 0.0000 0.836 0.000 1.000
#> SRR2050412 1 0.6048 0.864 0.852 0.148
#> SRR2050411 1 0.7602 0.780 0.780 0.220
#> SRR2050409 2 0.0000 0.836 0.000 1.000
#> SRR2050408 1 0.9522 0.445 0.628 0.372
#> SRR2050407 2 0.0000 0.836 0.000 1.000
#> SRR2050406 1 0.0376 0.873 0.996 0.004
#> SRR2050405 2 0.9795 0.345 0.416 0.584
#> SRR2050404 2 0.0000 0.836 0.000 1.000
#> SRR2050403 1 0.7602 0.780 0.780 0.220
#> SRR2050402 2 0.0000 0.836 0.000 1.000
#> SRR2050401 1 0.6048 0.864 0.852 0.148
#> SRR2050400 1 0.6048 0.864 0.852 0.148
#> SRR2050399 2 0.0000 0.836 0.000 1.000
#> SRR2050398 1 0.6048 0.864 0.852 0.148
#> SRR2050397 1 0.7602 0.780 0.780 0.220
#> SRR2050396 1 0.0376 0.873 0.996 0.004
#> SRR2050395 1 0.9129 0.572 0.672 0.328
#> SRR2050394 2 0.0000 0.836 0.000 1.000
#> SRR2050393 1 0.0376 0.873 0.996 0.004
#> SRR2050392 2 0.0000 0.836 0.000 1.000
#> SRR2050465 2 0.0000 0.836 0.000 1.000
#> SRR2050464 1 0.0376 0.873 0.996 0.004
#> SRR2050463 2 0.9795 0.345 0.416 0.584
#> SRR2050462 2 0.0000 0.836 0.000 1.000
#> SRR2050461 1 0.0376 0.873 0.996 0.004
#> SRR2050460 1 0.6973 0.825 0.812 0.188
#> SRR2050459 2 0.0000 0.836 0.000 1.000
#> SRR2050458 1 0.0376 0.873 0.996 0.004
#> SRR2050457 2 0.6887 0.697 0.184 0.816
#> SRR2050456 2 0.0000 0.836 0.000 1.000
#> SRR2050455 1 0.0376 0.873 0.996 0.004
#> SRR2050454 2 0.9795 0.345 0.416 0.584
#> SRR2050453 2 0.0000 0.836 0.000 1.000
#> SRR2050452 1 0.0376 0.873 0.996 0.004
#> SRR2050451 2 0.9795 0.345 0.416 0.584
#> SRR2050450 2 0.0000 0.836 0.000 1.000
#> SRR2050449 1 0.0376 0.873 0.996 0.004
#> SRR2050448 2 0.9795 0.345 0.416 0.584
#> SRR2050447 1 0.0376 0.873 0.996 0.004
#> SRR2050446 2 0.9795 0.345 0.416 0.584
#> SRR2050445 2 0.0000 0.836 0.000 1.000
#> SRR2050444 1 0.0376 0.873 0.996 0.004
#> SRR2050443 2 0.9795 0.345 0.416 0.584
#> SRR2050442 2 0.0000 0.836 0.000 1.000
#> SRR2050441 1 0.0376 0.873 0.996 0.004
#> SRR2050440 1 0.2043 0.875 0.968 0.032
#> SRR2050439 2 0.0000 0.836 0.000 1.000
#> SRR2050438 1 0.0000 0.871 1.000 0.000
#> SRR2050437 1 0.2043 0.875 0.968 0.032
#> SRR2050436 2 0.3584 0.800 0.068 0.932
#> SRR2050435 1 0.0376 0.873 0.996 0.004
#> SRR2050434 2 0.3584 0.800 0.068 0.932
#> SRR2050433 2 0.0000 0.836 0.000 1.000
#> SRR2050432 1 0.6048 0.864 0.852 0.148
#> SRR2050431 1 0.6048 0.864 0.852 0.148
#> SRR2050430 1 0.6048 0.864 0.852 0.148
#> SRR2050429 1 0.6048 0.864 0.852 0.148
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050427 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050426 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050425 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050424 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050423 1 0.0892 0.86715 0.980 0.000 0.020
#> SRR2050422 1 0.8138 0.18881 0.480 0.452 0.068
#> SRR2050421 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050420 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050419 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050418 1 0.0592 0.87705 0.988 0.012 0.000
#> SRR2050417 1 0.0592 0.87705 0.988 0.012 0.000
#> SRR2050416 2 0.1163 0.93380 0.000 0.972 0.028
#> SRR2050415 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050414 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050413 2 0.2066 0.91876 0.000 0.940 0.060
#> SRR2050412 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050411 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050409 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050408 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050407 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050406 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050405 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050404 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050403 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050402 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050401 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050400 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050399 2 0.1964 0.92082 0.000 0.944 0.056
#> SRR2050398 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050397 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050396 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050395 1 0.1781 0.86488 0.960 0.020 0.020
#> SRR2050394 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050393 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050392 2 0.6079 0.23193 0.388 0.612 0.000
#> SRR2050465 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050464 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050463 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050462 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050461 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050460 1 0.0892 0.86715 0.980 0.000 0.020
#> SRR2050459 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050458 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050457 2 0.6625 -0.00334 0.440 0.552 0.008
#> SRR2050456 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050455 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050454 1 0.5659 0.71769 0.740 0.248 0.012
#> SRR2050453 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050452 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050451 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050450 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050449 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050448 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050447 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050446 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050445 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050444 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050443 1 0.5858 0.72423 0.740 0.240 0.020
#> SRR2050442 2 0.2165 0.91661 0.000 0.936 0.064
#> SRR2050441 3 0.2261 0.99937 0.068 0.000 0.932
#> SRR2050440 1 0.1529 0.86612 0.960 0.000 0.040
#> SRR2050439 2 0.2165 0.91661 0.000 0.936 0.064
#> SRR2050438 3 0.2165 0.99558 0.064 0.000 0.936
#> SRR2050437 1 0.1529 0.86612 0.960 0.000 0.040
#> SRR2050436 1 0.8138 0.18881 0.480 0.452 0.068
#> SRR2050435 3 0.2165 0.99558 0.064 0.000 0.936
#> SRR2050434 1 0.7318 0.64328 0.668 0.264 0.068
#> SRR2050433 2 0.0000 0.94540 0.000 1.000 0.000
#> SRR2050432 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050431 1 0.0424 0.87760 0.992 0.008 0.000
#> SRR2050430 1 0.1015 0.87272 0.980 0.008 0.012
#> SRR2050429 1 0.1015 0.87272 0.980 0.008 0.012
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.0188 0.9388 0.000 0.996 0.004 0.000
#> SRR2050424 3 0.0779 0.9878 0.004 0.000 0.980 0.016
#> SRR2050423 4 0.6147 0.5539 0.380 0.000 0.056 0.564
#> SRR2050422 4 0.6695 0.1841 0.220 0.164 0.000 0.616
#> SRR2050421 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.3219 0.6887 0.836 0.000 0.000 0.164
#> SRR2050417 1 0.4624 0.2284 0.660 0.000 0.000 0.340
#> SRR2050416 2 0.0376 0.9371 0.000 0.992 0.004 0.004
#> SRR2050415 3 0.0779 0.9878 0.004 0.000 0.980 0.016
#> SRR2050414 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050413 2 0.4406 0.6790 0.000 0.700 0.000 0.300
#> SRR2050412 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.2149 0.8011 0.912 0.000 0.000 0.088
#> SRR2050409 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.2408 0.7827 0.896 0.000 0.000 0.104
#> SRR2050407 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050405 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050404 2 0.0188 0.9388 0.000 0.996 0.004 0.000
#> SRR2050403 1 0.2149 0.8011 0.912 0.000 0.000 0.088
#> SRR2050402 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050401 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.2345 0.8697 0.000 0.900 0.000 0.100
#> SRR2050398 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.2149 0.8011 0.912 0.000 0.000 0.088
#> SRR2050396 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050395 4 0.6939 0.6071 0.348 0.032 0.056 0.564
#> SRR2050394 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050392 4 0.7596 0.6658 0.252 0.160 0.024 0.564
#> SRR2050465 2 0.0188 0.9388 0.000 0.996 0.004 0.000
#> SRR2050464 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050463 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050462 2 0.0188 0.9388 0.000 0.996 0.004 0.000
#> SRR2050461 3 0.0779 0.9878 0.004 0.000 0.980 0.016
#> SRR2050460 4 0.6110 0.5661 0.368 0.000 0.056 0.576
#> SRR2050459 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050457 4 0.7867 0.6167 0.176 0.220 0.040 0.564
#> SRR2050456 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050454 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050453 2 0.0188 0.9388 0.000 0.996 0.004 0.000
#> SRR2050452 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050451 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050450 2 0.0188 0.9388 0.000 0.996 0.004 0.000
#> SRR2050449 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050448 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050447 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050446 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050445 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.0188 0.9920 0.004 0.000 0.996 0.000
#> SRR2050443 4 0.7809 0.7000 0.268 0.112 0.056 0.564
#> SRR2050442 2 0.4843 0.5700 0.000 0.604 0.000 0.396
#> SRR2050441 3 0.0779 0.9878 0.004 0.000 0.980 0.016
#> SRR2050440 4 0.5497 -0.0538 0.460 0.000 0.016 0.524
#> SRR2050439 2 0.4843 0.5700 0.000 0.604 0.000 0.396
#> SRR2050438 3 0.1398 0.9692 0.004 0.000 0.956 0.040
#> SRR2050437 4 0.5497 -0.0538 0.460 0.000 0.016 0.524
#> SRR2050436 4 0.6709 0.1891 0.212 0.172 0.000 0.616
#> SRR2050435 3 0.1398 0.9692 0.004 0.000 0.956 0.040
#> SRR2050434 4 0.2408 0.3922 0.104 0.000 0.000 0.896
#> SRR2050433 2 0.0000 0.9393 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 0.8601 1.000 0.000 0.000 0.000
#> SRR2050430 1 0.4522 0.4563 0.680 0.000 0.000 0.320
#> SRR2050429 1 0.4500 0.4621 0.684 0.000 0.000 0.316
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050427 1 0.0404 0.967 0.988 0.000 0.000 0.000 0.012
#> SRR2050426 1 0.0162 0.968 0.996 0.000 0.000 0.000 0.004
#> SRR2050425 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050424 3 0.1668 0.960 0.000 0.000 0.940 0.032 0.028
#> SRR2050423 4 0.3163 0.969 0.164 0.000 0.012 0.824 0.000
#> SRR2050422 5 0.2476 0.878 0.020 0.012 0.000 0.064 0.904
#> SRR2050421 1 0.0404 0.967 0.988 0.000 0.000 0.000 0.012
#> SRR2050420 1 0.0162 0.968 0.996 0.000 0.000 0.000 0.004
#> SRR2050419 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050418 1 0.2136 0.891 0.904 0.000 0.000 0.088 0.008
#> SRR2050417 1 0.2773 0.775 0.836 0.000 0.000 0.164 0.000
#> SRR2050416 2 0.2376 0.902 0.000 0.904 0.000 0.052 0.044
#> SRR2050415 3 0.1668 0.960 0.000 0.000 0.940 0.032 0.028
#> SRR2050414 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050413 5 0.3043 0.844 0.000 0.080 0.000 0.056 0.864
#> SRR2050412 1 0.0290 0.968 0.992 0.000 0.000 0.000 0.008
#> SRR2050411 1 0.0609 0.961 0.980 0.000 0.000 0.020 0.000
#> SRR2050409 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050408 1 0.0880 0.952 0.968 0.000 0.000 0.032 0.000
#> SRR2050407 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050406 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050404 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050403 1 0.0609 0.961 0.980 0.000 0.000 0.020 0.000
#> SRR2050402 2 0.1341 0.937 0.000 0.944 0.000 0.056 0.000
#> SRR2050401 1 0.0290 0.968 0.992 0.000 0.000 0.000 0.008
#> SRR2050400 1 0.0162 0.968 0.996 0.000 0.000 0.000 0.004
#> SRR2050399 2 0.4199 0.739 0.000 0.764 0.000 0.056 0.180
#> SRR2050398 1 0.0290 0.968 0.992 0.000 0.000 0.000 0.008
#> SRR2050397 1 0.0609 0.961 0.980 0.000 0.000 0.020 0.000
#> SRR2050396 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.3163 0.969 0.164 0.000 0.012 0.824 0.000
#> SRR2050394 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050393 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 4 0.3400 0.969 0.136 0.036 0.000 0.828 0.000
#> SRR2050465 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050462 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050461 3 0.0671 0.974 0.000 0.000 0.980 0.004 0.016
#> SRR2050460 4 0.3163 0.969 0.164 0.000 0.012 0.824 0.000
#> SRR2050459 2 0.0162 0.974 0.000 0.996 0.000 0.004 0.000
#> SRR2050458 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.3633 0.957 0.116 0.040 0.012 0.832 0.000
#> SRR2050456 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050455 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050453 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050450 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050447 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050445 2 0.0404 0.974 0.000 0.988 0.000 0.012 0.000
#> SRR2050444 3 0.0000 0.979 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.3541 0.987 0.144 0.020 0.012 0.824 0.000
#> SRR2050442 5 0.2230 0.872 0.000 0.044 0.000 0.044 0.912
#> SRR2050441 3 0.1830 0.956 0.000 0.000 0.932 0.040 0.028
#> SRR2050440 5 0.4155 0.842 0.144 0.000 0.000 0.076 0.780
#> SRR2050439 5 0.2230 0.872 0.000 0.044 0.000 0.044 0.912
#> SRR2050438 3 0.2511 0.929 0.000 0.000 0.892 0.080 0.028
#> SRR2050437 5 0.4155 0.842 0.144 0.000 0.000 0.076 0.780
#> SRR2050436 5 0.1299 0.882 0.020 0.012 0.000 0.008 0.960
#> SRR2050435 3 0.2054 0.949 0.000 0.000 0.920 0.052 0.028
#> SRR2050434 5 0.1195 0.876 0.012 0.000 0.000 0.028 0.960
#> SRR2050433 2 0.0000 0.974 0.000 1.000 0.000 0.000 0.000
#> SRR2050432 1 0.0404 0.967 0.988 0.000 0.000 0.000 0.012
#> SRR2050431 1 0.0290 0.966 0.992 0.000 0.000 0.000 0.008
#> SRR2050430 5 0.4036 0.840 0.144 0.000 0.000 0.068 0.788
#> SRR2050429 5 0.4618 0.783 0.208 0.000 0.000 0.068 0.724
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.1546 0.935 0.000 0.944 0.000 0.020 0.020 0.016
#> SRR2050427 1 0.1700 0.903 0.928 0.000 0.000 0.000 0.024 0.048
#> SRR2050426 1 0.1327 0.907 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR2050425 2 0.0951 0.935 0.000 0.968 0.000 0.004 0.020 0.008
#> SRR2050424 3 0.3166 0.868 0.000 0.000 0.816 0.024 0.156 0.004
#> SRR2050423 4 0.1075 0.986 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR2050422 5 0.3672 0.612 0.000 0.000 0.000 0.000 0.632 0.368
#> SRR2050421 1 0.1700 0.903 0.928 0.000 0.000 0.000 0.024 0.048
#> SRR2050420 1 0.1327 0.907 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR2050419 2 0.0820 0.941 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR2050418 1 0.3316 0.874 0.812 0.000 0.000 0.052 0.136 0.000
#> SRR2050417 1 0.3852 0.834 0.788 0.000 0.000 0.088 0.116 0.008
#> SRR2050416 2 0.3861 0.461 0.000 0.640 0.000 0.000 0.352 0.008
#> SRR2050415 3 0.3166 0.868 0.000 0.000 0.816 0.024 0.156 0.004
#> SRR2050414 4 0.1152 0.987 0.044 0.004 0.000 0.952 0.000 0.000
#> SRR2050413 5 0.4034 0.605 0.000 0.020 0.000 0.000 0.652 0.328
#> SRR2050412 1 0.1141 0.913 0.948 0.000 0.000 0.000 0.052 0.000
#> SRR2050411 1 0.2404 0.903 0.872 0.000 0.000 0.000 0.112 0.016
#> SRR2050409 2 0.1546 0.935 0.000 0.944 0.000 0.020 0.020 0.016
#> SRR2050408 1 0.2547 0.902 0.868 0.000 0.000 0.004 0.112 0.016
#> SRR2050407 2 0.0820 0.941 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR2050406 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050404 2 0.0260 0.942 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR2050403 1 0.2404 0.903 0.872 0.000 0.000 0.000 0.112 0.016
#> SRR2050402 2 0.3357 0.708 0.000 0.764 0.000 0.004 0.224 0.008
#> SRR2050401 1 0.1204 0.912 0.944 0.000 0.000 0.000 0.056 0.000
#> SRR2050400 1 0.2384 0.908 0.888 0.000 0.000 0.000 0.048 0.064
#> SRR2050399 5 0.3634 0.271 0.000 0.356 0.000 0.000 0.644 0.000
#> SRR2050398 1 0.0632 0.912 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR2050397 1 0.2404 0.903 0.872 0.000 0.000 0.000 0.112 0.016
#> SRR2050396 3 0.0146 0.931 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR2050395 4 0.1219 0.986 0.048 0.000 0.000 0.948 0.004 0.000
#> SRR2050394 2 0.0909 0.941 0.000 0.968 0.000 0.020 0.000 0.012
#> SRR2050393 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.1370 0.981 0.036 0.004 0.000 0.948 0.012 0.000
#> SRR2050465 2 0.0146 0.942 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050464 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050462 2 0.0146 0.942 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050461 3 0.1956 0.905 0.000 0.000 0.908 0.008 0.080 0.004
#> SRR2050460 4 0.1434 0.984 0.048 0.000 0.000 0.940 0.012 0.000
#> SRR2050459 2 0.0146 0.943 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2050458 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.1882 0.957 0.024 0.020 0.000 0.928 0.028 0.000
#> SRR2050456 2 0.0820 0.941 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR2050455 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050453 2 0.0146 0.942 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050452 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050450 2 0.0146 0.942 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR2050449 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050447 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050445 2 0.0820 0.941 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR2050444 3 0.0000 0.932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.1511 0.986 0.044 0.004 0.000 0.940 0.012 0.000
#> SRR2050442 5 0.3907 0.589 0.000 0.000 0.000 0.004 0.588 0.408
#> SRR2050441 3 0.3274 0.862 0.000 0.000 0.804 0.024 0.168 0.004
#> SRR2050440 6 0.1124 0.670 0.036 0.000 0.000 0.000 0.008 0.956
#> SRR2050439 5 0.3907 0.589 0.000 0.000 0.000 0.004 0.588 0.408
#> SRR2050438 3 0.4989 0.763 0.000 0.000 0.692 0.024 0.168 0.116
#> SRR2050437 6 0.1124 0.670 0.036 0.000 0.000 0.000 0.008 0.956
#> SRR2050436 6 0.3930 -0.163 0.000 0.000 0.000 0.004 0.420 0.576
#> SRR2050435 3 0.3812 0.847 0.000 0.000 0.780 0.024 0.168 0.028
#> SRR2050434 6 0.3930 -0.163 0.000 0.000 0.000 0.004 0.420 0.576
#> SRR2050433 2 0.0951 0.937 0.000 0.968 0.000 0.008 0.020 0.004
#> SRR2050432 1 0.1176 0.910 0.956 0.000 0.000 0.000 0.024 0.020
#> SRR2050431 1 0.2384 0.908 0.888 0.000 0.000 0.000 0.048 0.064
#> SRR2050430 6 0.1327 0.664 0.064 0.000 0.000 0.000 0.000 0.936
#> SRR2050429 6 0.2573 0.595 0.112 0.000 0.000 0.000 0.024 0.864
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.979 0.991 0.5071 0.493 0.493
#> 3 3 0.890 0.955 0.971 0.2862 0.830 0.664
#> 4 4 1.000 0.984 0.994 0.1456 0.877 0.660
#> 5 5 1.000 0.987 0.993 0.0659 0.919 0.696
#> 6 6 0.971 0.908 0.938 0.0273 0.968 0.844
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5
There is also optional best \(k\) = 2 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.992 0.000 1.000
#> SRR2050427 1 0.000 0.989 1.000 0.000
#> SRR2050426 1 0.000 0.989 1.000 0.000
#> SRR2050425 2 0.000 0.992 0.000 1.000
#> SRR2050424 1 0.000 0.989 1.000 0.000
#> SRR2050423 1 0.000 0.989 1.000 0.000
#> SRR2050422 2 0.000 0.992 0.000 1.000
#> SRR2050421 1 0.000 0.989 1.000 0.000
#> SRR2050420 1 0.000 0.989 1.000 0.000
#> SRR2050419 2 0.000 0.992 0.000 1.000
#> SRR2050418 2 0.697 0.769 0.188 0.812
#> SRR2050417 2 0.373 0.919 0.072 0.928
#> SRR2050416 2 0.000 0.992 0.000 1.000
#> SRR2050415 1 0.000 0.989 1.000 0.000
#> SRR2050414 2 0.000 0.992 0.000 1.000
#> SRR2050413 2 0.000 0.992 0.000 1.000
#> SRR2050412 1 0.000 0.989 1.000 0.000
#> SRR2050411 1 0.000 0.989 1.000 0.000
#> SRR2050409 2 0.000 0.992 0.000 1.000
#> SRR2050408 1 0.000 0.989 1.000 0.000
#> SRR2050407 2 0.000 0.992 0.000 1.000
#> SRR2050406 1 0.000 0.989 1.000 0.000
#> SRR2050405 2 0.000 0.992 0.000 1.000
#> SRR2050404 2 0.000 0.992 0.000 1.000
#> SRR2050403 1 0.000 0.989 1.000 0.000
#> SRR2050402 2 0.000 0.992 0.000 1.000
#> SRR2050401 1 0.000 0.989 1.000 0.000
#> SRR2050400 1 0.000 0.989 1.000 0.000
#> SRR2050399 2 0.000 0.992 0.000 1.000
#> SRR2050398 1 0.000 0.989 1.000 0.000
#> SRR2050397 1 0.000 0.989 1.000 0.000
#> SRR2050396 1 0.000 0.989 1.000 0.000
#> SRR2050395 1 0.952 0.397 0.628 0.372
#> SRR2050394 2 0.000 0.992 0.000 1.000
#> SRR2050393 1 0.000 0.989 1.000 0.000
#> SRR2050392 2 0.000 0.992 0.000 1.000
#> SRR2050465 2 0.000 0.992 0.000 1.000
#> SRR2050464 1 0.000 0.989 1.000 0.000
#> SRR2050463 2 0.000 0.992 0.000 1.000
#> SRR2050462 2 0.000 0.992 0.000 1.000
#> SRR2050461 1 0.000 0.989 1.000 0.000
#> SRR2050460 1 0.000 0.989 1.000 0.000
#> SRR2050459 2 0.000 0.992 0.000 1.000
#> SRR2050458 1 0.000 0.989 1.000 0.000
#> SRR2050457 2 0.000 0.992 0.000 1.000
#> SRR2050456 2 0.000 0.992 0.000 1.000
#> SRR2050455 1 0.000 0.989 1.000 0.000
#> SRR2050454 2 0.000 0.992 0.000 1.000
#> SRR2050453 2 0.000 0.992 0.000 1.000
#> SRR2050452 1 0.000 0.989 1.000 0.000
#> SRR2050451 2 0.000 0.992 0.000 1.000
#> SRR2050450 2 0.000 0.992 0.000 1.000
#> SRR2050449 1 0.000 0.989 1.000 0.000
#> SRR2050448 2 0.000 0.992 0.000 1.000
#> SRR2050447 1 0.000 0.989 1.000 0.000
#> SRR2050446 2 0.000 0.992 0.000 1.000
#> SRR2050445 2 0.000 0.992 0.000 1.000
#> SRR2050444 1 0.000 0.989 1.000 0.000
#> SRR2050443 2 0.000 0.992 0.000 1.000
#> SRR2050442 2 0.000 0.992 0.000 1.000
#> SRR2050441 1 0.000 0.989 1.000 0.000
#> SRR2050440 1 0.000 0.989 1.000 0.000
#> SRR2050439 2 0.000 0.992 0.000 1.000
#> SRR2050438 1 0.000 0.989 1.000 0.000
#> SRR2050437 1 0.000 0.989 1.000 0.000
#> SRR2050436 2 0.000 0.992 0.000 1.000
#> SRR2050435 1 0.000 0.989 1.000 0.000
#> SRR2050434 2 0.000 0.992 0.000 1.000
#> SRR2050433 2 0.000 0.992 0.000 1.000
#> SRR2050432 1 0.000 0.989 1.000 0.000
#> SRR2050431 1 0.000 0.989 1.000 0.000
#> SRR2050430 1 0.000 0.989 1.000 0.000
#> SRR2050429 1 0.000 0.989 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050427 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050426 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050425 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050423 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050422 2 0.0237 0.955 0.004 0.996 0.000
#> SRR2050421 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050420 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050419 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050416 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050414 2 0.4654 0.803 0.208 0.792 0.000
#> SRR2050413 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050412 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050411 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050405 2 0.4654 0.803 0.208 0.792 0.000
#> SRR2050404 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050402 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050401 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050400 1 0.1163 0.967 0.972 0.000 0.028
#> SRR2050399 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050398 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050397 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050395 1 0.0237 0.961 0.996 0.004 0.000
#> SRR2050394 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050392 2 0.1753 0.933 0.048 0.952 0.000
#> SRR2050465 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050463 2 0.4346 0.830 0.184 0.816 0.000
#> SRR2050462 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050460 1 0.0000 0.963 1.000 0.000 0.000
#> SRR2050459 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050457 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050456 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050454 2 0.4346 0.830 0.184 0.816 0.000
#> SRR2050453 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050451 2 0.4346 0.830 0.184 0.816 0.000
#> SRR2050450 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050448 2 0.4346 0.830 0.184 0.816 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050446 2 0.4346 0.830 0.184 0.816 0.000
#> SRR2050445 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050443 2 0.1860 0.931 0.052 0.948 0.000
#> SRR2050442 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050440 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050439 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050437 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050436 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050434 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.957 0.000 1.000 0.000
#> SRR2050432 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050431 1 0.1753 0.968 0.952 0.000 0.048
#> SRR2050430 1 0.3941 0.842 0.844 0.000 0.156
#> SRR2050429 1 0.1753 0.968 0.952 0.000 0.048
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050427 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050426 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050425 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050424 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050423 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050422 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050421 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050420 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050419 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050418 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050417 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050416 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050415 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050414 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050413 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050412 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050411 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050409 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050408 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050407 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050406 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050405 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050404 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050403 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050402 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050401 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050400 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050399 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050398 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050397 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050396 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050395 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050394 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050393 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050392 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050465 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050464 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050463 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050462 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050461 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050460 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050459 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050458 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050457 4 0.489 0.299 0 0.412 0 0.588
#> SRR2050456 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050455 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050454 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050453 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050452 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050451 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050450 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050449 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050448 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050447 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050446 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050445 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050444 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050443 4 0.000 0.962 0 0.000 0 1.000
#> SRR2050442 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050441 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050440 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050439 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050438 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050437 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050436 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050435 3 0.000 1.000 0 0.000 1 0.000
#> SRR2050434 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050433 2 0.000 1.000 0 1.000 0 0.000
#> SRR2050432 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050431 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050430 1 0.000 1.000 1 0.000 0 0.000
#> SRR2050429 1 0.000 1.000 1 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050427 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050426 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050425 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050423 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050422 5 0.0510 0.943 0.000 0.016 0.00 0.000 0.984
#> SRR2050421 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050420 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050419 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050418 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050417 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050416 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050414 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050413 2 0.0609 0.978 0.000 0.980 0.00 0.000 0.020
#> SRR2050412 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050411 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050409 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050408 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050407 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050405 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050404 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050403 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050402 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050401 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050400 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050399 2 0.0609 0.978 0.000 0.980 0.00 0.000 0.020
#> SRR2050398 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050397 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050395 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050394 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050392 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050465 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050463 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050462 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050460 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050459 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050457 2 0.1671 0.912 0.000 0.924 0.00 0.076 0.000
#> SRR2050456 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050454 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050453 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050451 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050450 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050448 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050446 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050445 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050443 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> SRR2050442 5 0.2329 0.869 0.000 0.124 0.00 0.000 0.876
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050440 5 0.0609 0.942 0.000 0.000 0.02 0.000 0.980
#> SRR2050439 5 0.2329 0.869 0.000 0.124 0.00 0.000 0.876
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050437 5 0.0609 0.942 0.000 0.000 0.02 0.000 0.980
#> SRR2050436 5 0.0000 0.945 0.000 0.000 0.00 0.000 1.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.00 0.000 0.000
#> SRR2050434 5 0.0000 0.945 0.000 0.000 0.00 0.000 1.000
#> SRR2050433 2 0.0000 0.994 0.000 1.000 0.00 0.000 0.000
#> SRR2050432 1 0.0000 0.999 1.000 0.000 0.00 0.000 0.000
#> SRR2050431 1 0.0404 0.988 0.988 0.000 0.00 0.000 0.012
#> SRR2050430 5 0.0609 0.941 0.020 0.000 0.00 0.000 0.980
#> SRR2050429 5 0.1341 0.917 0.056 0.000 0.00 0.000 0.944
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050427 1 0.1714 0.9408 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR2050426 1 0.1141 0.9427 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR2050425 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050422 5 0.0000 0.7891 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050421 1 0.1714 0.9408 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR2050420 1 0.1141 0.9427 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR2050419 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050418 1 0.1007 0.9532 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR2050417 1 0.0363 0.9548 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2050416 2 0.1501 0.8996 0.000 0.924 0.000 0.000 0.076 0.000
#> SRR2050415 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050413 5 0.3266 0.6135 0.000 0.272 0.000 0.000 0.728 0.000
#> SRR2050412 1 0.0937 0.9537 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR2050411 1 0.0363 0.9548 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2050409 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050408 1 0.0363 0.9548 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2050407 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050404 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050403 1 0.0363 0.9548 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2050402 2 0.0146 0.9769 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2050401 1 0.0937 0.9537 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR2050400 1 0.1141 0.9427 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR2050399 5 0.3351 0.5963 0.000 0.288 0.000 0.000 0.712 0.000
#> SRR2050398 1 0.1007 0.9541 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR2050397 1 0.0363 0.9548 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR2050396 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050395 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050394 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050465 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.3101 0.8506 0.000 0.000 0.000 0.756 0.000 0.244
#> SRR2050462 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.3101 0.8506 0.000 0.000 0.000 0.756 0.000 0.244
#> SRR2050459 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 2 0.2994 0.7179 0.000 0.788 0.000 0.208 0.000 0.004
#> SRR2050456 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050453 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.3101 0.8506 0.000 0.000 0.000 0.756 0.000 0.244
#> SRR2050450 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.3101 0.8506 0.000 0.000 0.000 0.756 0.000 0.244
#> SRR2050447 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.3101 0.8506 0.000 0.000 0.000 0.756 0.000 0.244
#> SRR2050445 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.0000 0.8966 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050442 5 0.0858 0.8007 0.000 0.028 0.000 0.000 0.968 0.004
#> SRR2050441 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 6 0.3738 0.7666 0.000 0.000 0.016 0.000 0.280 0.704
#> SRR2050439 5 0.0858 0.8007 0.000 0.028 0.000 0.000 0.968 0.004
#> SRR2050438 3 0.0363 0.9880 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR2050437 6 0.3738 0.7666 0.000 0.000 0.016 0.000 0.280 0.704
#> SRR2050436 5 0.0363 0.7850 0.000 0.000 0.000 0.000 0.988 0.012
#> SRR2050435 3 0.0000 0.9992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050434 5 0.0363 0.7850 0.000 0.000 0.000 0.000 0.988 0.012
#> SRR2050433 2 0.0000 0.9801 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050432 1 0.1387 0.9511 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR2050431 6 0.4263 0.0311 0.480 0.000 0.000 0.000 0.016 0.504
#> SRR2050430 6 0.3244 0.7625 0.000 0.000 0.000 0.000 0.268 0.732
#> SRR2050429 6 0.4002 0.7610 0.036 0.000 0.000 0.000 0.260 0.704
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.971 0.965 0.3531 0.653 0.653
#> 3 3 0.898 0.948 0.976 0.8132 0.712 0.559
#> 4 4 0.965 0.932 0.968 0.1771 0.867 0.644
#> 5 5 0.919 0.951 0.956 0.0634 0.930 0.728
#> 6 6 0.975 0.962 0.981 0.0327 0.976 0.878
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5
There is also optional best \(k\) = 2 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.3733 0.952 0.072 0.928
#> SRR2050427 2 0.0000 0.970 0.000 1.000
#> SRR2050426 2 0.0000 0.970 0.000 1.000
#> SRR2050425 2 0.3733 0.952 0.072 0.928
#> SRR2050424 1 0.3733 1.000 0.928 0.072
#> SRR2050423 2 0.0000 0.970 0.000 1.000
#> SRR2050422 2 0.1414 0.966 0.020 0.980
#> SRR2050421 2 0.0000 0.970 0.000 1.000
#> SRR2050420 2 0.0000 0.970 0.000 1.000
#> SRR2050419 2 0.3733 0.952 0.072 0.928
#> SRR2050418 2 0.0000 0.970 0.000 1.000
#> SRR2050417 2 0.0000 0.970 0.000 1.000
#> SRR2050416 2 0.3733 0.952 0.072 0.928
#> SRR2050415 1 0.3733 1.000 0.928 0.072
#> SRR2050414 2 0.0000 0.970 0.000 1.000
#> SRR2050413 2 0.3733 0.952 0.072 0.928
#> SRR2050412 2 0.0000 0.970 0.000 1.000
#> SRR2050411 2 0.0000 0.970 0.000 1.000
#> SRR2050409 2 0.3733 0.952 0.072 0.928
#> SRR2050408 2 0.0000 0.970 0.000 1.000
#> SRR2050407 2 0.3733 0.952 0.072 0.928
#> SRR2050406 1 0.3733 1.000 0.928 0.072
#> SRR2050405 2 0.0000 0.970 0.000 1.000
#> SRR2050404 2 0.3733 0.952 0.072 0.928
#> SRR2050403 2 0.0000 0.970 0.000 1.000
#> SRR2050402 2 0.3733 0.952 0.072 0.928
#> SRR2050401 2 0.0000 0.970 0.000 1.000
#> SRR2050400 2 0.0000 0.970 0.000 1.000
#> SRR2050399 2 0.3733 0.952 0.072 0.928
#> SRR2050398 2 0.0376 0.968 0.004 0.996
#> SRR2050397 2 0.0000 0.970 0.000 1.000
#> SRR2050396 1 0.3733 1.000 0.928 0.072
#> SRR2050395 2 0.0000 0.970 0.000 1.000
#> SRR2050394 2 0.3733 0.952 0.072 0.928
#> SRR2050393 1 0.3733 1.000 0.928 0.072
#> SRR2050392 2 0.0000 0.970 0.000 1.000
#> SRR2050465 2 0.3733 0.952 0.072 0.928
#> SRR2050464 1 0.3733 1.000 0.928 0.072
#> SRR2050463 2 0.0000 0.970 0.000 1.000
#> SRR2050462 2 0.3733 0.952 0.072 0.928
#> SRR2050461 1 0.3733 1.000 0.928 0.072
#> SRR2050460 2 0.0000 0.970 0.000 1.000
#> SRR2050459 2 0.3733 0.952 0.072 0.928
#> SRR2050458 1 0.3733 1.000 0.928 0.072
#> SRR2050457 2 0.0000 0.970 0.000 1.000
#> SRR2050456 2 0.3733 0.952 0.072 0.928
#> SRR2050455 1 0.3733 1.000 0.928 0.072
#> SRR2050454 2 0.0000 0.970 0.000 1.000
#> SRR2050453 2 0.3733 0.952 0.072 0.928
#> SRR2050452 1 0.3733 1.000 0.928 0.072
#> SRR2050451 2 0.0000 0.970 0.000 1.000
#> SRR2050450 2 0.3733 0.952 0.072 0.928
#> SRR2050449 1 0.3733 1.000 0.928 0.072
#> SRR2050448 2 0.0000 0.970 0.000 1.000
#> SRR2050447 1 0.3733 1.000 0.928 0.072
#> SRR2050446 2 0.0000 0.970 0.000 1.000
#> SRR2050445 2 0.3733 0.952 0.072 0.928
#> SRR2050444 1 0.3733 1.000 0.928 0.072
#> SRR2050443 2 0.0000 0.970 0.000 1.000
#> SRR2050442 2 0.3733 0.952 0.072 0.928
#> SRR2050441 1 0.3733 1.000 0.928 0.072
#> SRR2050440 2 0.0000 0.970 0.000 1.000
#> SRR2050439 2 0.3733 0.952 0.072 0.928
#> SRR2050438 1 0.3733 1.000 0.928 0.072
#> SRR2050437 2 0.0000 0.970 0.000 1.000
#> SRR2050436 2 0.1633 0.965 0.024 0.976
#> SRR2050435 1 0.3733 1.000 0.928 0.072
#> SRR2050434 2 0.0000 0.970 0.000 1.000
#> SRR2050433 2 0.3733 0.952 0.072 0.928
#> SRR2050432 2 0.0000 0.970 0.000 1.000
#> SRR2050431 2 0.0000 0.970 0.000 1.000
#> SRR2050430 2 0.0000 0.970 0.000 1.000
#> SRR2050429 2 0.0000 0.970 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.985 0.000 1.000 0
#> SRR2050427 1 0.0000 0.956 1.000 0.000 0
#> SRR2050426 1 0.0000 0.956 1.000 0.000 0
#> SRR2050425 2 0.0000 0.985 0.000 1.000 0
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1
#> SRR2050423 1 0.0000 0.956 1.000 0.000 0
#> SRR2050422 1 0.0424 0.950 0.992 0.008 0
#> SRR2050421 1 0.0000 0.956 1.000 0.000 0
#> SRR2050420 1 0.0000 0.956 1.000 0.000 0
#> SRR2050419 2 0.0000 0.985 0.000 1.000 0
#> SRR2050418 1 0.0000 0.956 1.000 0.000 0
#> SRR2050417 1 0.0000 0.956 1.000 0.000 0
#> SRR2050416 2 0.0000 0.985 0.000 1.000 0
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1
#> SRR2050414 1 0.0000 0.956 1.000 0.000 0
#> SRR2050413 2 0.5016 0.674 0.240 0.760 0
#> SRR2050412 1 0.0000 0.956 1.000 0.000 0
#> SRR2050411 1 0.0000 0.956 1.000 0.000 0
#> SRR2050409 2 0.0000 0.985 0.000 1.000 0
#> SRR2050408 1 0.0000 0.956 1.000 0.000 0
#> SRR2050407 2 0.0000 0.985 0.000 1.000 0
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1
#> SRR2050405 1 0.4399 0.783 0.812 0.188 0
#> SRR2050404 2 0.0000 0.985 0.000 1.000 0
#> SRR2050403 1 0.0000 0.956 1.000 0.000 0
#> SRR2050402 2 0.0000 0.985 0.000 1.000 0
#> SRR2050401 1 0.0000 0.956 1.000 0.000 0
#> SRR2050400 1 0.0000 0.956 1.000 0.000 0
#> SRR2050399 2 0.0000 0.985 0.000 1.000 0
#> SRR2050398 1 0.0000 0.956 1.000 0.000 0
#> SRR2050397 1 0.0000 0.956 1.000 0.000 0
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1
#> SRR2050395 1 0.0000 0.956 1.000 0.000 0
#> SRR2050394 2 0.0000 0.985 0.000 1.000 0
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1
#> SRR2050392 1 0.5058 0.712 0.756 0.244 0
#> SRR2050465 2 0.0000 0.985 0.000 1.000 0
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1
#> SRR2050463 1 0.3551 0.844 0.868 0.132 0
#> SRR2050462 2 0.0000 0.985 0.000 1.000 0
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1
#> SRR2050460 1 0.0000 0.956 1.000 0.000 0
#> SRR2050459 2 0.0000 0.985 0.000 1.000 0
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1
#> SRR2050457 1 0.6140 0.397 0.596 0.404 0
#> SRR2050456 2 0.0000 0.985 0.000 1.000 0
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1
#> SRR2050454 1 0.5058 0.712 0.756 0.244 0
#> SRR2050453 2 0.0000 0.985 0.000 1.000 0
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1
#> SRR2050451 1 0.0000 0.956 1.000 0.000 0
#> SRR2050450 2 0.0000 0.985 0.000 1.000 0
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1
#> SRR2050448 1 0.0592 0.948 0.988 0.012 0
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1
#> SRR2050446 1 0.0000 0.956 1.000 0.000 0
#> SRR2050445 2 0.0000 0.985 0.000 1.000 0
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1
#> SRR2050443 1 0.5058 0.712 0.756 0.244 0
#> SRR2050442 2 0.0000 0.985 0.000 1.000 0
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1
#> SRR2050440 1 0.0000 0.956 1.000 0.000 0
#> SRR2050439 2 0.0000 0.985 0.000 1.000 0
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1
#> SRR2050437 1 0.0000 0.956 1.000 0.000 0
#> SRR2050436 1 0.0000 0.956 1.000 0.000 0
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1
#> SRR2050434 1 0.0000 0.956 1.000 0.000 0
#> SRR2050433 2 0.0000 0.985 0.000 1.000 0
#> SRR2050432 1 0.0000 0.956 1.000 0.000 0
#> SRR2050431 1 0.0000 0.956 1.000 0.000 0
#> SRR2050430 1 0.0000 0.956 1.000 0.000 0
#> SRR2050429 1 0.0000 0.956 1.000 0.000 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050427 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050426 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050425 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050423 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050422 1 0.659 0.592 0.628 0.212 0 0.160
#> SRR2050421 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050420 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050419 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050418 1 0.194 0.842 0.924 0.000 0 0.076
#> SRR2050417 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050414 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050413 1 0.492 0.322 0.572 0.428 0 0.000
#> SRR2050412 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050411 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050408 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050405 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050404 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050403 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050402 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050401 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050400 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050399 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050398 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050397 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050395 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050394 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050392 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050465 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050463 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050462 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050460 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050459 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050457 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050456 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050454 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050453 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050451 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050450 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050448 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050446 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050445 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050443 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050442 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050440 1 0.478 0.505 0.624 0.000 0 0.376
#> SRR2050439 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050437 1 0.476 0.512 0.628 0.000 0 0.372
#> SRR2050436 1 0.548 0.534 0.628 0.028 0 0.344
#> SRR2050435 3 0.000 1.000 0.000 0.000 1 0.000
#> SRR2050434 4 0.000 1.000 0.000 0.000 0 1.000
#> SRR2050433 2 0.000 1.000 0.000 1.000 0 0.000
#> SRR2050432 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050431 1 0.000 0.889 1.000 0.000 0 0.000
#> SRR2050430 1 0.476 0.512 0.628 0.000 0 0.372
#> SRR2050429 1 0.000 0.889 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050427 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050426 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050425 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050423 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050422 5 0.2813 0.852 0.000 0.168 0 0.000 0.832
#> SRR2050421 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050420 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050419 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050418 1 0.3593 0.873 0.824 0.000 0 0.060 0.116
#> SRR2050417 1 0.2813 0.895 0.832 0.000 0 0.000 0.168
#> SRR2050416 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050414 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050413 5 0.2813 0.852 0.000 0.168 0 0.000 0.832
#> SRR2050412 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050411 1 0.2813 0.895 0.832 0.000 0 0.000 0.168
#> SRR2050409 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050408 1 0.2813 0.895 0.832 0.000 0 0.000 0.168
#> SRR2050407 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050405 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050404 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050403 1 0.2813 0.895 0.832 0.000 0 0.000 0.168
#> SRR2050402 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050401 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050400 1 0.2813 0.895 0.832 0.000 0 0.000 0.168
#> SRR2050399 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050398 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050397 1 0.2813 0.895 0.832 0.000 0 0.000 0.168
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050395 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050394 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050392 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050465 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050463 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050462 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050460 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050459 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050457 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050456 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050454 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050453 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050451 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050450 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050448 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050446 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050445 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050443 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR2050442 5 0.2813 0.852 0.000 0.168 0 0.000 0.832
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050440 5 0.2813 0.832 0.000 0.000 0 0.168 0.832
#> SRR2050439 5 0.2813 0.852 0.000 0.168 0 0.000 0.832
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050437 5 0.2813 0.832 0.000 0.000 0 0.168 0.832
#> SRR2050436 5 0.3283 0.848 0.000 0.028 0 0.140 0.832
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050434 5 0.2813 0.832 0.000 0.000 0 0.168 0.832
#> SRR2050433 2 0.0000 1.000 0.000 1.000 0 0.000 0.000
#> SRR2050432 1 0.0000 0.907 1.000 0.000 0 0.000 0.000
#> SRR2050431 1 0.4171 0.622 0.604 0.000 0 0.000 0.396
#> SRR2050430 5 0.2813 0.790 0.168 0.000 0 0.000 0.832
#> SRR2050429 5 0.0162 0.791 0.004 0.000 0 0.000 0.996
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050427 6 0.000 0.978 0.000 0.000 0 0.00 0.000 1.000
#> SRR2050426 6 0.127 0.944 0.060 0.000 0 0.00 0.000 0.940
#> SRR2050425 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050423 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050422 5 0.000 0.910 0.000 0.000 0 0.00 1.000 0.000
#> SRR2050421 6 0.000 0.978 0.000 0.000 0 0.00 0.000 1.000
#> SRR2050420 6 0.127 0.944 0.060 0.000 0 0.00 0.000 0.940
#> SRR2050419 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050418 1 0.152 0.893 0.932 0.000 0 0.06 0.000 0.008
#> SRR2050417 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050416 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050414 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050413 5 0.000 0.910 0.000 0.000 0 0.00 1.000 0.000
#> SRR2050412 6 0.000 0.978 0.000 0.000 0 0.00 0.000 1.000
#> SRR2050411 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050409 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050408 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050407 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050405 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050404 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050403 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050402 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050401 1 0.329 0.628 0.724 0.000 0 0.00 0.000 0.276
#> SRR2050400 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050399 2 0.260 0.801 0.000 0.824 0 0.00 0.176 0.000
#> SRR2050398 6 0.000 0.978 0.000 0.000 0 0.00 0.000 1.000
#> SRR2050397 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050395 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050394 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050392 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050465 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050463 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050462 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050460 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050459 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050457 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050456 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050454 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050453 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050451 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050450 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050448 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050446 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050445 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050443 4 0.000 1.000 0.000 0.000 0 1.00 0.000 0.000
#> SRR2050442 5 0.000 0.910 0.000 0.000 0 0.00 1.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050440 5 0.263 0.799 0.000 0.000 0 0.18 0.820 0.000
#> SRR2050439 5 0.000 0.910 0.000 0.000 0 0.00 1.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050437 5 0.263 0.799 0.000 0.000 0 0.18 0.820 0.000
#> SRR2050436 5 0.000 0.910 0.000 0.000 0 0.00 1.000 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.000 1 0.00 0.000 0.000
#> SRR2050434 5 0.000 0.910 0.000 0.000 0 0.00 1.000 0.000
#> SRR2050433 2 0.000 0.990 0.000 1.000 0 0.00 0.000 0.000
#> SRR2050432 6 0.000 0.978 0.000 0.000 0 0.00 0.000 1.000
#> SRR2050431 1 0.000 0.954 1.000 0.000 0 0.00 0.000 0.000
#> SRR2050430 5 0.263 0.773 0.000 0.000 0 0.00 0.820 0.180
#> SRR2050429 5 0.270 0.778 0.188 0.000 0 0.00 0.812 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.888 0.902 0.961 0.4095 0.573 0.573
#> 3 3 1.000 0.973 0.989 0.4668 0.670 0.495
#> 4 4 1.000 0.996 0.996 0.1616 0.883 0.715
#> 5 5 0.928 0.918 0.954 0.1398 0.858 0.559
#> 6 6 0.886 0.803 0.863 0.0123 0.942 0.744
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3 4
There is also optional best \(k\) = 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.898 0.000 1.000
#> SRR2050427 1 0.000 0.981 1.000 0.000
#> SRR2050426 1 0.000 0.981 1.000 0.000
#> SRR2050425 2 0.000 0.898 0.000 1.000
#> SRR2050424 1 0.000 0.981 1.000 0.000
#> SRR2050423 1 0.000 0.981 1.000 0.000
#> SRR2050422 1 1.000 -0.195 0.500 0.500
#> SRR2050421 1 0.000 0.981 1.000 0.000
#> SRR2050420 1 0.000 0.981 1.000 0.000
#> SRR2050419 2 0.000 0.898 0.000 1.000
#> SRR2050418 1 0.000 0.981 1.000 0.000
#> SRR2050417 1 0.000 0.981 1.000 0.000
#> SRR2050416 2 0.295 0.870 0.052 0.948
#> SRR2050415 1 0.000 0.981 1.000 0.000
#> SRR2050414 1 0.000 0.981 1.000 0.000
#> SRR2050413 2 0.821 0.688 0.256 0.744
#> SRR2050412 1 0.000 0.981 1.000 0.000
#> SRR2050411 1 0.000 0.981 1.000 0.000
#> SRR2050409 2 0.000 0.898 0.000 1.000
#> SRR2050408 1 0.000 0.981 1.000 0.000
#> SRR2050407 2 0.000 0.898 0.000 1.000
#> SRR2050406 1 0.000 0.981 1.000 0.000
#> SRR2050405 1 0.000 0.981 1.000 0.000
#> SRR2050404 2 0.000 0.898 0.000 1.000
#> SRR2050403 1 0.000 0.981 1.000 0.000
#> SRR2050402 2 0.714 0.758 0.196 0.804
#> SRR2050401 1 0.000 0.981 1.000 0.000
#> SRR2050400 1 0.000 0.981 1.000 0.000
#> SRR2050399 2 0.760 0.733 0.220 0.780
#> SRR2050398 1 0.000 0.981 1.000 0.000
#> SRR2050397 1 0.000 0.981 1.000 0.000
#> SRR2050396 1 0.000 0.981 1.000 0.000
#> SRR2050395 1 0.000 0.981 1.000 0.000
#> SRR2050394 2 0.000 0.898 0.000 1.000
#> SRR2050393 1 0.000 0.981 1.000 0.000
#> SRR2050392 1 0.000 0.981 1.000 0.000
#> SRR2050465 2 0.000 0.898 0.000 1.000
#> SRR2050464 1 0.000 0.981 1.000 0.000
#> SRR2050463 1 0.000 0.981 1.000 0.000
#> SRR2050462 2 0.000 0.898 0.000 1.000
#> SRR2050461 1 0.000 0.981 1.000 0.000
#> SRR2050460 1 0.000 0.981 1.000 0.000
#> SRR2050459 2 0.000 0.898 0.000 1.000
#> SRR2050458 1 0.000 0.981 1.000 0.000
#> SRR2050457 1 0.000 0.981 1.000 0.000
#> SRR2050456 2 0.000 0.898 0.000 1.000
#> SRR2050455 1 0.000 0.981 1.000 0.000
#> SRR2050454 1 0.000 0.981 1.000 0.000
#> SRR2050453 2 0.000 0.898 0.000 1.000
#> SRR2050452 1 0.000 0.981 1.000 0.000
#> SRR2050451 1 0.000 0.981 1.000 0.000
#> SRR2050450 2 0.000 0.898 0.000 1.000
#> SRR2050449 1 0.000 0.981 1.000 0.000
#> SRR2050448 1 0.000 0.981 1.000 0.000
#> SRR2050447 1 0.000 0.981 1.000 0.000
#> SRR2050446 1 0.000 0.981 1.000 0.000
#> SRR2050445 2 0.000 0.898 0.000 1.000
#> SRR2050444 1 0.000 0.981 1.000 0.000
#> SRR2050443 1 0.000 0.981 1.000 0.000
#> SRR2050442 2 0.987 0.356 0.432 0.568
#> SRR2050441 1 0.000 0.981 1.000 0.000
#> SRR2050440 1 0.000 0.981 1.000 0.000
#> SRR2050439 2 0.987 0.356 0.432 0.568
#> SRR2050438 1 0.000 0.981 1.000 0.000
#> SRR2050437 1 0.000 0.981 1.000 0.000
#> SRR2050436 2 0.995 0.276 0.460 0.540
#> SRR2050435 1 0.000 0.981 1.000 0.000
#> SRR2050434 1 0.891 0.467 0.692 0.308
#> SRR2050433 2 0.000 0.898 0.000 1.000
#> SRR2050432 1 0.000 0.981 1.000 0.000
#> SRR2050431 1 0.000 0.981 1.000 0.000
#> SRR2050430 1 0.000 0.981 1.000 0.000
#> SRR2050429 1 0.000 0.981 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050427 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050426 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050425 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050424 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050423 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050422 1 0.129 0.962 0.968 0.032 0.000
#> SRR2050421 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050420 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050419 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050418 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050417 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050415 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050414 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050413 1 0.129 0.962 0.968 0.032 0.000
#> SRR2050412 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050411 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050408 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050406 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050405 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050404 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050403 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050402 1 0.618 0.307 0.584 0.416 0.000
#> SRR2050401 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050400 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050399 1 0.153 0.955 0.960 0.040 0.000
#> SRR2050398 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050397 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050396 3 0.412 0.765 0.168 0.000 0.832
#> SRR2050395 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050394 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050393 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050392 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050465 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050464 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050463 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050462 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050461 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050460 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050459 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050458 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050457 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050456 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050455 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050454 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050453 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050452 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050451 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050450 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050449 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050448 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050447 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050446 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050445 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050444 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050443 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050442 1 0.129 0.962 0.968 0.032 0.000
#> SRR2050441 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050440 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050439 1 0.129 0.962 0.968 0.032 0.000
#> SRR2050438 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050437 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050436 1 0.129 0.962 0.968 0.032 0.000
#> SRR2050435 3 0.000 0.985 0.000 0.000 1.000
#> SRR2050434 1 0.129 0.962 0.968 0.032 0.000
#> SRR2050433 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050432 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050431 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050430 1 0.000 0.984 1.000 0.000 0.000
#> SRR2050429 1 0.000 0.984 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.0336 0.995 0.992 0.000 0.000 0.008
#> SRR2050426 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050425 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050424 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050422 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050421 1 0.0336 0.995 0.992 0.000 0.000 0.008
#> SRR2050420 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050419 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.0188 0.995 0.996 0.000 0.000 0.004
#> SRR2050417 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050416 4 0.1389 0.962 0.000 0.048 0.000 0.952
#> SRR2050415 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050414 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050413 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050412 1 0.0336 0.995 0.992 0.000 0.000 0.008
#> SRR2050411 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050409 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050407 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050405 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050404 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050403 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050402 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050401 1 0.0336 0.995 0.992 0.000 0.000 0.008
#> SRR2050400 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050399 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050398 1 0.0336 0.995 0.992 0.000 0.000 0.008
#> SRR2050397 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050396 3 0.0592 0.977 0.016 0.000 0.984 0.000
#> SRR2050395 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050394 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050392 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050465 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050463 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050462 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050459 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050457 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050456 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050454 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050453 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050451 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050450 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050448 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050447 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050446 1 0.0188 0.995 0.996 0.000 0.000 0.004
#> SRR2050445 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050443 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050442 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050441 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050440 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050439 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050438 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050437 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050436 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050435 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.0469 0.995 0.000 0.012 0.000 0.988
#> SRR2050433 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.0336 0.995 0.992 0.000 0.000 0.008
#> SRR2050431 1 0.0469 0.994 0.988 0.000 0.000 0.012
#> SRR2050430 1 0.0000 0.995 1.000 0.000 0.000 0.000
#> SRR2050429 1 0.0469 0.994 0.988 0.000 0.000 0.012
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050427 1 0.0880 0.956 0.968 0.000 0.00 0.032 0.000
#> SRR2050426 1 0.0162 0.937 0.996 0.000 0.00 0.004 0.000
#> SRR2050425 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050424 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050423 4 0.0162 0.994 0.004 0.000 0.00 0.996 0.000
#> SRR2050422 5 0.0162 0.754 0.000 0.004 0.00 0.000 0.996
#> SRR2050421 1 0.0880 0.956 0.968 0.000 0.00 0.032 0.000
#> SRR2050420 1 0.0162 0.937 0.996 0.000 0.00 0.004 0.000
#> SRR2050419 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050418 1 0.3109 0.773 0.800 0.000 0.00 0.200 0.000
#> SRR2050417 1 0.1121 0.954 0.956 0.000 0.00 0.044 0.000
#> SRR2050416 2 0.2561 0.842 0.000 0.856 0.00 0.000 0.144
#> SRR2050415 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050414 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050413 5 0.2891 0.692 0.000 0.176 0.00 0.000 0.824
#> SRR2050412 1 0.0880 0.956 0.968 0.000 0.00 0.032 0.000
#> SRR2050411 1 0.1121 0.954 0.956 0.000 0.00 0.044 0.000
#> SRR2050409 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050408 1 0.1121 0.954 0.956 0.000 0.00 0.044 0.000
#> SRR2050407 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050406 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050405 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050404 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050403 1 0.1121 0.954 0.956 0.000 0.00 0.044 0.000
#> SRR2050402 2 0.1671 0.912 0.000 0.924 0.00 0.000 0.076
#> SRR2050401 1 0.0880 0.956 0.968 0.000 0.00 0.032 0.000
#> SRR2050400 1 0.0794 0.952 0.972 0.000 0.00 0.028 0.000
#> SRR2050399 2 0.2929 0.796 0.000 0.820 0.00 0.000 0.180
#> SRR2050398 1 0.0880 0.956 0.968 0.000 0.00 0.032 0.000
#> SRR2050397 1 0.1121 0.954 0.956 0.000 0.00 0.044 0.000
#> SRR2050396 3 0.2951 0.824 0.000 0.000 0.86 0.112 0.028
#> SRR2050395 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050394 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050393 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050392 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050465 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050464 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050463 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050462 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050461 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050460 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050459 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050458 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050457 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050456 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050455 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050454 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050453 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050452 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050451 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050450 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050449 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050448 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050447 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050446 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050445 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050444 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050443 4 0.0000 0.999 0.000 0.000 0.00 1.000 0.000
#> SRR2050442 5 0.2424 0.735 0.000 0.132 0.00 0.000 0.868
#> SRR2050441 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050440 5 0.4425 0.359 0.004 0.000 0.00 0.452 0.544
#> SRR2050439 5 0.2074 0.751 0.000 0.104 0.00 0.000 0.896
#> SRR2050438 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050437 5 0.4425 0.359 0.004 0.000 0.00 0.452 0.544
#> SRR2050436 5 0.1121 0.760 0.000 0.044 0.00 0.000 0.956
#> SRR2050435 3 0.0000 0.990 0.000 0.000 1.00 0.000 0.000
#> SRR2050434 5 0.0000 0.753 0.000 0.000 0.00 0.000 1.000
#> SRR2050433 2 0.0000 0.975 0.000 1.000 0.00 0.000 0.000
#> SRR2050432 1 0.0880 0.956 0.968 0.000 0.00 0.032 0.000
#> SRR2050431 1 0.4000 0.687 0.748 0.000 0.00 0.024 0.228
#> SRR2050430 5 0.4425 0.359 0.004 0.000 0.00 0.452 0.544
#> SRR2050429 1 0.1768 0.885 0.924 0.000 0.00 0.004 0.072
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050427 1 0.0000 0.6714 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050426 1 0.2805 0.6165 0.812 0.000 0.000 0.004 0.000 0.184
#> SRR2050425 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.0405 0.8905 0.004 0.000 0.000 0.988 0.000 0.008
#> SRR2050422 5 0.3175 0.8481 0.000 0.256 0.000 0.000 0.744 0.000
#> SRR2050421 1 0.0000 0.6714 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050420 1 0.3383 0.5776 0.728 0.000 0.000 0.004 0.000 0.268
#> SRR2050419 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050418 6 0.5034 0.5768 0.144 0.000 0.000 0.200 0.004 0.652
#> SRR2050417 1 0.3843 0.5541 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR2050416 2 0.1556 0.8478 0.000 0.920 0.000 0.000 0.080 0.000
#> SRR2050415 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050413 5 0.3727 0.7598 0.000 0.388 0.000 0.000 0.612 0.000
#> SRR2050412 1 0.0000 0.6714 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050411 1 0.3843 0.5541 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR2050409 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050408 1 0.3843 0.5541 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR2050407 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.0146 0.8948 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050404 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050403 1 0.3843 0.5541 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR2050402 2 0.1267 0.8711 0.000 0.940 0.000 0.000 0.060 0.000
#> SRR2050401 1 0.0000 0.6714 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050400 6 0.3565 0.6841 0.276 0.000 0.000 0.004 0.004 0.716
#> SRR2050399 2 0.1556 0.8478 0.000 0.920 0.000 0.000 0.080 0.000
#> SRR2050398 1 0.0000 0.6714 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050397 1 0.3843 0.5541 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR2050396 3 0.3795 0.7457 0.000 0.000 0.784 0.076 0.136 0.004
#> SRR2050395 4 0.0291 0.8932 0.004 0.000 0.000 0.992 0.000 0.004
#> SRR2050394 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050465 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050462 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.0260 0.8923 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR2050459 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050456 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.0146 0.8948 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR2050453 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050450 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050447 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050445 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.0000 0.8961 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050442 2 0.3482 0.2653 0.000 0.684 0.000 0.000 0.316 0.000
#> SRR2050441 3 0.0000 0.9773 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 4 0.3857 0.4314 0.000 0.000 0.000 0.532 0.468 0.000
#> SRR2050439 2 0.3672 0.0310 0.000 0.632 0.000 0.000 0.368 0.000
#> SRR2050438 3 0.2178 0.8683 0.000 0.000 0.868 0.000 0.000 0.132
#> SRR2050437 4 0.3857 0.4314 0.000 0.000 0.000 0.532 0.468 0.000
#> SRR2050436 5 0.3531 0.8372 0.000 0.328 0.000 0.000 0.672 0.000
#> SRR2050435 3 0.0146 0.9747 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2050434 5 0.2664 0.7573 0.000 0.184 0.000 0.000 0.816 0.000
#> SRR2050433 2 0.0000 0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050432 1 0.0000 0.6714 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050431 6 0.5272 0.7671 0.276 0.000 0.000 0.004 0.124 0.596
#> SRR2050430 4 0.6077 0.0202 0.000 0.000 0.000 0.400 0.300 0.300
#> SRR2050429 6 0.5272 0.7671 0.276 0.000 0.000 0.004 0.124 0.596
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.860 0.915 0.965 0.4980 0.498 0.498
#> 3 3 1.000 0.970 0.986 0.2967 0.780 0.590
#> 4 4 0.788 0.773 0.872 0.1360 0.916 0.768
#> 5 5 0.889 0.866 0.918 0.0691 0.829 0.499
#> 6 6 0.859 0.780 0.869 0.0248 0.971 0.880
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.970 0.000 1.000
#> SRR2050427 1 0.0000 0.951 1.000 0.000
#> SRR2050426 1 0.0000 0.951 1.000 0.000
#> SRR2050425 2 0.0000 0.970 0.000 1.000
#> SRR2050424 1 0.0000 0.951 1.000 0.000
#> SRR2050423 1 0.0000 0.951 1.000 0.000
#> SRR2050422 2 0.0000 0.970 0.000 1.000
#> SRR2050421 1 0.0000 0.951 1.000 0.000
#> SRR2050420 1 0.0000 0.951 1.000 0.000
#> SRR2050419 2 0.0000 0.970 0.000 1.000
#> SRR2050418 2 0.0376 0.967 0.004 0.996
#> SRR2050417 2 0.0376 0.967 0.004 0.996
#> SRR2050416 2 0.0000 0.970 0.000 1.000
#> SRR2050415 1 0.0000 0.951 1.000 0.000
#> SRR2050414 2 0.0672 0.964 0.008 0.992
#> SRR2050413 2 0.0000 0.970 0.000 1.000
#> SRR2050412 1 0.0000 0.951 1.000 0.000
#> SRR2050411 1 0.9522 0.427 0.628 0.372
#> SRR2050409 2 0.0000 0.970 0.000 1.000
#> SRR2050408 2 0.0376 0.967 0.004 0.996
#> SRR2050407 2 0.0000 0.970 0.000 1.000
#> SRR2050406 1 0.0000 0.951 1.000 0.000
#> SRR2050405 2 0.8443 0.621 0.272 0.728
#> SRR2050404 2 0.0000 0.970 0.000 1.000
#> SRR2050403 2 0.8443 0.621 0.272 0.728
#> SRR2050402 2 0.0000 0.970 0.000 1.000
#> SRR2050401 1 0.0000 0.951 1.000 0.000
#> SRR2050400 2 0.8955 0.538 0.312 0.688
#> SRR2050399 2 0.0000 0.970 0.000 1.000
#> SRR2050398 1 0.0000 0.951 1.000 0.000
#> SRR2050397 1 0.8763 0.590 0.704 0.296
#> SRR2050396 1 0.0000 0.951 1.000 0.000
#> SRR2050395 1 0.5059 0.848 0.888 0.112
#> SRR2050394 2 0.0000 0.970 0.000 1.000
#> SRR2050393 1 0.0000 0.951 1.000 0.000
#> SRR2050392 2 0.0000 0.970 0.000 1.000
#> SRR2050465 2 0.0000 0.970 0.000 1.000
#> SRR2050464 1 0.0000 0.951 1.000 0.000
#> SRR2050463 2 0.0376 0.967 0.004 0.996
#> SRR2050462 2 0.0000 0.970 0.000 1.000
#> SRR2050461 1 0.0000 0.951 1.000 0.000
#> SRR2050460 1 0.9815 0.295 0.580 0.420
#> SRR2050459 2 0.0000 0.970 0.000 1.000
#> SRR2050458 1 0.0000 0.951 1.000 0.000
#> SRR2050457 2 0.0000 0.970 0.000 1.000
#> SRR2050456 2 0.0000 0.970 0.000 1.000
#> SRR2050455 1 0.0000 0.951 1.000 0.000
#> SRR2050454 2 0.0376 0.967 0.004 0.996
#> SRR2050453 2 0.0000 0.970 0.000 1.000
#> SRR2050452 1 0.0000 0.951 1.000 0.000
#> SRR2050451 2 0.0000 0.970 0.000 1.000
#> SRR2050450 2 0.0000 0.970 0.000 1.000
#> SRR2050449 1 0.0000 0.951 1.000 0.000
#> SRR2050448 2 0.0000 0.970 0.000 1.000
#> SRR2050447 1 0.0000 0.951 1.000 0.000
#> SRR2050446 2 0.0000 0.970 0.000 1.000
#> SRR2050445 2 0.0000 0.970 0.000 1.000
#> SRR2050444 1 0.0000 0.951 1.000 0.000
#> SRR2050443 2 0.0000 0.970 0.000 1.000
#> SRR2050442 2 0.0000 0.970 0.000 1.000
#> SRR2050441 1 0.0000 0.951 1.000 0.000
#> SRR2050440 1 0.0000 0.951 1.000 0.000
#> SRR2050439 2 0.0000 0.970 0.000 1.000
#> SRR2050438 1 0.0000 0.951 1.000 0.000
#> SRR2050437 1 0.0000 0.951 1.000 0.000
#> SRR2050436 2 0.0000 0.970 0.000 1.000
#> SRR2050435 1 0.0000 0.951 1.000 0.000
#> SRR2050434 2 0.0000 0.970 0.000 1.000
#> SRR2050433 2 0.0000 0.970 0.000 1.000
#> SRR2050432 1 0.0000 0.951 1.000 0.000
#> SRR2050431 2 0.7219 0.741 0.200 0.800
#> SRR2050430 1 0.8443 0.633 0.728 0.272
#> SRR2050429 1 0.0938 0.941 0.988 0.012
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050427 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050426 1 0.0000 0.972 1.000 0.000 0.000
#> SRR2050425 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050424 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050423 1 0.0592 0.965 0.988 0.000 0.012
#> SRR2050422 2 0.4291 0.781 0.180 0.820 0.000
#> SRR2050421 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050420 1 0.0000 0.972 1.000 0.000 0.000
#> SRR2050419 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050418 1 0.0424 0.969 0.992 0.008 0.000
#> SRR2050417 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050416 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050415 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050414 2 0.1129 0.973 0.020 0.976 0.004
#> SRR2050413 2 0.0424 0.984 0.008 0.992 0.000
#> SRR2050412 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050411 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050409 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050408 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050407 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050406 3 0.0000 0.997 0.000 0.000 1.000
#> SRR2050405 2 0.2261 0.928 0.000 0.932 0.068
#> SRR2050404 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050403 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050402 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050401 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050400 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050399 2 0.0237 0.987 0.004 0.996 0.000
#> SRR2050398 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050397 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050396 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050395 1 0.9663 0.226 0.464 0.280 0.256
#> SRR2050394 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050393 3 0.0000 0.997 0.000 0.000 1.000
#> SRR2050392 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050465 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050464 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050463 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050462 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050461 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050460 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050459 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050458 3 0.0000 0.997 0.000 0.000 1.000
#> SRR2050457 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050456 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050455 3 0.0000 0.997 0.000 0.000 1.000
#> SRR2050454 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050453 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050452 3 0.0000 0.997 0.000 0.000 1.000
#> SRR2050451 2 0.0237 0.987 0.004 0.996 0.000
#> SRR2050450 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050449 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050448 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050447 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050446 2 0.1289 0.964 0.032 0.968 0.000
#> SRR2050445 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050444 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050443 2 0.0237 0.988 0.000 0.996 0.004
#> SRR2050442 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050441 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050440 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050439 2 0.0237 0.987 0.004 0.996 0.000
#> SRR2050438 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050437 1 0.0000 0.972 1.000 0.000 0.000
#> SRR2050436 2 0.0237 0.987 0.004 0.996 0.000
#> SRR2050435 3 0.0237 0.999 0.004 0.000 0.996
#> SRR2050434 2 0.0424 0.984 0.008 0.992 0.000
#> SRR2050433 2 0.0000 0.988 0.000 1.000 0.000
#> SRR2050432 1 0.0237 0.971 0.996 0.000 0.004
#> SRR2050431 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050430 1 0.0237 0.972 0.996 0.004 0.000
#> SRR2050429 1 0.0000 0.972 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.1474 0.7327 0.000 0.948 0.000 0.052
#> SRR2050427 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.3356 0.5972 0.000 0.824 0.000 0.176
#> SRR2050424 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.2011 0.8690 0.920 0.000 0.000 0.080
#> SRR2050422 4 0.4936 0.7226 0.008 0.340 0.000 0.652
#> SRR2050421 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.3764 0.7397 0.000 0.784 0.000 0.216
#> SRR2050418 1 0.0188 0.9238 0.996 0.000 0.000 0.004
#> SRR2050417 1 0.1302 0.9009 0.956 0.000 0.000 0.044
#> SRR2050416 2 0.4134 0.4366 0.000 0.740 0.000 0.260
#> SRR2050415 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050414 2 0.5890 0.6569 0.072 0.660 0.000 0.268
#> SRR2050413 2 0.4941 -0.2048 0.000 0.564 0.000 0.436
#> SRR2050412 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.1022 0.7414 0.000 0.968 0.000 0.032
#> SRR2050408 1 0.0921 0.9093 0.972 0.000 0.000 0.028
#> SRR2050407 2 0.3356 0.7522 0.000 0.824 0.000 0.176
#> SRR2050406 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050405 2 0.4936 0.6645 0.000 0.652 0.008 0.340
#> SRR2050404 2 0.1637 0.7285 0.000 0.940 0.000 0.060
#> SRR2050403 1 0.0336 0.9227 0.992 0.000 0.000 0.008
#> SRR2050402 2 0.2149 0.7071 0.000 0.912 0.000 0.088
#> SRR2050401 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.4072 0.4551 0.000 0.748 0.000 0.252
#> SRR2050398 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050395 1 0.7640 -0.0578 0.432 0.356 0.000 0.212
#> SRR2050394 2 0.0707 0.7510 0.000 0.980 0.000 0.020
#> SRR2050393 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050392 2 0.4331 0.7078 0.000 0.712 0.000 0.288
#> SRR2050465 2 0.1716 0.7261 0.000 0.936 0.000 0.064
#> SRR2050464 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050463 2 0.5131 0.6912 0.028 0.692 0.000 0.280
#> SRR2050462 2 0.1792 0.7235 0.000 0.932 0.000 0.068
#> SRR2050461 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.2081 0.8663 0.916 0.000 0.000 0.084
#> SRR2050459 2 0.2345 0.7600 0.000 0.900 0.000 0.100
#> SRR2050458 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050457 2 0.4193 0.7149 0.000 0.732 0.000 0.268
#> SRR2050456 2 0.3486 0.7495 0.000 0.812 0.000 0.188
#> SRR2050455 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050454 2 0.4431 0.6979 0.000 0.696 0.000 0.304
#> SRR2050453 2 0.0336 0.7499 0.000 0.992 0.000 0.008
#> SRR2050452 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050451 2 0.4149 0.7310 0.028 0.804 0.000 0.168
#> SRR2050450 2 0.0592 0.7479 0.000 0.984 0.000 0.016
#> SRR2050449 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050448 2 0.3123 0.7437 0.000 0.844 0.000 0.156
#> SRR2050447 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050446 2 0.6180 0.4182 0.296 0.624 0.000 0.080
#> SRR2050445 2 0.3528 0.7487 0.000 0.808 0.000 0.192
#> SRR2050444 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050443 2 0.4535 0.7030 0.000 0.704 0.004 0.292
#> SRR2050442 4 0.4697 0.7108 0.000 0.356 0.000 0.644
#> SRR2050441 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050440 4 0.5945 0.3955 0.056 0.004 0.292 0.648
#> SRR2050439 4 0.4697 0.7108 0.000 0.356 0.000 0.644
#> SRR2050438 3 0.2216 0.8937 0.000 0.000 0.908 0.092
#> SRR2050437 4 0.7074 0.6200 0.172 0.116 0.052 0.660
#> SRR2050436 4 0.4643 0.7208 0.000 0.344 0.000 0.656
#> SRR2050435 3 0.0000 0.9935 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.4382 0.7170 0.000 0.296 0.000 0.704
#> SRR2050433 2 0.1867 0.7205 0.000 0.928 0.000 0.072
#> SRR2050432 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 0.9258 1.000 0.000 0.000 0.000
#> SRR2050430 4 0.4877 0.1930 0.408 0.000 0.000 0.592
#> SRR2050429 1 0.4888 0.3072 0.588 0.000 0.000 0.412
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.1544 0.837 0.000 0.932 0.000 0.000 0.068
#> SRR2050427 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> SRR2050426 1 0.0290 0.970 0.992 0.000 0.000 0.008 0.000
#> SRR2050425 2 0.0963 0.827 0.000 0.964 0.000 0.000 0.036
#> SRR2050424 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.0609 0.899 0.020 0.000 0.000 0.980 0.000
#> SRR2050422 2 0.2389 0.785 0.004 0.880 0.000 0.000 0.116
#> SRR2050421 1 0.0451 0.966 0.988 0.000 0.000 0.004 0.008
#> SRR2050420 1 0.0579 0.970 0.984 0.000 0.000 0.008 0.008
#> SRR2050419 2 0.4192 0.427 0.000 0.596 0.000 0.000 0.404
#> SRR2050418 1 0.0162 0.968 0.996 0.004 0.000 0.000 0.000
#> SRR2050417 1 0.2362 0.890 0.900 0.008 0.000 0.084 0.008
#> SRR2050416 2 0.1270 0.819 0.000 0.948 0.000 0.000 0.052
#> SRR2050415 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.1179 0.903 0.004 0.016 0.000 0.964 0.016
#> SRR2050413 2 0.1792 0.805 0.000 0.916 0.000 0.000 0.084
#> SRR2050412 1 0.0162 0.968 0.996 0.000 0.000 0.004 0.000
#> SRR2050411 1 0.0404 0.969 0.988 0.000 0.000 0.012 0.000
#> SRR2050409 2 0.1908 0.831 0.000 0.908 0.000 0.000 0.092
#> SRR2050408 1 0.1732 0.917 0.920 0.000 0.000 0.080 0.000
#> SRR2050407 2 0.3210 0.739 0.000 0.788 0.000 0.000 0.212
#> SRR2050406 3 0.0162 0.993 0.000 0.000 0.996 0.004 0.000
#> SRR2050405 4 0.3367 0.768 0.008 0.008 0.004 0.828 0.152
#> SRR2050404 2 0.1732 0.834 0.000 0.920 0.000 0.000 0.080
#> SRR2050403 1 0.0404 0.969 0.988 0.000 0.000 0.012 0.000
#> SRR2050402 2 0.0162 0.833 0.000 0.996 0.000 0.000 0.004
#> SRR2050401 1 0.0404 0.963 0.988 0.000 0.000 0.012 0.000
#> SRR2050400 1 0.0451 0.970 0.988 0.000 0.000 0.008 0.004
#> SRR2050399 2 0.1270 0.819 0.000 0.948 0.000 0.000 0.052
#> SRR2050398 1 0.0000 0.969 1.000 0.000 0.000 0.000 0.000
#> SRR2050397 1 0.0404 0.969 0.988 0.000 0.000 0.012 0.000
#> SRR2050396 3 0.0404 0.985 0.000 0.000 0.988 0.012 0.000
#> SRR2050395 4 0.2518 0.864 0.016 0.008 0.000 0.896 0.080
#> SRR2050394 2 0.2074 0.827 0.000 0.896 0.000 0.000 0.104
#> SRR2050393 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 5 0.3670 0.819 0.000 0.068 0.000 0.112 0.820
#> SRR2050465 2 0.1270 0.838 0.000 0.948 0.000 0.000 0.052
#> SRR2050464 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.1682 0.900 0.012 0.012 0.000 0.944 0.032
#> SRR2050462 2 0.0963 0.838 0.000 0.964 0.000 0.000 0.036
#> SRR2050461 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.0703 0.898 0.024 0.000 0.000 0.976 0.000
#> SRR2050459 2 0.2377 0.812 0.000 0.872 0.000 0.000 0.128
#> SRR2050458 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 5 0.3497 0.781 0.004 0.112 0.000 0.048 0.836
#> SRR2050456 2 0.4138 0.473 0.000 0.616 0.000 0.000 0.384
#> SRR2050455 3 0.0162 0.993 0.000 0.000 0.996 0.004 0.000
#> SRR2050454 5 0.5219 0.467 0.008 0.032 0.000 0.400 0.560
#> SRR2050453 2 0.2020 0.827 0.000 0.900 0.000 0.000 0.100
#> SRR2050452 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.1787 0.899 0.012 0.016 0.000 0.940 0.032
#> SRR2050450 2 0.2020 0.827 0.000 0.900 0.000 0.000 0.100
#> SRR2050449 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.1869 0.897 0.012 0.016 0.000 0.936 0.036
#> SRR2050447 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.1074 0.903 0.012 0.016 0.000 0.968 0.004
#> SRR2050445 2 0.3612 0.673 0.000 0.732 0.000 0.000 0.268
#> SRR2050444 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 5 0.4546 0.807 0.000 0.056 0.012 0.176 0.756
#> SRR2050442 2 0.2909 0.762 0.000 0.848 0.000 0.012 0.140
#> SRR2050441 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 4 0.2629 0.819 0.012 0.000 0.004 0.880 0.104
#> SRR2050439 2 0.3236 0.746 0.000 0.828 0.000 0.020 0.152
#> SRR2050438 3 0.1306 0.959 0.008 0.000 0.960 0.016 0.016
#> SRR2050437 4 0.2753 0.814 0.012 0.008 0.000 0.876 0.104
#> SRR2050436 2 0.4138 0.693 0.000 0.776 0.000 0.064 0.160
#> SRR2050435 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 2 0.6215 0.210 0.000 0.508 0.000 0.336 0.156
#> SRR2050433 2 0.1121 0.839 0.000 0.956 0.000 0.000 0.044
#> SRR2050432 1 0.0162 0.970 0.996 0.000 0.000 0.004 0.000
#> SRR2050431 1 0.0510 0.968 0.984 0.000 0.000 0.016 0.000
#> SRR2050430 1 0.3758 0.807 0.824 0.008 0.000 0.056 0.112
#> SRR2050429 4 0.2769 0.819 0.032 0.000 0.000 0.876 0.092
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.1349 0.791 0.000 0.940 0.000 0.000 0.004 0.056
#> SRR2050427 1 0.0909 0.932 0.968 0.000 0.000 0.000 0.020 0.012
#> SRR2050426 1 0.0993 0.930 0.964 0.000 0.000 0.000 0.024 0.012
#> SRR2050425 2 0.0935 0.802 0.000 0.964 0.000 0.000 0.032 0.004
#> SRR2050424 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 4 0.3314 0.587 0.004 0.000 0.000 0.740 0.256 0.000
#> SRR2050422 2 0.3483 0.697 0.000 0.764 0.000 0.000 0.212 0.024
#> SRR2050421 1 0.0363 0.936 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR2050420 1 0.0291 0.937 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR2050419 2 0.3695 0.430 0.000 0.624 0.000 0.000 0.000 0.376
#> SRR2050418 1 0.0993 0.930 0.964 0.000 0.000 0.000 0.024 0.012
#> SRR2050417 1 0.2330 0.892 0.908 0.004 0.000 0.040 0.024 0.024
#> SRR2050416 2 0.1616 0.792 0.000 0.932 0.000 0.000 0.048 0.020
#> SRR2050415 3 0.0146 0.977 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2050414 4 0.2823 0.677 0.000 0.000 0.000 0.796 0.204 0.000
#> SRR2050413 2 0.2872 0.748 0.000 0.836 0.000 0.000 0.140 0.024
#> SRR2050412 1 0.0363 0.936 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR2050411 1 0.0405 0.936 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR2050409 2 0.1863 0.769 0.000 0.896 0.000 0.000 0.000 0.104
#> SRR2050408 1 0.3050 0.813 0.832 0.000 0.000 0.028 0.136 0.004
#> SRR2050407 2 0.2562 0.719 0.000 0.828 0.000 0.000 0.000 0.172
#> SRR2050406 3 0.0146 0.978 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2050405 4 0.2871 0.695 0.000 0.000 0.000 0.804 0.192 0.004
#> SRR2050404 2 0.0520 0.800 0.000 0.984 0.000 0.008 0.000 0.008
#> SRR2050403 1 0.0692 0.936 0.976 0.000 0.000 0.000 0.020 0.004
#> SRR2050402 2 0.0935 0.801 0.000 0.964 0.000 0.000 0.032 0.004
#> SRR2050401 1 0.0865 0.925 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR2050400 1 0.1320 0.923 0.948 0.000 0.000 0.000 0.036 0.016
#> SRR2050399 2 0.2748 0.755 0.000 0.848 0.000 0.000 0.128 0.024
#> SRR2050398 1 0.0260 0.936 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR2050397 1 0.0291 0.936 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR2050396 3 0.2377 0.872 0.000 0.000 0.892 0.076 0.024 0.008
#> SRR2050395 4 0.2845 0.714 0.004 0.000 0.000 0.820 0.172 0.004
#> SRR2050394 2 0.4205 0.691 0.000 0.728 0.000 0.000 0.084 0.188
#> SRR2050393 3 0.0458 0.971 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR2050392 6 0.4386 0.589 0.000 0.040 0.000 0.228 0.020 0.712
#> SRR2050465 2 0.0665 0.801 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR2050464 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 4 0.1065 0.791 0.000 0.008 0.000 0.964 0.020 0.008
#> SRR2050462 2 0.0291 0.801 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR2050461 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 4 0.1010 0.791 0.000 0.004 0.000 0.960 0.036 0.000
#> SRR2050459 2 0.0922 0.798 0.000 0.968 0.000 0.004 0.004 0.024
#> SRR2050458 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 6 0.5773 0.630 0.008 0.156 0.000 0.184 0.028 0.624
#> SRR2050456 2 0.3907 0.357 0.000 0.588 0.000 0.000 0.004 0.408
#> SRR2050455 3 0.0146 0.978 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2050454 4 0.1933 0.786 0.004 0.000 0.000 0.920 0.044 0.032
#> SRR2050453 2 0.1707 0.775 0.000 0.928 0.000 0.056 0.004 0.012
#> SRR2050452 3 0.0146 0.978 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2050451 4 0.2394 0.761 0.000 0.032 0.000 0.900 0.048 0.020
#> SRR2050450 2 0.0717 0.799 0.000 0.976 0.000 0.008 0.000 0.016
#> SRR2050449 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 4 0.2672 0.740 0.000 0.048 0.000 0.884 0.048 0.020
#> SRR2050447 3 0.0146 0.977 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2050446 4 0.1364 0.789 0.000 0.020 0.000 0.952 0.016 0.012
#> SRR2050445 2 0.3499 0.537 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR2050444 3 0.0000 0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.3504 0.664 0.000 0.076 0.000 0.832 0.032 0.060
#> SRR2050442 2 0.4370 0.359 0.000 0.536 0.000 0.004 0.444 0.016
#> SRR2050441 3 0.0405 0.973 0.000 0.000 0.988 0.000 0.008 0.004
#> SRR2050440 5 0.4025 0.461 0.008 0.000 0.000 0.416 0.576 0.000
#> SRR2050439 2 0.4174 0.523 0.000 0.628 0.000 0.004 0.352 0.016
#> SRR2050438 3 0.2431 0.850 0.000 0.000 0.860 0.000 0.132 0.008
#> SRR2050437 5 0.4150 0.529 0.012 0.000 0.000 0.372 0.612 0.004
#> SRR2050436 2 0.4471 0.351 0.000 0.532 0.000 0.008 0.444 0.016
#> SRR2050435 3 0.0717 0.966 0.000 0.000 0.976 0.000 0.016 0.008
#> SRR2050434 5 0.5146 0.104 0.000 0.320 0.000 0.068 0.596 0.016
#> SRR2050433 2 0.1367 0.801 0.000 0.944 0.000 0.000 0.044 0.012
#> SRR2050432 1 0.0146 0.937 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2050431 1 0.0993 0.931 0.964 0.000 0.000 0.012 0.024 0.000
#> SRR2050430 1 0.4496 0.243 0.508 0.012 0.000 0.000 0.468 0.012
#> SRR2050429 5 0.4539 0.535 0.048 0.000 0.000 0.304 0.644 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.550 0.748 0.850 0.4554 0.521 0.521
#> 3 3 0.780 0.810 0.911 0.4252 0.812 0.639
#> 4 4 0.881 0.852 0.927 0.1472 0.875 0.644
#> 5 5 0.922 0.817 0.920 0.0578 0.953 0.811
#> 6 6 0.919 0.877 0.916 0.0286 0.960 0.810
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5
There is also optional best \(k\) = 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.9522 0.71350 0.372 0.628
#> SRR2050427 1 0.9522 0.98452 0.628 0.372
#> SRR2050426 1 0.9522 0.98452 0.628 0.372
#> SRR2050425 2 0.9522 0.71350 0.372 0.628
#> SRR2050424 1 0.9522 0.98452 0.628 0.372
#> SRR2050423 2 0.2603 0.60830 0.044 0.956
#> SRR2050422 2 0.0376 0.66159 0.004 0.996
#> SRR2050421 1 0.9522 0.98452 0.628 0.372
#> SRR2050420 1 0.9522 0.98452 0.628 0.372
#> SRR2050419 2 0.9522 0.71350 0.372 0.628
#> SRR2050418 2 0.0000 0.65977 0.000 1.000
#> SRR2050417 2 0.0000 0.65977 0.000 1.000
#> SRR2050416 2 0.9522 0.71350 0.372 0.628
#> SRR2050415 1 0.9522 0.98452 0.628 0.372
#> SRR2050414 2 0.0000 0.65977 0.000 1.000
#> SRR2050413 2 0.1184 0.66470 0.016 0.984
#> SRR2050412 2 0.8763 -0.18624 0.296 0.704
#> SRR2050411 2 0.8144 0.00913 0.252 0.748
#> SRR2050409 2 0.9522 0.71350 0.372 0.628
#> SRR2050408 2 0.0000 0.65977 0.000 1.000
#> SRR2050407 2 0.9522 0.71350 0.372 0.628
#> SRR2050406 1 0.9522 0.98452 0.628 0.372
#> SRR2050405 2 0.0000 0.65977 0.000 1.000
#> SRR2050404 2 0.9522 0.71350 0.372 0.628
#> SRR2050403 2 0.0000 0.65977 0.000 1.000
#> SRR2050402 2 0.9522 0.71350 0.372 0.628
#> SRR2050401 2 0.8763 -0.18624 0.296 0.704
#> SRR2050400 1 0.9954 0.85886 0.540 0.460
#> SRR2050399 2 0.9358 0.71181 0.352 0.648
#> SRR2050398 1 0.9522 0.98452 0.628 0.372
#> SRR2050397 2 0.8144 0.00913 0.252 0.748
#> SRR2050396 1 0.9522 0.98452 0.628 0.372
#> SRR2050395 2 0.2603 0.60830 0.044 0.956
#> SRR2050394 2 0.9522 0.71350 0.372 0.628
#> SRR2050393 1 0.9522 0.98452 0.628 0.372
#> SRR2050392 2 0.0000 0.65977 0.000 1.000
#> SRR2050465 2 0.9522 0.71350 0.372 0.628
#> SRR2050464 1 0.9522 0.98452 0.628 0.372
#> SRR2050463 2 0.2236 0.61869 0.036 0.964
#> SRR2050462 2 0.9522 0.71350 0.372 0.628
#> SRR2050461 1 0.9522 0.98452 0.628 0.372
#> SRR2050460 2 0.2603 0.60830 0.044 0.956
#> SRR2050459 2 0.9522 0.71350 0.372 0.628
#> SRR2050458 1 0.9522 0.98452 0.628 0.372
#> SRR2050457 2 0.0000 0.65977 0.000 1.000
#> SRR2050456 2 0.9522 0.71350 0.372 0.628
#> SRR2050455 1 0.9522 0.98452 0.628 0.372
#> SRR2050454 2 0.0000 0.65977 0.000 1.000
#> SRR2050453 2 0.9522 0.71350 0.372 0.628
#> SRR2050452 1 0.9522 0.98452 0.628 0.372
#> SRR2050451 2 0.2603 0.60830 0.044 0.956
#> SRR2050450 2 0.9522 0.71350 0.372 0.628
#> SRR2050449 1 0.9522 0.98452 0.628 0.372
#> SRR2050448 2 0.2603 0.60830 0.044 0.956
#> SRR2050447 1 0.9522 0.98452 0.628 0.372
#> SRR2050446 2 0.2603 0.60830 0.044 0.956
#> SRR2050445 2 0.9522 0.71350 0.372 0.628
#> SRR2050444 1 0.9522 0.98452 0.628 0.372
#> SRR2050443 2 0.0000 0.65977 0.000 1.000
#> SRR2050442 2 0.9522 0.71350 0.372 0.628
#> SRR2050441 1 0.9522 0.98452 0.628 0.372
#> SRR2050440 1 0.9522 0.98452 0.628 0.372
#> SRR2050439 2 0.9522 0.71350 0.372 0.628
#> SRR2050438 1 0.9522 0.98452 0.628 0.372
#> SRR2050437 1 0.9522 0.98452 0.628 0.372
#> SRR2050436 2 0.0376 0.66159 0.004 0.996
#> SRR2050435 1 0.9522 0.98452 0.628 0.372
#> SRR2050434 2 0.0376 0.66159 0.004 0.996
#> SRR2050433 2 0.9522 0.71350 0.372 0.628
#> SRR2050432 1 0.9522 0.98452 0.628 0.372
#> SRR2050431 1 0.9993 0.81502 0.516 0.484
#> SRR2050430 1 0.9922 0.87865 0.552 0.448
#> SRR2050429 1 0.9552 0.97993 0.624 0.376
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050427 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050426 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050425 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050424 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050423 1 0.1643 0.889 0.956 0.000 0.044
#> SRR2050422 1 0.0237 0.901 0.996 0.004 0.000
#> SRR2050421 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050420 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050419 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050417 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050416 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050415 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050414 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050413 1 0.0747 0.891 0.984 0.016 0.000
#> SRR2050412 1 0.5529 0.480 0.704 0.000 0.296
#> SRR2050411 1 0.5138 0.585 0.748 0.000 0.252
#> SRR2050409 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050407 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050406 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050405 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050404 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050402 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050401 1 0.5529 0.480 0.704 0.000 0.296
#> SRR2050400 3 0.6280 0.384 0.460 0.000 0.540
#> SRR2050399 1 0.5968 0.311 0.636 0.364 0.000
#> SRR2050398 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050397 1 0.5138 0.585 0.748 0.000 0.252
#> SRR2050396 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050395 1 0.1643 0.889 0.956 0.000 0.044
#> SRR2050394 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050393 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050392 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050465 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050464 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050463 1 0.1411 0.892 0.964 0.000 0.036
#> SRR2050462 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050461 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050460 1 0.1643 0.889 0.956 0.000 0.044
#> SRR2050459 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050458 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050457 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050456 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050455 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050454 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050453 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050452 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050451 1 0.1643 0.889 0.956 0.000 0.044
#> SRR2050450 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050449 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050448 1 0.1643 0.889 0.956 0.000 0.044
#> SRR2050447 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050446 1 0.1643 0.889 0.956 0.000 0.044
#> SRR2050445 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050444 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050443 1 0.0000 0.903 1.000 0.000 0.000
#> SRR2050442 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050441 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050440 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050439 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050438 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050437 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050436 1 0.0237 0.901 0.996 0.004 0.000
#> SRR2050435 3 0.0000 0.785 0.000 0.000 1.000
#> SRR2050434 1 0.0237 0.901 0.996 0.004 0.000
#> SRR2050433 2 0.0000 1.000 0.000 1.000 0.000
#> SRR2050432 3 0.6008 0.578 0.372 0.000 0.628
#> SRR2050431 3 0.6305 0.312 0.484 0.000 0.516
#> SRR2050430 3 0.6260 0.416 0.448 0.000 0.552
#> SRR2050429 3 0.6026 0.571 0.376 0.000 0.624
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050426 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050425 2 0.0188 0.997 0.000 0.996 0.000 0.004
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050423 4 0.2216 0.790 0.092 0.000 0.000 0.908
#> SRR2050422 4 0.4454 0.635 0.308 0.000 0.000 0.692
#> SRR2050421 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050420 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050419 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050418 4 0.4543 0.613 0.324 0.000 0.000 0.676
#> SRR2050417 4 0.4522 0.620 0.320 0.000 0.000 0.680
#> SRR2050416 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050414 4 0.0188 0.785 0.004 0.000 0.000 0.996
#> SRR2050413 4 0.4891 0.628 0.308 0.012 0.000 0.680
#> SRR2050412 1 0.4624 0.437 0.660 0.000 0.000 0.340
#> SRR2050411 1 0.4804 0.312 0.616 0.000 0.000 0.384
#> SRR2050409 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050408 4 0.4522 0.620 0.320 0.000 0.000 0.680
#> SRR2050407 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050405 4 0.0188 0.785 0.004 0.000 0.000 0.996
#> SRR2050404 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050403 4 0.4522 0.620 0.320 0.000 0.000 0.680
#> SRR2050402 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050401 1 0.4624 0.437 0.660 0.000 0.000 0.340
#> SRR2050400 1 0.2149 0.801 0.912 0.000 0.000 0.088
#> SRR2050399 4 0.4889 0.467 0.004 0.360 0.000 0.636
#> SRR2050398 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050397 1 0.4804 0.312 0.616 0.000 0.000 0.384
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050395 4 0.2216 0.790 0.092 0.000 0.000 0.908
#> SRR2050394 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050392 4 0.0188 0.785 0.004 0.000 0.000 0.996
#> SRR2050465 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050463 4 0.1940 0.792 0.076 0.000 0.000 0.924
#> SRR2050462 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050460 4 0.2216 0.790 0.092 0.000 0.000 0.908
#> SRR2050459 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050457 4 0.0188 0.785 0.004 0.000 0.000 0.996
#> SRR2050456 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050454 4 0.0188 0.785 0.004 0.000 0.000 0.996
#> SRR2050453 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050451 4 0.2216 0.790 0.092 0.000 0.000 0.908
#> SRR2050450 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050448 4 0.2216 0.790 0.092 0.000 0.000 0.908
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050446 4 0.2216 0.790 0.092 0.000 0.000 0.908
#> SRR2050445 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050443 4 0.0188 0.785 0.004 0.000 0.000 0.996
#> SRR2050442 2 0.0188 0.997 0.000 0.996 0.000 0.004
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050440 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050439 2 0.0188 0.997 0.000 0.996 0.000 0.004
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050437 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050436 4 0.4454 0.635 0.308 0.000 0.000 0.692
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.4454 0.635 0.308 0.000 0.000 0.692
#> SRR2050433 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.0188 0.843 0.996 0.000 0.004 0.000
#> SRR2050431 1 0.2530 0.781 0.888 0.000 0.000 0.112
#> SRR2050430 1 0.1940 0.807 0.924 0.000 0.000 0.076
#> SRR2050429 1 0.0188 0.842 0.996 0.000 0.000 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050427 1 0.0162 0.824 0.996 0.000 0.004 0.000 0.000
#> SRR2050426 1 0.0162 0.824 0.996 0.000 0.004 0.000 0.000
#> SRR2050425 2 0.0162 0.996 0.000 0.996 0.000 0.000 0.004
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 4 0.2588 0.828 0.060 0.000 0.000 0.892 0.048
#> SRR2050422 5 0.0000 0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2050421 1 0.0451 0.825 0.988 0.000 0.004 0.000 0.008
#> SRR2050420 1 0.0451 0.825 0.988 0.000 0.004 0.000 0.008
#> SRR2050419 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050418 4 0.4862 0.452 0.032 0.000 0.000 0.604 0.364
#> SRR2050417 4 0.4787 0.460 0.028 0.000 0.000 0.608 0.364
#> SRR2050416 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.0000 0.818 0.000 0.000 0.000 1.000 0.000
#> SRR2050413 5 0.0404 0.665 0.000 0.012 0.000 0.000 0.988
#> SRR2050412 1 0.6756 -0.194 0.372 0.000 0.000 0.264 0.364
#> SRR2050411 5 0.6811 0.083 0.328 0.000 0.000 0.308 0.364
#> SRR2050409 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050408 4 0.4787 0.460 0.028 0.000 0.000 0.608 0.364
#> SRR2050407 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.0000 0.818 0.000 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050403 4 0.4787 0.460 0.028 0.000 0.000 0.608 0.364
#> SRR2050402 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050401 1 0.6756 -0.194 0.372 0.000 0.000 0.264 0.364
#> SRR2050400 1 0.2136 0.760 0.904 0.000 0.000 0.088 0.008
#> SRR2050399 5 0.4060 0.224 0.000 0.360 0.000 0.000 0.640
#> SRR2050398 1 0.0451 0.825 0.988 0.000 0.004 0.000 0.008
#> SRR2050397 5 0.6811 0.083 0.328 0.000 0.000 0.308 0.364
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.2588 0.828 0.060 0.000 0.000 0.892 0.048
#> SRR2050394 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 4 0.0000 0.818 0.000 0.000 0.000 1.000 0.000
#> SRR2050465 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.2304 0.829 0.044 0.000 0.000 0.908 0.048
#> SRR2050462 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.2588 0.828 0.060 0.000 0.000 0.892 0.048
#> SRR2050459 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.0162 0.815 0.004 0.000 0.000 0.996 0.000
#> SRR2050456 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.0000 0.818 0.000 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.2588 0.828 0.060 0.000 0.000 0.892 0.048
#> SRR2050450 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.2588 0.828 0.060 0.000 0.000 0.892 0.048
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.2588 0.828 0.060 0.000 0.000 0.892 0.048
#> SRR2050445 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.0000 0.818 0.000 0.000 0.000 1.000 0.000
#> SRR2050442 2 0.0162 0.996 0.000 0.996 0.000 0.000 0.004
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 1 0.0162 0.824 0.996 0.000 0.004 0.000 0.000
#> SRR2050439 2 0.0162 0.996 0.000 0.996 0.000 0.000 0.004
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 1 0.0162 0.824 0.996 0.000 0.004 0.000 0.000
#> SRR2050436 5 0.0000 0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 5 0.0000 0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2050433 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000
#> SRR2050432 1 0.0451 0.825 0.988 0.000 0.004 0.000 0.008
#> SRR2050431 1 0.3146 0.713 0.856 0.000 0.000 0.092 0.052
#> SRR2050430 1 0.3942 0.563 0.748 0.000 0.000 0.020 0.232
#> SRR2050429 1 0.0162 0.823 0.996 0.000 0.000 0.004 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050427 1 0.0000 0.874 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.874 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050425 2 0.0458 0.985 0.000 0.984 0 0.000 0.000 0.016
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050423 4 0.0260 0.849 0.008 0.000 0 0.992 0.000 0.000
#> SRR2050422 5 0.0000 0.870 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050421 1 0.0972 0.882 0.964 0.000 0 0.008 0.000 0.028
#> SRR2050420 1 0.0858 0.882 0.968 0.000 0 0.004 0.000 0.028
#> SRR2050419 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050418 6 0.3807 0.590 0.004 0.000 0 0.368 0.000 0.628
#> SRR2050417 6 0.3684 0.586 0.000 0.000 0 0.372 0.000 0.628
#> SRR2050416 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050414 4 0.2631 0.815 0.000 0.000 0 0.820 0.000 0.180
#> SRR2050413 5 0.0458 0.865 0.000 0.000 0 0.000 0.984 0.016
#> SRR2050412 6 0.5492 0.561 0.244 0.000 0 0.192 0.000 0.564
#> SRR2050411 6 0.5501 0.630 0.200 0.000 0 0.236 0.000 0.564
#> SRR2050409 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050408 6 0.3684 0.586 0.000 0.000 0 0.372 0.000 0.628
#> SRR2050407 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050405 4 0.1863 0.839 0.000 0.000 0 0.896 0.000 0.104
#> SRR2050404 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050403 6 0.3684 0.586 0.000 0.000 0 0.372 0.000 0.628
#> SRR2050402 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050401 6 0.5492 0.561 0.244 0.000 0 0.192 0.000 0.564
#> SRR2050400 1 0.3796 0.772 0.776 0.000 0 0.140 0.000 0.084
#> SRR2050399 5 0.4026 0.455 0.000 0.348 0 0.000 0.636 0.016
#> SRR2050398 1 0.0972 0.882 0.964 0.000 0 0.008 0.000 0.028
#> SRR2050397 6 0.5501 0.630 0.200 0.000 0 0.236 0.000 0.564
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050395 4 0.0260 0.849 0.008 0.000 0 0.992 0.000 0.000
#> SRR2050394 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050392 4 0.2631 0.815 0.000 0.000 0 0.820 0.000 0.180
#> SRR2050465 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050463 4 0.1007 0.845 0.000 0.000 0 0.956 0.000 0.044
#> SRR2050462 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050460 4 0.0260 0.849 0.008 0.000 0 0.992 0.000 0.000
#> SRR2050459 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050457 4 0.3797 0.570 0.000 0.000 0 0.580 0.000 0.420
#> SRR2050456 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050454 4 0.2631 0.815 0.000 0.000 0 0.820 0.000 0.180
#> SRR2050453 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050451 4 0.0260 0.849 0.008 0.000 0 0.992 0.000 0.000
#> SRR2050450 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050448 4 0.0260 0.849 0.008 0.000 0 0.992 0.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050446 4 0.0260 0.849 0.008 0.000 0 0.992 0.000 0.000
#> SRR2050445 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050443 4 0.2631 0.815 0.000 0.000 0 0.820 0.000 0.180
#> SRR2050442 2 0.0458 0.985 0.000 0.984 0 0.000 0.000 0.016
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050440 1 0.1713 0.874 0.928 0.000 0 0.028 0.000 0.044
#> SRR2050439 2 0.0458 0.985 0.000 0.984 0 0.000 0.000 0.016
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050437 1 0.1713 0.874 0.928 0.000 0 0.028 0.000 0.044
#> SRR2050436 5 0.0000 0.870 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050434 5 0.0000 0.870 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.997 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050432 1 0.0972 0.882 0.964 0.000 0 0.008 0.000 0.028
#> SRR2050431 1 0.3978 0.702 0.744 0.000 0 0.192 0.000 0.064
#> SRR2050430 1 0.4810 0.477 0.624 0.000 0 0.084 0.000 0.292
#> SRR2050429 1 0.2197 0.862 0.900 0.000 0 0.044 0.000 0.056
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.597 0.804 0.893 0.4778 0.501 0.501
#> 3 3 1.000 0.994 0.997 0.3193 0.615 0.387
#> 4 4 0.817 0.802 0.868 0.1632 0.870 0.650
#> 5 5 0.772 0.804 0.862 0.0685 0.917 0.691
#> 6 6 0.798 0.754 0.822 0.0388 0.970 0.863
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.991 0.784 0.444 0.556
#> SRR2050427 1 0.991 1.000 0.556 0.444
#> SRR2050426 1 0.991 1.000 0.556 0.444
#> SRR2050425 2 0.991 0.784 0.444 0.556
#> SRR2050424 1 0.991 1.000 0.556 0.444
#> SRR2050423 1 0.991 1.000 0.556 0.444
#> SRR2050422 2 0.000 0.512 0.000 1.000
#> SRR2050421 1 0.991 1.000 0.556 0.444
#> SRR2050420 1 0.991 1.000 0.556 0.444
#> SRR2050419 2 0.991 0.784 0.444 0.556
#> SRR2050418 2 0.000 0.512 0.000 1.000
#> SRR2050417 2 0.714 0.680 0.196 0.804
#> SRR2050416 2 0.991 0.784 0.444 0.556
#> SRR2050415 1 0.991 1.000 0.556 0.444
#> SRR2050414 2 0.000 0.512 0.000 1.000
#> SRR2050413 2 0.991 0.784 0.444 0.556
#> SRR2050412 1 0.991 1.000 0.556 0.444
#> SRR2050411 2 0.000 0.512 0.000 1.000
#> SRR2050409 2 0.991 0.784 0.444 0.556
#> SRR2050408 2 0.000 0.512 0.000 1.000
#> SRR2050407 2 0.991 0.784 0.444 0.556
#> SRR2050406 1 0.991 1.000 0.556 0.444
#> SRR2050405 2 0.000 0.512 0.000 1.000
#> SRR2050404 2 0.991 0.784 0.444 0.556
#> SRR2050403 2 0.000 0.512 0.000 1.000
#> SRR2050402 2 0.991 0.784 0.444 0.556
#> SRR2050401 1 0.991 1.000 0.556 0.444
#> SRR2050400 1 0.991 1.000 0.556 0.444
#> SRR2050399 2 0.991 0.784 0.444 0.556
#> SRR2050398 1 0.991 1.000 0.556 0.444
#> SRR2050397 2 0.000 0.512 0.000 1.000
#> SRR2050396 1 0.991 1.000 0.556 0.444
#> SRR2050395 2 0.904 -0.555 0.320 0.680
#> SRR2050394 2 0.991 0.784 0.444 0.556
#> SRR2050393 1 0.991 1.000 0.556 0.444
#> SRR2050392 2 0.991 0.784 0.444 0.556
#> SRR2050465 2 0.991 0.784 0.444 0.556
#> SRR2050464 1 0.991 1.000 0.556 0.444
#> SRR2050463 2 0.000 0.512 0.000 1.000
#> SRR2050462 2 0.991 0.784 0.444 0.556
#> SRR2050461 1 0.991 1.000 0.556 0.444
#> SRR2050460 1 0.991 1.000 0.556 0.444
#> SRR2050459 2 0.991 0.784 0.444 0.556
#> SRR2050458 1 0.991 1.000 0.556 0.444
#> SRR2050457 2 0.000 0.512 0.000 1.000
#> SRR2050456 2 0.991 0.784 0.444 0.556
#> SRR2050455 1 0.991 1.000 0.556 0.444
#> SRR2050454 2 0.634 0.655 0.160 0.840
#> SRR2050453 2 0.991 0.784 0.444 0.556
#> SRR2050452 1 0.991 1.000 0.556 0.444
#> SRR2050451 2 0.000 0.512 0.000 1.000
#> SRR2050450 2 0.991 0.784 0.444 0.556
#> SRR2050449 1 0.991 1.000 0.556 0.444
#> SRR2050448 2 0.000 0.512 0.000 1.000
#> SRR2050447 1 0.991 1.000 0.556 0.444
#> SRR2050446 2 0.000 0.512 0.000 1.000
#> SRR2050445 2 0.991 0.784 0.444 0.556
#> SRR2050444 1 0.991 1.000 0.556 0.444
#> SRR2050443 2 0.000 0.512 0.000 1.000
#> SRR2050442 2 0.991 0.784 0.444 0.556
#> SRR2050441 1 0.991 1.000 0.556 0.444
#> SRR2050440 1 0.991 1.000 0.556 0.444
#> SRR2050439 2 0.991 0.784 0.444 0.556
#> SRR2050438 1 0.991 1.000 0.556 0.444
#> SRR2050437 1 0.991 1.000 0.556 0.444
#> SRR2050436 2 0.808 0.709 0.248 0.752
#> SRR2050435 1 0.991 1.000 0.556 0.444
#> SRR2050434 2 0.921 0.748 0.336 0.664
#> SRR2050433 2 0.991 0.784 0.444 0.556
#> SRR2050432 1 0.991 1.000 0.556 0.444
#> SRR2050431 1 0.991 1.000 0.556 0.444
#> SRR2050430 1 0.991 1.000 0.556 0.444
#> SRR2050429 1 0.991 1.000 0.556 0.444
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050427 1 0.263 0.908 0.916 0.000 0.084
#> SRR2050426 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050425 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050423 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050422 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050421 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050420 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050419 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050418 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050417 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050414 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050413 1 0.348 0.854 0.872 0.128 0.000
#> SRR2050412 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050411 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050408 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050405 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050404 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050403 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050402 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050401 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050400 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050399 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050398 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050397 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050395 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050394 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050392 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050465 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050463 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050462 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050460 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050459 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050457 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050456 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050454 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050453 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050451 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050450 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050448 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050446 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050445 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050443 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050442 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050440 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050439 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050437 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050436 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.000 1.000
#> SRR2050434 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050433 2 0.000 1.000 0.000 1.000 0.000
#> SRR2050432 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050431 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050430 1 0.000 0.994 1.000 0.000 0.000
#> SRR2050429 1 0.000 0.994 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050425 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050424 3 0.1211 0.979 0.000 0.000 0.960 0.040
#> SRR2050423 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050422 4 0.3610 0.726 0.200 0.000 0.000 0.800
#> SRR2050421 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.4955 -0.289 0.556 0.000 0.000 0.444
#> SRR2050417 4 0.4985 0.555 0.468 0.000 0.000 0.532
#> SRR2050416 2 0.3649 0.845 0.000 0.796 0.000 0.204
#> SRR2050415 3 0.1211 0.979 0.000 0.000 0.960 0.040
#> SRR2050414 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050413 4 0.1890 0.616 0.056 0.008 0.000 0.936
#> SRR2050412 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.4877 -0.140 0.592 0.000 0.000 0.408
#> SRR2050409 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.4955 -0.289 0.556 0.000 0.000 0.444
#> SRR2050407 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.0817 0.978 0.000 0.000 0.976 0.024
#> SRR2050405 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050404 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050403 1 0.4730 0.060 0.636 0.000 0.000 0.364
#> SRR2050402 2 0.3726 0.840 0.000 0.788 0.000 0.212
#> SRR2050401 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.4250 0.798 0.000 0.724 0.000 0.276
#> SRR2050398 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.4730 0.060 0.636 0.000 0.000 0.364
#> SRR2050396 3 0.0592 0.980 0.000 0.000 0.984 0.016
#> SRR2050395 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050394 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.0817 0.978 0.000 0.000 0.976 0.024
#> SRR2050392 4 0.2011 0.636 0.080 0.000 0.000 0.920
#> SRR2050465 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.0000 0.982 0.000 0.000 1.000 0.000
#> SRR2050463 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050462 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.1118 0.979 0.000 0.000 0.964 0.036
#> SRR2050460 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050459 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.0592 0.980 0.000 0.000 0.984 0.016
#> SRR2050457 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050456 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.0817 0.978 0.000 0.000 0.976 0.024
#> SRR2050454 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050453 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.0592 0.980 0.000 0.000 0.984 0.016
#> SRR2050451 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050450 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.0000 0.982 0.000 0.000 1.000 0.000
#> SRR2050448 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050447 3 0.1118 0.979 0.000 0.000 0.964 0.036
#> SRR2050446 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050445 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.0469 0.981 0.000 0.000 0.988 0.012
#> SRR2050443 4 0.4643 0.835 0.344 0.000 0.000 0.656
#> SRR2050442 2 0.4103 0.812 0.000 0.744 0.000 0.256
#> SRR2050441 3 0.1211 0.979 0.000 0.000 0.960 0.040
#> SRR2050440 1 0.0707 0.804 0.980 0.000 0.000 0.020
#> SRR2050439 2 0.4164 0.807 0.000 0.736 0.000 0.264
#> SRR2050438 3 0.1211 0.979 0.000 0.000 0.960 0.040
#> SRR2050437 1 0.0707 0.804 0.980 0.000 0.000 0.020
#> SRR2050436 4 0.1716 0.625 0.064 0.000 0.000 0.936
#> SRR2050435 3 0.1211 0.979 0.000 0.000 0.960 0.040
#> SRR2050434 4 0.1716 0.625 0.064 0.000 0.000 0.936
#> SRR2050433 2 0.0000 0.946 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0592 0.805 0.984 0.000 0.000 0.016
#> SRR2050430 1 0.0188 0.813 0.996 0.000 0.000 0.004
#> SRR2050429 1 0.0188 0.813 0.996 0.000 0.000 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0794 0.879 0.028 0.972 0.000 0.000 0.000
#> SRR2050427 1 0.2389 0.931 0.880 0.000 0.004 0.116 0.000
#> SRR2050426 1 0.2280 0.934 0.880 0.000 0.000 0.120 0.000
#> SRR2050425 2 0.2054 0.848 0.052 0.920 0.000 0.000 0.028
#> SRR2050424 3 0.2563 0.925 0.008 0.000 0.872 0.000 0.120
#> SRR2050423 4 0.0510 0.802 0.000 0.000 0.000 0.984 0.016
#> SRR2050422 5 0.4974 0.547 0.032 0.000 0.000 0.408 0.560
#> SRR2050421 1 0.2280 0.934 0.880 0.000 0.000 0.120 0.000
#> SRR2050420 1 0.2280 0.934 0.880 0.000 0.000 0.120 0.000
#> SRR2050419 2 0.0510 0.881 0.016 0.984 0.000 0.000 0.000
#> SRR2050418 4 0.5233 0.611 0.192 0.000 0.000 0.680 0.128
#> SRR2050417 4 0.3921 0.699 0.072 0.000 0.000 0.800 0.128
#> SRR2050416 2 0.4963 0.481 0.040 0.608 0.000 0.000 0.352
#> SRR2050415 3 0.2563 0.925 0.008 0.000 0.872 0.000 0.120
#> SRR2050414 4 0.0000 0.807 0.000 0.000 0.000 1.000 0.000
#> SRR2050413 5 0.4173 0.694 0.012 0.000 0.000 0.300 0.688
#> SRR2050412 1 0.2674 0.929 0.868 0.000 0.000 0.120 0.012
#> SRR2050411 4 0.5295 0.603 0.200 0.000 0.000 0.672 0.128
#> SRR2050409 2 0.0794 0.879 0.028 0.972 0.000 0.000 0.000
#> SRR2050408 4 0.5233 0.611 0.192 0.000 0.000 0.680 0.128
#> SRR2050407 2 0.0510 0.881 0.016 0.984 0.000 0.000 0.000
#> SRR2050406 3 0.1502 0.920 0.004 0.000 0.940 0.000 0.056
#> SRR2050405 4 0.0000 0.807 0.000 0.000 0.000 1.000 0.000
#> SRR2050404 2 0.0290 0.882 0.008 0.992 0.000 0.000 0.000
#> SRR2050403 4 0.5720 0.500 0.268 0.000 0.000 0.604 0.128
#> SRR2050402 2 0.5002 0.487 0.044 0.612 0.000 0.000 0.344
#> SRR2050401 1 0.3888 0.892 0.804 0.000 0.000 0.120 0.076
#> SRR2050400 1 0.4002 0.917 0.796 0.000 0.000 0.120 0.084
#> SRR2050399 5 0.5232 -0.304 0.044 0.456 0.000 0.000 0.500
#> SRR2050398 1 0.2280 0.934 0.880 0.000 0.000 0.120 0.000
#> SRR2050397 4 0.5720 0.500 0.268 0.000 0.000 0.604 0.128
#> SRR2050396 3 0.0162 0.937 0.000 0.000 0.996 0.000 0.004
#> SRR2050395 4 0.0000 0.807 0.000 0.000 0.000 1.000 0.000
#> SRR2050394 2 0.0794 0.879 0.028 0.972 0.000 0.000 0.000
#> SRR2050393 3 0.1502 0.920 0.004 0.000 0.940 0.000 0.056
#> SRR2050392 4 0.1992 0.704 0.032 0.000 0.000 0.924 0.044
#> SRR2050465 2 0.0290 0.882 0.008 0.992 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.0963 0.793 0.000 0.000 0.000 0.964 0.036
#> SRR2050462 2 0.0290 0.882 0.008 0.992 0.000 0.000 0.000
#> SRR2050461 3 0.2358 0.928 0.008 0.000 0.888 0.000 0.104
#> SRR2050460 4 0.1608 0.773 0.000 0.000 0.000 0.928 0.072
#> SRR2050459 2 0.0290 0.882 0.008 0.992 0.000 0.000 0.000
#> SRR2050458 3 0.0963 0.928 0.000 0.000 0.964 0.000 0.036
#> SRR2050457 4 0.0000 0.807 0.000 0.000 0.000 1.000 0.000
#> SRR2050456 2 0.0510 0.881 0.016 0.984 0.000 0.000 0.000
#> SRR2050455 3 0.1502 0.920 0.004 0.000 0.940 0.000 0.056
#> SRR2050454 4 0.0000 0.807 0.000 0.000 0.000 1.000 0.000
#> SRR2050453 2 0.0290 0.882 0.008 0.992 0.000 0.000 0.000
#> SRR2050452 3 0.0162 0.937 0.000 0.000 0.996 0.000 0.004
#> SRR2050451 4 0.1341 0.782 0.000 0.000 0.000 0.944 0.056
#> SRR2050450 2 0.0290 0.882 0.008 0.992 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.938 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.1341 0.782 0.000 0.000 0.000 0.944 0.056
#> SRR2050447 3 0.2358 0.928 0.008 0.000 0.888 0.000 0.104
#> SRR2050446 4 0.1341 0.782 0.000 0.000 0.000 0.944 0.056
#> SRR2050445 2 0.0510 0.881 0.016 0.984 0.000 0.000 0.000
#> SRR2050444 3 0.0162 0.937 0.000 0.000 0.996 0.000 0.004
#> SRR2050443 4 0.0000 0.807 0.000 0.000 0.000 1.000 0.000
#> SRR2050442 2 0.4977 0.474 0.040 0.604 0.000 0.000 0.356
#> SRR2050441 3 0.2563 0.925 0.008 0.000 0.872 0.000 0.120
#> SRR2050440 1 0.4300 0.869 0.772 0.000 0.000 0.096 0.132
#> SRR2050439 2 0.5077 0.398 0.040 0.568 0.000 0.000 0.392
#> SRR2050438 3 0.2563 0.925 0.008 0.000 0.872 0.000 0.120
#> SRR2050437 1 0.4300 0.869 0.772 0.000 0.000 0.096 0.132
#> SRR2050436 5 0.4584 0.699 0.028 0.000 0.000 0.312 0.660
#> SRR2050435 3 0.2563 0.925 0.008 0.000 0.872 0.000 0.120
#> SRR2050434 5 0.4671 0.693 0.028 0.000 0.000 0.332 0.640
#> SRR2050433 2 0.1965 0.851 0.052 0.924 0.000 0.000 0.024
#> SRR2050432 1 0.2280 0.934 0.880 0.000 0.000 0.120 0.000
#> SRR2050431 1 0.4357 0.905 0.768 0.000 0.000 0.128 0.104
#> SRR2050430 1 0.4064 0.894 0.792 0.000 0.000 0.092 0.116
#> SRR2050429 1 0.4496 0.877 0.752 0.000 0.000 0.092 0.156
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.2094 0.890 0.016 0.908 0.000 0.000 0.008 NA
#> SRR2050427 1 0.1296 0.896 0.948 0.000 0.000 0.044 0.004 NA
#> SRR2050426 1 0.1296 0.896 0.948 0.000 0.000 0.044 0.004 NA
#> SRR2050425 2 0.3535 0.635 0.012 0.760 0.000 0.000 0.220 NA
#> SRR2050424 3 0.1718 0.862 0.016 0.000 0.932 0.000 0.044 NA
#> SRR2050423 4 0.1765 0.760 0.000 0.000 0.000 0.924 0.024 NA
#> SRR2050422 5 0.5715 0.404 0.004 0.000 0.000 0.208 0.544 NA
#> SRR2050421 1 0.1007 0.896 0.956 0.000 0.000 0.044 0.000 NA
#> SRR2050420 1 0.1296 0.896 0.948 0.000 0.000 0.044 0.004 NA
#> SRR2050419 2 0.1411 0.896 0.004 0.936 0.000 0.000 0.000 NA
#> SRR2050418 4 0.5888 0.476 0.200 0.000 0.000 0.492 0.004 NA
#> SRR2050417 4 0.4704 0.603 0.060 0.000 0.000 0.632 0.004 NA
#> SRR2050416 5 0.3997 0.213 0.004 0.488 0.000 0.000 0.508 NA
#> SRR2050415 3 0.1718 0.862 0.016 0.000 0.932 0.000 0.044 NA
#> SRR2050414 4 0.0000 0.781 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050413 5 0.4849 0.503 0.000 0.000 0.000 0.148 0.664 NA
#> SRR2050412 1 0.1863 0.881 0.920 0.000 0.000 0.044 0.000 NA
#> SRR2050411 4 0.5898 0.472 0.200 0.000 0.000 0.488 0.004 NA
#> SRR2050409 2 0.2094 0.890 0.016 0.908 0.000 0.000 0.008 NA
#> SRR2050408 4 0.5857 0.480 0.192 0.000 0.000 0.496 0.004 NA
#> SRR2050407 2 0.1411 0.896 0.004 0.936 0.000 0.000 0.000 NA
#> SRR2050406 3 0.3840 0.839 0.000 0.000 0.696 0.000 0.020 NA
#> SRR2050405 4 0.0000 0.781 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050404 2 0.0881 0.897 0.008 0.972 0.000 0.000 0.012 NA
#> SRR2050403 4 0.6053 0.408 0.236 0.000 0.000 0.452 0.004 NA
#> SRR2050402 5 0.4602 0.214 0.004 0.484 0.000 0.000 0.484 NA
#> SRR2050401 1 0.3885 0.744 0.736 0.000 0.000 0.044 0.000 NA
#> SRR2050400 1 0.3710 0.878 0.820 0.000 0.000 0.044 0.060 NA
#> SRR2050399 5 0.4067 0.484 0.000 0.260 0.000 0.000 0.700 NA
#> SRR2050398 1 0.1007 0.896 0.956 0.000 0.000 0.044 0.000 NA
#> SRR2050397 4 0.6053 0.408 0.236 0.000 0.000 0.452 0.004 NA
#> SRR2050396 3 0.2778 0.882 0.000 0.000 0.824 0.000 0.008 NA
#> SRR2050395 4 0.0000 0.781 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050394 2 0.1838 0.892 0.016 0.916 0.000 0.000 0.000 NA
#> SRR2050393 3 0.3950 0.838 0.000 0.000 0.696 0.000 0.028 NA
#> SRR2050392 4 0.0935 0.759 0.000 0.000 0.000 0.964 0.032 NA
#> SRR2050465 2 0.0881 0.897 0.008 0.972 0.000 0.000 0.012 NA
#> SRR2050464 3 0.2416 0.885 0.000 0.000 0.844 0.000 0.000 NA
#> SRR2050463 4 0.1649 0.767 0.000 0.000 0.000 0.932 0.032 NA
#> SRR2050462 2 0.0881 0.897 0.008 0.972 0.000 0.000 0.012 NA
#> SRR2050461 3 0.0603 0.871 0.000 0.000 0.980 0.000 0.016 NA
#> SRR2050460 4 0.2629 0.739 0.000 0.000 0.000 0.872 0.068 NA
#> SRR2050459 2 0.0881 0.897 0.008 0.972 0.000 0.000 0.012 NA
#> SRR2050458 3 0.3231 0.871 0.000 0.000 0.784 0.000 0.016 NA
#> SRR2050457 4 0.1003 0.776 0.000 0.000 0.000 0.964 0.020 NA
#> SRR2050456 2 0.1411 0.896 0.004 0.936 0.000 0.000 0.000 NA
#> SRR2050455 3 0.3840 0.839 0.000 0.000 0.696 0.000 0.020 NA
#> SRR2050454 4 0.0146 0.781 0.000 0.000 0.000 0.996 0.000 NA
#> SRR2050453 2 0.0881 0.897 0.008 0.972 0.000 0.000 0.012 NA
#> SRR2050452 3 0.2814 0.882 0.000 0.000 0.820 0.000 0.008 NA
#> SRR2050451 4 0.1930 0.763 0.000 0.000 0.000 0.916 0.048 NA
#> SRR2050450 2 0.0665 0.898 0.008 0.980 0.000 0.000 0.004 NA
#> SRR2050449 3 0.2416 0.885 0.000 0.000 0.844 0.000 0.000 NA
#> SRR2050448 4 0.1930 0.763 0.000 0.000 0.000 0.916 0.048 NA
#> SRR2050447 3 0.0603 0.871 0.000 0.000 0.980 0.000 0.016 NA
#> SRR2050446 4 0.1930 0.763 0.000 0.000 0.000 0.916 0.048 NA
#> SRR2050445 2 0.1411 0.896 0.004 0.936 0.000 0.000 0.000 NA
#> SRR2050444 3 0.2841 0.884 0.000 0.000 0.824 0.000 0.012 NA
#> SRR2050443 4 0.0000 0.781 0.000 0.000 0.000 1.000 0.000 NA
#> SRR2050442 5 0.3851 0.259 0.000 0.460 0.000 0.000 0.540 NA
#> SRR2050441 3 0.1649 0.863 0.016 0.000 0.936 0.000 0.040 NA
#> SRR2050440 1 0.4775 0.831 0.732 0.000 0.000 0.044 0.104 NA
#> SRR2050439 5 0.3727 0.379 0.000 0.388 0.000 0.000 0.612 NA
#> SRR2050438 3 0.1718 0.862 0.016 0.000 0.932 0.000 0.044 NA
#> SRR2050437 1 0.4775 0.831 0.732 0.000 0.000 0.044 0.104 NA
#> SRR2050436 5 0.5243 0.465 0.004 0.000 0.000 0.164 0.624 NA
#> SRR2050435 3 0.1718 0.862 0.016 0.000 0.932 0.000 0.044 NA
#> SRR2050434 5 0.5461 0.446 0.004 0.000 0.000 0.196 0.592 NA
#> SRR2050433 2 0.3329 0.632 0.004 0.768 0.000 0.000 0.220 NA
#> SRR2050432 1 0.1007 0.896 0.956 0.000 0.000 0.044 0.000 NA
#> SRR2050431 1 0.4606 0.849 0.748 0.000 0.000 0.044 0.100 NA
#> SRR2050430 1 0.4528 0.850 0.752 0.000 0.000 0.040 0.088 NA
#> SRR2050429 1 0.5144 0.815 0.680 0.000 0.000 0.040 0.088 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.929 0.974 0.5071 0.493 0.493
#> 3 3 0.743 0.740 0.823 0.2751 0.750 0.533
#> 4 4 0.983 0.944 0.975 0.1399 0.882 0.664
#> 5 5 0.891 0.889 0.923 0.0483 0.959 0.844
#> 6 6 0.907 0.848 0.909 0.0329 0.971 0.875
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4
There is also optional best \(k\) = 2 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.000 0.9884 0.000 1.000
#> SRR2050427 1 0.000 0.9571 1.000 0.000
#> SRR2050426 1 0.000 0.9571 1.000 0.000
#> SRR2050425 2 0.000 0.9884 0.000 1.000
#> SRR2050424 1 0.000 0.9571 1.000 0.000
#> SRR2050423 1 0.000 0.9571 1.000 0.000
#> SRR2050422 2 0.000 0.9884 0.000 1.000
#> SRR2050421 1 0.000 0.9571 1.000 0.000
#> SRR2050420 1 0.000 0.9571 1.000 0.000
#> SRR2050419 2 0.000 0.9884 0.000 1.000
#> SRR2050418 2 0.000 0.9884 0.000 1.000
#> SRR2050417 2 0.000 0.9884 0.000 1.000
#> SRR2050416 2 0.000 0.9884 0.000 1.000
#> SRR2050415 1 0.000 0.9571 1.000 0.000
#> SRR2050414 2 0.000 0.9884 0.000 1.000
#> SRR2050413 2 0.000 0.9884 0.000 1.000
#> SRR2050412 1 0.000 0.9571 1.000 0.000
#> SRR2050411 2 0.917 0.4657 0.332 0.668
#> SRR2050409 2 0.000 0.9884 0.000 1.000
#> SRR2050408 2 0.000 0.9884 0.000 1.000
#> SRR2050407 2 0.000 0.9884 0.000 1.000
#> SRR2050406 1 0.000 0.9571 1.000 0.000
#> SRR2050405 2 0.000 0.9884 0.000 1.000
#> SRR2050404 2 0.000 0.9884 0.000 1.000
#> SRR2050403 1 0.999 0.0911 0.520 0.480
#> SRR2050402 2 0.000 0.9884 0.000 1.000
#> SRR2050401 1 0.000 0.9571 1.000 0.000
#> SRR2050400 1 0.000 0.9571 1.000 0.000
#> SRR2050399 2 0.000 0.9884 0.000 1.000
#> SRR2050398 1 0.000 0.9571 1.000 0.000
#> SRR2050397 1 0.327 0.9010 0.940 0.060
#> SRR2050396 1 0.000 0.9571 1.000 0.000
#> SRR2050395 1 0.000 0.9571 1.000 0.000
#> SRR2050394 2 0.000 0.9884 0.000 1.000
#> SRR2050393 1 0.000 0.9571 1.000 0.000
#> SRR2050392 2 0.000 0.9884 0.000 1.000
#> SRR2050465 2 0.000 0.9884 0.000 1.000
#> SRR2050464 1 0.000 0.9571 1.000 0.000
#> SRR2050463 2 0.118 0.9742 0.016 0.984
#> SRR2050462 2 0.000 0.9884 0.000 1.000
#> SRR2050461 1 0.000 0.9571 1.000 0.000
#> SRR2050460 1 0.000 0.9571 1.000 0.000
#> SRR2050459 2 0.000 0.9884 0.000 1.000
#> SRR2050458 1 0.000 0.9571 1.000 0.000
#> SRR2050457 1 0.995 0.1711 0.540 0.460
#> SRR2050456 2 0.000 0.9884 0.000 1.000
#> SRR2050455 1 0.000 0.9571 1.000 0.000
#> SRR2050454 2 0.000 0.9884 0.000 1.000
#> SRR2050453 2 0.000 0.9884 0.000 1.000
#> SRR2050452 1 0.000 0.9571 1.000 0.000
#> SRR2050451 1 1.000 0.0307 0.500 0.500
#> SRR2050450 2 0.000 0.9884 0.000 1.000
#> SRR2050449 1 0.000 0.9571 1.000 0.000
#> SRR2050448 2 0.118 0.9742 0.016 0.984
#> SRR2050447 1 0.000 0.9571 1.000 0.000
#> SRR2050446 2 0.118 0.9742 0.016 0.984
#> SRR2050445 2 0.000 0.9884 0.000 1.000
#> SRR2050444 1 0.000 0.9571 1.000 0.000
#> SRR2050443 2 0.000 0.9884 0.000 1.000
#> SRR2050442 2 0.000 0.9884 0.000 1.000
#> SRR2050441 1 0.000 0.9571 1.000 0.000
#> SRR2050440 1 0.000 0.9571 1.000 0.000
#> SRR2050439 2 0.000 0.9884 0.000 1.000
#> SRR2050438 1 0.000 0.9571 1.000 0.000
#> SRR2050437 1 0.000 0.9571 1.000 0.000
#> SRR2050436 2 0.000 0.9884 0.000 1.000
#> SRR2050435 1 0.000 0.9571 1.000 0.000
#> SRR2050434 2 0.000 0.9884 0.000 1.000
#> SRR2050433 2 0.000 0.9884 0.000 1.000
#> SRR2050432 1 0.000 0.9571 1.000 0.000
#> SRR2050431 1 0.000 0.9571 1.000 0.000
#> SRR2050430 1 0.000 0.9571 1.000 0.000
#> SRR2050429 1 0.000 0.9571 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050427 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050426 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050425 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050424 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050423 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050422 1 0.6286 0.2376 0.536 0.464 0.000
#> SRR2050421 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050420 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050419 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050418 1 0.5948 0.4106 0.640 0.360 0.000
#> SRR2050417 1 0.6286 0.2036 0.536 0.464 0.000
#> SRR2050416 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050415 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050414 2 0.6095 0.5152 0.392 0.608 0.000
#> SRR2050413 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050412 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050411 1 0.5948 0.4106 0.640 0.360 0.000
#> SRR2050409 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050408 1 0.5948 0.4106 0.640 0.360 0.000
#> SRR2050407 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050406 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050405 2 0.6095 0.5152 0.392 0.608 0.000
#> SRR2050404 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050403 1 0.6148 0.4166 0.640 0.356 0.004
#> SRR2050402 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050401 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050400 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050399 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050398 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050397 1 0.6931 0.5909 0.640 0.032 0.328
#> SRR2050396 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050395 3 0.6095 0.5065 0.392 0.000 0.608
#> SRR2050394 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050393 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050392 2 0.0237 0.9455 0.004 0.996 0.000
#> SRR2050465 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050464 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050463 1 0.9919 -0.0737 0.392 0.324 0.284
#> SRR2050462 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050461 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050460 3 0.5948 0.5383 0.360 0.000 0.640
#> SRR2050459 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050458 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050457 3 0.6095 0.5065 0.392 0.000 0.608
#> SRR2050456 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050455 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050454 2 0.1411 0.9162 0.036 0.964 0.000
#> SRR2050453 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050452 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050451 3 0.6095 0.5065 0.392 0.000 0.608
#> SRR2050450 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050449 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050448 1 0.9919 -0.0737 0.392 0.324 0.284
#> SRR2050447 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050446 1 0.9919 -0.0737 0.392 0.324 0.284
#> SRR2050445 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050444 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050443 2 0.6095 0.5152 0.392 0.608 0.000
#> SRR2050442 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050441 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050440 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050439 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050438 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050437 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050436 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050435 3 0.0000 0.8981 0.000 0.000 1.000
#> SRR2050434 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.9489 0.000 1.000 0.000
#> SRR2050432 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050431 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050430 1 0.6095 0.6020 0.608 0.000 0.392
#> SRR2050429 1 0.6095 0.6020 0.608 0.000 0.392
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050427 1 0.1716 0.920 0.936 0.000 0.064 0.000
#> SRR2050426 1 0.1716 0.920 0.936 0.000 0.064 0.000
#> SRR2050425 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050424 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050423 3 0.1022 0.967 0.000 0.000 0.968 0.032
#> SRR2050422 2 0.0817 0.961 0.024 0.976 0.000 0.000
#> SRR2050421 1 0.1557 0.924 0.944 0.000 0.056 0.000
#> SRR2050420 1 0.1557 0.924 0.944 0.000 0.056 0.000
#> SRR2050419 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050418 1 0.2973 0.799 0.856 0.144 0.000 0.000
#> SRR2050417 1 0.4643 0.483 0.656 0.344 0.000 0.000
#> SRR2050416 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050415 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050414 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050413 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050412 1 0.1118 0.926 0.964 0.000 0.036 0.000
#> SRR2050411 1 0.0000 0.921 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050408 1 0.2760 0.816 0.872 0.128 0.000 0.000
#> SRR2050407 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050406 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050405 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050404 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050403 1 0.0000 0.921 1.000 0.000 0.000 0.000
#> SRR2050402 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050401 1 0.0000 0.921 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.921 1.000 0.000 0.000 0.000
#> SRR2050399 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050398 1 0.1557 0.924 0.944 0.000 0.056 0.000
#> SRR2050397 1 0.0000 0.921 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050395 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050394 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050393 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050392 2 0.4331 0.571 0.000 0.712 0.000 0.288
#> SRR2050465 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050464 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050463 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050462 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050461 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050460 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050459 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050458 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050457 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050456 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050455 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050454 4 0.4830 0.323 0.000 0.392 0.000 0.608
#> SRR2050453 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050452 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050451 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050450 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050449 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050448 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050447 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050446 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050445 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050444 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050443 4 0.0000 0.953 0.000 0.000 0.000 1.000
#> SRR2050442 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050441 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050440 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050439 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050438 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050437 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050436 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050435 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> SRR2050434 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050433 2 0.0000 0.986 0.000 1.000 0.000 0.000
#> SRR2050432 1 0.1557 0.924 0.944 0.000 0.056 0.000
#> SRR2050431 1 0.1637 0.922 0.940 0.000 0.060 0.000
#> SRR2050430 1 0.1211 0.926 0.960 0.000 0.040 0.000
#> SRR2050429 1 0.0000 0.921 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050427 1 0.0162 0.8374 0.996 0.000 0.004 0.000 0.000
#> SRR2050426 1 0.0162 0.8374 0.996 0.000 0.004 0.000 0.000
#> SRR2050425 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 3 0.2773 0.7998 0.000 0.000 0.836 0.164 0.000
#> SRR2050422 1 0.7646 0.0927 0.372 0.336 0.000 0.052 0.240
#> SRR2050421 1 0.0162 0.8374 0.996 0.000 0.004 0.000 0.000
#> SRR2050420 1 0.0162 0.8374 0.996 0.000 0.004 0.000 0.000
#> SRR2050419 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050418 5 0.4114 0.9442 0.272 0.016 0.000 0.000 0.712
#> SRR2050417 5 0.4411 0.8575 0.196 0.024 0.000 0.024 0.756
#> SRR2050416 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050415 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 4 0.1518 0.8996 0.004 0.004 0.000 0.944 0.048
#> SRR2050413 2 0.2813 0.8417 0.000 0.832 0.000 0.000 0.168
#> SRR2050412 1 0.2338 0.7051 0.884 0.000 0.004 0.000 0.112
#> SRR2050411 5 0.3730 0.9550 0.288 0.000 0.000 0.000 0.712
#> SRR2050409 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050408 5 0.3636 0.9500 0.272 0.000 0.000 0.000 0.728
#> SRR2050407 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.1357 0.9013 0.004 0.000 0.000 0.948 0.048
#> SRR2050404 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050403 5 0.3730 0.9550 0.288 0.000 0.000 0.000 0.712
#> SRR2050402 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050401 1 0.3999 0.0708 0.656 0.000 0.000 0.000 0.344
#> SRR2050400 1 0.0162 0.8349 0.996 0.000 0.000 0.000 0.004
#> SRR2050399 2 0.0162 0.9694 0.000 0.996 0.000 0.000 0.004
#> SRR2050398 1 0.0865 0.8194 0.972 0.000 0.004 0.000 0.024
#> SRR2050397 5 0.3730 0.9550 0.288 0.000 0.000 0.000 0.712
#> SRR2050396 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.1357 0.9013 0.004 0.000 0.000 0.948 0.048
#> SRR2050394 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050392 2 0.2747 0.8727 0.004 0.888 0.000 0.060 0.048
#> SRR2050465 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.1270 0.9099 0.000 0.000 0.000 0.948 0.052
#> SRR2050462 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 4 0.1270 0.9099 0.000 0.000 0.000 0.948 0.052
#> SRR2050459 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.0000 0.9091 0.000 0.000 0.000 1.000 0.000
#> SRR2050456 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.5124 0.4799 0.004 0.320 0.000 0.628 0.048
#> SRR2050453 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.1270 0.9099 0.000 0.000 0.000 0.948 0.052
#> SRR2050450 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.1270 0.9099 0.000 0.000 0.000 0.948 0.052
#> SRR2050447 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 4 0.1270 0.9099 0.000 0.000 0.000 0.948 0.052
#> SRR2050445 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.1357 0.9013 0.004 0.000 0.000 0.948 0.048
#> SRR2050442 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050441 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 3 0.2773 0.8502 0.112 0.000 0.868 0.000 0.020
#> SRR2050439 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050438 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 3 0.3821 0.7177 0.216 0.000 0.764 0.000 0.020
#> SRR2050436 2 0.3994 0.7791 0.040 0.772 0.000 0.000 0.188
#> SRR2050435 3 0.0000 0.9689 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 2 0.3003 0.8231 0.000 0.812 0.000 0.000 0.188
#> SRR2050433 2 0.0000 0.9718 0.000 1.000 0.000 0.000 0.000
#> SRR2050432 1 0.0162 0.8374 0.996 0.000 0.004 0.000 0.000
#> SRR2050431 1 0.0671 0.8279 0.980 0.000 0.004 0.000 0.016
#> SRR2050430 1 0.0771 0.8246 0.976 0.000 0.004 0.000 0.020
#> SRR2050429 1 0.2377 0.7207 0.872 0.000 0.000 0.000 0.128
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050427 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050425 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050424 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050423 3 0.3157 0.8194 0.016 0.000 0.848 0.048 0.088 0.000
#> SRR2050422 5 0.6892 0.2603 0.124 0.004 0.000 0.388 0.392 0.092
#> SRR2050421 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050418 6 0.1714 0.9949 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR2050417 6 0.2002 0.9745 0.076 0.012 0.000 0.004 0.000 0.908
#> SRR2050416 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050415 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050414 4 0.3945 0.6754 0.000 0.008 0.000 0.612 0.380 0.000
#> SRR2050413 2 0.5009 0.4081 0.000 0.536 0.000 0.388 0.000 0.076
#> SRR2050412 1 0.2260 0.8029 0.860 0.000 0.000 0.000 0.000 0.140
#> SRR2050411 6 0.1714 0.9949 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR2050409 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050408 6 0.1714 0.9949 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR2050407 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050406 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050405 4 0.3727 0.6744 0.000 0.000 0.000 0.612 0.388 0.000
#> SRR2050404 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050403 6 0.1714 0.9949 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR2050402 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050401 1 0.3409 0.5304 0.700 0.000 0.000 0.000 0.000 0.300
#> SRR2050400 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050399 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050398 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050397 6 0.1714 0.9949 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR2050396 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050395 4 0.3727 0.6744 0.000 0.000 0.000 0.612 0.388 0.000
#> SRR2050394 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050393 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050392 4 0.3727 0.3570 0.000 0.388 0.000 0.612 0.000 0.000
#> SRR2050465 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050464 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050463 5 0.0000 0.7768 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050462 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050461 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050460 5 0.0000 0.7768 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050459 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050458 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050457 5 0.3515 0.0588 0.000 0.000 0.000 0.324 0.676 0.000
#> SRR2050456 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050455 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050454 4 0.5227 0.5510 0.000 0.188 0.000 0.612 0.200 0.000
#> SRR2050453 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050452 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050451 5 0.0000 0.7768 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050450 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050449 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050448 5 0.0000 0.7768 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050447 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050446 5 0.0000 0.7768 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2050445 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050444 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050443 4 0.3727 0.6744 0.000 0.000 0.000 0.612 0.388 0.000
#> SRR2050442 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050441 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050440 3 0.3071 0.7728 0.180 0.000 0.804 0.000 0.000 0.016
#> SRR2050439 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050438 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050437 3 0.3717 0.6336 0.276 0.000 0.708 0.000 0.000 0.016
#> SRR2050436 2 0.5173 0.3858 0.000 0.520 0.000 0.388 0.000 0.092
#> SRR2050435 3 0.0000 0.9624 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2050434 2 0.5173 0.3858 0.000 0.520 0.000 0.388 0.000 0.092
#> SRR2050433 2 0.0000 0.9312 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2050432 1 0.0000 0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2050431 1 0.0260 0.9401 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2050430 1 0.0458 0.9336 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR2050429 1 0.1327 0.9072 0.936 0.000 0.000 0.000 0.000 0.064
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.965 0.982 0.4057 0.597 0.597
#> 3 3 1.000 0.987 0.994 0.5581 0.674 0.496
#> 4 4 0.938 0.909 0.962 0.1879 0.877 0.670
#> 5 5 1.000 0.968 0.981 0.0582 0.937 0.755
#> 6 6 1.000 0.960 0.987 0.0323 0.968 0.845
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.982 0.000 1.000
#> SRR2050427 1 0.0000 0.980 1.000 0.000
#> SRR2050426 1 0.9491 0.387 0.632 0.368
#> SRR2050425 2 0.0000 0.982 0.000 1.000
#> SRR2050424 1 0.0000 0.980 1.000 0.000
#> SRR2050423 2 0.0938 0.984 0.012 0.988
#> SRR2050422 2 0.0938 0.984 0.012 0.988
#> SRR2050421 2 0.8207 0.672 0.256 0.744
#> SRR2050420 2 0.0938 0.984 0.012 0.988
#> SRR2050419 2 0.0000 0.982 0.000 1.000
#> SRR2050418 2 0.0938 0.984 0.012 0.988
#> SRR2050417 2 0.0938 0.984 0.012 0.988
#> SRR2050416 2 0.0000 0.982 0.000 1.000
#> SRR2050415 1 0.0000 0.980 1.000 0.000
#> SRR2050414 2 0.0938 0.984 0.012 0.988
#> SRR2050413 2 0.0000 0.982 0.000 1.000
#> SRR2050412 2 0.0938 0.984 0.012 0.988
#> SRR2050411 2 0.0938 0.984 0.012 0.988
#> SRR2050409 2 0.0000 0.982 0.000 1.000
#> SRR2050408 2 0.0938 0.984 0.012 0.988
#> SRR2050407 2 0.0000 0.982 0.000 1.000
#> SRR2050406 1 0.0000 0.980 1.000 0.000
#> SRR2050405 2 0.0938 0.984 0.012 0.988
#> SRR2050404 2 0.0000 0.982 0.000 1.000
#> SRR2050403 2 0.0938 0.984 0.012 0.988
#> SRR2050402 2 0.0000 0.982 0.000 1.000
#> SRR2050401 2 0.0938 0.984 0.012 0.988
#> SRR2050400 2 0.0938 0.984 0.012 0.988
#> SRR2050399 2 0.0000 0.982 0.000 1.000
#> SRR2050398 2 0.5946 0.842 0.144 0.856
#> SRR2050397 2 0.0938 0.984 0.012 0.988
#> SRR2050396 1 0.0000 0.980 1.000 0.000
#> SRR2050395 2 0.0938 0.984 0.012 0.988
#> SRR2050394 2 0.0000 0.982 0.000 1.000
#> SRR2050393 1 0.0000 0.980 1.000 0.000
#> SRR2050392 2 0.0938 0.984 0.012 0.988
#> SRR2050465 2 0.0000 0.982 0.000 1.000
#> SRR2050464 1 0.0000 0.980 1.000 0.000
#> SRR2050463 2 0.0938 0.984 0.012 0.988
#> SRR2050462 2 0.0000 0.982 0.000 1.000
#> SRR2050461 1 0.0000 0.980 1.000 0.000
#> SRR2050460 2 0.0938 0.984 0.012 0.988
#> SRR2050459 2 0.0000 0.982 0.000 1.000
#> SRR2050458 1 0.0000 0.980 1.000 0.000
#> SRR2050457 2 0.0938 0.984 0.012 0.988
#> SRR2050456 2 0.0000 0.982 0.000 1.000
#> SRR2050455 1 0.0000 0.980 1.000 0.000
#> SRR2050454 2 0.0938 0.984 0.012 0.988
#> SRR2050453 2 0.0000 0.982 0.000 1.000
#> SRR2050452 1 0.0000 0.980 1.000 0.000
#> SRR2050451 2 0.0938 0.984 0.012 0.988
#> SRR2050450 2 0.0000 0.982 0.000 1.000
#> SRR2050449 1 0.0000 0.980 1.000 0.000
#> SRR2050448 2 0.0938 0.984 0.012 0.988
#> SRR2050447 1 0.0000 0.980 1.000 0.000
#> SRR2050446 2 0.0938 0.984 0.012 0.988
#> SRR2050445 2 0.0000 0.982 0.000 1.000
#> SRR2050444 1 0.0000 0.980 1.000 0.000
#> SRR2050443 2 0.0938 0.984 0.012 0.988
#> SRR2050442 2 0.0000 0.982 0.000 1.000
#> SRR2050441 1 0.0000 0.980 1.000 0.000
#> SRR2050440 1 0.0000 0.980 1.000 0.000
#> SRR2050439 2 0.0000 0.982 0.000 1.000
#> SRR2050438 1 0.0000 0.980 1.000 0.000
#> SRR2050437 1 0.0000 0.980 1.000 0.000
#> SRR2050436 2 0.0938 0.984 0.012 0.988
#> SRR2050435 1 0.0000 0.980 1.000 0.000
#> SRR2050434 2 0.0938 0.984 0.012 0.988
#> SRR2050433 2 0.0000 0.982 0.000 1.000
#> SRR2050432 2 0.6973 0.782 0.188 0.812
#> SRR2050431 2 0.0938 0.984 0.012 0.988
#> SRR2050430 2 0.0938 0.984 0.012 0.988
#> SRR2050429 2 0.0938 0.984 0.012 0.988
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050427 1 0.418 0.799 0.828 0.00 0.172
#> SRR2050426 1 0.341 0.861 0.876 0.00 0.124
#> SRR2050425 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050423 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050422 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050421 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050420 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050419 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050418 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050417 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050416 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050414 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050413 1 0.153 0.951 0.960 0.04 0.000
#> SRR2050412 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050411 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050409 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050408 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050407 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050405 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050404 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050403 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050402 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050401 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050400 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050399 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050398 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050397 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050396 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050395 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050394 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050392 1 0.334 0.864 0.880 0.12 0.000
#> SRR2050465 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050463 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050462 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050460 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050459 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050457 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050456 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050454 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050453 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050451 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050450 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050448 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050446 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050445 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050443 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050442 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050440 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050439 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050437 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050436 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.00 1.000
#> SRR2050434 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050433 2 0.000 1.000 0.000 1.00 0.000
#> SRR2050432 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050431 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050430 1 0.000 0.987 1.000 0.00 0.000
#> SRR2050429 1 0.000 0.987 1.000 0.00 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050427 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050426 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050425 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050423 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050422 4 0.1118 0.900 0.036 0 0 0.964
#> SRR2050421 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050420 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050419 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050418 4 0.4605 0.529 0.336 0 0 0.664
#> SRR2050417 4 0.1022 0.903 0.032 0 0 0.968
#> SRR2050416 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050414 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050413 4 0.1118 0.900 0.036 0 0 0.964
#> SRR2050412 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050411 4 0.4605 0.529 0.336 0 0 0.664
#> SRR2050409 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050408 4 0.4605 0.529 0.336 0 0 0.664
#> SRR2050407 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050405 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050404 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050403 1 0.4790 0.299 0.620 0 0 0.380
#> SRR2050402 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050401 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050400 1 0.2589 0.794 0.884 0 0 0.116
#> SRR2050399 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050398 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050397 4 0.4679 0.496 0.352 0 0 0.648
#> SRR2050396 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050395 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050394 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050392 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050465 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050463 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050462 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050460 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050459 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050457 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050456 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050454 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050453 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050451 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050450 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050448 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050447 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050446 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050445 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050443 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050442 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050440 1 0.4855 0.358 0.600 0 0 0.400
#> SRR2050439 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050437 1 0.4406 0.551 0.700 0 0 0.300
#> SRR2050436 4 0.0921 0.905 0.028 0 0 0.972
#> SRR2050435 3 0.0000 1.000 0.000 0 1 0.000
#> SRR2050434 4 0.0000 0.917 0.000 0 0 1.000
#> SRR2050433 2 0.0000 1.000 0.000 1 0 0.000
#> SRR2050432 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050431 4 0.1792 0.876 0.068 0 0 0.932
#> SRR2050430 1 0.0000 0.893 1.000 0 0 0.000
#> SRR2050429 1 0.0000 0.893 1.000 0 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050427 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050426 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050425 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050424 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050423 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050422 4 0.141 0.946 0.060 0.00 0 0.940 0.000
#> SRR2050421 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050420 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050419 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050418 1 0.141 0.978 0.940 0.00 0 0.000 0.060
#> SRR2050417 1 0.141 0.922 0.940 0.00 0 0.060 0.000
#> SRR2050416 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050415 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050414 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050413 4 0.141 0.946 0.060 0.00 0 0.940 0.000
#> SRR2050412 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050411 1 0.141 0.978 0.940 0.00 0 0.000 0.060
#> SRR2050409 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050408 1 0.141 0.978 0.940 0.00 0 0.000 0.060
#> SRR2050407 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050406 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050405 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050404 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050403 1 0.141 0.978 0.940 0.00 0 0.000 0.060
#> SRR2050402 2 0.141 0.947 0.060 0.94 0 0.000 0.000
#> SRR2050401 1 0.148 0.975 0.936 0.00 0 0.000 0.064
#> SRR2050400 1 0.141 0.978 0.940 0.00 0 0.000 0.060
#> SRR2050399 2 0.141 0.947 0.060 0.94 0 0.000 0.000
#> SRR2050398 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050397 1 0.141 0.978 0.940 0.00 0 0.000 0.060
#> SRR2050396 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050395 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050394 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050393 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050392 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050465 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050464 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050463 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050462 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050461 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050460 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050459 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050458 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050457 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050456 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050455 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050454 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050453 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050452 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050451 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050450 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050449 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050448 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050447 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050446 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050445 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050444 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050443 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050442 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050441 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050440 5 0.426 0.248 0.000 0.00 0 0.436 0.564
#> SRR2050439 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050438 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050437 5 0.141 0.872 0.000 0.00 0 0.060 0.940
#> SRR2050436 4 0.141 0.946 0.060 0.00 0 0.940 0.000
#> SRR2050435 3 0.000 1.000 0.000 0.00 1 0.000 0.000
#> SRR2050434 4 0.000 0.989 0.000 0.00 0 1.000 0.000
#> SRR2050433 2 0.000 0.994 0.000 1.00 0 0.000 0.000
#> SRR2050432 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050431 1 0.173 0.903 0.920 0.00 0 0.080 0.000
#> SRR2050430 5 0.000 0.931 0.000 0.00 0 0.000 1.000
#> SRR2050429 1 0.141 0.978 0.940 0.00 0 0.000 0.060
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050427 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050426 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050425 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050424 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050423 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050422 5 0.0000 0.8435 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050421 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050420 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050419 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050418 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050417 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050416 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050415 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050414 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050413 5 0.0000 0.8435 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050412 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050411 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050409 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050408 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050407 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050405 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050404 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050403 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050402 5 0.3862 0.0916 0.000 0.476 0 0.000 0.524 0.000
#> SRR2050401 1 0.0146 0.9931 0.996 0.000 0 0.000 0.000 0.004
#> SRR2050400 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050399 5 0.0000 0.8435 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050398 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050397 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050396 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050395 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050394 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050393 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050392 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050465 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050464 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050463 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050462 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050461 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050460 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050459 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050458 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050457 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050456 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050454 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050453 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050452 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050451 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050450 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050449 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050448 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050447 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050446 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050445 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050443 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050442 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050441 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050440 6 0.3823 0.2270 0.000 0.000 0 0.436 0.000 0.564
#> SRR2050439 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050438 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050437 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050436 5 0.0000 0.8435 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050435 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050434 4 0.0000 1.0000 0.000 0.000 0 1.000 0.000 0.000
#> SRR2050433 2 0.0000 1.0000 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050432 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050431 1 0.0547 0.9742 0.980 0.000 0 0.020 0.000 0.000
#> SRR2050430 6 0.0000 0.9365 0.000 0.000 0 0.000 0.000 1.000
#> SRR2050429 1 0.0000 0.9966 1.000 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3477 0.653 0.653
#> 3 3 0.733 0.938 0.960 0.8029 0.712 0.559
#> 4 4 0.850 0.936 0.892 0.1763 0.835 0.576
#> 5 5 0.973 0.973 0.980 0.0824 0.949 0.793
#> 6 6 0.926 0.918 0.913 0.0209 0.936 0.718
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5
There is also optional best \(k\) = 2 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0 1 0 1
#> SRR2050427 2 0 1 0 1
#> SRR2050426 2 0 1 0 1
#> SRR2050425 2 0 1 0 1
#> SRR2050424 1 0 1 1 0
#> SRR2050423 2 0 1 0 1
#> SRR2050422 2 0 1 0 1
#> SRR2050421 2 0 1 0 1
#> SRR2050420 2 0 1 0 1
#> SRR2050419 2 0 1 0 1
#> SRR2050418 2 0 1 0 1
#> SRR2050417 2 0 1 0 1
#> SRR2050416 2 0 1 0 1
#> SRR2050415 1 0 1 1 0
#> SRR2050414 2 0 1 0 1
#> SRR2050413 2 0 1 0 1
#> SRR2050412 2 0 1 0 1
#> SRR2050411 2 0 1 0 1
#> SRR2050409 2 0 1 0 1
#> SRR2050408 2 0 1 0 1
#> SRR2050407 2 0 1 0 1
#> SRR2050406 1 0 1 1 0
#> SRR2050405 2 0 1 0 1
#> SRR2050404 2 0 1 0 1
#> SRR2050403 2 0 1 0 1
#> SRR2050402 2 0 1 0 1
#> SRR2050401 2 0 1 0 1
#> SRR2050400 2 0 1 0 1
#> SRR2050399 2 0 1 0 1
#> SRR2050398 2 0 1 0 1
#> SRR2050397 2 0 1 0 1
#> SRR2050396 1 0 1 1 0
#> SRR2050395 2 0 1 0 1
#> SRR2050394 2 0 1 0 1
#> SRR2050393 1 0 1 1 0
#> SRR2050392 2 0 1 0 1
#> SRR2050465 2 0 1 0 1
#> SRR2050464 1 0 1 1 0
#> SRR2050463 2 0 1 0 1
#> SRR2050462 2 0 1 0 1
#> SRR2050461 1 0 1 1 0
#> SRR2050460 2 0 1 0 1
#> SRR2050459 2 0 1 0 1
#> SRR2050458 1 0 1 1 0
#> SRR2050457 2 0 1 0 1
#> SRR2050456 2 0 1 0 1
#> SRR2050455 1 0 1 1 0
#> SRR2050454 2 0 1 0 1
#> SRR2050453 2 0 1 0 1
#> SRR2050452 1 0 1 1 0
#> SRR2050451 2 0 1 0 1
#> SRR2050450 2 0 1 0 1
#> SRR2050449 1 0 1 1 0
#> SRR2050448 2 0 1 0 1
#> SRR2050447 1 0 1 1 0
#> SRR2050446 2 0 1 0 1
#> SRR2050445 2 0 1 0 1
#> SRR2050444 1 0 1 1 0
#> SRR2050443 2 0 1 0 1
#> SRR2050442 2 0 1 0 1
#> SRR2050441 1 0 1 1 0
#> SRR2050440 2 0 1 0 1
#> SRR2050439 2 0 1 0 1
#> SRR2050438 1 0 1 1 0
#> SRR2050437 2 0 1 0 1
#> SRR2050436 2 0 1 0 1
#> SRR2050435 1 0 1 1 0
#> SRR2050434 2 0 1 0 1
#> SRR2050433 2 0 1 0 1
#> SRR2050432 2 0 1 0 1
#> SRR2050431 2 0 1 0 1
#> SRR2050430 2 0 1 0 1
#> SRR2050429 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.947 0.000 1.000 0
#> SRR2050427 1 0.0000 0.935 1.000 0.000 0
#> SRR2050426 1 0.0000 0.935 1.000 0.000 0
#> SRR2050425 2 0.0000 0.947 0.000 1.000 0
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1
#> SRR2050423 1 0.3192 0.932 0.888 0.112 0
#> SRR2050422 1 0.2959 0.932 0.900 0.100 0
#> SRR2050421 1 0.0000 0.935 1.000 0.000 0
#> SRR2050420 1 0.0000 0.935 1.000 0.000 0
#> SRR2050419 2 0.0000 0.947 0.000 1.000 0
#> SRR2050418 1 0.0000 0.935 1.000 0.000 0
#> SRR2050417 1 0.0000 0.935 1.000 0.000 0
#> SRR2050416 2 0.2711 0.893 0.088 0.912 0
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1
#> SRR2050414 1 0.3192 0.932 0.888 0.112 0
#> SRR2050413 2 0.6204 0.223 0.424 0.576 0
#> SRR2050412 1 0.0000 0.935 1.000 0.000 0
#> SRR2050411 1 0.0000 0.935 1.000 0.000 0
#> SRR2050409 2 0.0000 0.947 0.000 1.000 0
#> SRR2050408 1 0.0000 0.935 1.000 0.000 0
#> SRR2050407 2 0.0000 0.947 0.000 1.000 0
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1
#> SRR2050405 1 0.3192 0.932 0.888 0.112 0
#> SRR2050404 2 0.0000 0.947 0.000 1.000 0
#> SRR2050403 1 0.0000 0.935 1.000 0.000 0
#> SRR2050402 2 0.2448 0.904 0.076 0.924 0
#> SRR2050401 1 0.0000 0.935 1.000 0.000 0
#> SRR2050400 1 0.0000 0.935 1.000 0.000 0
#> SRR2050399 2 0.2959 0.885 0.100 0.900 0
#> SRR2050398 1 0.0000 0.935 1.000 0.000 0
#> SRR2050397 1 0.0000 0.935 1.000 0.000 0
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1
#> SRR2050395 1 0.3192 0.932 0.888 0.112 0
#> SRR2050394 2 0.0000 0.947 0.000 1.000 0
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1
#> SRR2050392 1 0.3192 0.932 0.888 0.112 0
#> SRR2050465 2 0.0000 0.947 0.000 1.000 0
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1
#> SRR2050463 1 0.3192 0.932 0.888 0.112 0
#> SRR2050462 2 0.0000 0.947 0.000 1.000 0
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1
#> SRR2050460 1 0.3192 0.932 0.888 0.112 0
#> SRR2050459 2 0.0000 0.947 0.000 1.000 0
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1
#> SRR2050457 1 0.3192 0.932 0.888 0.112 0
#> SRR2050456 2 0.0000 0.947 0.000 1.000 0
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1
#> SRR2050454 1 0.3192 0.932 0.888 0.112 0
#> SRR2050453 2 0.0000 0.947 0.000 1.000 0
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1
#> SRR2050451 1 0.3192 0.932 0.888 0.112 0
#> SRR2050450 2 0.0000 0.947 0.000 1.000 0
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1
#> SRR2050448 1 0.3192 0.932 0.888 0.112 0
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1
#> SRR2050446 1 0.3192 0.932 0.888 0.112 0
#> SRR2050445 2 0.0000 0.947 0.000 1.000 0
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1
#> SRR2050443 1 0.3192 0.932 0.888 0.112 0
#> SRR2050442 2 0.2711 0.893 0.088 0.912 0
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1
#> SRR2050440 1 0.3192 0.932 0.888 0.112 0
#> SRR2050439 2 0.2711 0.893 0.088 0.912 0
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1
#> SRR2050437 1 0.3192 0.932 0.888 0.112 0
#> SRR2050436 1 0.3192 0.932 0.888 0.112 0
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1
#> SRR2050434 1 0.3192 0.932 0.888 0.112 0
#> SRR2050433 2 0.0000 0.947 0.000 1.000 0
#> SRR2050432 1 0.0000 0.935 1.000 0.000 0
#> SRR2050431 1 0.0424 0.935 0.992 0.008 0
#> SRR2050430 1 0.0424 0.935 0.992 0.008 0
#> SRR2050429 1 0.0000 0.935 1.000 0.000 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050427 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050426 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050425 2 0.0188 0.888 0.000 0.996 0 0.004
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050423 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050422 2 0.5244 0.726 0.012 0.600 0 0.388
#> SRR2050421 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050420 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050419 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050418 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050417 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050416 2 0.4605 0.780 0.000 0.664 0 0.336
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050414 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050413 2 0.4643 0.775 0.000 0.656 0 0.344
#> SRR2050412 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050411 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050409 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050408 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050407 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050405 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050404 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050403 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050402 2 0.2647 0.854 0.000 0.880 0 0.120
#> SRR2050401 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050400 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050399 2 0.4605 0.780 0.000 0.664 0 0.336
#> SRR2050398 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050397 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050395 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050394 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050392 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050465 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050463 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050462 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050460 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050459 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050457 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050456 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050454 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050453 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050451 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050450 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050448 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050446 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050445 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050443 4 0.5723 0.972 0.244 0.072 0 0.684
#> SRR2050442 2 0.4605 0.780 0.000 0.664 0 0.336
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050440 4 0.4188 0.899 0.244 0.004 0 0.752
#> SRR2050439 2 0.4605 0.780 0.000 0.664 0 0.336
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050437 4 0.4008 0.895 0.244 0.000 0 0.756
#> SRR2050436 2 0.4855 0.731 0.000 0.600 0 0.400
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR2050434 2 0.4855 0.731 0.000 0.600 0 0.400
#> SRR2050433 2 0.0000 0.889 0.000 1.000 0 0.000
#> SRR2050432 1 0.0000 0.996 1.000 0.000 0 0.000
#> SRR2050431 4 0.4776 0.752 0.376 0.000 0 0.624
#> SRR2050430 1 0.1022 0.952 0.968 0.000 0 0.032
#> SRR2050429 1 0.0336 0.986 0.992 0.000 0 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050427 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050426 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050425 2 0.1410 0.921 0.000 0.940 0 0.000 0.060
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050423 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050422 5 0.0000 0.814 0.000 0.000 0 0.000 1.000
#> SRR2050421 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050420 1 0.0162 0.996 0.996 0.000 0 0.000 0.004
#> SRR2050419 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050418 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050417 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050416 5 0.3612 0.814 0.000 0.268 0 0.000 0.732
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050414 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050413 5 0.0162 0.815 0.000 0.004 0 0.000 0.996
#> SRR2050412 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050411 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050409 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050408 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050407 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050405 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050404 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050403 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050402 5 0.3636 0.809 0.000 0.272 0 0.000 0.728
#> SRR2050401 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050400 1 0.0162 0.996 0.996 0.000 0 0.000 0.004
#> SRR2050399 5 0.3612 0.814 0.000 0.268 0 0.000 0.732
#> SRR2050398 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050397 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050395 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050394 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050392 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050465 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050463 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050462 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050460 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050459 2 0.0404 0.981 0.000 0.988 0 0.000 0.012
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050457 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050456 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050454 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050453 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050451 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050450 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050448 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050446 4 0.0162 0.995 0.000 0.000 0 0.996 0.004
#> SRR2050445 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050443 4 0.0000 0.997 0.000 0.000 0 1.000 0.000
#> SRR2050442 5 0.3612 0.814 0.000 0.268 0 0.000 0.732
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050440 4 0.0290 0.992 0.000 0.000 0 0.992 0.008
#> SRR2050439 5 0.3612 0.814 0.000 0.268 0 0.000 0.732
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050437 4 0.0290 0.992 0.000 0.000 0 0.992 0.008
#> SRR2050436 5 0.0000 0.814 0.000 0.000 0 0.000 1.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR2050434 5 0.0000 0.814 0.000 0.000 0 0.000 1.000
#> SRR2050433 2 0.0000 0.994 0.000 1.000 0 0.000 0.000
#> SRR2050432 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR2050431 4 0.0671 0.980 0.016 0.000 0 0.980 0.004
#> SRR2050430 1 0.0404 0.990 0.988 0.000 0 0.000 0.012
#> SRR2050429 1 0.0290 0.993 0.992 0.000 0 0.000 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050427 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050426 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050425 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050423 4 0.0458 0.896 0.000 0.000 0 0.984 0.000 0.016
#> SRR2050422 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050421 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050420 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050419 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050418 6 0.3515 0.976 0.324 0.000 0 0.000 0.000 0.676
#> SRR2050417 6 0.3515 0.976 0.324 0.000 0 0.000 0.000 0.676
#> SRR2050416 2 0.3695 0.512 0.000 0.624 0 0.000 0.376 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050414 4 0.0937 0.893 0.000 0.000 0 0.960 0.000 0.040
#> SRR2050413 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050412 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050411 6 0.3515 0.976 0.324 0.000 0 0.000 0.000 0.676
#> SRR2050409 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050408 6 0.3515 0.976 0.324 0.000 0 0.000 0.000 0.676
#> SRR2050407 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050405 4 0.1501 0.887 0.000 0.000 0 0.924 0.000 0.076
#> SRR2050404 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050403 6 0.3531 0.972 0.328 0.000 0 0.000 0.000 0.672
#> SRR2050402 2 0.2092 0.815 0.000 0.876 0 0.000 0.124 0.000
#> SRR2050401 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050400 6 0.3515 0.976 0.324 0.000 0 0.000 0.000 0.676
#> SRR2050399 2 0.3695 0.512 0.000 0.624 0 0.000 0.376 0.000
#> SRR2050398 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050397 6 0.3515 0.976 0.324 0.000 0 0.000 0.000 0.676
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050395 4 0.1501 0.887 0.000 0.000 0 0.924 0.000 0.076
#> SRR2050394 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050392 4 0.1387 0.890 0.000 0.000 0 0.932 0.000 0.068
#> SRR2050465 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050463 4 0.0937 0.893 0.000 0.000 0 0.960 0.000 0.040
#> SRR2050462 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050460 4 0.2664 0.850 0.000 0.000 0 0.816 0.000 0.184
#> SRR2050459 2 0.0260 0.902 0.000 0.992 0 0.000 0.008 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050457 4 0.1501 0.887 0.000 0.000 0 0.924 0.000 0.076
#> SRR2050456 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050454 4 0.1387 0.890 0.000 0.000 0 0.932 0.000 0.068
#> SRR2050453 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050451 4 0.1327 0.890 0.000 0.000 0 0.936 0.000 0.064
#> SRR2050450 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050448 4 0.1556 0.887 0.000 0.000 0 0.920 0.000 0.080
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050446 4 0.3470 0.834 0.000 0.000 0 0.796 0.052 0.152
#> SRR2050445 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050443 4 0.1387 0.890 0.000 0.000 0 0.932 0.000 0.068
#> SRR2050442 2 0.3684 0.518 0.000 0.628 0 0.000 0.372 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050440 4 0.4095 0.794 0.000 0.000 0 0.728 0.064 0.208
#> SRR2050439 2 0.3695 0.512 0.000 0.624 0 0.000 0.376 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050437 4 0.4095 0.794 0.000 0.000 0 0.728 0.064 0.208
#> SRR2050436 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR2050434 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR2050433 2 0.0000 0.907 0.000 1.000 0 0.000 0.000 0.000
#> SRR2050432 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR2050431 4 0.4008 0.802 0.000 0.000 0 0.740 0.064 0.196
#> SRR2050430 6 0.4414 0.888 0.260 0.000 0 0.000 0.064 0.676
#> SRR2050429 6 0.4098 0.939 0.292 0.000 0 0.000 0.032 0.676
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15040 rows and 73 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.971 0.955 0.980 0.4517 0.543 0.543
#> 3 3 0.997 0.980 0.990 0.4277 0.716 0.520
#> 4 4 0.793 0.809 0.887 0.1507 0.848 0.594
#> 5 5 0.818 0.736 0.867 0.0590 0.853 0.507
#> 6 6 0.894 0.838 0.908 0.0212 0.960 0.825
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR2050410 2 0.0000 0.989 0.000 1.000
#> SRR2050427 1 0.0000 0.960 1.000 0.000
#> SRR2050426 1 0.6531 0.799 0.832 0.168
#> SRR2050425 2 0.0000 0.989 0.000 1.000
#> SRR2050424 1 0.0000 0.960 1.000 0.000
#> SRR2050423 2 0.6343 0.798 0.160 0.840
#> SRR2050422 2 0.0000 0.989 0.000 1.000
#> SRR2050421 1 0.0938 0.954 0.988 0.012
#> SRR2050420 1 0.9358 0.488 0.648 0.352
#> SRR2050419 2 0.0000 0.989 0.000 1.000
#> SRR2050418 2 0.0000 0.989 0.000 1.000
#> SRR2050417 2 0.0000 0.989 0.000 1.000
#> SRR2050416 2 0.0000 0.989 0.000 1.000
#> SRR2050415 1 0.0000 0.960 1.000 0.000
#> SRR2050414 2 0.0000 0.989 0.000 1.000
#> SRR2050413 2 0.0000 0.989 0.000 1.000
#> SRR2050412 1 0.9000 0.565 0.684 0.316
#> SRR2050411 2 0.0000 0.989 0.000 1.000
#> SRR2050409 2 0.0000 0.989 0.000 1.000
#> SRR2050408 2 0.0000 0.989 0.000 1.000
#> SRR2050407 2 0.0000 0.989 0.000 1.000
#> SRR2050406 1 0.0000 0.960 1.000 0.000
#> SRR2050405 2 0.0000 0.989 0.000 1.000
#> SRR2050404 2 0.0000 0.989 0.000 1.000
#> SRR2050403 2 0.0000 0.989 0.000 1.000
#> SRR2050402 2 0.0000 0.989 0.000 1.000
#> SRR2050401 2 0.8861 0.539 0.304 0.696
#> SRR2050400 2 0.0000 0.989 0.000 1.000
#> SRR2050399 2 0.0000 0.989 0.000 1.000
#> SRR2050398 1 0.0938 0.954 0.988 0.012
#> SRR2050397 2 0.0000 0.989 0.000 1.000
#> SRR2050396 1 0.0000 0.960 1.000 0.000
#> SRR2050395 2 0.0000 0.989 0.000 1.000
#> SRR2050394 2 0.0000 0.989 0.000 1.000
#> SRR2050393 1 0.0000 0.960 1.000 0.000
#> SRR2050392 2 0.0000 0.989 0.000 1.000
#> SRR2050465 2 0.0000 0.989 0.000 1.000
#> SRR2050464 1 0.0000 0.960 1.000 0.000
#> SRR2050463 2 0.0000 0.989 0.000 1.000
#> SRR2050462 2 0.0000 0.989 0.000 1.000
#> SRR2050461 1 0.0000 0.960 1.000 0.000
#> SRR2050460 2 0.0000 0.989 0.000 1.000
#> SRR2050459 2 0.0000 0.989 0.000 1.000
#> SRR2050458 1 0.0000 0.960 1.000 0.000
#> SRR2050457 2 0.0000 0.989 0.000 1.000
#> SRR2050456 2 0.0000 0.989 0.000 1.000
#> SRR2050455 1 0.0000 0.960 1.000 0.000
#> SRR2050454 2 0.0000 0.989 0.000 1.000
#> SRR2050453 2 0.0000 0.989 0.000 1.000
#> SRR2050452 1 0.0000 0.960 1.000 0.000
#> SRR2050451 2 0.0000 0.989 0.000 1.000
#> SRR2050450 2 0.0000 0.989 0.000 1.000
#> SRR2050449 1 0.0000 0.960 1.000 0.000
#> SRR2050448 2 0.0000 0.989 0.000 1.000
#> SRR2050447 1 0.0000 0.960 1.000 0.000
#> SRR2050446 2 0.0000 0.989 0.000 1.000
#> SRR2050445 2 0.0000 0.989 0.000 1.000
#> SRR2050444 1 0.0000 0.960 1.000 0.000
#> SRR2050443 2 0.0000 0.989 0.000 1.000
#> SRR2050442 2 0.0000 0.989 0.000 1.000
#> SRR2050441 1 0.0000 0.960 1.000 0.000
#> SRR2050440 1 0.1633 0.946 0.976 0.024
#> SRR2050439 2 0.0000 0.989 0.000 1.000
#> SRR2050438 1 0.0000 0.960 1.000 0.000
#> SRR2050437 1 0.2603 0.930 0.956 0.044
#> SRR2050436 2 0.0000 0.989 0.000 1.000
#> SRR2050435 1 0.0000 0.960 1.000 0.000
#> SRR2050434 2 0.0000 0.989 0.000 1.000
#> SRR2050433 2 0.0000 0.989 0.000 1.000
#> SRR2050432 1 0.0938 0.954 0.988 0.012
#> SRR2050431 2 0.0000 0.989 0.000 1.000
#> SRR2050430 2 0.0938 0.978 0.012 0.988
#> SRR2050429 2 0.1184 0.974 0.016 0.984
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR2050410 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050427 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050426 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050425 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050424 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050423 1 0.3644 0.848 0.872 0.124 0.004
#> SRR2050422 1 0.1860 0.937 0.948 0.052 0.000
#> SRR2050421 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050420 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050419 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050418 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050417 1 0.1643 0.945 0.956 0.044 0.000
#> SRR2050416 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050415 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050414 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050413 2 0.2625 0.922 0.084 0.916 0.000
#> SRR2050412 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050411 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050409 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050408 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050407 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050406 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050405 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050404 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050403 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050402 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050401 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050400 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050399 2 0.0892 0.973 0.020 0.980 0.000
#> SRR2050398 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050397 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050396 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050395 2 0.0237 0.983 0.004 0.996 0.000
#> SRR2050394 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050393 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050392 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050465 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050464 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050463 2 0.0424 0.981 0.008 0.992 0.000
#> SRR2050462 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050461 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050460 1 0.0424 0.979 0.992 0.008 0.000
#> SRR2050459 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050458 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050457 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050456 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050455 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050454 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050453 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050452 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050451 2 0.2165 0.940 0.064 0.936 0.000
#> SRR2050450 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050449 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050448 2 0.2066 0.943 0.060 0.940 0.000
#> SRR2050447 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050446 2 0.2711 0.918 0.088 0.912 0.000
#> SRR2050445 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050444 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050443 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050442 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050441 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050440 1 0.1643 0.945 0.956 0.000 0.044
#> SRR2050439 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050438 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050437 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050436 2 0.2711 0.918 0.088 0.912 0.000
#> SRR2050435 3 0.0000 1.000 0.000 0.000 1.000
#> SRR2050434 2 0.1964 0.946 0.056 0.944 0.000
#> SRR2050433 2 0.0000 0.985 0.000 1.000 0.000
#> SRR2050432 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050431 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050430 1 0.0000 0.985 1.000 0.000 0.000
#> SRR2050429 1 0.0000 0.985 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR2050410 4 0.4730 0.5934 0.000 0.364 0.000 0.636
#> SRR2050427 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050426 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050425 4 0.3942 0.7287 0.000 0.236 0.000 0.764
#> SRR2050424 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050423 1 0.7396 0.4047 0.516 0.000 0.216 0.268
#> SRR2050422 4 0.0469 0.7091 0.012 0.000 0.000 0.988
#> SRR2050421 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050419 2 0.0707 0.8178 0.000 0.980 0.000 0.020
#> SRR2050418 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050417 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050416 4 0.3610 0.7360 0.000 0.200 0.000 0.800
#> SRR2050415 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050414 4 0.4477 0.6769 0.000 0.312 0.000 0.688
#> SRR2050413 4 0.0188 0.7179 0.000 0.004 0.000 0.996
#> SRR2050412 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050411 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050409 2 0.4955 0.0375 0.000 0.556 0.000 0.444
#> SRR2050408 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050407 2 0.0921 0.8181 0.000 0.972 0.000 0.028
#> SRR2050406 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050405 2 0.0000 0.8128 0.000 1.000 0.000 0.000
#> SRR2050404 2 0.4477 0.5077 0.000 0.688 0.000 0.312
#> SRR2050403 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050402 4 0.4222 0.7114 0.000 0.272 0.000 0.728
#> SRR2050401 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050400 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050399 4 0.3907 0.7302 0.000 0.232 0.000 0.768
#> SRR2050398 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050397 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050396 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050395 2 0.0336 0.8106 0.008 0.992 0.000 0.000
#> SRR2050394 2 0.3266 0.7370 0.000 0.832 0.000 0.168
#> SRR2050393 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050392 2 0.0000 0.8128 0.000 1.000 0.000 0.000
#> SRR2050465 4 0.4790 0.5622 0.000 0.380 0.000 0.620
#> SRR2050464 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050463 4 0.4624 0.6393 0.000 0.340 0.000 0.660
#> SRR2050462 2 0.4830 0.2649 0.000 0.608 0.000 0.392
#> SRR2050461 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050460 1 0.3975 0.7039 0.760 0.000 0.000 0.240
#> SRR2050459 2 0.3975 0.6521 0.000 0.760 0.000 0.240
#> SRR2050458 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050457 2 0.0707 0.8060 0.020 0.980 0.000 0.000
#> SRR2050456 2 0.0921 0.8181 0.000 0.972 0.000 0.028
#> SRR2050455 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050454 2 0.0000 0.8128 0.000 1.000 0.000 0.000
#> SRR2050453 2 0.3726 0.6941 0.000 0.788 0.000 0.212
#> SRR2050452 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050451 4 0.4500 0.6724 0.000 0.316 0.000 0.684
#> SRR2050450 2 0.3649 0.7034 0.000 0.796 0.000 0.204
#> SRR2050449 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050448 4 0.4304 0.7027 0.000 0.284 0.000 0.716
#> SRR2050447 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050446 4 0.6127 0.6617 0.108 0.228 0.000 0.664
#> SRR2050445 2 0.1022 0.8171 0.000 0.968 0.000 0.032
#> SRR2050444 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050443 2 0.0000 0.8128 0.000 1.000 0.000 0.000
#> SRR2050442 4 0.0817 0.7227 0.000 0.024 0.000 0.976
#> SRR2050441 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050440 4 0.3975 0.4996 0.000 0.000 0.240 0.760
#> SRR2050439 4 0.0000 0.7162 0.000 0.000 0.000 1.000
#> SRR2050438 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050437 4 0.0376 0.7113 0.004 0.000 0.004 0.992
#> SRR2050436 4 0.0000 0.7162 0.000 0.000 0.000 1.000
#> SRR2050435 3 0.0000 1.0000 0.000 0.000 1.000 0.000
#> SRR2050434 4 0.0000 0.7162 0.000 0.000 0.000 1.000
#> SRR2050433 4 0.4776 0.5724 0.000 0.376 0.000 0.624
#> SRR2050432 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050431 1 0.0000 0.9450 1.000 0.000 0.000 0.000
#> SRR2050430 1 0.3688 0.7934 0.792 0.000 0.000 0.208
#> SRR2050429 1 0.3764 0.7861 0.784 0.000 0.000 0.216
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR2050410 2 0.2798 0.7928 0.000 0.852 0.000 0.008 0.140
#> SRR2050427 1 0.0566 0.9491 0.984 0.000 0.000 0.004 0.012
#> SRR2050426 1 0.1403 0.9258 0.952 0.000 0.000 0.024 0.024
#> SRR2050425 2 0.2929 0.7704 0.000 0.820 0.000 0.000 0.180
#> SRR2050424 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050423 5 0.6441 0.2600 0.052 0.008 0.056 0.312 0.572
#> SRR2050422 2 0.5146 0.3317 0.020 0.536 0.000 0.012 0.432
#> SRR2050421 1 0.0000 0.9538 1.000 0.000 0.000 0.000 0.000
#> SRR2050420 1 0.0000 0.9538 1.000 0.000 0.000 0.000 0.000
#> SRR2050419 2 0.2068 0.7367 0.000 0.904 0.000 0.092 0.004
#> SRR2050418 1 0.0798 0.9454 0.976 0.000 0.000 0.008 0.016
#> SRR2050417 1 0.0613 0.9507 0.984 0.004 0.000 0.008 0.004
#> SRR2050416 2 0.3586 0.6991 0.000 0.736 0.000 0.000 0.264
#> SRR2050415 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050414 5 0.5328 0.2537 0.000 0.064 0.000 0.352 0.584
#> SRR2050413 2 0.3838 0.6712 0.000 0.716 0.000 0.004 0.280
#> SRR2050412 1 0.0290 0.9517 0.992 0.000 0.000 0.000 0.008
#> SRR2050411 1 0.0162 0.9533 0.996 0.000 0.000 0.000 0.004
#> SRR2050409 2 0.1877 0.8052 0.000 0.924 0.000 0.012 0.064
#> SRR2050408 1 0.1410 0.9114 0.940 0.000 0.000 0.000 0.060
#> SRR2050407 2 0.1638 0.7573 0.000 0.932 0.000 0.064 0.004
#> SRR2050406 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050405 4 0.2149 0.6378 0.000 0.048 0.000 0.916 0.036
#> SRR2050404 2 0.1357 0.8047 0.000 0.948 0.000 0.004 0.048
#> SRR2050403 1 0.0162 0.9533 0.996 0.000 0.000 0.000 0.004
#> SRR2050402 2 0.3123 0.7801 0.000 0.828 0.000 0.012 0.160
#> SRR2050401 1 0.0404 0.9499 0.988 0.000 0.000 0.000 0.012
#> SRR2050400 1 0.0798 0.9453 0.976 0.000 0.000 0.016 0.008
#> SRR2050399 2 0.3715 0.6955 0.000 0.736 0.000 0.004 0.260
#> SRR2050398 1 0.0000 0.9538 1.000 0.000 0.000 0.000 0.000
#> SRR2050397 1 0.0162 0.9533 0.996 0.000 0.000 0.000 0.004
#> SRR2050396 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050395 4 0.1872 0.6291 0.000 0.020 0.000 0.928 0.052
#> SRR2050394 2 0.3789 0.5791 0.000 0.760 0.000 0.224 0.016
#> SRR2050393 3 0.0162 0.9957 0.000 0.000 0.996 0.004 0.000
#> SRR2050392 4 0.2873 0.6034 0.000 0.120 0.000 0.860 0.020
#> SRR2050465 2 0.2488 0.7950 0.000 0.872 0.000 0.004 0.124
#> SRR2050464 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050463 4 0.6710 0.0721 0.000 0.252 0.000 0.408 0.340
#> SRR2050462 2 0.1768 0.8051 0.000 0.924 0.000 0.004 0.072
#> SRR2050461 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050460 5 0.8268 0.0294 0.188 0.192 0.000 0.220 0.400
#> SRR2050459 2 0.0451 0.7925 0.000 0.988 0.000 0.008 0.004
#> SRR2050458 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050457 4 0.5260 0.5668 0.076 0.136 0.000 0.736 0.052
#> SRR2050456 2 0.2890 0.6662 0.000 0.836 0.000 0.160 0.004
#> SRR2050455 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050454 4 0.1732 0.6374 0.000 0.080 0.000 0.920 0.000
#> SRR2050453 2 0.0807 0.7941 0.000 0.976 0.000 0.012 0.012
#> SRR2050452 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050451 4 0.6596 0.2104 0.008 0.416 0.000 0.416 0.160
#> SRR2050450 2 0.0451 0.7925 0.000 0.988 0.000 0.008 0.004
#> SRR2050449 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050448 4 0.6536 0.2396 0.000 0.392 0.000 0.412 0.196
#> SRR2050447 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050446 2 0.7348 -0.2171 0.028 0.400 0.000 0.288 0.284
#> SRR2050445 2 0.2124 0.7347 0.000 0.900 0.000 0.096 0.004
#> SRR2050444 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050443 4 0.2632 0.6442 0.000 0.072 0.000 0.888 0.040
#> SRR2050442 5 0.4219 0.1314 0.000 0.416 0.000 0.000 0.584
#> SRR2050441 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050440 5 0.2912 0.5873 0.040 0.020 0.032 0.012 0.896
#> SRR2050439 5 0.3707 0.4317 0.000 0.284 0.000 0.000 0.716
#> SRR2050438 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050437 5 0.2243 0.5933 0.056 0.016 0.000 0.012 0.916
#> SRR2050436 5 0.2230 0.5949 0.000 0.116 0.000 0.000 0.884
#> SRR2050435 3 0.0000 0.9997 0.000 0.000 1.000 0.000 0.000
#> SRR2050434 5 0.2612 0.5849 0.000 0.124 0.000 0.008 0.868
#> SRR2050433 2 0.2719 0.7905 0.000 0.852 0.000 0.004 0.144
#> SRR2050432 1 0.0000 0.9538 1.000 0.000 0.000 0.000 0.000
#> SRR2050431 1 0.0671 0.9476 0.980 0.000 0.000 0.016 0.004
#> SRR2050430 1 0.4268 0.1661 0.556 0.000 0.000 0.000 0.444
#> SRR2050429 5 0.4467 0.3352 0.344 0.000 0.000 0.016 0.640
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR2050410 2 0.2060 0.8711 0.000 0.900 0.000 0.000 0.016 NA
#> SRR2050427 1 0.0713 0.9436 0.972 0.000 0.000 0.000 0.000 NA
#> SRR2050426 1 0.1196 0.9314 0.952 0.000 0.000 0.000 0.008 NA
#> SRR2050425 2 0.1930 0.8777 0.000 0.916 0.000 0.000 0.036 NA
#> SRR2050424 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050423 4 0.4151 0.3196 0.004 0.000 0.000 0.576 0.412 NA
#> SRR2050422 2 0.5568 0.5752 0.004 0.664 0.000 0.064 0.096 NA
#> SRR2050421 1 0.0146 0.9498 0.996 0.000 0.000 0.000 0.004 NA
#> SRR2050420 1 0.0000 0.9508 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050419 2 0.0865 0.8844 0.000 0.964 0.000 0.000 0.000 NA
#> SRR2050418 1 0.0458 0.9476 0.984 0.000 0.000 0.000 0.000 NA
#> SRR2050417 1 0.0363 0.9487 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2050416 2 0.2448 0.8455 0.000 0.884 0.000 0.000 0.064 NA
#> SRR2050415 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050414 4 0.3629 0.5985 0.000 0.000 0.000 0.712 0.276 NA
#> SRR2050413 2 0.4251 0.6988 0.000 0.744 0.000 0.012 0.068 NA
#> SRR2050412 1 0.0146 0.9498 0.996 0.000 0.000 0.000 0.004 NA
#> SRR2050411 1 0.0000 0.9508 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050409 2 0.1757 0.8741 0.000 0.916 0.000 0.000 0.008 NA
#> SRR2050408 1 0.2121 0.8685 0.892 0.000 0.000 0.000 0.096 NA
#> SRR2050407 2 0.1327 0.8786 0.000 0.936 0.000 0.000 0.000 NA
#> SRR2050406 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050405 4 0.2201 0.7808 0.000 0.000 0.000 0.896 0.028 NA
#> SRR2050404 2 0.0790 0.8823 0.000 0.968 0.000 0.000 0.000 NA
#> SRR2050403 1 0.0000 0.9508 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050402 2 0.1176 0.8799 0.000 0.956 0.000 0.000 0.024 NA
#> SRR2050401 1 0.0692 0.9395 0.976 0.000 0.000 0.000 0.020 NA
#> SRR2050400 1 0.0790 0.9416 0.968 0.000 0.000 0.000 0.000 NA
#> SRR2050399 2 0.3159 0.8032 0.000 0.836 0.000 0.004 0.052 NA
#> SRR2050398 1 0.0000 0.9508 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050397 1 0.0000 0.9508 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050396 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050395 4 0.0922 0.7963 0.004 0.000 0.000 0.968 0.004 NA
#> SRR2050394 2 0.2632 0.8241 0.000 0.832 0.000 0.000 0.004 NA
#> SRR2050393 3 0.0260 0.9915 0.000 0.000 0.992 0.008 0.000 NA
#> SRR2050392 4 0.3520 0.7247 0.000 0.000 0.000 0.776 0.036 NA
#> SRR2050465 2 0.0972 0.8823 0.000 0.964 0.000 0.000 0.008 NA
#> SRR2050464 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050463 4 0.2542 0.7979 0.000 0.000 0.000 0.876 0.044 NA
#> SRR2050462 2 0.0363 0.8858 0.000 0.988 0.000 0.000 0.000 NA
#> SRR2050461 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050460 4 0.4624 0.7286 0.004 0.004 0.000 0.716 0.124 NA
#> SRR2050459 2 0.0260 0.8862 0.000 0.992 0.000 0.000 0.000 NA
#> SRR2050458 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050457 4 0.4584 0.7136 0.036 0.044 0.000 0.740 0.008 NA
#> SRR2050456 2 0.2003 0.8587 0.000 0.884 0.000 0.000 0.000 NA
#> SRR2050455 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050454 4 0.2121 0.7787 0.000 0.000 0.000 0.892 0.012 NA
#> SRR2050453 2 0.0790 0.8823 0.000 0.968 0.000 0.000 0.000 NA
#> SRR2050452 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050451 4 0.3419 0.7775 0.000 0.004 0.000 0.804 0.040 NA
#> SRR2050450 2 0.0363 0.8855 0.000 0.988 0.000 0.000 0.000 NA
#> SRR2050449 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050448 4 0.3370 0.7786 0.000 0.004 0.000 0.812 0.044 NA
#> SRR2050447 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050446 4 0.4117 0.7487 0.000 0.004 0.000 0.752 0.084 NA
#> SRR2050445 2 0.1610 0.8729 0.000 0.916 0.000 0.000 0.000 NA
#> SRR2050444 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050443 4 0.0363 0.7993 0.000 0.000 0.000 0.988 0.000 NA
#> SRR2050442 2 0.5111 0.0163 0.000 0.492 0.000 0.004 0.436 NA
#> SRR2050441 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050440 5 0.2062 0.7376 0.004 0.000 0.008 0.088 0.900 NA
#> SRR2050439 5 0.4656 0.1372 0.000 0.420 0.000 0.008 0.544 NA
#> SRR2050438 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050437 5 0.1644 0.7441 0.004 0.000 0.000 0.076 0.920 NA
#> SRR2050436 5 0.2969 0.7409 0.000 0.088 0.000 0.020 0.860 NA
#> SRR2050435 3 0.0000 0.9994 0.000 0.000 1.000 0.000 0.000 NA
#> SRR2050434 5 0.3763 0.7258 0.000 0.044 0.000 0.080 0.816 NA
#> SRR2050433 2 0.1334 0.8842 0.000 0.948 0.000 0.000 0.020 NA
#> SRR2050432 1 0.0000 0.9508 1.000 0.000 0.000 0.000 0.000 NA
#> SRR2050431 1 0.0777 0.9436 0.972 0.000 0.000 0.000 0.004 NA
#> SRR2050430 1 0.3997 0.0799 0.508 0.000 0.000 0.004 0.488 NA
#> SRR2050429 5 0.2847 0.6672 0.120 0.000 0.000 0.016 0.852 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0