cola Report for recount2:SRP062966

Date: 2019-12-26 01:15:10 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 16442   117

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
CV:mclust 2 1.000 0.972 0.989 **
ATC:pam 6 1.000 0.988 0.994 ** 3,4
ATC:kmeans 3 0.929 0.954 0.981 * 2
ATC:skmeans 4 0.919 0.920 0.958 * 2,3
CV:pam 2 0.913 0.929 0.968 *
SD:NMF 2 0.912 0.944 0.974 *
CV:skmeans 2 0.896 0.946 0.976
ATC:hclust 2 0.891 0.951 0.966
MAD:pam 2 0.878 0.924 0.967
CV:NMF 4 0.869 0.866 0.942
SD:skmeans 2 0.850 0.928 0.969
MAD:skmeans 2 0.848 0.928 0.967
SD:kmeans 2 0.846 0.937 0.971
MAD:kmeans 2 0.846 0.920 0.965
CV:kmeans 2 0.784 0.886 0.951
MAD:NMF 4 0.769 0.720 0.881
SD:pam 2 0.748 0.924 0.963
MAD:mclust 5 0.737 0.624 0.798
ATC:NMF 2 0.695 0.867 0.936
SD:hclust 6 0.678 0.622 0.748
SD:mclust 4 0.599 0.637 0.799
ATC:mclust 5 0.459 0.653 0.814
MAD:hclust 2 0.402 0.674 0.856
CV:hclust 2 0.326 0.656 0.797

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.912           0.944       0.974          0.414 0.607   0.607
#> CV:NMF      2 0.791           0.901       0.957          0.445 0.564   0.564
#> MAD:NMF     2 0.895           0.925       0.968          0.421 0.599   0.599
#> ATC:NMF     2 0.695           0.867       0.936          0.492 0.496   0.496
#> SD:skmeans  2 0.850           0.928       0.969          0.504 0.497   0.497
#> CV:skmeans  2 0.896           0.946       0.976          0.499 0.499   0.499
#> MAD:skmeans 2 0.848           0.928       0.967          0.504 0.496   0.496
#> ATC:skmeans 2 1.000           0.977       0.992          0.504 0.496   0.496
#> SD:mclust   2 0.360           0.788       0.798          0.368 0.509   0.509
#> CV:mclust   2 1.000           0.972       0.989          0.426 0.577   0.577
#> MAD:mclust  2 0.235           0.767       0.751          0.340 0.512   0.512
#> ATC:mclust  2 0.787           0.940       0.954          0.170 0.814   0.814
#> SD:kmeans   2 0.846           0.937       0.971          0.503 0.497   0.497
#> CV:kmeans   2 0.784           0.886       0.951          0.450 0.536   0.536
#> MAD:kmeans  2 0.846           0.920       0.965          0.503 0.497   0.497
#> ATC:kmeans  2 1.000           0.991       0.997          0.502 0.499   0.499
#> SD:pam      2 0.748           0.924       0.963          0.452 0.558   0.558
#> CV:pam      2 0.913           0.929       0.968          0.399 0.599   0.599
#> MAD:pam     2 0.878           0.924       0.967          0.450 0.552   0.552
#> ATC:pam     2 0.671           0.875       0.937          0.475 0.541   0.541
#> SD:hclust   2 0.358           0.542       0.786          0.469 0.615   0.615
#> CV:hclust   2 0.326           0.656       0.797          0.420 0.564   0.564
#> MAD:hclust  2 0.402           0.674       0.856          0.471 0.497   0.497
#> ATC:hclust  2 0.891           0.951       0.966          0.491 0.500   0.500
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.643           0.762       0.872          0.572 0.698   0.516
#> CV:NMF      3 0.763           0.826       0.928          0.488 0.728   0.535
#> MAD:NMF     3 0.620           0.762       0.868          0.548 0.702   0.518
#> ATC:NMF     3 0.477           0.681       0.837          0.190 0.659   0.458
#> SD:skmeans  3 0.774           0.871       0.941          0.319 0.710   0.483
#> CV:skmeans  3 0.791           0.911       0.946          0.325 0.742   0.524
#> MAD:skmeans 3 0.815           0.871       0.945          0.318 0.748   0.535
#> ATC:skmeans 3 1.000           0.977       0.989          0.171 0.908   0.816
#> SD:mclust   3 0.563           0.556       0.779          0.761 0.660   0.423
#> CV:mclust   3 0.693           0.882       0.928          0.495 0.613   0.414
#> MAD:mclust  3 0.431           0.495       0.773          0.906 0.671   0.439
#> ATC:mclust  3 0.383           0.804       0.797          1.772 0.638   0.556
#> SD:kmeans   3 0.639           0.827       0.909          0.313 0.714   0.491
#> CV:kmeans   3 0.615           0.678       0.868          0.447 0.704   0.493
#> MAD:kmeans  3 0.625           0.775       0.888          0.319 0.704   0.476
#> ATC:kmeans  3 0.929           0.954       0.981          0.311 0.660   0.424
#> SD:pam      3 0.619           0.751       0.871          0.438 0.737   0.557
#> CV:pam      3 0.512           0.656       0.746          0.531 0.721   0.555
#> MAD:pam     3 0.618           0.800       0.889          0.434 0.726   0.538
#> ATC:pam     3 1.000           0.981       0.993          0.399 0.711   0.504
#> SD:hclust   3 0.338           0.523       0.748          0.336 0.561   0.372
#> CV:hclust   3 0.413           0.649       0.815          0.367 0.723   0.549
#> MAD:hclust  3 0.348           0.462       0.665          0.331 0.723   0.497
#> ATC:hclust  3 0.744           0.854       0.916          0.303 0.849   0.699
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.773           0.761       0.899         0.1107 0.906   0.738
#> CV:NMF      4 0.869           0.866       0.942         0.1248 0.829   0.551
#> MAD:NMF     4 0.769           0.720       0.881         0.1106 0.903   0.729
#> ATC:NMF     4 0.461           0.436       0.688         0.1902 0.768   0.510
#> SD:skmeans  4 0.845           0.861       0.923         0.1095 0.842   0.582
#> CV:skmeans  4 0.811           0.771       0.890         0.1205 0.902   0.717
#> MAD:skmeans 4 0.814           0.861       0.894         0.1138 0.819   0.535
#> ATC:skmeans 4 0.919           0.920       0.958         0.1063 0.935   0.842
#> SD:mclust   4 0.599           0.637       0.799         0.1099 0.834   0.573
#> CV:mclust   4 0.650           0.709       0.788         0.1082 0.916   0.770
#> MAD:mclust  4 0.545           0.619       0.793         0.1153 0.826   0.548
#> ATC:mclust  4 0.279           0.622       0.771         0.2830 0.769   0.560
#> SD:kmeans   4 0.626           0.601       0.792         0.1249 0.796   0.490
#> CV:kmeans   4 0.548           0.550       0.732         0.1314 0.825   0.539
#> MAD:kmeans  4 0.654           0.644       0.827         0.1228 0.784   0.465
#> ATC:kmeans  4 0.698           0.733       0.789         0.1254 0.823   0.538
#> SD:pam      4 0.672           0.757       0.861         0.1507 0.774   0.463
#> CV:pam      4 0.672           0.665       0.843         0.2045 0.844   0.610
#> MAD:pam     4 0.612           0.735       0.841         0.1539 0.785   0.479
#> ATC:pam     4 1.000           0.975       0.991         0.0917 0.891   0.696
#> SD:hclust   4 0.423           0.425       0.629         0.1280 0.839   0.570
#> CV:hclust   4 0.436           0.612       0.768         0.1561 0.923   0.807
#> MAD:hclust  4 0.419           0.438       0.671         0.1161 0.775   0.442
#> ATC:hclust  4 0.710           0.786       0.894         0.1425 0.907   0.734
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.633           0.570       0.776         0.0595 0.944   0.814
#> CV:NMF      5 0.750           0.741       0.857         0.0545 0.944   0.790
#> MAD:NMF     5 0.612           0.555       0.742         0.0580 0.916   0.730
#> ATC:NMF     5 0.470           0.401       0.658         0.0951 0.803   0.462
#> SD:skmeans  5 0.813           0.876       0.895         0.0677 0.851   0.522
#> CV:skmeans  5 0.722           0.701       0.800         0.0654 0.912   0.690
#> MAD:skmeans 5 0.795           0.869       0.906         0.0638 0.860   0.543
#> ATC:skmeans 5 0.781           0.782       0.866         0.0659 0.958   0.883
#> SD:mclust   5 0.646           0.628       0.752         0.0836 0.837   0.506
#> CV:mclust   5 0.612           0.716       0.795         0.0691 0.875   0.620
#> MAD:mclust  5 0.737           0.624       0.798         0.0782 0.817   0.452
#> ATC:mclust  5 0.459           0.653       0.814         0.1052 0.915   0.784
#> SD:kmeans   5 0.664           0.569       0.745         0.0675 0.873   0.571
#> CV:kmeans   5 0.591           0.399       0.598         0.0673 0.900   0.639
#> MAD:kmeans  5 0.671           0.543       0.745         0.0657 0.861   0.533
#> ATC:kmeans  5 0.829           0.794       0.843         0.0667 0.936   0.752
#> SD:pam      5 0.713           0.707       0.855         0.0513 0.889   0.609
#> CV:pam      5 0.682           0.650       0.810         0.0706 0.856   0.536
#> MAD:pam     5 0.682           0.690       0.849         0.0525 0.885   0.598
#> ATC:pam     5 0.843           0.900       0.939         0.0559 0.955   0.840
#> SD:hclust   5 0.528           0.467       0.705         0.0872 0.893   0.617
#> CV:hclust   5 0.470           0.560       0.735         0.0685 0.935   0.817
#> MAD:hclust  5 0.521           0.475       0.672         0.1013 0.813   0.421
#> ATC:hclust  5 0.732           0.718       0.807         0.0682 0.944   0.789
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.556           0.420       0.676         0.0528 0.872   0.563
#> CV:NMF      6 0.739           0.621       0.794         0.0430 0.904   0.612
#> MAD:NMF     6 0.549           0.429       0.662         0.0525 0.806   0.397
#> ATC:NMF     6 0.495           0.397       0.643         0.0470 0.794   0.363
#> SD:skmeans  6 0.837           0.808       0.865         0.0434 0.917   0.646
#> CV:skmeans  6 0.746           0.711       0.822         0.0409 0.923   0.671
#> MAD:skmeans 6 0.836           0.792       0.876         0.0442 0.907   0.613
#> ATC:skmeans 6 0.786           0.746       0.861         0.0405 0.966   0.897
#> SD:mclust   6 0.671           0.611       0.732         0.0357 0.951   0.785
#> CV:mclust   6 0.818           0.835       0.888         0.0462 0.957   0.826
#> MAD:mclust  6 0.675           0.443       0.702         0.0407 0.892   0.572
#> ATC:mclust  6 0.440           0.514       0.718         0.0674 0.822   0.560
#> SD:kmeans   6 0.699           0.540       0.679         0.0427 0.885   0.561
#> CV:kmeans   6 0.660           0.478       0.647         0.0447 0.819   0.359
#> MAD:kmeans  6 0.691           0.566       0.731         0.0437 0.904   0.588
#> ATC:kmeans  6 0.794           0.817       0.833         0.0396 0.939   0.722
#> SD:pam      6 0.707           0.622       0.800         0.0461 0.909   0.613
#> CV:pam      6 0.732           0.685       0.827         0.0373 0.959   0.808
#> MAD:pam     6 0.664           0.471       0.700         0.0488 0.882   0.526
#> ATC:pam     6 1.000           0.988       0.994         0.0687 0.874   0.541
#> SD:hclust   6 0.678           0.622       0.748         0.0611 0.870   0.496
#> CV:hclust   6 0.506           0.451       0.682         0.0706 0.904   0.697
#> MAD:hclust  6 0.644           0.512       0.709         0.0617 0.840   0.406
#> ATC:hclust  6 0.720           0.599       0.786         0.0502 0.929   0.692

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.358           0.542       0.786         0.4691 0.615   0.615
#> 3 3 0.338           0.523       0.748         0.3358 0.561   0.372
#> 4 4 0.423           0.425       0.629         0.1280 0.839   0.570
#> 5 5 0.528           0.467       0.705         0.0872 0.893   0.617
#> 6 6 0.678           0.622       0.748         0.0611 0.870   0.496

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1   1.000     0.9351 0.508 0.492
#> SRR2443262     2   0.992     0.6917 0.448 0.552
#> SRR2443261     2   0.987     0.6926 0.432 0.568
#> SRR2443260     2   0.932     0.5291 0.348 0.652
#> SRR2443259     2   0.891    -0.4122 0.308 0.692
#> SRR2443258     2   0.909    -0.4516 0.324 0.676
#> SRR2443257     2   0.992     0.6917 0.448 0.552
#> SRR2443256     2   0.895    -0.4187 0.312 0.688
#> SRR2443255     2   0.895    -0.4187 0.312 0.688
#> SRR2443254     2   0.895    -0.4187 0.312 0.688
#> SRR2443253     2   0.992     0.6917 0.448 0.552
#> SRR2443251     2   0.990     0.6907 0.440 0.560
#> SRR2443250     2   0.992     0.6917 0.448 0.552
#> SRR2443249     2   0.992     0.6917 0.448 0.552
#> SRR2443252     2   0.932     0.5291 0.348 0.652
#> SRR2443247     1   0.993     0.9852 0.548 0.452
#> SRR2443246     2   0.767    -0.2053 0.224 0.776
#> SRR2443248     2   0.994     0.6754 0.456 0.544
#> SRR2443244     2   0.891     0.6676 0.308 0.692
#> SRR2443245     1   0.992     0.9875 0.552 0.448
#> SRR2443243     1   0.992     0.9875 0.552 0.448
#> SRR2443242     2   0.781     0.6291 0.232 0.768
#> SRR2443241     2   0.242     0.3824 0.040 0.960
#> SRR2443240     2   0.430     0.2467 0.088 0.912
#> SRR2443239     2   0.881     0.6696 0.300 0.700
#> SRR2443238     1   0.992     0.9875 0.552 0.448
#> SRR2443237     2   0.802     0.6235 0.244 0.756
#> SRR2443236     2   0.430     0.2467 0.088 0.912
#> SRR2443235     1   0.992     0.9875 0.552 0.448
#> SRR2443233     1   0.992     0.9875 0.552 0.448
#> SRR2443234     1   0.992     0.9875 0.552 0.448
#> SRR2443232     1   0.992     0.9875 0.552 0.448
#> SRR2443231     1   0.992     0.9875 0.552 0.448
#> SRR2443230     1   0.992     0.9875 0.552 0.448
#> SRR2443229     2   0.358     0.3287 0.068 0.932
#> SRR2443228     2   0.992     0.6917 0.448 0.552
#> SRR2443227     1   0.992     0.9875 0.552 0.448
#> SRR2443226     1   0.993     0.9849 0.548 0.452
#> SRR2443225     2   0.955     0.3555 0.376 0.624
#> SRR2443223     2   0.900     0.6381 0.316 0.684
#> SRR2443224     2   0.992     0.6917 0.448 0.552
#> SRR2443222     2   0.992     0.6917 0.448 0.552
#> SRR2443221     2   0.992     0.6917 0.448 0.552
#> SRR2443219     2   0.978     0.6919 0.412 0.588
#> SRR2443220     2   0.983     0.6923 0.424 0.576
#> SRR2443218     2   0.992     0.6917 0.448 0.552
#> SRR2443217     2   0.343     0.3234 0.064 0.936
#> SRR2443216     2   0.955    -0.6427 0.376 0.624
#> SRR2443215     2   0.881     0.6696 0.300 0.700
#> SRR2443214     1   0.992     0.9875 0.552 0.448
#> SRR2443213     1   0.992     0.9875 0.552 0.448
#> SRR2443212     2   0.563     0.4902 0.132 0.868
#> SRR2443211     2   0.895     0.6663 0.312 0.688
#> SRR2443210     2   0.992     0.6917 0.448 0.552
#> SRR2443209     2   0.260     0.3874 0.044 0.956
#> SRR2443208     2   0.311     0.3643 0.056 0.944
#> SRR2443207     2   0.311     0.3643 0.056 0.944
#> SRR2443206     2   0.992     0.6917 0.448 0.552
#> SRR2443205     2   0.895     0.6663 0.312 0.688
#> SRR2443204     1   0.992     0.9875 0.552 0.448
#> SRR2443203     1   0.993     0.9849 0.548 0.452
#> SRR2443202     2   0.904     0.6185 0.320 0.680
#> SRR2443201     2   0.900     0.6379 0.316 0.684
#> SRR2443200     2   0.992     0.6917 0.448 0.552
#> SRR2443199     2   0.992     0.6917 0.448 0.552
#> SRR2443197     2   0.987     0.6879 0.432 0.568
#> SRR2443196     2   0.983     0.6919 0.424 0.576
#> SRR2443198     2   0.949     0.6388 0.368 0.632
#> SRR2443195     1   0.992     0.9875 0.552 0.448
#> SRR2443194     2   0.946     0.3176 0.364 0.636
#> SRR2443193     2   0.833    -0.3170 0.264 0.736
#> SRR2443191     2   0.242     0.3824 0.040 0.960
#> SRR2443192     2   0.802     0.6235 0.244 0.756
#> SRR2443190     1   0.992     0.9875 0.552 0.448
#> SRR2443189     1   1.000     0.9289 0.508 0.492
#> SRR2443188     1   0.992     0.9875 0.552 0.448
#> SRR2443186     2   0.992     0.6917 0.448 0.552
#> SRR2443187     2   0.992     0.6917 0.448 0.552
#> SRR2443185     2   0.932     0.6636 0.348 0.652
#> SRR2443184     2   0.975    -0.7209 0.408 0.592
#> SRR2443183     1   0.992     0.9875 0.552 0.448
#> SRR2443182     1   1.000     0.9351 0.508 0.492
#> SRR2443181     2   0.991     0.6914 0.444 0.556
#> SRR2443180     2   0.992     0.6917 0.448 0.552
#> SRR2443179     2   0.987     0.6919 0.432 0.568
#> SRR2443178     2   0.952     0.6101 0.372 0.628
#> SRR2443177     1   0.993     0.9844 0.548 0.452
#> SRR2443176     1   0.997     0.9670 0.532 0.468
#> SRR2443175     1   0.993     0.9852 0.548 0.452
#> SRR2443174     1   0.992     0.9875 0.552 0.448
#> SRR2443173     2   0.992     0.6917 0.448 0.552
#> SRR2443172     2   0.992     0.6917 0.448 0.552
#> SRR2443171     2   0.998    -0.8685 0.472 0.528
#> SRR2443170     2   0.680    -0.0269 0.180 0.820
#> SRR2443169     1   0.993     0.9852 0.548 0.452
#> SRR2443168     2   0.605     0.0822 0.148 0.852
#> SRR2443167     2   0.983     0.6903 0.424 0.576
#> SRR2443166     2   0.958    -0.6523 0.380 0.620
#> SRR2443165     2   0.932     0.5185 0.348 0.652
#> SRR2443164     2   0.992     0.6917 0.448 0.552
#> SRR2443163     2   0.900     0.6381 0.316 0.684
#> SRR2443162     2   0.895    -0.4187 0.312 0.688
#> SRR2443161     2   0.895    -0.4187 0.312 0.688
#> SRR2443160     2   0.983     0.6903 0.424 0.576
#> SRR2443159     2   0.992     0.6917 0.448 0.552
#> SRR2443158     2   0.895    -0.4187 0.312 0.688
#> SRR2443157     1   1.000     0.9351 0.508 0.492
#> SRR2443156     2   0.697    -0.0624 0.188 0.812
#> SRR2443155     2   0.680    -0.0269 0.180 0.820
#> SRR2443154     2   0.680    -0.0269 0.180 0.820
#> SRR2443153     1   0.993     0.9852 0.548 0.452
#> SRR2443152     2   0.992     0.6917 0.448 0.552
#> SRR2443151     2   0.992     0.6917 0.448 0.552
#> SRR2443150     2   0.992     0.6917 0.448 0.552
#> SRR2443148     2   0.992     0.6917 0.448 0.552
#> SRR2443147     2   0.992     0.6917 0.448 0.552
#> SRR2443149     2   0.706    -0.0687 0.192 0.808

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.5136    0.75449 0.824 0.132 0.044
#> SRR2443262     3  0.1411    0.64525 0.000 0.036 0.964
#> SRR2443261     3  0.1267    0.64458 0.004 0.024 0.972
#> SRR2443260     3  0.7948    0.36524 0.268 0.100 0.632
#> SRR2443259     1  0.8825    0.56544 0.556 0.148 0.296
#> SRR2443258     1  0.8625    0.58500 0.576 0.136 0.288
#> SRR2443257     3  0.1411    0.64525 0.000 0.036 0.964
#> SRR2443256     1  0.8749    0.57147 0.560 0.140 0.300
#> SRR2443255     1  0.8749    0.57147 0.560 0.140 0.300
#> SRR2443254     1  0.8749    0.57147 0.560 0.140 0.300
#> SRR2443253     3  0.1411    0.64525 0.000 0.036 0.964
#> SRR2443251     3  0.1620    0.64269 0.024 0.012 0.964
#> SRR2443250     3  0.1411    0.64525 0.000 0.036 0.964
#> SRR2443249     3  0.1411    0.64525 0.000 0.036 0.964
#> SRR2443252     3  0.7948    0.36524 0.268 0.100 0.632
#> SRR2443247     1  0.0237    0.75314 0.996 0.000 0.004
#> SRR2443246     1  0.7430    0.25080 0.540 0.424 0.036
#> SRR2443248     3  0.6109    0.58045 0.080 0.140 0.780
#> SRR2443244     2  0.8535    0.05440 0.096 0.500 0.404
#> SRR2443245     1  0.3267    0.76541 0.884 0.116 0.000
#> SRR2443243     1  0.3267    0.76541 0.884 0.116 0.000
#> SRR2443242     2  0.8752    0.35835 0.144 0.564 0.292
#> SRR2443241     2  0.6579    0.42845 0.328 0.652 0.020
#> SRR2443240     2  0.6513    0.26301 0.400 0.592 0.008
#> SRR2443239     2  0.6400    0.45139 0.052 0.740 0.208
#> SRR2443238     1  0.3267    0.76541 0.884 0.116 0.000
#> SRR2443237     2  0.8916    0.33352 0.152 0.544 0.304
#> SRR2443236     2  0.6513    0.26301 0.400 0.592 0.008
#> SRR2443235     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443233     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443234     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443232     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443231     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443230     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443229     2  0.6587    0.37147 0.352 0.632 0.016
#> SRR2443228     3  0.6286    0.36285 0.000 0.464 0.536
#> SRR2443227     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443226     1  0.3340    0.76448 0.880 0.120 0.000
#> SRR2443225     3  0.8759    0.08190 0.360 0.120 0.520
#> SRR2443223     3  0.8175    0.38965 0.132 0.236 0.632
#> SRR2443224     2  0.3686    0.46634 0.000 0.860 0.140
#> SRR2443222     3  0.6302    0.34248 0.000 0.480 0.520
#> SRR2443221     3  0.6302    0.34248 0.000 0.480 0.520
#> SRR2443219     3  0.6470    0.46167 0.012 0.356 0.632
#> SRR2443220     3  0.4475    0.60791 0.016 0.144 0.840
#> SRR2443218     3  0.6286    0.36285 0.000 0.464 0.536
#> SRR2443217     2  0.6608    0.36352 0.356 0.628 0.016
#> SRR2443216     1  0.8001    0.64863 0.652 0.136 0.212
#> SRR2443215     2  0.6400    0.45139 0.052 0.740 0.208
#> SRR2443214     1  0.3267    0.76541 0.884 0.116 0.000
#> SRR2443213     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443212     2  0.6872    0.50994 0.276 0.680 0.044
#> SRR2443211     2  0.6037    0.54403 0.112 0.788 0.100
#> SRR2443210     3  0.6302    0.34248 0.000 0.480 0.520
#> SRR2443209     2  0.6553    0.43409 0.324 0.656 0.020
#> SRR2443208     2  0.6473    0.41377 0.332 0.652 0.016
#> SRR2443207     2  0.6473    0.41377 0.332 0.652 0.016
#> SRR2443206     2  0.3686    0.46198 0.000 0.860 0.140
#> SRR2443205     2  0.6037    0.54403 0.112 0.788 0.100
#> SRR2443204     1  0.3267    0.76541 0.884 0.116 0.000
#> SRR2443203     1  0.3340    0.76448 0.880 0.120 0.000
#> SRR2443202     3  0.8028    0.40857 0.168 0.176 0.656
#> SRR2443201     3  0.8195    0.39570 0.136 0.232 0.632
#> SRR2443200     3  0.6291    0.35753 0.000 0.468 0.532
#> SRR2443199     3  0.6286    0.36285 0.000 0.464 0.536
#> SRR2443197     3  0.2689    0.63743 0.036 0.032 0.932
#> SRR2443196     3  0.2269    0.64597 0.016 0.040 0.944
#> SRR2443198     3  0.5932    0.53848 0.164 0.056 0.780
#> SRR2443195     1  0.3267    0.76541 0.884 0.116 0.000
#> SRR2443194     3  0.8798    0.01867 0.356 0.124 0.520
#> SRR2443193     1  0.6879    0.28607 0.556 0.428 0.016
#> SRR2443191     2  0.6579    0.42845 0.328 0.652 0.020
#> SRR2443192     2  0.8916    0.33352 0.152 0.544 0.304
#> SRR2443190     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443189     1  0.4802    0.74202 0.824 0.156 0.020
#> SRR2443188     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443186     2  0.3686    0.46198 0.000 0.860 0.140
#> SRR2443187     2  0.3686    0.46198 0.000 0.860 0.140
#> SRR2443185     3  0.5966    0.56354 0.104 0.104 0.792
#> SRR2443184     1  0.7381    0.68265 0.704 0.164 0.132
#> SRR2443183     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443182     1  0.5136    0.75449 0.824 0.132 0.044
#> SRR2443181     2  0.3918    0.46974 0.004 0.856 0.140
#> SRR2443180     3  0.6286    0.36285 0.000 0.464 0.536
#> SRR2443179     3  0.2804    0.64431 0.016 0.060 0.924
#> SRR2443178     3  0.7865    0.47103 0.216 0.124 0.660
#> SRR2443177     1  0.3500    0.76600 0.880 0.116 0.004
#> SRR2443176     1  0.4418    0.76032 0.848 0.132 0.020
#> SRR2443175     1  0.1129    0.75809 0.976 0.020 0.004
#> SRR2443174     1  0.0237    0.75106 0.996 0.004 0.000
#> SRR2443173     2  0.3879    0.45829 0.000 0.848 0.152
#> SRR2443172     2  0.3879    0.45829 0.000 0.848 0.152
#> SRR2443171     1  0.3715    0.72469 0.868 0.128 0.004
#> SRR2443170     1  0.6825    0.06682 0.500 0.488 0.012
#> SRR2443169     1  0.0237    0.75314 0.996 0.000 0.004
#> SRR2443168     2  0.7471    0.00369 0.448 0.516 0.036
#> SRR2443167     3  0.1170    0.63916 0.016 0.008 0.976
#> SRR2443166     1  0.7944    0.65155 0.656 0.132 0.212
#> SRR2443165     3  0.7530    0.38945 0.252 0.084 0.664
#> SRR2443164     3  0.6235    0.38407 0.000 0.436 0.564
#> SRR2443163     3  0.8175    0.38965 0.132 0.236 0.632
#> SRR2443162     1  0.8749    0.57147 0.560 0.140 0.300
#> SRR2443161     1  0.8749    0.57147 0.560 0.140 0.300
#> SRR2443160     3  0.1170    0.63916 0.016 0.008 0.976
#> SRR2443159     3  0.1411    0.64525 0.000 0.036 0.964
#> SRR2443158     1  0.8749    0.57147 0.560 0.140 0.300
#> SRR2443157     1  0.5136    0.75449 0.824 0.132 0.044
#> SRR2443156     1  0.7487    0.10798 0.500 0.464 0.036
#> SRR2443155     1  0.6825    0.06682 0.500 0.488 0.012
#> SRR2443154     1  0.6825    0.06682 0.500 0.488 0.012
#> SRR2443153     1  0.0237    0.75314 0.996 0.000 0.004
#> SRR2443152     2  0.3879    0.45829 0.000 0.848 0.152
#> SRR2443151     3  0.6280    0.36561 0.000 0.460 0.540
#> SRR2443150     2  0.3879    0.45829 0.000 0.848 0.152
#> SRR2443148     3  0.5497    0.48453 0.000 0.292 0.708
#> SRR2443147     3  0.5497    0.48453 0.000 0.292 0.708
#> SRR2443149     1  0.9378    0.35806 0.480 0.336 0.184

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     1  0.5881    0.51935 0.544 0.000 0.420 0.036
#> SRR2443262     4  0.1940    0.67792 0.000 0.000 0.076 0.924
#> SRR2443261     4  0.2081    0.68366 0.000 0.000 0.084 0.916
#> SRR2443260     4  0.7344    0.46003 0.084 0.044 0.288 0.584
#> SRR2443259     3  0.7796    0.13531 0.248 0.008 0.492 0.252
#> SRR2443258     3  0.7518    0.11515 0.260 0.000 0.496 0.244
#> SRR2443257     4  0.0188    0.69609 0.000 0.000 0.004 0.996
#> SRR2443256     3  0.7476    0.14900 0.236 0.000 0.504 0.260
#> SRR2443255     3  0.7456    0.14744 0.236 0.000 0.508 0.256
#> SRR2443254     3  0.7476    0.14900 0.236 0.000 0.504 0.260
#> SRR2443253     4  0.3528    0.60853 0.000 0.000 0.192 0.808
#> SRR2443251     4  0.1474    0.70472 0.000 0.000 0.052 0.948
#> SRR2443250     4  0.1940    0.67792 0.000 0.000 0.076 0.924
#> SRR2443249     4  0.1940    0.67792 0.000 0.000 0.076 0.924
#> SRR2443252     4  0.7344    0.46003 0.084 0.044 0.288 0.584
#> SRR2443247     1  0.1867    0.71990 0.928 0.000 0.072 0.000
#> SRR2443246     3  0.7977   -0.10673 0.280 0.304 0.412 0.004
#> SRR2443248     4  0.5750    0.65050 0.032 0.112 0.100 0.756
#> SRR2443244     2  0.7841    0.11217 0.004 0.404 0.216 0.376
#> SRR2443245     1  0.4643    0.65312 0.656 0.000 0.344 0.000
#> SRR2443243     1  0.4624    0.65503 0.660 0.000 0.340 0.000
#> SRR2443242     2  0.8683    0.39391 0.052 0.452 0.236 0.260
#> SRR2443241     2  0.6813    0.44340 0.104 0.516 0.380 0.000
#> SRR2443240     2  0.7403    0.34260 0.168 0.452 0.380 0.000
#> SRR2443239     2  0.6742    0.49447 0.000 0.608 0.232 0.160
#> SRR2443238     1  0.4661    0.65075 0.652 0.000 0.348 0.000
#> SRR2443237     2  0.8731    0.35893 0.048 0.428 0.252 0.272
#> SRR2443236     2  0.7403    0.34260 0.168 0.452 0.380 0.000
#> SRR2443235     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443229     2  0.7009    0.40613 0.120 0.488 0.392 0.000
#> SRR2443228     3  0.7740    0.00167 0.000 0.320 0.432 0.248
#> SRR2443227     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.4800    0.65235 0.656 0.004 0.340 0.000
#> SRR2443225     4  0.7472    0.28146 0.140 0.012 0.332 0.516
#> SRR2443223     4  0.7377    0.51238 0.020 0.160 0.232 0.588
#> SRR2443224     2  0.0188    0.54739 0.000 0.996 0.004 0.000
#> SRR2443222     3  0.7704    0.01114 0.000 0.336 0.432 0.232
#> SRR2443221     3  0.7704    0.01114 0.000 0.336 0.432 0.232
#> SRR2443219     4  0.7344    0.35768 0.000 0.300 0.188 0.512
#> SRR2443220     4  0.4127    0.64654 0.000 0.124 0.052 0.824
#> SRR2443218     3  0.7740    0.00167 0.000 0.320 0.432 0.248
#> SRR2443217     2  0.7015    0.40421 0.120 0.484 0.396 0.000
#> SRR2443216     3  0.7264   -0.01926 0.320 0.000 0.512 0.168
#> SRR2443215     2  0.6742    0.49447 0.000 0.608 0.232 0.160
#> SRR2443214     1  0.4643    0.65312 0.656 0.000 0.344 0.000
#> SRR2443213     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.6880    0.49280 0.080 0.572 0.332 0.016
#> SRR2443211     2  0.3757    0.56082 0.020 0.828 0.152 0.000
#> SRR2443210     3  0.7704    0.01114 0.000 0.336 0.432 0.232
#> SRR2443209     2  0.6766    0.44619 0.100 0.520 0.380 0.000
#> SRR2443208     2  0.6830    0.43086 0.104 0.508 0.388 0.000
#> SRR2443207     2  0.6830    0.43086 0.104 0.508 0.388 0.000
#> SRR2443206     2  0.0707    0.53993 0.000 0.980 0.020 0.000
#> SRR2443205     2  0.3757    0.56082 0.020 0.828 0.152 0.000
#> SRR2443204     1  0.4643    0.65312 0.656 0.000 0.344 0.000
#> SRR2443203     1  0.4800    0.65235 0.656 0.004 0.340 0.000
#> SRR2443202     4  0.6703    0.54120 0.012 0.100 0.264 0.624
#> SRR2443201     4  0.7300    0.52070 0.020 0.152 0.232 0.596
#> SRR2443200     3  0.7732    0.00487 0.000 0.324 0.432 0.244
#> SRR2443199     3  0.7740    0.00167 0.000 0.320 0.432 0.248
#> SRR2443197     4  0.2266    0.70460 0.000 0.004 0.084 0.912
#> SRR2443196     4  0.1807    0.70422 0.000 0.008 0.052 0.940
#> SRR2443198     4  0.4809    0.63751 0.012 0.016 0.220 0.752
#> SRR2443195     1  0.4624    0.65503 0.660 0.000 0.340 0.000
#> SRR2443194     4  0.7682    0.24432 0.148 0.016 0.344 0.492
#> SRR2443193     3  0.7825   -0.06209 0.304 0.284 0.412 0.000
#> SRR2443191     2  0.6813    0.44340 0.104 0.516 0.380 0.000
#> SRR2443192     2  0.8731    0.35893 0.048 0.428 0.252 0.272
#> SRR2443190     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.5851    0.45588 0.516 0.024 0.456 0.004
#> SRR2443188     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.0707    0.53993 0.000 0.980 0.020 0.000
#> SRR2443187     2  0.0707    0.53993 0.000 0.980 0.020 0.000
#> SRR2443185     4  0.5159    0.65290 0.004 0.064 0.176 0.756
#> SRR2443184     3  0.7451   -0.15953 0.372 0.024 0.504 0.100
#> SRR2443183     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.5881    0.51935 0.544 0.000 0.420 0.036
#> SRR2443181     2  0.0707    0.54760 0.000 0.980 0.020 0.000
#> SRR2443180     3  0.7740    0.00167 0.000 0.320 0.432 0.248
#> SRR2443179     4  0.2021    0.70022 0.000 0.012 0.056 0.932
#> SRR2443178     4  0.6223    0.58489 0.020 0.052 0.272 0.656
#> SRR2443177     1  0.4819    0.64951 0.652 0.000 0.344 0.004
#> SRR2443176     1  0.5417    0.56055 0.572 0.000 0.412 0.016
#> SRR2443175     1  0.2921    0.70917 0.860 0.000 0.140 0.000
#> SRR2443174     1  0.0000    0.72326 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.2402    0.51249 0.000 0.912 0.076 0.012
#> SRR2443172     2  0.2402    0.51249 0.000 0.912 0.076 0.012
#> SRR2443171     1  0.5346    0.64368 0.732 0.076 0.192 0.000
#> SRR2443170     3  0.7810   -0.20726 0.252 0.364 0.384 0.000
#> SRR2443169     1  0.1867    0.71990 0.928 0.000 0.072 0.000
#> SRR2443168     3  0.7649   -0.26409 0.180 0.380 0.436 0.004
#> SRR2443167     4  0.1716    0.70428 0.000 0.000 0.064 0.936
#> SRR2443166     3  0.7278   -0.02762 0.324 0.000 0.508 0.168
#> SRR2443165     4  0.5159    0.47880 0.012 0.000 0.364 0.624
#> SRR2443164     3  0.7758   -0.05148 0.000 0.272 0.436 0.292
#> SRR2443163     4  0.7377    0.51238 0.020 0.160 0.232 0.588
#> SRR2443162     3  0.7476    0.14900 0.236 0.000 0.504 0.260
#> SRR2443161     3  0.7476    0.14900 0.236 0.000 0.504 0.260
#> SRR2443160     4  0.1716    0.70428 0.000 0.000 0.064 0.936
#> SRR2443159     4  0.0188    0.69609 0.000 0.000 0.004 0.996
#> SRR2443158     3  0.7476    0.14900 0.236 0.000 0.504 0.260
#> SRR2443157     1  0.5881    0.51935 0.544 0.000 0.420 0.036
#> SRR2443156     3  0.8030   -0.18496 0.240 0.340 0.412 0.008
#> SRR2443155     3  0.7810   -0.20726 0.252 0.364 0.384 0.000
#> SRR2443154     3  0.7810   -0.20726 0.252 0.364 0.384 0.000
#> SRR2443153     1  0.1867    0.71990 0.928 0.000 0.072 0.000
#> SRR2443152     2  0.2402    0.51249 0.000 0.912 0.076 0.012
#> SRR2443151     3  0.7748   -0.00890 0.000 0.304 0.436 0.260
#> SRR2443150     2  0.2402    0.51249 0.000 0.912 0.076 0.012
#> SRR2443148     4  0.6261    0.27622 0.000 0.056 0.440 0.504
#> SRR2443147     4  0.6261    0.27622 0.000 0.056 0.440 0.504
#> SRR2443149     3  0.9272    0.08321 0.204 0.196 0.452 0.148

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4449     0.2106 0.352 0.000 0.636 0.008 0.004
#> SRR2443262     4  0.2124     0.6684 0.000 0.096 0.000 0.900 0.004
#> SRR2443261     4  0.2623     0.6769 0.000 0.096 0.016 0.884 0.004
#> SRR2443260     4  0.6117     0.3947 0.028 0.000 0.392 0.516 0.064
#> SRR2443259     3  0.4841     0.5196 0.064 0.000 0.736 0.184 0.016
#> SRR2443258     3  0.4826     0.5324 0.072 0.000 0.736 0.180 0.012
#> SRR2443257     4  0.0162     0.7162 0.000 0.000 0.000 0.996 0.004
#> SRR2443256     3  0.4256     0.5160 0.048 0.000 0.764 0.184 0.004
#> SRR2443255     3  0.4220     0.5175 0.048 0.000 0.768 0.180 0.004
#> SRR2443254     3  0.4256     0.5160 0.048 0.000 0.764 0.184 0.004
#> SRR2443253     4  0.4624     0.2714 0.000 0.340 0.000 0.636 0.024
#> SRR2443251     4  0.1478     0.7310 0.000 0.000 0.064 0.936 0.000
#> SRR2443250     4  0.2124     0.6684 0.000 0.096 0.000 0.900 0.004
#> SRR2443249     4  0.2124     0.6684 0.000 0.096 0.000 0.900 0.004
#> SRR2443252     4  0.6117     0.3947 0.028 0.000 0.392 0.516 0.064
#> SRR2443247     1  0.2685     0.6893 0.880 0.000 0.092 0.000 0.028
#> SRR2443246     3  0.6133    -0.0827 0.120 0.000 0.512 0.004 0.364
#> SRR2443248     4  0.4674     0.6776 0.000 0.004 0.148 0.748 0.100
#> SRR2443244     4  0.7966    -0.0546 0.000 0.088 0.224 0.364 0.324
#> SRR2443245     1  0.4452     0.1160 0.500 0.000 0.496 0.000 0.004
#> SRR2443243     1  0.4451     0.1249 0.504 0.000 0.492 0.000 0.004
#> SRR2443242     5  0.7943     0.3249 0.000 0.084 0.272 0.256 0.388
#> SRR2443241     5  0.4748     0.4453 0.004 0.016 0.384 0.000 0.596
#> SRR2443240     5  0.5215     0.3548 0.052 0.000 0.372 0.000 0.576
#> SRR2443239     5  0.7902     0.4843 0.000 0.188 0.196 0.148 0.468
#> SRR2443238     3  0.4451    -0.1652 0.492 0.000 0.504 0.000 0.004
#> SRR2443237     5  0.8031     0.2844 0.000 0.088 0.292 0.264 0.356
#> SRR2443236     5  0.5215     0.3548 0.052 0.000 0.372 0.000 0.576
#> SRR2443235     1  0.0290     0.7359 0.992 0.000 0.008 0.000 0.000
#> SRR2443233     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.4956     0.3716 0.016 0.008 0.428 0.000 0.548
#> SRR2443228     2  0.1018     0.9181 0.000 0.968 0.000 0.016 0.016
#> SRR2443227     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     1  0.4452     0.1177 0.500 0.000 0.496 0.000 0.004
#> SRR2443225     3  0.5754    -0.1507 0.044 0.000 0.480 0.456 0.020
#> SRR2443223     4  0.6087     0.5322 0.000 0.004 0.332 0.540 0.124
#> SRR2443224     5  0.3835     0.4383 0.000 0.260 0.008 0.000 0.732
#> SRR2443222     2  0.0992     0.9103 0.000 0.968 0.000 0.008 0.024
#> SRR2443221     2  0.0992     0.9103 0.000 0.968 0.000 0.008 0.024
#> SRR2443219     4  0.7272     0.2677 0.000 0.260 0.040 0.472 0.228
#> SRR2443220     4  0.3986     0.6652 0.000 0.044 0.036 0.824 0.096
#> SRR2443218     2  0.1018     0.9181 0.000 0.968 0.000 0.016 0.016
#> SRR2443217     5  0.4962     0.3671 0.016 0.008 0.432 0.000 0.544
#> SRR2443216     3  0.4509     0.5486 0.104 0.000 0.776 0.108 0.012
#> SRR2443215     5  0.7902     0.4843 0.000 0.188 0.196 0.148 0.468
#> SRR2443214     1  0.4452     0.1160 0.500 0.000 0.496 0.000 0.004
#> SRR2443213     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.5522     0.4985 0.004 0.044 0.320 0.016 0.616
#> SRR2443211     5  0.3825     0.5336 0.000 0.136 0.060 0.000 0.804
#> SRR2443210     2  0.0992     0.9103 0.000 0.968 0.000 0.008 0.024
#> SRR2443209     5  0.4599     0.4477 0.000 0.016 0.384 0.000 0.600
#> SRR2443208     5  0.4527     0.4309 0.000 0.012 0.392 0.000 0.596
#> SRR2443207     5  0.4527     0.4309 0.000 0.012 0.392 0.000 0.596
#> SRR2443206     5  0.3730     0.4178 0.000 0.288 0.000 0.000 0.712
#> SRR2443205     5  0.3825     0.5336 0.000 0.136 0.060 0.000 0.804
#> SRR2443204     1  0.4452     0.1160 0.500 0.000 0.496 0.000 0.004
#> SRR2443203     1  0.4452     0.1177 0.500 0.000 0.496 0.000 0.004
#> SRR2443202     4  0.5406     0.5264 0.000 0.000 0.360 0.572 0.068
#> SRR2443201     4  0.6012     0.5387 0.000 0.004 0.332 0.548 0.116
#> SRR2443200     2  0.1117     0.9167 0.000 0.964 0.000 0.016 0.020
#> SRR2443199     2  0.1018     0.9181 0.000 0.968 0.000 0.016 0.016
#> SRR2443197     4  0.2583     0.7228 0.000 0.000 0.132 0.864 0.004
#> SRR2443196     4  0.1862     0.7286 0.000 0.004 0.048 0.932 0.016
#> SRR2443198     4  0.4360     0.6224 0.000 0.000 0.284 0.692 0.024
#> SRR2443195     1  0.4451     0.1249 0.504 0.000 0.492 0.000 0.004
#> SRR2443194     3  0.5816    -0.0912 0.044 0.000 0.500 0.432 0.024
#> SRR2443193     3  0.6543     0.1014 0.176 0.008 0.504 0.000 0.312
#> SRR2443191     5  0.4748     0.4453 0.004 0.016 0.384 0.000 0.596
#> SRR2443192     5  0.8031     0.2844 0.000 0.088 0.292 0.264 0.356
#> SRR2443190     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     3  0.4777     0.3069 0.292 0.000 0.664 0.000 0.044
#> SRR2443188     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     5  0.3730     0.4178 0.000 0.288 0.000 0.000 0.712
#> SRR2443187     5  0.3730     0.4178 0.000 0.288 0.000 0.000 0.712
#> SRR2443185     4  0.4832     0.6630 0.000 0.004 0.224 0.708 0.064
#> SRR2443184     3  0.4893     0.5220 0.132 0.000 0.760 0.068 0.040
#> SRR2443183     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.4449     0.2106 0.352 0.000 0.636 0.008 0.004
#> SRR2443181     5  0.3561     0.4423 0.000 0.260 0.000 0.000 0.740
#> SRR2443180     2  0.1018     0.9181 0.000 0.968 0.000 0.016 0.016
#> SRR2443179     4  0.2104     0.7221 0.000 0.024 0.044 0.924 0.008
#> SRR2443178     4  0.5382     0.5709 0.000 0.004 0.340 0.596 0.060
#> SRR2443177     3  0.4596    -0.1697 0.496 0.000 0.496 0.004 0.004
#> SRR2443176     3  0.4490     0.0938 0.404 0.000 0.588 0.004 0.004
#> SRR2443175     1  0.4021     0.6112 0.780 0.000 0.168 0.000 0.052
#> SRR2443174     1  0.0000     0.7383 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     5  0.4415     0.2889 0.000 0.388 0.008 0.000 0.604
#> SRR2443172     5  0.4415     0.2889 0.000 0.388 0.008 0.000 0.604
#> SRR2443171     1  0.5466     0.4452 0.656 0.000 0.192 0.000 0.152
#> SRR2443170     3  0.5857    -0.1840 0.096 0.000 0.460 0.000 0.444
#> SRR2443169     1  0.2685     0.6893 0.880 0.000 0.092 0.000 0.028
#> SRR2443168     3  0.5119    -0.2483 0.028 0.000 0.504 0.004 0.464
#> SRR2443167     4  0.1671     0.7297 0.000 0.000 0.076 0.924 0.000
#> SRR2443166     3  0.4558     0.5465 0.108 0.000 0.772 0.108 0.012
#> SRR2443165     4  0.4415     0.3781 0.000 0.000 0.444 0.552 0.004
#> SRR2443164     2  0.1571     0.8830 0.000 0.936 0.004 0.060 0.000
#> SRR2443163     4  0.6087     0.5322 0.000 0.004 0.332 0.540 0.124
#> SRR2443162     3  0.4256     0.5160 0.048 0.000 0.764 0.184 0.004
#> SRR2443161     3  0.4256     0.5160 0.048 0.000 0.764 0.184 0.004
#> SRR2443160     4  0.1671     0.7297 0.000 0.000 0.076 0.924 0.000
#> SRR2443159     4  0.0162     0.7162 0.000 0.000 0.000 0.996 0.004
#> SRR2443158     3  0.4256     0.5160 0.048 0.000 0.764 0.184 0.004
#> SRR2443157     3  0.4449     0.2106 0.352 0.000 0.636 0.008 0.004
#> SRR2443156     3  0.5666    -0.1427 0.060 0.000 0.524 0.008 0.408
#> SRR2443155     3  0.5857    -0.1840 0.096 0.000 0.460 0.000 0.444
#> SRR2443154     3  0.5857    -0.1840 0.096 0.000 0.460 0.000 0.444
#> SRR2443153     1  0.2685     0.6893 0.880 0.000 0.092 0.000 0.028
#> SRR2443152     5  0.4415     0.2889 0.000 0.388 0.008 0.000 0.604
#> SRR2443151     2  0.1116     0.9077 0.000 0.964 0.004 0.028 0.004
#> SRR2443150     5  0.4415     0.2889 0.000 0.388 0.008 0.000 0.604
#> SRR2443148     2  0.4397     0.6337 0.000 0.708 0.004 0.264 0.024
#> SRR2443147     2  0.4397     0.6337 0.000 0.708 0.004 0.264 0.024
#> SRR2443149     3  0.6010     0.3444 0.048 0.000 0.652 0.088 0.212

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.4253     0.5396 0.300 0.020 0.668 0.000 0.012 0.000
#> SRR2443262     4  0.2829     0.6999 0.000 0.024 0.016 0.864 0.000 0.096
#> SRR2443261     4  0.3150     0.7062 0.000 0.024 0.032 0.848 0.000 0.096
#> SRR2443260     3  0.5485    -0.2662 0.000 0.028 0.488 0.424 0.060 0.000
#> SRR2443259     3  0.2772     0.5633 0.004 0.000 0.864 0.092 0.040 0.000
#> SRR2443258     3  0.2794     0.5775 0.004 0.004 0.868 0.088 0.036 0.000
#> SRR2443257     4  0.1779     0.7380 0.000 0.064 0.016 0.920 0.000 0.000
#> SRR2443256     3  0.2350     0.5665 0.000 0.020 0.880 0.100 0.000 0.000
#> SRR2443255     3  0.2199     0.5693 0.000 0.020 0.892 0.088 0.000 0.000
#> SRR2443254     3  0.2350     0.5665 0.000 0.020 0.880 0.100 0.000 0.000
#> SRR2443253     4  0.5643     0.1736 0.000 0.108 0.016 0.528 0.000 0.348
#> SRR2443251     4  0.1806     0.7466 0.000 0.004 0.088 0.908 0.000 0.000
#> SRR2443250     4  0.2829     0.6999 0.000 0.024 0.016 0.864 0.000 0.096
#> SRR2443249     4  0.2829     0.6999 0.000 0.024 0.016 0.864 0.000 0.096
#> SRR2443252     3  0.5485    -0.2662 0.000 0.028 0.488 0.424 0.060 0.000
#> SRR2443247     1  0.2771     0.8489 0.868 0.004 0.068 0.000 0.060 0.000
#> SRR2443246     5  0.5099     0.6115 0.088 0.044 0.160 0.004 0.704 0.000
#> SRR2443248     4  0.4942     0.6672 0.000 0.064 0.112 0.732 0.088 0.004
#> SRR2443244     5  0.7509     0.0777 0.000 0.096 0.072 0.368 0.388 0.076
#> SRR2443245     3  0.4361     0.4304 0.436 0.004 0.544 0.000 0.016 0.000
#> SRR2443243     3  0.4366     0.4236 0.440 0.004 0.540 0.000 0.016 0.000
#> SRR2443242     5  0.6985     0.4322 0.000 0.124 0.036 0.256 0.516 0.068
#> SRR2443241     5  0.2408     0.7098 0.000 0.108 0.012 0.004 0.876 0.000
#> SRR2443240     5  0.1956     0.7027 0.008 0.080 0.004 0.000 0.908 0.000
#> SRR2443239     5  0.7273     0.3356 0.000 0.204 0.008 0.144 0.468 0.176
#> SRR2443238     3  0.4654     0.4354 0.424 0.008 0.544 0.004 0.020 0.000
#> SRR2443237     5  0.7031     0.4174 0.000 0.132 0.032 0.268 0.500 0.068
#> SRR2443236     5  0.1956     0.7027 0.008 0.080 0.004 0.000 0.908 0.000
#> SRR2443235     1  0.0260     0.9237 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.2190     0.7170 0.000 0.060 0.040 0.000 0.900 0.000
#> SRR2443228     6  0.0000     0.8954 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443227     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443226     3  0.4493     0.4286 0.436 0.004 0.540 0.004 0.016 0.000
#> SRR2443225     3  0.5068    -0.0226 0.000 0.044 0.520 0.420 0.016 0.000
#> SRR2443223     4  0.6795     0.4877 0.000 0.068 0.280 0.476 0.172 0.004
#> SRR2443224     2  0.4033     0.8178 0.000 0.724 0.000 0.000 0.052 0.224
#> SRR2443222     6  0.0458     0.8868 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR2443221     6  0.0458     0.8868 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR2443219     4  0.7233     0.3089 0.000 0.144 0.008 0.456 0.136 0.256
#> SRR2443220     4  0.3793     0.6729 0.000 0.032 0.012 0.820 0.096 0.040
#> SRR2443218     6  0.0000     0.8954 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443217     5  0.2340     0.7168 0.000 0.056 0.044 0.004 0.896 0.000
#> SRR2443216     3  0.2628     0.6017 0.032 0.012 0.896 0.024 0.036 0.000
#> SRR2443215     5  0.7273     0.3356 0.000 0.204 0.008 0.144 0.468 0.176
#> SRR2443214     3  0.4361     0.4304 0.436 0.004 0.544 0.000 0.016 0.000
#> SRR2443213     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.4054     0.6507 0.000 0.168 0.008 0.020 0.772 0.032
#> SRR2443211     2  0.5178     0.5553 0.000 0.580 0.000 0.000 0.304 0.116
#> SRR2443210     6  0.0458     0.8868 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR2443209     5  0.2455     0.7085 0.000 0.112 0.012 0.004 0.872 0.000
#> SRR2443208     5  0.1970     0.7131 0.000 0.092 0.008 0.000 0.900 0.000
#> SRR2443207     5  0.1970     0.7131 0.000 0.092 0.008 0.000 0.900 0.000
#> SRR2443206     2  0.4168     0.8197 0.000 0.696 0.000 0.000 0.048 0.256
#> SRR2443205     2  0.5178     0.5553 0.000 0.580 0.000 0.000 0.304 0.116
#> SRR2443204     3  0.4361     0.4304 0.436 0.004 0.544 0.000 0.016 0.000
#> SRR2443203     3  0.4493     0.4286 0.436 0.004 0.540 0.004 0.016 0.000
#> SRR2443202     4  0.6100     0.5225 0.000 0.036 0.288 0.532 0.144 0.000
#> SRR2443201     4  0.6702     0.4980 0.000 0.064 0.272 0.492 0.168 0.004
#> SRR2443200     6  0.0146     0.8934 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR2443199     6  0.0000     0.8954 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443197     4  0.2806     0.7266 0.000 0.016 0.136 0.844 0.004 0.000
#> SRR2443196     4  0.1630     0.7358 0.000 0.024 0.016 0.940 0.020 0.000
#> SRR2443198     4  0.4600     0.5621 0.000 0.040 0.300 0.648 0.012 0.000
#> SRR2443195     3  0.4366     0.4236 0.440 0.004 0.540 0.000 0.016 0.000
#> SRR2443194     3  0.4877     0.0538 0.000 0.040 0.560 0.388 0.012 0.000
#> SRR2443193     5  0.6344     0.3213 0.156 0.044 0.264 0.004 0.532 0.000
#> SRR2443191     5  0.2408     0.7098 0.000 0.108 0.012 0.004 0.876 0.000
#> SRR2443192     5  0.7060     0.4140 0.000 0.136 0.032 0.268 0.496 0.068
#> SRR2443190     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     3  0.5081     0.5425 0.220 0.016 0.668 0.004 0.092 0.000
#> SRR2443188     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.4168     0.8197 0.000 0.696 0.000 0.000 0.048 0.256
#> SRR2443187     2  0.4168     0.8197 0.000 0.696 0.000 0.000 0.048 0.256
#> SRR2443185     4  0.5208     0.6157 0.000 0.056 0.256 0.648 0.036 0.004
#> SRR2443184     3  0.3380     0.6034 0.060 0.016 0.840 0.004 0.080 0.000
#> SRR2443183     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.4253     0.5396 0.300 0.020 0.668 0.000 0.012 0.000
#> SRR2443181     2  0.4281     0.8093 0.000 0.708 0.000 0.000 0.072 0.220
#> SRR2443180     6  0.0000     0.8954 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443179     4  0.2244     0.7355 0.000 0.048 0.012 0.912 0.012 0.016
#> SRR2443178     4  0.5858     0.5163 0.000 0.064 0.300 0.564 0.072 0.000
#> SRR2443177     3  0.4488     0.4339 0.432 0.004 0.544 0.004 0.016 0.000
#> SRR2443176     3  0.4131     0.5096 0.356 0.020 0.624 0.000 0.000 0.000
#> SRR2443175     1  0.4057     0.7423 0.764 0.004 0.108 0.000 0.124 0.000
#> SRR2443174     1  0.0000     0.9299 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.3634     0.7516 0.000 0.644 0.000 0.000 0.000 0.356
#> SRR2443172     2  0.3634     0.7516 0.000 0.644 0.000 0.000 0.000 0.356
#> SRR2443171     1  0.4773     0.5542 0.632 0.004 0.068 0.000 0.296 0.000
#> SRR2443170     5  0.3655     0.6712 0.048 0.052 0.076 0.000 0.824 0.000
#> SRR2443169     1  0.2771     0.8489 0.868 0.004 0.068 0.000 0.060 0.000
#> SRR2443168     5  0.3151     0.6845 0.004 0.040 0.112 0.004 0.840 0.000
#> SRR2443167     4  0.1863     0.7433 0.000 0.000 0.104 0.896 0.000 0.000
#> SRR2443166     3  0.2701     0.6030 0.036 0.012 0.892 0.024 0.036 0.000
#> SRR2443165     3  0.4338    -0.2566 0.000 0.020 0.492 0.488 0.000 0.000
#> SRR2443164     6  0.2257     0.8442 0.000 0.060 0.020 0.016 0.000 0.904
#> SRR2443163     4  0.6795     0.4877 0.000 0.068 0.280 0.476 0.172 0.004
#> SRR2443162     3  0.2350     0.5665 0.000 0.020 0.880 0.100 0.000 0.000
#> SRR2443161     3  0.2350     0.5665 0.000 0.020 0.880 0.100 0.000 0.000
#> SRR2443160     4  0.1863     0.7433 0.000 0.000 0.104 0.896 0.000 0.000
#> SRR2443159     4  0.1779     0.7380 0.000 0.064 0.016 0.920 0.000 0.000
#> SRR2443158     3  0.2350     0.5665 0.000 0.020 0.880 0.100 0.000 0.000
#> SRR2443157     3  0.4253     0.5396 0.300 0.020 0.668 0.000 0.012 0.000
#> SRR2443156     5  0.4271     0.6547 0.028 0.044 0.152 0.008 0.768 0.000
#> SRR2443155     5  0.3655     0.6712 0.048 0.052 0.076 0.000 0.824 0.000
#> SRR2443154     5  0.3655     0.6712 0.048 0.052 0.076 0.000 0.824 0.000
#> SRR2443153     1  0.2771     0.8489 0.868 0.004 0.068 0.000 0.060 0.000
#> SRR2443152     2  0.3634     0.7516 0.000 0.644 0.000 0.000 0.000 0.356
#> SRR2443151     6  0.1616     0.8679 0.000 0.028 0.020 0.012 0.000 0.940
#> SRR2443150     2  0.3634     0.7516 0.000 0.644 0.000 0.000 0.000 0.356
#> SRR2443148     6  0.5042     0.6408 0.000 0.144 0.020 0.152 0.000 0.684
#> SRR2443147     6  0.5042     0.6408 0.000 0.144 0.020 0.152 0.000 0.684
#> SRR2443149     3  0.5197    -0.2546 0.020 0.016 0.480 0.020 0.464 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.846           0.937       0.971         0.5026 0.497   0.497
#> 3 3 0.639           0.827       0.909         0.3133 0.714   0.491
#> 4 4 0.626           0.601       0.792         0.1249 0.796   0.490
#> 5 5 0.664           0.569       0.745         0.0675 0.873   0.571
#> 6 6 0.699           0.540       0.679         0.0427 0.885   0.561

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000      0.965 1.000 0.000
#> SRR2443262     2  0.0000      0.974 0.000 1.000
#> SRR2443261     2  0.0000      0.974 0.000 1.000
#> SRR2443260     1  0.8016      0.703 0.756 0.244
#> SRR2443259     1  0.0000      0.965 1.000 0.000
#> SRR2443258     1  0.0000      0.965 1.000 0.000
#> SRR2443257     2  0.0000      0.974 0.000 1.000
#> SRR2443256     1  0.0000      0.965 1.000 0.000
#> SRR2443255     1  0.0000      0.965 1.000 0.000
#> SRR2443254     1  0.7453      0.742 0.788 0.212
#> SRR2443253     2  0.0000      0.974 0.000 1.000
#> SRR2443251     2  0.0672      0.969 0.008 0.992
#> SRR2443250     2  0.0000      0.974 0.000 1.000
#> SRR2443249     2  0.0000      0.974 0.000 1.000
#> SRR2443252     1  0.4431      0.893 0.908 0.092
#> SRR2443247     1  0.0000      0.965 1.000 0.000
#> SRR2443246     1  0.0000      0.965 1.000 0.000
#> SRR2443248     2  0.0000      0.974 0.000 1.000
#> SRR2443244     2  0.0000      0.974 0.000 1.000
#> SRR2443245     1  0.0000      0.965 1.000 0.000
#> SRR2443243     1  0.0000      0.965 1.000 0.000
#> SRR2443242     2  0.0000      0.974 0.000 1.000
#> SRR2443241     1  0.0000      0.965 1.000 0.000
#> SRR2443240     1  0.0000      0.965 1.000 0.000
#> SRR2443239     2  0.0000      0.974 0.000 1.000
#> SRR2443238     1  0.0000      0.965 1.000 0.000
#> SRR2443237     2  0.0376      0.971 0.004 0.996
#> SRR2443236     1  0.0000      0.965 1.000 0.000
#> SRR2443235     1  0.0000      0.965 1.000 0.000
#> SRR2443233     1  0.0000      0.965 1.000 0.000
#> SRR2443234     1  0.0000      0.965 1.000 0.000
#> SRR2443232     1  0.0000      0.965 1.000 0.000
#> SRR2443231     1  0.0000      0.965 1.000 0.000
#> SRR2443230     1  0.0000      0.965 1.000 0.000
#> SRR2443229     1  0.7056      0.775 0.808 0.192
#> SRR2443228     2  0.0000      0.974 0.000 1.000
#> SRR2443227     1  0.0000      0.965 1.000 0.000
#> SRR2443226     1  0.0000      0.965 1.000 0.000
#> SRR2443225     1  0.8386      0.648 0.732 0.268
#> SRR2443223     2  0.0000      0.974 0.000 1.000
#> SRR2443224     2  0.0000      0.974 0.000 1.000
#> SRR2443222     2  0.0000      0.974 0.000 1.000
#> SRR2443221     2  0.0000      0.974 0.000 1.000
#> SRR2443219     2  0.0000      0.974 0.000 1.000
#> SRR2443220     2  0.0000      0.974 0.000 1.000
#> SRR2443218     2  0.0000      0.974 0.000 1.000
#> SRR2443217     1  0.0000      0.965 1.000 0.000
#> SRR2443216     1  0.0000      0.965 1.000 0.000
#> SRR2443215     2  0.0000      0.974 0.000 1.000
#> SRR2443214     1  0.0000      0.965 1.000 0.000
#> SRR2443213     1  0.0000      0.965 1.000 0.000
#> SRR2443212     2  0.0000      0.974 0.000 1.000
#> SRR2443211     2  0.0000      0.974 0.000 1.000
#> SRR2443210     2  0.0000      0.974 0.000 1.000
#> SRR2443209     1  0.0000      0.965 1.000 0.000
#> SRR2443208     1  0.7376      0.756 0.792 0.208
#> SRR2443207     2  0.7139      0.746 0.196 0.804
#> SRR2443206     2  0.0000      0.974 0.000 1.000
#> SRR2443205     2  0.0000      0.974 0.000 1.000
#> SRR2443204     1  0.0000      0.965 1.000 0.000
#> SRR2443203     1  0.0000      0.965 1.000 0.000
#> SRR2443202     2  0.1184      0.963 0.016 0.984
#> SRR2443201     2  0.1184      0.963 0.016 0.984
#> SRR2443200     2  0.0000      0.974 0.000 1.000
#> SRR2443199     2  0.0000      0.974 0.000 1.000
#> SRR2443197     2  0.7219      0.750 0.200 0.800
#> SRR2443196     2  0.0000      0.974 0.000 1.000
#> SRR2443198     2  0.6048      0.820 0.148 0.852
#> SRR2443195     1  0.0000      0.965 1.000 0.000
#> SRR2443194     1  0.7528      0.736 0.784 0.216
#> SRR2443193     1  0.0000      0.965 1.000 0.000
#> SRR2443191     1  0.5629      0.850 0.868 0.132
#> SRR2443192     2  0.0000      0.974 0.000 1.000
#> SRR2443190     1  0.0000      0.965 1.000 0.000
#> SRR2443189     1  0.0000      0.965 1.000 0.000
#> SRR2443188     1  0.0000      0.965 1.000 0.000
#> SRR2443186     2  0.0000      0.974 0.000 1.000
#> SRR2443187     2  0.0000      0.974 0.000 1.000
#> SRR2443185     2  0.0672      0.969 0.008 0.992
#> SRR2443184     1  0.0000      0.965 1.000 0.000
#> SRR2443183     1  0.0000      0.965 1.000 0.000
#> SRR2443182     1  0.0000      0.965 1.000 0.000
#> SRR2443181     2  0.0000      0.974 0.000 1.000
#> SRR2443180     2  0.0000      0.974 0.000 1.000
#> SRR2443179     2  0.0000      0.974 0.000 1.000
#> SRR2443178     2  0.9286      0.485 0.344 0.656
#> SRR2443177     1  0.0000      0.965 1.000 0.000
#> SRR2443176     1  0.0000      0.965 1.000 0.000
#> SRR2443175     1  0.0000      0.965 1.000 0.000
#> SRR2443174     1  0.0000      0.965 1.000 0.000
#> SRR2443173     2  0.0000      0.974 0.000 1.000
#> SRR2443172     2  0.0000      0.974 0.000 1.000
#> SRR2443171     1  0.0000      0.965 1.000 0.000
#> SRR2443170     1  0.0000      0.965 1.000 0.000
#> SRR2443169     1  0.0000      0.965 1.000 0.000
#> SRR2443168     1  0.7219      0.766 0.800 0.200
#> SRR2443167     2  0.1184      0.963 0.016 0.984
#> SRR2443166     1  0.0000      0.965 1.000 0.000
#> SRR2443165     2  0.9491      0.427 0.368 0.632
#> SRR2443164     2  0.0000      0.974 0.000 1.000
#> SRR2443163     2  0.0672      0.969 0.008 0.992
#> SRR2443162     1  0.0000      0.965 1.000 0.000
#> SRR2443161     1  0.5629      0.846 0.868 0.132
#> SRR2443160     2  0.1184      0.963 0.016 0.984
#> SRR2443159     2  0.0672      0.969 0.008 0.992
#> SRR2443158     1  0.0000      0.965 1.000 0.000
#> SRR2443157     1  0.0000      0.965 1.000 0.000
#> SRR2443156     1  0.0000      0.965 1.000 0.000
#> SRR2443155     1  0.0000      0.965 1.000 0.000
#> SRR2443154     1  0.0000      0.965 1.000 0.000
#> SRR2443153     1  0.0000      0.965 1.000 0.000
#> SRR2443152     2  0.0000      0.974 0.000 1.000
#> SRR2443151     2  0.0000      0.974 0.000 1.000
#> SRR2443150     2  0.0000      0.974 0.000 1.000
#> SRR2443148     2  0.0000      0.974 0.000 1.000
#> SRR2443147     2  0.0000      0.974 0.000 1.000
#> SRR2443149     1  0.5629      0.850 0.868 0.132

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.5058      0.712 0.756 0.000 0.244
#> SRR2443262     3  0.3686      0.797 0.000 0.140 0.860
#> SRR2443261     3  0.3340      0.812 0.000 0.120 0.880
#> SRR2443260     3  0.1525      0.876 0.004 0.032 0.964
#> SRR2443259     3  0.2878      0.840 0.096 0.000 0.904
#> SRR2443258     3  0.4702      0.715 0.212 0.000 0.788
#> SRR2443257     3  0.3686      0.797 0.000 0.140 0.860
#> SRR2443256     3  0.2878      0.840 0.096 0.000 0.904
#> SRR2443255     3  0.1411      0.872 0.036 0.000 0.964
#> SRR2443254     3  0.1453      0.877 0.008 0.024 0.968
#> SRR2443253     3  0.3686      0.797 0.000 0.140 0.860
#> SRR2443251     3  0.0000      0.875 0.000 0.000 1.000
#> SRR2443250     3  0.3686      0.797 0.000 0.140 0.860
#> SRR2443249     3  0.3686      0.797 0.000 0.140 0.860
#> SRR2443252     3  0.1525      0.876 0.004 0.032 0.964
#> SRR2443247     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443246     1  0.4504      0.738 0.804 0.000 0.196
#> SRR2443248     3  0.1411      0.875 0.000 0.036 0.964
#> SRR2443244     3  0.5178      0.653 0.000 0.256 0.744
#> SRR2443245     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443242     3  0.5178      0.653 0.000 0.256 0.744
#> SRR2443241     1  0.4779      0.819 0.840 0.036 0.124
#> SRR2443240     1  0.6597      0.753 0.756 0.120 0.124
#> SRR2443239     2  0.0592      0.895 0.000 0.988 0.012
#> SRR2443238     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443237     3  0.5178      0.653 0.000 0.256 0.744
#> SRR2443236     1  0.0424      0.910 0.992 0.008 0.000
#> SRR2443235     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443229     1  0.8196      0.546 0.624 0.252 0.124
#> SRR2443228     2  0.1289      0.892 0.000 0.968 0.032
#> SRR2443227     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443225     3  0.1453      0.877 0.008 0.024 0.968
#> SRR2443223     3  0.1411      0.875 0.000 0.036 0.964
#> SRR2443224     2  0.2356      0.862 0.000 0.928 0.072
#> SRR2443222     2  0.1289      0.892 0.000 0.968 0.032
#> SRR2443221     2  0.1289      0.892 0.000 0.968 0.032
#> SRR2443219     2  0.3267      0.852 0.000 0.884 0.116
#> SRR2443220     3  0.3686      0.797 0.000 0.140 0.860
#> SRR2443218     2  0.2878      0.867 0.000 0.904 0.096
#> SRR2443217     1  0.6522      0.638 0.696 0.032 0.272
#> SRR2443216     3  0.3192      0.828 0.112 0.000 0.888
#> SRR2443215     2  0.3412      0.815 0.000 0.876 0.124
#> SRR2443214     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443212     2  0.3412      0.815 0.000 0.876 0.124
#> SRR2443211     2  0.3192      0.827 0.000 0.888 0.112
#> SRR2443210     2  0.1163      0.893 0.000 0.972 0.028
#> SRR2443209     1  0.6850      0.739 0.740 0.120 0.140
#> SRR2443208     2  0.9020      0.137 0.364 0.496 0.140
#> SRR2443207     2  0.3686      0.796 0.000 0.860 0.140
#> SRR2443206     2  0.0592      0.895 0.000 0.988 0.012
#> SRR2443205     2  0.2066      0.870 0.000 0.940 0.060
#> SRR2443204     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443203     1  0.3482      0.836 0.872 0.000 0.128
#> SRR2443202     3  0.1031      0.877 0.000 0.024 0.976
#> SRR2443201     3  0.1411      0.875 0.000 0.036 0.964
#> SRR2443200     2  0.1289      0.892 0.000 0.968 0.032
#> SRR2443199     2  0.2878      0.867 0.000 0.904 0.096
#> SRR2443197     3  0.0592      0.873 0.000 0.012 0.988
#> SRR2443196     3  0.3619      0.809 0.000 0.136 0.864
#> SRR2443198     3  0.0000      0.875 0.000 0.000 1.000
#> SRR2443195     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443194     3  0.1453      0.877 0.008 0.024 0.968
#> SRR2443193     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443191     1  0.8907      0.364 0.528 0.332 0.140
#> SRR2443192     3  0.5591      0.564 0.000 0.304 0.696
#> SRR2443190     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443189     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443188     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443186     2  0.0592      0.895 0.000 0.988 0.012
#> SRR2443187     2  0.0592      0.895 0.000 0.988 0.012
#> SRR2443185     3  0.0892      0.877 0.000 0.020 0.980
#> SRR2443184     3  0.3192      0.828 0.112 0.000 0.888
#> SRR2443183     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443182     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443181     2  0.0000      0.897 0.000 1.000 0.000
#> SRR2443180     2  0.2878      0.867 0.000 0.904 0.096
#> SRR2443179     3  0.4002      0.782 0.000 0.160 0.840
#> SRR2443178     3  0.4555      0.715 0.200 0.000 0.800
#> SRR2443177     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443176     1  0.3686      0.826 0.860 0.000 0.140
#> SRR2443175     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.897 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.897 0.000 1.000 0.000
#> SRR2443171     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443170     1  0.0424      0.910 0.992 0.008 0.000
#> SRR2443169     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443168     1  0.8202      0.482 0.580 0.092 0.328
#> SRR2443167     3  0.0592      0.873 0.000 0.012 0.988
#> SRR2443166     1  0.4555      0.732 0.800 0.000 0.200
#> SRR2443165     3  0.0000      0.875 0.000 0.000 1.000
#> SRR2443164     2  0.2878      0.867 0.000 0.904 0.096
#> SRR2443163     3  0.1411      0.875 0.000 0.036 0.964
#> SRR2443162     3  0.2711      0.846 0.088 0.000 0.912
#> SRR2443161     3  0.1525      0.876 0.004 0.032 0.964
#> SRR2443160     3  0.0592      0.873 0.000 0.012 0.988
#> SRR2443159     3  0.1860      0.856 0.000 0.052 0.948
#> SRR2443158     3  0.5327      0.608 0.272 0.000 0.728
#> SRR2443157     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443156     1  0.6744      0.609 0.668 0.032 0.300
#> SRR2443155     1  0.3530      0.862 0.900 0.032 0.068
#> SRR2443154     1  0.4662      0.821 0.844 0.032 0.124
#> SRR2443153     1  0.0000      0.915 1.000 0.000 0.000
#> SRR2443152     2  0.0000      0.897 0.000 1.000 0.000
#> SRR2443151     2  0.1411      0.891 0.000 0.964 0.036
#> SRR2443150     2  0.0000      0.897 0.000 1.000 0.000
#> SRR2443148     2  0.5058      0.688 0.000 0.756 0.244
#> SRR2443147     2  0.6225      0.235 0.000 0.568 0.432
#> SRR2443149     3  0.5521      0.738 0.180 0.032 0.788

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.4544     0.5934 0.192 0.012 0.780 0.016
#> SRR2443262     4  0.4543     0.3882 0.000 0.000 0.324 0.676
#> SRR2443261     4  0.4961     0.0604 0.000 0.000 0.448 0.552
#> SRR2443260     3  0.0336     0.7600 0.000 0.008 0.992 0.000
#> SRR2443259     3  0.0336     0.7600 0.000 0.008 0.992 0.000
#> SRR2443258     3  0.0657     0.7585 0.000 0.012 0.984 0.004
#> SRR2443257     4  0.4564     0.3811 0.000 0.000 0.328 0.672
#> SRR2443256     3  0.0524     0.7596 0.000 0.004 0.988 0.008
#> SRR2443255     3  0.1022     0.7597 0.000 0.000 0.968 0.032
#> SRR2443254     3  0.1022     0.7597 0.000 0.000 0.968 0.032
#> SRR2443253     4  0.4543     0.3882 0.000 0.000 0.324 0.676
#> SRR2443251     3  0.4304     0.5852 0.000 0.000 0.716 0.284
#> SRR2443250     4  0.4543     0.3882 0.000 0.000 0.324 0.676
#> SRR2443249     4  0.4543     0.3882 0.000 0.000 0.324 0.676
#> SRR2443252     3  0.0336     0.7600 0.000 0.008 0.992 0.000
#> SRR2443247     1  0.2408     0.8680 0.920 0.004 0.060 0.016
#> SRR2443246     1  0.7279     0.4681 0.568 0.128 0.288 0.016
#> SRR2443248     3  0.2973     0.7289 0.000 0.000 0.856 0.144
#> SRR2443244     3  0.6626     0.3546 0.000 0.384 0.528 0.088
#> SRR2443245     1  0.1743     0.8836 0.940 0.004 0.056 0.000
#> SRR2443243     1  0.0188     0.9040 0.996 0.004 0.000 0.000
#> SRR2443242     3  0.6259     0.5181 0.000 0.300 0.616 0.084
#> SRR2443241     2  0.6818     0.4867 0.232 0.600 0.168 0.000
#> SRR2443240     2  0.4773     0.6343 0.092 0.788 0.120 0.000
#> SRR2443239     2  0.3486     0.5872 0.000 0.812 0.000 0.188
#> SRR2443238     1  0.0188     0.9040 0.996 0.004 0.000 0.000
#> SRR2443237     3  0.5110     0.4209 0.000 0.352 0.636 0.012
#> SRR2443236     1  0.5279     0.3219 0.588 0.400 0.012 0.000
#> SRR2443235     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443229     2  0.5613     0.5974 0.084 0.724 0.188 0.004
#> SRR2443228     4  0.4830     0.2051 0.000 0.392 0.000 0.608
#> SRR2443227     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0188     0.9040 0.996 0.004 0.000 0.000
#> SRR2443225     3  0.2125     0.7542 0.000 0.004 0.920 0.076
#> SRR2443223     3  0.2814     0.7337 0.000 0.000 0.868 0.132
#> SRR2443224     2  0.0657     0.6725 0.000 0.984 0.004 0.012
#> SRR2443222     4  0.4977     0.0499 0.000 0.460 0.000 0.540
#> SRR2443221     4  0.4977     0.0499 0.000 0.460 0.000 0.540
#> SRR2443219     4  0.2271     0.5169 0.000 0.076 0.008 0.916
#> SRR2443220     4  0.4746     0.2918 0.000 0.000 0.368 0.632
#> SRR2443218     4  0.3801     0.4447 0.000 0.220 0.000 0.780
#> SRR2443217     3  0.6140     0.3391 0.064 0.340 0.596 0.000
#> SRR2443216     3  0.0469     0.7596 0.000 0.012 0.988 0.000
#> SRR2443215     2  0.1488     0.6769 0.000 0.956 0.032 0.012
#> SRR2443214     1  0.1661     0.8853 0.944 0.004 0.052 0.000
#> SRR2443213     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.1388     0.6768 0.000 0.960 0.028 0.012
#> SRR2443211     2  0.0524     0.6728 0.000 0.988 0.004 0.008
#> SRR2443210     4  0.4977     0.0499 0.000 0.460 0.000 0.540
#> SRR2443209     2  0.5132     0.6079 0.068 0.748 0.184 0.000
#> SRR2443208     2  0.4021     0.6525 0.032 0.836 0.124 0.008
#> SRR2443207     2  0.1722     0.6756 0.000 0.944 0.048 0.008
#> SRR2443206     2  0.3688     0.5686 0.000 0.792 0.000 0.208
#> SRR2443205     2  0.0779     0.6712 0.000 0.980 0.004 0.016
#> SRR2443204     1  0.1743     0.8836 0.940 0.004 0.056 0.000
#> SRR2443203     3  0.5105     0.1959 0.432 0.004 0.564 0.000
#> SRR2443202     3  0.3196     0.7325 0.000 0.008 0.856 0.136
#> SRR2443201     3  0.2281     0.7491 0.000 0.000 0.904 0.096
#> SRR2443200     4  0.4830     0.2051 0.000 0.392 0.000 0.608
#> SRR2443199     4  0.3764     0.4481 0.000 0.216 0.000 0.784
#> SRR2443197     3  0.4164     0.6064 0.000 0.000 0.736 0.264
#> SRR2443196     4  0.6213    -0.0969 0.000 0.052 0.464 0.484
#> SRR2443198     3  0.3975     0.6367 0.000 0.000 0.760 0.240
#> SRR2443195     1  0.1305     0.8904 0.960 0.004 0.036 0.000
#> SRR2443194     3  0.1940     0.7535 0.000 0.000 0.924 0.076
#> SRR2443193     1  0.5458     0.6180 0.704 0.236 0.060 0.000
#> SRR2443191     2  0.3931     0.6490 0.040 0.832 0.128 0.000
#> SRR2443192     3  0.6605     0.2179 0.000 0.440 0.480 0.080
#> SRR2443190     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.2342     0.8726 0.912 0.008 0.080 0.000
#> SRR2443188     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.3528     0.5843 0.000 0.808 0.000 0.192
#> SRR2443187     2  0.3528     0.5843 0.000 0.808 0.000 0.192
#> SRR2443185     3  0.2868     0.7316 0.000 0.000 0.864 0.136
#> SRR2443184     3  0.0657     0.7579 0.000 0.012 0.984 0.004
#> SRR2443183     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.2944     0.8281 0.868 0.004 0.128 0.000
#> SRR2443181     2  0.3266     0.5997 0.000 0.832 0.000 0.168
#> SRR2443180     4  0.3688     0.4533 0.000 0.208 0.000 0.792
#> SRR2443179     4  0.4792     0.3943 0.000 0.008 0.312 0.680
#> SRR2443178     3  0.6710     0.6623 0.052 0.104 0.692 0.152
#> SRR2443177     1  0.1824     0.8816 0.936 0.004 0.060 0.000
#> SRR2443176     3  0.5110     0.3655 0.352 0.012 0.636 0.000
#> SRR2443175     1  0.0376     0.9027 0.992 0.004 0.000 0.004
#> SRR2443174     1  0.0188     0.9036 0.996 0.000 0.000 0.004
#> SRR2443173     2  0.4916     0.2242 0.000 0.576 0.000 0.424
#> SRR2443172     2  0.4916     0.2242 0.000 0.576 0.000 0.424
#> SRR2443171     1  0.2957     0.8573 0.900 0.016 0.068 0.016
#> SRR2443170     1  0.6701     0.2535 0.536 0.392 0.056 0.016
#> SRR2443169     1  0.1796     0.8832 0.948 0.004 0.032 0.016
#> SRR2443168     2  0.5804     0.5267 0.036 0.676 0.272 0.016
#> SRR2443167     3  0.4304     0.5824 0.000 0.000 0.716 0.284
#> SRR2443166     1  0.5513     0.5279 0.628 0.008 0.348 0.016
#> SRR2443165     3  0.3764     0.6634 0.000 0.000 0.784 0.216
#> SRR2443164     4  0.3311     0.4783 0.000 0.172 0.000 0.828
#> SRR2443163     3  0.2704     0.7378 0.000 0.000 0.876 0.124
#> SRR2443162     3  0.0336     0.7603 0.000 0.000 0.992 0.008
#> SRR2443161     3  0.0188     0.7606 0.000 0.000 0.996 0.004
#> SRR2443160     3  0.4304     0.5824 0.000 0.000 0.716 0.284
#> SRR2443159     3  0.4998     0.1030 0.000 0.000 0.512 0.488
#> SRR2443158     3  0.1059     0.7531 0.000 0.012 0.972 0.016
#> SRR2443157     1  0.3873     0.8150 0.832 0.008 0.144 0.016
#> SRR2443156     3  0.6311     0.2682 0.040 0.356 0.588 0.016
#> SRR2443155     2  0.7969     0.3225 0.288 0.484 0.212 0.016
#> SRR2443154     2  0.7997     0.3651 0.228 0.484 0.272 0.016
#> SRR2443153     1  0.0000     0.9046 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.4898     0.2434 0.000 0.584 0.000 0.416
#> SRR2443151     4  0.3942     0.4296 0.000 0.236 0.000 0.764
#> SRR2443150     2  0.4898     0.2434 0.000 0.584 0.000 0.416
#> SRR2443148     4  0.0927     0.5352 0.000 0.016 0.008 0.976
#> SRR2443147     4  0.1022     0.5407 0.000 0.000 0.032 0.968
#> SRR2443149     3  0.2408     0.7017 0.000 0.104 0.896 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4088     0.5351 0.104 0.012 0.820 0.052 0.012
#> SRR2443262     4  0.4404     0.6925 0.000 0.088 0.152 0.760 0.000
#> SRR2443261     4  0.3876     0.6767 0.000 0.032 0.192 0.776 0.000
#> SRR2443260     3  0.1205     0.6112 0.000 0.000 0.956 0.040 0.004
#> SRR2443259     3  0.0290     0.6137 0.000 0.000 0.992 0.008 0.000
#> SRR2443258     3  0.1153     0.6060 0.000 0.004 0.964 0.024 0.008
#> SRR2443257     4  0.4334     0.6927 0.000 0.080 0.156 0.764 0.000
#> SRR2443256     3  0.0162     0.6139 0.000 0.000 0.996 0.004 0.000
#> SRR2443255     3  0.1043     0.6114 0.000 0.000 0.960 0.040 0.000
#> SRR2443254     3  0.2763     0.5354 0.000 0.000 0.848 0.148 0.004
#> SRR2443253     4  0.4404     0.6925 0.000 0.088 0.152 0.760 0.000
#> SRR2443251     4  0.4403     0.4440 0.000 0.008 0.384 0.608 0.000
#> SRR2443250     4  0.4404     0.6925 0.000 0.088 0.152 0.760 0.000
#> SRR2443249     4  0.4404     0.6925 0.000 0.088 0.152 0.760 0.000
#> SRR2443252     3  0.1041     0.6137 0.000 0.000 0.964 0.032 0.004
#> SRR2443247     1  0.3147     0.7947 0.856 0.000 0.112 0.024 0.008
#> SRR2443246     3  0.7555     0.0252 0.236 0.008 0.420 0.032 0.304
#> SRR2443248     3  0.4920     0.2485 0.000 0.008 0.620 0.348 0.024
#> SRR2443244     3  0.7131     0.2000 0.000 0.012 0.360 0.300 0.328
#> SRR2443245     1  0.5907     0.7175 0.676 0.032 0.212 0.060 0.020
#> SRR2443243     1  0.2124     0.8509 0.924 0.020 0.000 0.044 0.012
#> SRR2443242     3  0.7268     0.2111 0.000 0.020 0.368 0.288 0.324
#> SRR2443241     5  0.2457     0.7014 0.032 0.008 0.016 0.028 0.916
#> SRR2443240     5  0.1565     0.7118 0.004 0.016 0.008 0.020 0.952
#> SRR2443239     5  0.4774     0.2930 0.000 0.424 0.000 0.020 0.556
#> SRR2443238     1  0.3424     0.8381 0.872 0.032 0.020 0.052 0.024
#> SRR2443237     3  0.7431     0.2472 0.000 0.032 0.376 0.268 0.324
#> SRR2443236     5  0.4193     0.5696 0.256 0.000 0.000 0.024 0.720
#> SRR2443235     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443233     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443234     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443232     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443231     1  0.0162     0.8624 0.996 0.000 0.000 0.000 0.004
#> SRR2443230     1  0.0000     0.8627 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.2861     0.6995 0.000 0.032 0.040 0.036 0.892
#> SRR2443228     2  0.1469     0.8187 0.000 0.948 0.000 0.016 0.036
#> SRR2443227     1  0.1173     0.8597 0.964 0.012 0.000 0.020 0.004
#> SRR2443226     1  0.3647     0.8324 0.860 0.032 0.028 0.060 0.020
#> SRR2443225     3  0.4478     0.4139 0.000 0.008 0.628 0.360 0.004
#> SRR2443223     3  0.4639     0.2805 0.000 0.000 0.632 0.344 0.024
#> SRR2443224     5  0.2616     0.6914 0.000 0.100 0.000 0.020 0.880
#> SRR2443222     2  0.1768     0.8154 0.000 0.924 0.000 0.004 0.072
#> SRR2443221     2  0.1768     0.8154 0.000 0.924 0.000 0.004 0.072
#> SRR2443219     4  0.4359     0.1351 0.000 0.412 0.000 0.584 0.004
#> SRR2443220     4  0.3649     0.6870 0.000 0.040 0.152 0.808 0.000
#> SRR2443218     2  0.3231     0.7381 0.000 0.800 0.000 0.196 0.004
#> SRR2443217     3  0.6410     0.1779 0.004 0.020 0.484 0.088 0.404
#> SRR2443216     3  0.0671     0.6115 0.000 0.000 0.980 0.016 0.004
#> SRR2443215     5  0.3932     0.6634 0.000 0.140 0.000 0.064 0.796
#> SRR2443214     1  0.6081     0.7298 0.680 0.032 0.180 0.084 0.024
#> SRR2443213     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443212     5  0.2390     0.7041 0.000 0.084 0.000 0.020 0.896
#> SRR2443211     5  0.2208     0.7032 0.000 0.072 0.000 0.020 0.908
#> SRR2443210     2  0.1768     0.8154 0.000 0.924 0.000 0.004 0.072
#> SRR2443209     5  0.0798     0.7140 0.000 0.000 0.008 0.016 0.976
#> SRR2443208     5  0.1673     0.7140 0.000 0.032 0.008 0.016 0.944
#> SRR2443207     5  0.1740     0.7111 0.000 0.056 0.000 0.012 0.932
#> SRR2443206     5  0.4811     0.2191 0.000 0.452 0.000 0.020 0.528
#> SRR2443205     5  0.3151     0.6647 0.000 0.144 0.000 0.020 0.836
#> SRR2443204     1  0.5936     0.7136 0.672 0.032 0.216 0.060 0.020
#> SRR2443203     3  0.6492     0.3271 0.244 0.032 0.616 0.088 0.020
#> SRR2443202     3  0.4610     0.2375 0.000 0.000 0.556 0.432 0.012
#> SRR2443201     3  0.4511     0.3519 0.000 0.000 0.628 0.356 0.016
#> SRR2443200     2  0.1522     0.8193 0.000 0.944 0.000 0.012 0.044
#> SRR2443199     2  0.3231     0.7381 0.000 0.800 0.000 0.196 0.004
#> SRR2443197     4  0.4341     0.2672 0.000 0.000 0.404 0.592 0.004
#> SRR2443196     4  0.3876     0.6158 0.000 0.020 0.108 0.824 0.048
#> SRR2443198     4  0.4403     0.1435 0.000 0.000 0.436 0.560 0.004
#> SRR2443195     1  0.5279     0.7743 0.748 0.032 0.140 0.060 0.020
#> SRR2443194     3  0.3969     0.4431 0.000 0.000 0.692 0.304 0.004
#> SRR2443193     5  0.8308    -0.0970 0.312 0.032 0.188 0.068 0.400
#> SRR2443191     5  0.1200     0.7147 0.000 0.012 0.008 0.016 0.964
#> SRR2443192     5  0.7428    -0.2948 0.000 0.032 0.348 0.260 0.360
#> SRR2443190     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443189     1  0.6320     0.6819 0.636 0.032 0.232 0.080 0.020
#> SRR2443188     1  0.0290     0.8628 0.992 0.000 0.000 0.000 0.008
#> SRR2443186     5  0.4798     0.2542 0.000 0.440 0.000 0.020 0.540
#> SRR2443187     5  0.4798     0.2542 0.000 0.440 0.000 0.020 0.540
#> SRR2443185     3  0.4331     0.2541 0.000 0.000 0.596 0.400 0.004
#> SRR2443184     3  0.1430     0.6115 0.000 0.000 0.944 0.052 0.004
#> SRR2443183     1  0.0000     0.8627 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.6119     0.6618 0.628 0.028 0.268 0.056 0.020
#> SRR2443181     5  0.4746     0.3819 0.000 0.376 0.000 0.024 0.600
#> SRR2443180     2  0.3231     0.7381 0.000 0.800 0.000 0.196 0.004
#> SRR2443179     4  0.3213     0.6624 0.000 0.064 0.072 0.860 0.004
#> SRR2443178     4  0.6499    -0.2316 0.008 0.020 0.444 0.444 0.084
#> SRR2443177     1  0.6320     0.6867 0.640 0.032 0.224 0.084 0.020
#> SRR2443176     3  0.5276     0.5006 0.104 0.032 0.756 0.088 0.020
#> SRR2443175     1  0.1679     0.8574 0.948 0.004 0.020 0.016 0.012
#> SRR2443174     1  0.0000     0.8627 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.3359     0.7388 0.000 0.816 0.000 0.020 0.164
#> SRR2443172     2  0.3550     0.7299 0.000 0.796 0.000 0.020 0.184
#> SRR2443171     1  0.4935     0.6786 0.756 0.000 0.088 0.032 0.124
#> SRR2443170     5  0.5150     0.5844 0.200 0.004 0.040 0.036 0.720
#> SRR2443169     1  0.1547     0.8422 0.948 0.000 0.032 0.016 0.004
#> SRR2443168     5  0.3420     0.6592 0.000 0.004 0.124 0.036 0.836
#> SRR2443167     4  0.4321     0.4190 0.000 0.004 0.396 0.600 0.000
#> SRR2443166     3  0.6297    -0.1074 0.352 0.020 0.552 0.056 0.020
#> SRR2443165     3  0.4341     0.1575 0.000 0.000 0.592 0.404 0.004
#> SRR2443164     2  0.3424     0.6782 0.000 0.760 0.000 0.240 0.000
#> SRR2443163     3  0.4558     0.3126 0.000 0.000 0.652 0.324 0.024
#> SRR2443162     3  0.0703     0.6145 0.000 0.000 0.976 0.024 0.000
#> SRR2443161     3  0.1205     0.6112 0.000 0.000 0.956 0.040 0.004
#> SRR2443160     4  0.4251     0.4637 0.000 0.004 0.372 0.624 0.000
#> SRR2443159     4  0.3455     0.6594 0.000 0.008 0.208 0.784 0.000
#> SRR2443158     3  0.1018     0.6063 0.000 0.000 0.968 0.016 0.016
#> SRR2443157     1  0.6720     0.4138 0.472 0.024 0.412 0.068 0.024
#> SRR2443156     3  0.5875     0.0349 0.020 0.008 0.496 0.036 0.440
#> SRR2443155     5  0.5234     0.6177 0.104 0.004 0.112 0.036 0.744
#> SRR2443154     5  0.5330     0.5998 0.060 0.008 0.168 0.036 0.728
#> SRR2443153     1  0.0162     0.8624 0.996 0.000 0.000 0.000 0.004
#> SRR2443152     2  0.3724     0.7057 0.000 0.776 0.000 0.020 0.204
#> SRR2443151     2  0.2732     0.7619 0.000 0.840 0.000 0.160 0.000
#> SRR2443150     2  0.3724     0.7057 0.000 0.776 0.000 0.020 0.204
#> SRR2443148     4  0.4287    -0.0390 0.000 0.460 0.000 0.540 0.000
#> SRR2443147     4  0.4392     0.2220 0.000 0.380 0.008 0.612 0.000
#> SRR2443149     3  0.2249     0.5851 0.000 0.000 0.896 0.008 0.096

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR2443263     3  0.2456     0.6810 0.048 0.000 0.892 0.008 0.000 NA
#> SRR2443262     4  0.5186     0.4737 0.000 0.016 0.060 0.556 0.000 NA
#> SRR2443261     4  0.4884     0.4947 0.000 0.004 0.064 0.592 0.000 NA
#> SRR2443260     3  0.2118     0.6975 0.000 0.000 0.888 0.104 0.000 NA
#> SRR2443259     3  0.1049     0.7358 0.000 0.000 0.960 0.032 0.000 NA
#> SRR2443258     3  0.1575     0.7330 0.000 0.000 0.936 0.032 0.000 NA
#> SRR2443257     4  0.4912     0.4799 0.000 0.004 0.060 0.568 0.000 NA
#> SRR2443256     3  0.0865     0.7360 0.000 0.000 0.964 0.036 0.000 NA
#> SRR2443255     3  0.1204     0.7306 0.000 0.000 0.944 0.056 0.000 NA
#> SRR2443254     3  0.2692     0.6318 0.000 0.000 0.840 0.148 0.000 NA
#> SRR2443253     4  0.5195     0.4719 0.000 0.016 0.060 0.552 0.000 NA
#> SRR2443251     4  0.5336     0.4460 0.000 0.000 0.228 0.592 0.000 NA
#> SRR2443250     4  0.5186     0.4737 0.000 0.016 0.060 0.556 0.000 NA
#> SRR2443249     4  0.5186     0.4737 0.000 0.016 0.060 0.556 0.000 NA
#> SRR2443252     3  0.2118     0.6975 0.000 0.000 0.888 0.104 0.000 NA
#> SRR2443247     1  0.3062     0.7255 0.836 0.000 0.112 0.000 0.000 NA
#> SRR2443246     5  0.6886     0.3921 0.128 0.000 0.280 0.000 0.468 NA
#> SRR2443248     3  0.5704    -0.1527 0.000 0.000 0.456 0.400 0.004 NA
#> SRR2443244     4  0.6313     0.2567 0.000 0.000 0.240 0.496 0.236 NA
#> SRR2443245     1  0.5573     0.6381 0.584 0.000 0.180 0.008 0.000 NA
#> SRR2443243     1  0.3141     0.7686 0.788 0.000 0.012 0.000 0.000 NA
#> SRR2443242     4  0.6591     0.2439 0.000 0.004 0.256 0.476 0.228 NA
#> SRR2443241     5  0.1788     0.7192 0.004 0.000 0.000 0.004 0.916 NA
#> SRR2443240     5  0.1610     0.7174 0.000 0.000 0.000 0.000 0.916 NA
#> SRR2443239     2  0.5810     0.2683 0.000 0.436 0.000 0.000 0.380 NA
#> SRR2443238     1  0.4059     0.7454 0.732 0.000 0.036 0.004 0.004 NA
#> SRR2443237     4  0.6636     0.2321 0.000 0.004 0.252 0.484 0.216 NA
#> SRR2443236     5  0.3602     0.6775 0.116 0.000 0.000 0.000 0.796 NA
#> SRR2443235     1  0.0363     0.8189 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2443233     1  0.0363     0.8189 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2443234     1  0.0363     0.8189 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2443232     1  0.0363     0.8189 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2443231     1  0.0260     0.8179 0.992 0.000 0.000 0.000 0.000 NA
#> SRR2443230     1  0.0547     0.8187 0.980 0.000 0.000 0.000 0.000 NA
#> SRR2443229     5  0.1932     0.7129 0.000 0.008 0.008 0.032 0.928 NA
#> SRR2443228     2  0.0713     0.6973 0.000 0.972 0.000 0.000 0.000 NA
#> SRR2443227     1  0.1075     0.8182 0.952 0.000 0.000 0.000 0.000 NA
#> SRR2443226     1  0.4421     0.7300 0.708 0.000 0.064 0.008 0.000 NA
#> SRR2443225     4  0.4640     0.0679 0.000 0.000 0.436 0.528 0.004 NA
#> SRR2443223     4  0.5278     0.1499 0.000 0.000 0.440 0.472 0.004 NA
#> SRR2443224     5  0.4085     0.5467 0.000 0.052 0.000 0.000 0.716 NA
#> SRR2443222     2  0.0146     0.7006 0.000 0.996 0.000 0.000 0.004 NA
#> SRR2443221     2  0.0146     0.7006 0.000 0.996 0.000 0.000 0.004 NA
#> SRR2443219     4  0.6039     0.1647 0.000 0.260 0.000 0.408 0.000 NA
#> SRR2443220     4  0.3991     0.5175 0.000 0.008 0.028 0.724 0.000 NA
#> SRR2443218     2  0.3746     0.6115 0.000 0.780 0.000 0.080 0.000 NA
#> SRR2443217     5  0.6653     0.1255 0.004 0.000 0.328 0.168 0.452 NA
#> SRR2443216     3  0.1498     0.7337 0.000 0.000 0.940 0.032 0.000 NA
#> SRR2443215     5  0.6560     0.3562 0.000 0.120 0.000 0.160 0.552 NA
#> SRR2443214     1  0.6193     0.6274 0.564 0.000 0.152 0.044 0.004 NA
#> SRR2443213     1  0.0146     0.8187 0.996 0.000 0.000 0.000 0.000 NA
#> SRR2443212     5  0.3208     0.6380 0.000 0.040 0.000 0.008 0.832 NA
#> SRR2443211     5  0.3572     0.5962 0.000 0.032 0.000 0.000 0.764 NA
#> SRR2443210     2  0.0777     0.7002 0.000 0.972 0.000 0.000 0.004 NA
#> SRR2443209     5  0.0508     0.7201 0.004 0.000 0.000 0.012 0.984 NA
#> SRR2443208     5  0.1065     0.7148 0.000 0.008 0.000 0.008 0.964 NA
#> SRR2443207     5  0.1500     0.7039 0.000 0.012 0.000 0.000 0.936 NA
#> SRR2443206     2  0.5751     0.3311 0.000 0.472 0.000 0.000 0.348 NA
#> SRR2443205     5  0.5142     0.3585 0.000 0.172 0.000 0.000 0.624 NA
#> SRR2443204     1  0.5573     0.6381 0.584 0.000 0.180 0.008 0.000 NA
#> SRR2443203     3  0.6829     0.3225 0.164 0.000 0.496 0.108 0.000 NA
#> SRR2443202     4  0.4286     0.2442 0.000 0.000 0.352 0.624 0.012 NA
#> SRR2443201     4  0.4394     0.1713 0.000 0.000 0.408 0.568 0.004 NA
#> SRR2443200     2  0.0713     0.6973 0.000 0.972 0.000 0.000 0.000 NA
#> SRR2443199     2  0.3746     0.6115 0.000 0.780 0.000 0.080 0.000 NA
#> SRR2443197     4  0.3642     0.4258 0.000 0.000 0.204 0.760 0.000 NA
#> SRR2443196     4  0.2444     0.4994 0.000 0.000 0.016 0.896 0.036 NA
#> SRR2443198     4  0.2964     0.4093 0.000 0.000 0.204 0.792 0.000 NA
#> SRR2443195     1  0.5147     0.6809 0.644 0.000 0.136 0.008 0.000 NA
#> SRR2443194     4  0.4096    -0.0259 0.000 0.000 0.484 0.508 0.000 NA
#> SRR2443193     5  0.7663     0.2435 0.176 0.000 0.104 0.048 0.460 NA
#> SRR2443191     5  0.0653     0.7195 0.004 0.000 0.000 0.012 0.980 NA
#> SRR2443192     4  0.6652     0.2362 0.000 0.004 0.240 0.472 0.244 NA
#> SRR2443190     1  0.0363     0.8189 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2443189     1  0.6490     0.5710 0.516 0.000 0.196 0.044 0.004 NA
#> SRR2443188     1  0.0363     0.8189 0.988 0.000 0.000 0.000 0.000 NA
#> SRR2443186     2  0.5763     0.3168 0.000 0.464 0.000 0.000 0.356 NA
#> SRR2443187     2  0.5748     0.3150 0.000 0.464 0.000 0.000 0.360 NA
#> SRR2443185     4  0.4121     0.2222 0.000 0.000 0.380 0.604 0.000 NA
#> SRR2443184     3  0.1951     0.7145 0.000 0.000 0.908 0.076 0.000 NA
#> SRR2443183     1  0.0146     0.8194 0.996 0.000 0.000 0.000 0.000 NA
#> SRR2443182     1  0.6015     0.4319 0.460 0.000 0.312 0.004 0.000 NA
#> SRR2443181     2  0.5855     0.2280 0.000 0.412 0.000 0.000 0.396 NA
#> SRR2443180     2  0.3746     0.6115 0.000 0.780 0.000 0.080 0.000 NA
#> SRR2443179     4  0.2933     0.5073 0.000 0.000 0.000 0.796 0.004 NA
#> SRR2443178     4  0.5491     0.2749 0.000 0.000 0.296 0.596 0.052 NA
#> SRR2443177     1  0.6267     0.5978 0.536 0.000 0.180 0.044 0.000 NA
#> SRR2443176     3  0.5067     0.5220 0.052 0.000 0.668 0.048 0.000 NA
#> SRR2443175     1  0.1461     0.8135 0.940 0.000 0.016 0.000 0.000 NA
#> SRR2443174     1  0.0547     0.8177 0.980 0.000 0.000 0.000 0.000 NA
#> SRR2443173     2  0.3671     0.6631 0.000 0.756 0.000 0.000 0.036 NA
#> SRR2443172     2  0.3658     0.6639 0.000 0.752 0.000 0.000 0.032 NA
#> SRR2443171     1  0.6373    -0.0993 0.440 0.000 0.048 0.000 0.380 NA
#> SRR2443170     5  0.4587     0.6599 0.104 0.000 0.024 0.000 0.736 NA
#> SRR2443169     1  0.1297     0.8045 0.948 0.000 0.012 0.000 0.000 NA
#> SRR2443168     5  0.3481     0.6944 0.000 0.000 0.072 0.000 0.804 NA
#> SRR2443167     4  0.4414     0.4578 0.000 0.000 0.204 0.704 0.000 NA
#> SRR2443166     3  0.4691     0.4658 0.124 0.000 0.680 0.000 0.000 NA
#> SRR2443165     4  0.3833     0.1549 0.000 0.000 0.444 0.556 0.000 NA
#> SRR2443164     2  0.4770     0.5388 0.000 0.672 0.000 0.100 0.004 NA
#> SRR2443163     3  0.5056    -0.0821 0.000 0.000 0.508 0.424 0.004 NA
#> SRR2443162     3  0.1141     0.7325 0.000 0.000 0.948 0.052 0.000 NA
#> SRR2443161     3  0.2048     0.6840 0.000 0.000 0.880 0.120 0.000 NA
#> SRR2443160     4  0.4414     0.4736 0.000 0.000 0.180 0.712 0.000 NA
#> SRR2443159     4  0.4565     0.5036 0.000 0.000 0.076 0.664 0.000 NA
#> SRR2443158     3  0.1297     0.7253 0.000 0.000 0.948 0.012 0.000 NA
#> SRR2443157     3  0.5464     0.2444 0.204 0.000 0.572 0.000 0.000 NA
#> SRR2443156     5  0.5553     0.4826 0.000 0.000 0.284 0.020 0.584 NA
#> SRR2443155     5  0.4269     0.6846 0.044 0.000 0.060 0.000 0.772 NA
#> SRR2443154     5  0.4217     0.6794 0.016 0.000 0.096 0.000 0.764 NA
#> SRR2443153     1  0.0547     0.8177 0.980 0.000 0.000 0.000 0.000 NA
#> SRR2443152     2  0.4203     0.6461 0.000 0.716 0.000 0.000 0.068 NA
#> SRR2443151     2  0.3660     0.6304 0.000 0.780 0.000 0.060 0.000 NA
#> SRR2443150     2  0.4228     0.6441 0.000 0.716 0.000 0.000 0.072 NA
#> SRR2443148     4  0.6099     0.1058 0.000 0.288 0.000 0.376 0.000 NA
#> SRR2443147     4  0.5862     0.2517 0.000 0.196 0.000 0.428 0.000 NA
#> SRR2443149     3  0.3228     0.6775 0.000 0.000 0.844 0.044 0.092 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.850           0.928       0.969         0.5042 0.497   0.497
#> 3 3 0.774           0.871       0.941         0.3193 0.710   0.483
#> 4 4 0.845           0.861       0.923         0.1095 0.842   0.582
#> 5 5 0.813           0.876       0.895         0.0677 0.851   0.522
#> 6 6 0.837           0.808       0.865         0.0434 0.917   0.646

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1   0.000     0.9529 1.000 0.000
#> SRR2443262     2   0.000     0.9815 0.000 1.000
#> SRR2443261     2   0.000     0.9815 0.000 1.000
#> SRR2443260     1   0.925     0.5213 0.660 0.340
#> SRR2443259     1   0.000     0.9529 1.000 0.000
#> SRR2443258     1   0.000     0.9529 1.000 0.000
#> SRR2443257     2   0.000     0.9815 0.000 1.000
#> SRR2443256     1   0.000     0.9529 1.000 0.000
#> SRR2443255     1   0.000     0.9529 1.000 0.000
#> SRR2443254     1   0.909     0.5289 0.676 0.324
#> SRR2443253     2   0.000     0.9815 0.000 1.000
#> SRR2443251     2   0.000     0.9815 0.000 1.000
#> SRR2443250     2   0.000     0.9815 0.000 1.000
#> SRR2443249     2   0.000     0.9815 0.000 1.000
#> SRR2443252     1   0.615     0.8201 0.848 0.152
#> SRR2443247     1   0.000     0.9529 1.000 0.000
#> SRR2443246     1   0.000     0.9529 1.000 0.000
#> SRR2443248     2   0.000     0.9815 0.000 1.000
#> SRR2443244     2   0.000     0.9815 0.000 1.000
#> SRR2443245     1   0.000     0.9529 1.000 0.000
#> SRR2443243     1   0.000     0.9529 1.000 0.000
#> SRR2443242     2   0.000     0.9815 0.000 1.000
#> SRR2443241     1   0.000     0.9529 1.000 0.000
#> SRR2443240     1   0.118     0.9417 0.984 0.016
#> SRR2443239     2   0.000     0.9815 0.000 1.000
#> SRR2443238     1   0.000     0.9529 1.000 0.000
#> SRR2443237     2   0.000     0.9815 0.000 1.000
#> SRR2443236     1   0.000     0.9529 1.000 0.000
#> SRR2443235     1   0.000     0.9529 1.000 0.000
#> SRR2443233     1   0.000     0.9529 1.000 0.000
#> SRR2443234     1   0.000     0.9529 1.000 0.000
#> SRR2443232     1   0.000     0.9529 1.000 0.000
#> SRR2443231     1   0.000     0.9529 1.000 0.000
#> SRR2443230     1   0.000     0.9529 1.000 0.000
#> SRR2443229     1   0.722     0.7617 0.800 0.200
#> SRR2443228     2   0.000     0.9815 0.000 1.000
#> SRR2443227     1   0.000     0.9529 1.000 0.000
#> SRR2443226     1   0.000     0.9529 1.000 0.000
#> SRR2443225     1   0.966     0.3648 0.608 0.392
#> SRR2443223     2   0.000     0.9815 0.000 1.000
#> SRR2443224     2   0.000     0.9815 0.000 1.000
#> SRR2443222     2   0.000     0.9815 0.000 1.000
#> SRR2443221     2   0.000     0.9815 0.000 1.000
#> SRR2443219     2   0.000     0.9815 0.000 1.000
#> SRR2443220     2   0.000     0.9815 0.000 1.000
#> SRR2443218     2   0.000     0.9815 0.000 1.000
#> SRR2443217     1   0.000     0.9529 1.000 0.000
#> SRR2443216     1   0.000     0.9529 1.000 0.000
#> SRR2443215     2   0.000     0.9815 0.000 1.000
#> SRR2443214     1   0.000     0.9529 1.000 0.000
#> SRR2443213     1   0.000     0.9529 1.000 0.000
#> SRR2443212     2   0.000     0.9815 0.000 1.000
#> SRR2443211     2   0.000     0.9815 0.000 1.000
#> SRR2443210     2   0.000     0.9815 0.000 1.000
#> SRR2443209     1   0.184     0.9327 0.972 0.028
#> SRR2443208     1   0.722     0.7617 0.800 0.200
#> SRR2443207     2   0.788     0.6686 0.236 0.764
#> SRR2443206     2   0.000     0.9815 0.000 1.000
#> SRR2443205     2   0.000     0.9815 0.000 1.000
#> SRR2443204     1   0.000     0.9529 1.000 0.000
#> SRR2443203     1   0.000     0.9529 1.000 0.000
#> SRR2443202     2   0.000     0.9815 0.000 1.000
#> SRR2443201     2   0.000     0.9815 0.000 1.000
#> SRR2443200     2   0.000     0.9815 0.000 1.000
#> SRR2443199     2   0.000     0.9815 0.000 1.000
#> SRR2443197     2   0.722     0.7495 0.200 0.800
#> SRR2443196     2   0.000     0.9815 0.000 1.000
#> SRR2443198     2   0.430     0.8929 0.088 0.912
#> SRR2443195     1   0.000     0.9529 1.000 0.000
#> SRR2443194     1   1.000     0.0547 0.512 0.488
#> SRR2443193     1   0.000     0.9529 1.000 0.000
#> SRR2443191     1   0.625     0.8142 0.844 0.156
#> SRR2443192     2   0.000     0.9815 0.000 1.000
#> SRR2443190     1   0.000     0.9529 1.000 0.000
#> SRR2443189     1   0.000     0.9529 1.000 0.000
#> SRR2443188     1   0.000     0.9529 1.000 0.000
#> SRR2443186     2   0.000     0.9815 0.000 1.000
#> SRR2443187     2   0.000     0.9815 0.000 1.000
#> SRR2443185     2   0.000     0.9815 0.000 1.000
#> SRR2443184     1   0.000     0.9529 1.000 0.000
#> SRR2443183     1   0.000     0.9529 1.000 0.000
#> SRR2443182     1   0.000     0.9529 1.000 0.000
#> SRR2443181     2   0.000     0.9815 0.000 1.000
#> SRR2443180     2   0.000     0.9815 0.000 1.000
#> SRR2443179     2   0.000     0.9815 0.000 1.000
#> SRR2443178     2   0.722     0.7495 0.200 0.800
#> SRR2443177     1   0.000     0.9529 1.000 0.000
#> SRR2443176     1   0.000     0.9529 1.000 0.000
#> SRR2443175     1   0.000     0.9529 1.000 0.000
#> SRR2443174     1   0.000     0.9529 1.000 0.000
#> SRR2443173     2   0.000     0.9815 0.000 1.000
#> SRR2443172     2   0.000     0.9815 0.000 1.000
#> SRR2443171     1   0.000     0.9529 1.000 0.000
#> SRR2443170     1   0.000     0.9529 1.000 0.000
#> SRR2443169     1   0.000     0.9529 1.000 0.000
#> SRR2443168     1   0.722     0.7617 0.800 0.200
#> SRR2443167     2   0.000     0.9815 0.000 1.000
#> SRR2443166     1   0.000     0.9529 1.000 0.000
#> SRR2443165     2   0.722     0.7495 0.200 0.800
#> SRR2443164     2   0.000     0.9815 0.000 1.000
#> SRR2443163     2   0.000     0.9815 0.000 1.000
#> SRR2443162     1   0.000     0.9529 1.000 0.000
#> SRR2443161     1   0.358     0.8974 0.932 0.068
#> SRR2443160     2   0.000     0.9815 0.000 1.000
#> SRR2443159     2   0.000     0.9815 0.000 1.000
#> SRR2443158     1   0.000     0.9529 1.000 0.000
#> SRR2443157     1   0.000     0.9529 1.000 0.000
#> SRR2443156     1   0.000     0.9529 1.000 0.000
#> SRR2443155     1   0.000     0.9529 1.000 0.000
#> SRR2443154     1   0.000     0.9529 1.000 0.000
#> SRR2443153     1   0.000     0.9529 1.000 0.000
#> SRR2443152     2   0.000     0.9815 0.000 1.000
#> SRR2443151     2   0.000     0.9815 0.000 1.000
#> SRR2443150     2   0.000     0.9815 0.000 1.000
#> SRR2443148     2   0.000     0.9815 0.000 1.000
#> SRR2443147     2   0.000     0.9815 0.000 1.000
#> SRR2443149     1   0.697     0.7765 0.812 0.188

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443262     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443261     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443260     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443259     3   0.489      0.673 0.228 0.000 0.772
#> SRR2443258     1   0.614      0.358 0.596 0.000 0.404
#> SRR2443257     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443256     3   0.484      0.680 0.224 0.000 0.776
#> SRR2443255     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443254     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443253     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443251     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443250     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443249     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443252     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443247     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443246     1   0.394      0.796 0.844 0.000 0.156
#> SRR2443248     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443244     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443245     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443243     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443242     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443241     1   0.470      0.711 0.788 0.212 0.000
#> SRR2443240     2   0.341      0.814 0.124 0.876 0.000
#> SRR2443239     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443238     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443237     2   0.460      0.795 0.000 0.796 0.204
#> SRR2443236     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443235     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443233     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443234     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443232     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443231     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443230     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443229     1   0.613      0.320 0.600 0.400 0.000
#> SRR2443228     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443227     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443226     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443225     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443223     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443224     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443222     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443221     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443219     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443220     3   0.207      0.880 0.000 0.060 0.940
#> SRR2443218     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443217     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443216     3   0.603      0.356 0.376 0.000 0.624
#> SRR2443215     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443214     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443213     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443212     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443211     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443210     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443209     2   0.175      0.885 0.048 0.952 0.000
#> SRR2443208     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443207     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443206     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443205     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443204     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443203     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443202     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443201     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443200     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443199     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443197     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443196     3   0.455      0.711 0.000 0.200 0.800
#> SRR2443198     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443195     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443194     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443193     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443191     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443192     2   0.312      0.864 0.000 0.892 0.108
#> SRR2443190     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443189     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443188     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443186     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443187     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443185     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443184     1   0.614      0.358 0.596 0.000 0.404
#> SRR2443183     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443182     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443181     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443180     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443179     3   0.406      0.764 0.000 0.164 0.836
#> SRR2443178     3   0.455      0.739 0.200 0.000 0.800
#> SRR2443177     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443176     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443175     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443174     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443173     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443172     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443171     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443170     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443169     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443168     2   0.546      0.568 0.288 0.712 0.000
#> SRR2443167     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443166     1   0.450      0.748 0.804 0.000 0.196
#> SRR2443165     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443164     2   0.470      0.788 0.000 0.788 0.212
#> SRR2443163     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443162     3   0.470      0.697 0.212 0.000 0.788
#> SRR2443161     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443160     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443159     3   0.000      0.929 0.000 0.000 1.000
#> SRR2443158     1   0.455      0.743 0.800 0.000 0.200
#> SRR2443157     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443156     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443155     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443154     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443153     1   0.000      0.944 1.000 0.000 0.000
#> SRR2443152     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443151     2   0.450      0.802 0.000 0.804 0.196
#> SRR2443150     2   0.000      0.921 0.000 1.000 0.000
#> SRR2443148     3   0.455      0.711 0.000 0.200 0.800
#> SRR2443147     3   0.406      0.764 0.000 0.164 0.836
#> SRR2443149     1   0.613      0.368 0.600 0.000 0.400

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.4008     0.6725 0.244 0.000 0.756 0.000
#> SRR2443262     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443261     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443260     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443259     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443258     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443257     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443256     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443255     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443254     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443253     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443251     4  0.2149     0.8741 0.000 0.000 0.088 0.912
#> SRR2443250     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443249     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443252     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443247     1  0.2760     0.8474 0.872 0.000 0.128 0.000
#> SRR2443246     1  0.3610     0.7689 0.800 0.000 0.200 0.000
#> SRR2443248     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443244     4  0.4331     0.5808 0.000 0.288 0.000 0.712
#> SRR2443245     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443242     4  0.3942     0.6689 0.000 0.236 0.000 0.764
#> SRR2443241     1  0.2198     0.8989 0.920 0.072 0.008 0.000
#> SRR2443240     2  0.0672     0.9232 0.008 0.984 0.008 0.000
#> SRR2443239     2  0.1716     0.9293 0.000 0.936 0.000 0.064
#> SRR2443238     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443237     4  0.4776     0.3852 0.000 0.376 0.000 0.624
#> SRR2443236     1  0.2048     0.9047 0.928 0.064 0.008 0.000
#> SRR2443235     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443229     1  0.5742     0.3588 0.596 0.368 0.000 0.036
#> SRR2443228     2  0.1867     0.9272 0.000 0.928 0.000 0.072
#> SRR2443227     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443225     4  0.5189     0.4474 0.012 0.000 0.372 0.616
#> SRR2443223     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443224     2  0.0336     0.9283 0.000 0.992 0.008 0.000
#> SRR2443222     2  0.1867     0.9272 0.000 0.928 0.000 0.072
#> SRR2443221     2  0.1867     0.9272 0.000 0.928 0.000 0.072
#> SRR2443219     4  0.3024     0.7805 0.000 0.148 0.000 0.852
#> SRR2443220     4  0.0524     0.8624 0.000 0.008 0.004 0.988
#> SRR2443218     4  0.3024     0.7805 0.000 0.148 0.000 0.852
#> SRR2443217     1  0.0336     0.9433 0.992 0.008 0.000 0.000
#> SRR2443216     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443215     2  0.1716     0.9293 0.000 0.936 0.000 0.064
#> SRR2443214     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443213     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.0921     0.9382 0.000 0.972 0.000 0.028
#> SRR2443211     2  0.0336     0.9283 0.000 0.992 0.008 0.000
#> SRR2443210     2  0.1867     0.9272 0.000 0.928 0.000 0.072
#> SRR2443209     2  0.0524     0.9260 0.004 0.988 0.008 0.000
#> SRR2443208     2  0.1118     0.9384 0.000 0.964 0.000 0.036
#> SRR2443207     2  0.1118     0.9384 0.000 0.964 0.000 0.036
#> SRR2443206     2  0.1118     0.9384 0.000 0.964 0.000 0.036
#> SRR2443205     2  0.0000     0.9322 0.000 1.000 0.000 0.000
#> SRR2443204     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443203     1  0.0707     0.9354 0.980 0.000 0.020 0.000
#> SRR2443202     4  0.1211     0.8715 0.000 0.000 0.040 0.960
#> SRR2443201     4  0.2011     0.8749 0.000 0.000 0.080 0.920
#> SRR2443200     2  0.1867     0.9272 0.000 0.928 0.000 0.072
#> SRR2443199     4  0.3024     0.7805 0.000 0.148 0.000 0.852
#> SRR2443197     4  0.1940     0.8745 0.000 0.000 0.076 0.924
#> SRR2443196     4  0.0469     0.8602 0.000 0.012 0.000 0.988
#> SRR2443198     4  0.1867     0.8748 0.000 0.000 0.072 0.928
#> SRR2443195     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443194     3  0.3123     0.7831 0.000 0.000 0.844 0.156
#> SRR2443193     1  0.0336     0.9433 0.992 0.008 0.000 0.000
#> SRR2443191     2  0.0524     0.9303 0.000 0.988 0.008 0.004
#> SRR2443192     2  0.4989     0.0747 0.000 0.528 0.000 0.472
#> SRR2443190     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443188     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.1118     0.9384 0.000 0.964 0.000 0.036
#> SRR2443187     2  0.1211     0.9376 0.000 0.960 0.000 0.040
#> SRR2443185     4  0.1867     0.8748 0.000 0.000 0.072 0.928
#> SRR2443184     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443183     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443181     2  0.1118     0.9384 0.000 0.964 0.000 0.036
#> SRR2443180     4  0.3024     0.7805 0.000 0.148 0.000 0.852
#> SRR2443179     4  0.0469     0.8602 0.000 0.012 0.000 0.988
#> SRR2443178     4  0.3486     0.7271 0.188 0.000 0.000 0.812
#> SRR2443177     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443176     1  0.4250     0.5812 0.724 0.000 0.276 0.000
#> SRR2443175     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443174     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.0592     0.9357 0.000 0.984 0.000 0.016
#> SRR2443172     2  0.0336     0.9335 0.000 0.992 0.000 0.008
#> SRR2443171     1  0.1211     0.9272 0.960 0.000 0.040 0.000
#> SRR2443170     1  0.2179     0.9026 0.924 0.064 0.012 0.000
#> SRR2443169     1  0.0921     0.9323 0.972 0.000 0.028 0.000
#> SRR2443168     2  0.6149     0.5410 0.180 0.676 0.144 0.000
#> SRR2443167     4  0.2149     0.8741 0.000 0.000 0.088 0.912
#> SRR2443166     3  0.1042     0.9169 0.020 0.000 0.972 0.008
#> SRR2443165     4  0.4843     0.4288 0.000 0.000 0.396 0.604
#> SRR2443164     4  0.1302     0.8529 0.000 0.044 0.000 0.956
#> SRR2443163     4  0.2149     0.8741 0.000 0.000 0.088 0.912
#> SRR2443162     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443161     3  0.0469     0.9355 0.000 0.000 0.988 0.012
#> SRR2443160     4  0.2149     0.8741 0.000 0.000 0.088 0.912
#> SRR2443159     4  0.2081     0.8757 0.000 0.000 0.084 0.916
#> SRR2443158     3  0.0672     0.9275 0.008 0.000 0.984 0.008
#> SRR2443157     3  0.4961     0.1381 0.448 0.000 0.552 0.000
#> SRR2443156     1  0.4037     0.8170 0.824 0.040 0.136 0.000
#> SRR2443155     1  0.4462     0.8030 0.804 0.064 0.132 0.000
#> SRR2443154     1  0.4514     0.7983 0.800 0.064 0.136 0.000
#> SRR2443153     1  0.0000     0.9473 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.0336     0.9335 0.000 0.992 0.000 0.008
#> SRR2443151     4  0.2973     0.7842 0.000 0.144 0.000 0.856
#> SRR2443150     2  0.0336     0.9335 0.000 0.992 0.000 0.008
#> SRR2443148     4  0.0469     0.8602 0.000 0.012 0.000 0.988
#> SRR2443147     4  0.0469     0.8602 0.000 0.012 0.000 0.988
#> SRR2443149     3  0.0469     0.9355 0.000 0.000 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     1  0.4655     0.1139 0.512 0.000 0.476 0.000 0.012
#> SRR2443262     4  0.3205     0.9122 0.000 0.056 0.072 0.864 0.008
#> SRR2443261     4  0.3266     0.9106 0.000 0.056 0.076 0.860 0.008
#> SRR2443260     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443259     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443258     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443257     4  0.3136     0.9134 0.000 0.052 0.072 0.868 0.008
#> SRR2443256     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443255     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443254     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443253     4  0.3136     0.9134 0.000 0.052 0.072 0.868 0.008
#> SRR2443251     4  0.2824     0.9106 0.000 0.024 0.088 0.880 0.008
#> SRR2443250     4  0.3205     0.9122 0.000 0.056 0.072 0.864 0.008
#> SRR2443249     4  0.3205     0.9122 0.000 0.056 0.072 0.864 0.008
#> SRR2443252     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443247     1  0.2873     0.8446 0.860 0.000 0.120 0.000 0.020
#> SRR2443246     5  0.4537     0.7160 0.076 0.000 0.184 0.000 0.740
#> SRR2443248     4  0.3266     0.9106 0.000 0.056 0.076 0.860 0.008
#> SRR2443244     2  0.2953     0.8027 0.000 0.844 0.000 0.144 0.012
#> SRR2443245     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443242     2  0.2798     0.8063 0.000 0.852 0.000 0.140 0.008
#> SRR2443241     5  0.1043     0.8355 0.040 0.000 0.000 0.000 0.960
#> SRR2443240     5  0.1124     0.8325 0.004 0.036 0.000 0.000 0.960
#> SRR2443239     2  0.1544     0.8541 0.000 0.932 0.000 0.000 0.068
#> SRR2443238     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443237     2  0.4955     0.7178 0.000 0.680 0.000 0.248 0.072
#> SRR2443236     5  0.2329     0.8022 0.124 0.000 0.000 0.000 0.876
#> SRR2443235     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443233     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443234     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443232     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443231     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443230     1  0.0162     0.9675 0.996 0.000 0.000 0.000 0.004
#> SRR2443229     5  0.3359     0.7884 0.020 0.164 0.000 0.000 0.816
#> SRR2443228     2  0.0000     0.8610 0.000 1.000 0.000 0.000 0.000
#> SRR2443227     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443225     4  0.1471     0.8905 0.024 0.000 0.004 0.952 0.020
#> SRR2443223     4  0.3205     0.9122 0.000 0.056 0.072 0.864 0.008
#> SRR2443224     5  0.3333     0.7092 0.000 0.208 0.004 0.000 0.788
#> SRR2443222     2  0.0703     0.8614 0.000 0.976 0.000 0.000 0.024
#> SRR2443221     2  0.0703     0.8614 0.000 0.976 0.000 0.000 0.024
#> SRR2443219     2  0.3013     0.7901 0.000 0.832 0.000 0.160 0.008
#> SRR2443220     4  0.3096     0.8908 0.000 0.108 0.024 0.860 0.008
#> SRR2443218     2  0.2843     0.8042 0.000 0.848 0.000 0.144 0.008
#> SRR2443217     1  0.0703     0.9502 0.976 0.000 0.000 0.000 0.024
#> SRR2443216     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443215     2  0.1732     0.8520 0.000 0.920 0.000 0.000 0.080
#> SRR2443214     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443213     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443212     2  0.2732     0.7897 0.000 0.840 0.000 0.000 0.160
#> SRR2443211     5  0.4452    -0.0737 0.000 0.496 0.004 0.000 0.500
#> SRR2443210     2  0.0703     0.8614 0.000 0.976 0.000 0.000 0.024
#> SRR2443209     5  0.1197     0.8291 0.000 0.048 0.000 0.000 0.952
#> SRR2443208     5  0.2891     0.7668 0.000 0.176 0.000 0.000 0.824
#> SRR2443207     5  0.3039     0.7542 0.000 0.192 0.000 0.000 0.808
#> SRR2443206     2  0.1965     0.8404 0.000 0.904 0.000 0.000 0.096
#> SRR2443205     2  0.2813     0.8041 0.000 0.832 0.000 0.000 0.168
#> SRR2443204     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443203     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443202     4  0.1216     0.8956 0.000 0.020 0.000 0.960 0.020
#> SRR2443201     4  0.0880     0.9147 0.000 0.000 0.032 0.968 0.000
#> SRR2443200     2  0.0000     0.8610 0.000 1.000 0.000 0.000 0.000
#> SRR2443199     2  0.2843     0.8042 0.000 0.848 0.000 0.144 0.008
#> SRR2443197     4  0.0771     0.8999 0.000 0.000 0.004 0.976 0.020
#> SRR2443196     4  0.2144     0.8719 0.000 0.068 0.000 0.912 0.020
#> SRR2443198     4  0.0609     0.9005 0.000 0.000 0.000 0.980 0.020
#> SRR2443195     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443194     4  0.3438     0.7220 0.000 0.000 0.172 0.808 0.020
#> SRR2443193     1  0.0703     0.9528 0.976 0.000 0.000 0.000 0.024
#> SRR2443191     5  0.2179     0.8111 0.000 0.112 0.000 0.000 0.888
#> SRR2443192     2  0.4303     0.7800 0.000 0.752 0.000 0.192 0.056
#> SRR2443190     1  0.0162     0.9675 0.996 0.000 0.000 0.000 0.004
#> SRR2443189     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443188     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443186     2  0.2020     0.8381 0.000 0.900 0.000 0.000 0.100
#> SRR2443187     2  0.1965     0.8404 0.000 0.904 0.000 0.000 0.096
#> SRR2443185     4  0.0880     0.9147 0.000 0.000 0.032 0.968 0.000
#> SRR2443184     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443183     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443181     2  0.1851     0.8462 0.000 0.912 0.000 0.000 0.088
#> SRR2443180     2  0.2886     0.8009 0.000 0.844 0.000 0.148 0.008
#> SRR2443179     4  0.1485     0.8901 0.000 0.032 0.000 0.948 0.020
#> SRR2443178     4  0.2824     0.8067 0.116 0.000 0.000 0.864 0.020
#> SRR2443177     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443176     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> SRR2443175     1  0.0162     0.9675 0.996 0.000 0.000 0.000 0.004
#> SRR2443174     1  0.0162     0.9675 0.996 0.000 0.000 0.000 0.004
#> SRR2443173     2  0.2068     0.8412 0.000 0.904 0.004 0.000 0.092
#> SRR2443172     2  0.2179     0.8367 0.000 0.896 0.004 0.000 0.100
#> SRR2443171     5  0.4301     0.6484 0.260 0.000 0.028 0.000 0.712
#> SRR2443170     5  0.2535     0.8213 0.076 0.000 0.032 0.000 0.892
#> SRR2443169     1  0.1399     0.9352 0.952 0.000 0.028 0.000 0.020
#> SRR2443168     5  0.1981     0.8229 0.000 0.016 0.064 0.000 0.920
#> SRR2443167     4  0.1671     0.9117 0.000 0.000 0.076 0.924 0.000
#> SRR2443166     3  0.1041     0.9916 0.000 0.000 0.964 0.032 0.004
#> SRR2443165     4  0.2012     0.9062 0.000 0.000 0.060 0.920 0.020
#> SRR2443164     2  0.4114     0.6945 0.000 0.732 0.000 0.244 0.024
#> SRR2443163     4  0.2854     0.9119 0.000 0.028 0.084 0.880 0.008
#> SRR2443162     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443161     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000
#> SRR2443160     4  0.1410     0.9146 0.000 0.000 0.060 0.940 0.000
#> SRR2443159     4  0.1608     0.9127 0.000 0.000 0.072 0.928 0.000
#> SRR2443158     3  0.0566     0.9473 0.000 0.000 0.984 0.004 0.012
#> SRR2443157     1  0.2997     0.8176 0.840 0.000 0.148 0.000 0.012
#> SRR2443156     5  0.3110     0.8068 0.080 0.000 0.060 0.000 0.860
#> SRR2443155     5  0.2588     0.8223 0.048 0.000 0.060 0.000 0.892
#> SRR2443154     5  0.2588     0.8223 0.048 0.000 0.060 0.000 0.892
#> SRR2443153     1  0.0290     0.9665 0.992 0.000 0.000 0.000 0.008
#> SRR2443152     2  0.2179     0.8367 0.000 0.896 0.004 0.000 0.100
#> SRR2443151     2  0.1484     0.8487 0.000 0.944 0.000 0.048 0.008
#> SRR2443150     2  0.2179     0.8367 0.000 0.896 0.004 0.000 0.100
#> SRR2443148     4  0.2573     0.8839 0.000 0.104 0.000 0.880 0.016
#> SRR2443147     4  0.2249     0.8895 0.000 0.096 0.000 0.896 0.008
#> SRR2443149     3  0.0880     0.9956 0.000 0.000 0.968 0.032 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     1  0.6297     0.1414 0.488 0.000 0.356 0.004 0.092 0.060
#> SRR2443262     4  0.3694     0.7366 0.000 0.000 0.076 0.784 0.000 0.140
#> SRR2443261     4  0.3707     0.7362 0.000 0.000 0.080 0.784 0.000 0.136
#> SRR2443260     3  0.0260     0.9657 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443259     3  0.0260     0.9657 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443258     3  0.0260     0.9657 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443257     4  0.3694     0.7366 0.000 0.000 0.076 0.784 0.000 0.140
#> SRR2443256     3  0.1267     0.9538 0.000 0.000 0.940 0.000 0.000 0.060
#> SRR2443255     3  0.1524     0.9553 0.000 0.000 0.932 0.008 0.000 0.060
#> SRR2443254     3  0.1643     0.9510 0.000 0.000 0.924 0.008 0.000 0.068
#> SRR2443253     4  0.3694     0.7366 0.000 0.000 0.076 0.784 0.000 0.140
#> SRR2443251     4  0.4036     0.7148 0.000 0.000 0.108 0.756 0.000 0.136
#> SRR2443250     4  0.3694     0.7366 0.000 0.000 0.076 0.784 0.000 0.140
#> SRR2443249     4  0.3694     0.7366 0.000 0.000 0.076 0.784 0.000 0.140
#> SRR2443252     3  0.0260     0.9657 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443247     1  0.4328     0.7447 0.724 0.000 0.112 0.000 0.164 0.000
#> SRR2443246     5  0.2257     0.7880 0.008 0.000 0.116 0.000 0.876 0.000
#> SRR2443248     4  0.3718     0.7358 0.000 0.000 0.084 0.784 0.000 0.132
#> SRR2443244     4  0.3592     0.3988 0.000 0.344 0.000 0.656 0.000 0.000
#> SRR2443245     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443243     1  0.0405     0.9302 0.988 0.000 0.000 0.004 0.008 0.000
#> SRR2443242     4  0.3371     0.5152 0.000 0.292 0.000 0.708 0.000 0.000
#> SRR2443241     5  0.2462     0.8486 0.012 0.064 0.000 0.032 0.892 0.000
#> SRR2443240     5  0.2633     0.8327 0.000 0.104 0.000 0.032 0.864 0.000
#> SRR2443239     2  0.1007     0.8365 0.000 0.956 0.000 0.044 0.000 0.000
#> SRR2443238     1  0.0291     0.9287 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR2443237     6  0.5121     0.5861 0.000 0.172 0.000 0.144 0.016 0.668
#> SRR2443236     5  0.3278     0.8290 0.064 0.056 0.000 0.032 0.848 0.000
#> SRR2443235     1  0.1387     0.9254 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR2443233     1  0.1444     0.9238 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR2443234     1  0.1327     0.9266 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR2443232     1  0.1444     0.9238 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR2443231     1  0.1444     0.9238 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR2443230     1  0.1075     0.9302 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR2443229     5  0.4117     0.6831 0.000 0.296 0.000 0.032 0.672 0.000
#> SRR2443228     2  0.2631     0.8058 0.000 0.820 0.000 0.180 0.000 0.000
#> SRR2443227     1  0.0405     0.9302 0.988 0.000 0.000 0.004 0.008 0.000
#> SRR2443226     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443225     6  0.0547     0.8195 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR2443223     4  0.3694     0.7366 0.000 0.000 0.076 0.784 0.000 0.140
#> SRR2443224     2  0.3133     0.6411 0.000 0.780 0.000 0.008 0.212 0.000
#> SRR2443222     2  0.2491     0.8166 0.000 0.836 0.000 0.164 0.000 0.000
#> SRR2443221     2  0.2491     0.8166 0.000 0.836 0.000 0.164 0.000 0.000
#> SRR2443219     4  0.2823     0.6200 0.000 0.204 0.000 0.796 0.000 0.000
#> SRR2443220     4  0.2766     0.7321 0.000 0.020 0.004 0.852 0.000 0.124
#> SRR2443218     4  0.3244     0.5444 0.000 0.268 0.000 0.732 0.000 0.000
#> SRR2443217     1  0.2341     0.9039 0.908 0.016 0.000 0.024 0.044 0.008
#> SRR2443216     3  0.0260     0.9657 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443215     2  0.2263     0.8140 0.000 0.884 0.000 0.100 0.016 0.000
#> SRR2443214     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443213     1  0.1444     0.9238 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR2443212     2  0.1418     0.7992 0.000 0.944 0.000 0.032 0.024 0.000
#> SRR2443211     2  0.2968     0.7047 0.000 0.816 0.000 0.016 0.168 0.000
#> SRR2443210     2  0.2491     0.8166 0.000 0.836 0.000 0.164 0.000 0.000
#> SRR2443209     5  0.3101     0.8153 0.000 0.148 0.000 0.032 0.820 0.000
#> SRR2443208     5  0.4356     0.5732 0.000 0.360 0.000 0.032 0.608 0.000
#> SRR2443207     2  0.4152     0.3232 0.000 0.664 0.000 0.032 0.304 0.000
#> SRR2443206     2  0.0146     0.8334 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2443205     2  0.1500     0.8175 0.000 0.936 0.000 0.012 0.052 0.000
#> SRR2443204     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443203     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443202     6  0.1387     0.8557 0.000 0.000 0.000 0.068 0.000 0.932
#> SRR2443201     6  0.3978     0.7782 0.000 0.000 0.064 0.192 0.000 0.744
#> SRR2443200     2  0.2631     0.8058 0.000 0.820 0.000 0.180 0.000 0.000
#> SRR2443199     4  0.3198     0.5561 0.000 0.260 0.000 0.740 0.000 0.000
#> SRR2443197     6  0.1387     0.8557 0.000 0.000 0.000 0.068 0.000 0.932
#> SRR2443196     6  0.2019     0.8433 0.000 0.012 0.000 0.088 0.000 0.900
#> SRR2443198     6  0.1387     0.8557 0.000 0.000 0.000 0.068 0.000 0.932
#> SRR2443195     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443194     6  0.0260     0.8354 0.000 0.000 0.000 0.008 0.000 0.992
#> SRR2443193     1  0.2638     0.8995 0.892 0.020 0.000 0.028 0.052 0.008
#> SRR2443191     5  0.3841     0.7459 0.000 0.244 0.000 0.032 0.724 0.000
#> SRR2443192     2  0.6080     0.0563 0.000 0.428 0.000 0.160 0.016 0.396
#> SRR2443190     1  0.1075     0.9302 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR2443189     1  0.0551     0.9272 0.984 0.000 0.004 0.004 0.000 0.008
#> SRR2443188     1  0.1444     0.9238 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR2443186     2  0.0146     0.8334 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2443187     2  0.0146     0.8334 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2443185     6  0.4095     0.7651 0.000 0.000 0.064 0.208 0.000 0.728
#> SRR2443184     3  0.0291     0.9634 0.004 0.000 0.992 0.004 0.000 0.000
#> SRR2443183     1  0.0713     0.9309 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR2443182     1  0.0405     0.9302 0.988 0.000 0.000 0.004 0.008 0.000
#> SRR2443181     2  0.0291     0.8332 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR2443180     4  0.3151     0.5666 0.000 0.252 0.000 0.748 0.000 0.000
#> SRR2443179     6  0.1610     0.8518 0.000 0.000 0.000 0.084 0.000 0.916
#> SRR2443178     6  0.2384     0.8259 0.048 0.000 0.000 0.064 0.000 0.888
#> SRR2443177     1  0.0405     0.9282 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR2443176     1  0.1010     0.9157 0.960 0.000 0.000 0.004 0.000 0.036
#> SRR2443175     1  0.1141     0.9295 0.948 0.000 0.000 0.000 0.052 0.000
#> SRR2443174     1  0.1075     0.9302 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR2443173     2  0.3227     0.8227 0.000 0.824 0.000 0.116 0.060 0.000
#> SRR2443172     2  0.3341     0.8195 0.000 0.816 0.000 0.116 0.068 0.000
#> SRR2443171     5  0.1918     0.8095 0.088 0.000 0.008 0.000 0.904 0.000
#> SRR2443170     5  0.0665     0.8557 0.008 0.004 0.008 0.000 0.980 0.000
#> SRR2443169     1  0.2669     0.8563 0.836 0.000 0.008 0.000 0.156 0.000
#> SRR2443168     5  0.1483     0.8512 0.000 0.036 0.012 0.008 0.944 0.000
#> SRR2443167     6  0.4215     0.7641 0.000 0.000 0.080 0.196 0.000 0.724
#> SRR2443166     3  0.0405     0.9573 0.004 0.000 0.988 0.000 0.008 0.000
#> SRR2443165     6  0.1245     0.8368 0.000 0.000 0.032 0.016 0.000 0.952
#> SRR2443164     4  0.1204     0.7040 0.000 0.056 0.000 0.944 0.000 0.000
#> SRR2443163     4  0.3992     0.7184 0.000 0.000 0.104 0.760 0.000 0.136
#> SRR2443162     3  0.1267     0.9538 0.000 0.000 0.940 0.000 0.000 0.060
#> SRR2443161     3  0.1524     0.9553 0.000 0.000 0.932 0.008 0.000 0.060
#> SRR2443160     6  0.4114     0.7694 0.000 0.000 0.072 0.196 0.000 0.732
#> SRR2443159     6  0.4331     0.7379 0.000 0.000 0.076 0.220 0.000 0.704
#> SRR2443158     3  0.2846     0.8667 0.000 0.000 0.856 0.000 0.084 0.060
#> SRR2443157     1  0.4689     0.7260 0.744 0.000 0.124 0.004 0.092 0.036
#> SRR2443156     5  0.0767     0.8548 0.008 0.004 0.012 0.000 0.976 0.000
#> SRR2443155     5  0.0665     0.8557 0.008 0.004 0.008 0.000 0.980 0.000
#> SRR2443154     5  0.0653     0.8554 0.004 0.004 0.012 0.000 0.980 0.000
#> SRR2443153     1  0.1387     0.9254 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR2443152     2  0.3396     0.8175 0.000 0.812 0.000 0.116 0.072 0.000
#> SRR2443151     4  0.2664     0.6255 0.000 0.184 0.000 0.816 0.000 0.000
#> SRR2443150     2  0.3341     0.8195 0.000 0.816 0.000 0.116 0.068 0.000
#> SRR2443148     4  0.2805     0.6937 0.000 0.004 0.000 0.812 0.000 0.184
#> SRR2443147     4  0.2416     0.7196 0.000 0.000 0.000 0.844 0.000 0.156
#> SRR2443149     3  0.0260     0.9657 0.000 0.000 0.992 0.008 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.748           0.924       0.963         0.4519 0.558   0.558
#> 3 3 0.619           0.751       0.871         0.4385 0.737   0.557
#> 4 4 0.672           0.757       0.861         0.1507 0.774   0.463
#> 5 5 0.713           0.707       0.855         0.0513 0.889   0.609
#> 6 6 0.707           0.622       0.800         0.0461 0.909   0.613

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.7453      0.772 0.212 0.788
#> SRR2443262     2  0.0000      0.954 0.000 1.000
#> SRR2443261     2  0.0000      0.954 0.000 1.000
#> SRR2443260     2  0.0000      0.954 0.000 1.000
#> SRR2443259     2  0.0000      0.954 0.000 1.000
#> SRR2443258     2  0.5842      0.826 0.140 0.860
#> SRR2443257     2  0.0000      0.954 0.000 1.000
#> SRR2443256     2  0.7219      0.787 0.200 0.800
#> SRR2443255     2  0.0000      0.954 0.000 1.000
#> SRR2443254     2  0.0000      0.954 0.000 1.000
#> SRR2443253     2  0.0000      0.954 0.000 1.000
#> SRR2443251     2  0.0000      0.954 0.000 1.000
#> SRR2443250     2  0.0000      0.954 0.000 1.000
#> SRR2443249     2  0.0000      0.954 0.000 1.000
#> SRR2443252     2  0.0000      0.954 0.000 1.000
#> SRR2443247     1  0.0000      0.973 1.000 0.000
#> SRR2443246     1  0.7815      0.680 0.768 0.232
#> SRR2443248     2  0.0000      0.954 0.000 1.000
#> SRR2443244     2  0.0000      0.954 0.000 1.000
#> SRR2443245     1  0.0000      0.973 1.000 0.000
#> SRR2443243     1  0.0000      0.973 1.000 0.000
#> SRR2443242     2  0.0000      0.954 0.000 1.000
#> SRR2443241     2  0.9661      0.434 0.392 0.608
#> SRR2443240     1  0.0672      0.966 0.992 0.008
#> SRR2443239     2  0.0000      0.954 0.000 1.000
#> SRR2443238     1  0.0000      0.973 1.000 0.000
#> SRR2443237     2  0.0000      0.954 0.000 1.000
#> SRR2443236     1  0.0000      0.973 1.000 0.000
#> SRR2443235     1  0.0000      0.973 1.000 0.000
#> SRR2443233     1  0.0000      0.973 1.000 0.000
#> SRR2443234     1  0.0000      0.973 1.000 0.000
#> SRR2443232     1  0.0000      0.973 1.000 0.000
#> SRR2443231     1  0.0000      0.973 1.000 0.000
#> SRR2443230     1  0.0000      0.973 1.000 0.000
#> SRR2443229     1  0.9754      0.347 0.592 0.408
#> SRR2443228     2  0.0000      0.954 0.000 1.000
#> SRR2443227     1  0.0000      0.973 1.000 0.000
#> SRR2443226     1  0.0000      0.973 1.000 0.000
#> SRR2443225     2  0.7219      0.787 0.200 0.800
#> SRR2443223     2  0.0000      0.954 0.000 1.000
#> SRR2443224     2  0.0000      0.954 0.000 1.000
#> SRR2443222     2  0.0000      0.954 0.000 1.000
#> SRR2443221     2  0.0000      0.954 0.000 1.000
#> SRR2443219     2  0.0000      0.954 0.000 1.000
#> SRR2443220     2  0.0000      0.954 0.000 1.000
#> SRR2443218     2  0.0000      0.954 0.000 1.000
#> SRR2443217     2  0.7219      0.787 0.200 0.800
#> SRR2443216     2  0.0000      0.954 0.000 1.000
#> SRR2443215     2  0.0000      0.954 0.000 1.000
#> SRR2443214     1  0.0000      0.973 1.000 0.000
#> SRR2443213     1  0.0000      0.973 1.000 0.000
#> SRR2443212     2  0.5842      0.850 0.140 0.860
#> SRR2443211     2  0.0000      0.954 0.000 1.000
#> SRR2443210     2  0.0000      0.954 0.000 1.000
#> SRR2443209     2  0.7219      0.787 0.200 0.800
#> SRR2443208     2  0.6148      0.815 0.152 0.848
#> SRR2443207     2  0.0000      0.954 0.000 1.000
#> SRR2443206     2  0.0000      0.954 0.000 1.000
#> SRR2443205     2  0.0000      0.954 0.000 1.000
#> SRR2443204     1  0.0000      0.973 1.000 0.000
#> SRR2443203     1  0.0000      0.973 1.000 0.000
#> SRR2443202     2  0.0000      0.954 0.000 1.000
#> SRR2443201     2  0.0000      0.954 0.000 1.000
#> SRR2443200     2  0.0000      0.954 0.000 1.000
#> SRR2443199     2  0.0000      0.954 0.000 1.000
#> SRR2443197     2  0.5737      0.854 0.136 0.864
#> SRR2443196     2  0.0000      0.954 0.000 1.000
#> SRR2443198     2  0.0376      0.952 0.004 0.996
#> SRR2443195     1  0.0000      0.973 1.000 0.000
#> SRR2443194     2  0.0938      0.947 0.012 0.988
#> SRR2443193     1  0.0000      0.973 1.000 0.000
#> SRR2443191     2  0.6973      0.801 0.188 0.812
#> SRR2443192     2  0.0376      0.952 0.004 0.996
#> SRR2443190     1  0.0000      0.973 1.000 0.000
#> SRR2443189     1  0.0000      0.973 1.000 0.000
#> SRR2443188     1  0.0000      0.973 1.000 0.000
#> SRR2443186     2  0.0000      0.954 0.000 1.000
#> SRR2443187     2  0.0000      0.954 0.000 1.000
#> SRR2443185     2  0.0000      0.954 0.000 1.000
#> SRR2443184     2  0.5737      0.854 0.136 0.864
#> SRR2443183     1  0.0000      0.973 1.000 0.000
#> SRR2443182     1  0.0000      0.973 1.000 0.000
#> SRR2443181     2  0.0000      0.954 0.000 1.000
#> SRR2443180     2  0.0000      0.954 0.000 1.000
#> SRR2443179     2  0.0000      0.954 0.000 1.000
#> SRR2443178     2  0.7219      0.787 0.200 0.800
#> SRR2443177     1  0.0000      0.973 1.000 0.000
#> SRR2443176     1  0.8713      0.559 0.708 0.292
#> SRR2443175     1  0.0000      0.973 1.000 0.000
#> SRR2443174     1  0.0000      0.973 1.000 0.000
#> SRR2443173     2  0.0000      0.954 0.000 1.000
#> SRR2443172     2  0.0000      0.954 0.000 1.000
#> SRR2443171     1  0.0000      0.973 1.000 0.000
#> SRR2443170     1  0.0376      0.970 0.996 0.004
#> SRR2443169     1  0.0000      0.973 1.000 0.000
#> SRR2443168     2  0.0000      0.954 0.000 1.000
#> SRR2443167     2  0.0000      0.954 0.000 1.000
#> SRR2443166     1  0.0000      0.973 1.000 0.000
#> SRR2443165     2  0.6623      0.819 0.172 0.828
#> SRR2443164     2  0.0000      0.954 0.000 1.000
#> SRR2443163     2  0.0000      0.954 0.000 1.000
#> SRR2443162     2  0.6531      0.823 0.168 0.832
#> SRR2443161     2  0.0000      0.954 0.000 1.000
#> SRR2443160     2  0.0000      0.954 0.000 1.000
#> SRR2443159     2  0.0000      0.954 0.000 1.000
#> SRR2443158     2  0.6531      0.823 0.168 0.832
#> SRR2443157     1  0.0000      0.973 1.000 0.000
#> SRR2443156     2  0.6531      0.823 0.168 0.832
#> SRR2443155     1  0.0000      0.973 1.000 0.000
#> SRR2443154     2  0.6531      0.823 0.168 0.832
#> SRR2443153     1  0.0000      0.973 1.000 0.000
#> SRR2443152     2  0.0000      0.954 0.000 1.000
#> SRR2443151     2  0.0000      0.954 0.000 1.000
#> SRR2443150     2  0.0000      0.954 0.000 1.000
#> SRR2443148     2  0.0000      0.954 0.000 1.000
#> SRR2443147     2  0.0000      0.954 0.000 1.000
#> SRR2443149     2  0.0000      0.954 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.4555      0.633 0.200 0.000 0.800
#> SRR2443262     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443261     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443260     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443259     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443258     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443257     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443256     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443255     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443254     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443253     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443251     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443250     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443249     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443252     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443247     1  0.4555      0.718 0.800 0.000 0.200
#> SRR2443246     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443248     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443244     3  0.8887      0.400 0.120 0.424 0.456
#> SRR2443245     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443242     3  0.4346      0.682 0.000 0.184 0.816
#> SRR2443241     1  0.4974      0.672 0.764 0.000 0.236
#> SRR2443240     1  0.1031      0.924 0.976 0.024 0.000
#> SRR2443239     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443238     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443237     3  0.5355      0.653 0.168 0.032 0.800
#> SRR2443236     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443229     3  0.2443      0.725 0.028 0.032 0.940
#> SRR2443228     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443225     3  0.4555      0.633 0.200 0.000 0.800
#> SRR2443223     3  0.5497      0.601 0.000 0.292 0.708
#> SRR2443224     3  0.1964      0.720 0.000 0.056 0.944
#> SRR2443222     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443219     2  0.0237      0.958 0.000 0.996 0.004
#> SRR2443220     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443218     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443217     3  0.4555      0.633 0.200 0.000 0.800
#> SRR2443216     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443215     2  0.4842      0.538 0.000 0.776 0.224
#> SRR2443214     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443212     3  0.6192      0.208 0.000 0.420 0.580
#> SRR2443211     2  0.6111      0.255 0.000 0.604 0.396
#> SRR2443210     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443209     3  0.6314      0.279 0.392 0.004 0.604
#> SRR2443208     3  0.3412      0.683 0.000 0.124 0.876
#> SRR2443207     3  0.5926      0.364 0.000 0.356 0.644
#> SRR2443206     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443205     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443204     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443203     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443202     3  0.7559      0.560 0.056 0.336 0.608
#> SRR2443201     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443200     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443199     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443197     3  0.7878      0.487 0.060 0.392 0.548
#> SRR2443196     3  0.7876      0.449 0.056 0.424 0.520
#> SRR2443198     3  0.9601      0.375 0.200 0.392 0.408
#> SRR2443195     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443194     3  0.4399      0.645 0.188 0.000 0.812
#> SRR2443193     1  0.5810      0.442 0.664 0.000 0.336
#> SRR2443191     3  0.4555      0.633 0.200 0.000 0.800
#> SRR2443192     3  0.9229      0.482 0.168 0.336 0.496
#> SRR2443190     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443189     1  0.5397      0.573 0.720 0.000 0.280
#> SRR2443188     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443186     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443187     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443185     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443184     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443183     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443182     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443181     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443180     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443179     3  0.9550      0.371 0.192 0.400 0.408
#> SRR2443178     3  0.9601      0.375 0.200 0.392 0.408
#> SRR2443177     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443176     3  0.4555      0.633 0.200 0.000 0.800
#> SRR2443175     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443171     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443170     1  0.1031      0.925 0.976 0.000 0.024
#> SRR2443169     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443168     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443167     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443166     3  0.2959      0.708 0.100 0.000 0.900
#> SRR2443165     3  0.9518      0.388 0.188 0.392 0.420
#> SRR2443164     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443163     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443162     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443161     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443160     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443159     3  0.6095      0.511 0.000 0.392 0.608
#> SRR2443158     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443157     1  0.6225      0.079 0.568 0.000 0.432
#> SRR2443156     3  0.1964      0.725 0.056 0.000 0.944
#> SRR2443155     1  0.2066      0.898 0.940 0.000 0.060
#> SRR2443154     3  0.0000      0.737 0.000 0.000 1.000
#> SRR2443153     1  0.0000      0.945 1.000 0.000 0.000
#> SRR2443152     2  0.0424      0.954 0.000 0.992 0.008
#> SRR2443151     2  0.0000      0.961 0.000 1.000 0.000
#> SRR2443150     2  0.0424      0.955 0.000 0.992 0.008
#> SRR2443148     2  0.0237      0.958 0.000 0.996 0.004
#> SRR2443147     2  0.0237      0.958 0.000 0.996 0.004
#> SRR2443149     3  0.0000      0.737 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.3356     0.7334 0.176 0.000 0.824 0.000
#> SRR2443262     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443261     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443260     3  0.1022     0.8294 0.000 0.000 0.968 0.032
#> SRR2443259     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443257     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443256     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443253     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443251     4  0.4454     0.6698 0.000 0.000 0.308 0.692
#> SRR2443250     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443249     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443252     3  0.0592     0.8372 0.000 0.000 0.984 0.016
#> SRR2443247     1  0.4040     0.6803 0.752 0.000 0.248 0.000
#> SRR2443246     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443248     3  0.3444     0.6403 0.000 0.000 0.816 0.184
#> SRR2443244     4  0.0469     0.7052 0.000 0.012 0.000 0.988
#> SRR2443245     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443242     4  0.5565     0.6659 0.000 0.068 0.232 0.700
#> SRR2443241     2  0.7535     0.6452 0.208 0.564 0.016 0.212
#> SRR2443240     2  0.6982     0.6038 0.252 0.576 0.000 0.172
#> SRR2443239     2  0.1022     0.8381 0.000 0.968 0.000 0.032
#> SRR2443238     1  0.1302     0.8991 0.956 0.000 0.000 0.044
#> SRR2443237     4  0.4985    -0.2022 0.000 0.000 0.468 0.532
#> SRR2443236     1  0.3074     0.7974 0.848 0.000 0.000 0.152
#> SRR2443235     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443229     3  0.9228     0.2390 0.132 0.184 0.448 0.236
#> SRR2443228     4  0.4134     0.7140 0.000 0.260 0.000 0.740
#> SRR2443227     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443225     3  0.4944     0.7238 0.160 0.000 0.768 0.072
#> SRR2443223     3  0.4679     0.2595 0.000 0.000 0.648 0.352
#> SRR2443224     2  0.4610     0.8190 0.000 0.744 0.020 0.236
#> SRR2443222     2  0.0188     0.8321 0.000 0.996 0.000 0.004
#> SRR2443221     2  0.0188     0.8321 0.000 0.996 0.000 0.004
#> SRR2443219     4  0.2973     0.7510 0.000 0.144 0.000 0.856
#> SRR2443220     4  0.3444     0.7800 0.000 0.000 0.184 0.816
#> SRR2443218     4  0.4103     0.7166 0.000 0.256 0.000 0.744
#> SRR2443217     3  0.5080     0.7272 0.144 0.000 0.764 0.092
#> SRR2443216     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443215     2  0.4134     0.8160 0.000 0.740 0.000 0.260
#> SRR2443214     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443213     1  0.1474     0.8929 0.948 0.000 0.000 0.052
#> SRR2443212     2  0.4502     0.8210 0.000 0.748 0.016 0.236
#> SRR2443211     2  0.3942     0.8264 0.000 0.764 0.000 0.236
#> SRR2443210     2  0.1940     0.7700 0.000 0.924 0.000 0.076
#> SRR2443209     2  0.4610     0.8190 0.000 0.744 0.020 0.236
#> SRR2443208     3  0.7825     0.0581 0.004 0.316 0.448 0.232
#> SRR2443207     2  0.3447     0.8406 0.000 0.852 0.020 0.128
#> SRR2443206     2  0.0000     0.8332 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.3610     0.8356 0.000 0.800 0.000 0.200
#> SRR2443204     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443203     1  0.3444     0.7701 0.816 0.000 0.184 0.000
#> SRR2443202     4  0.1211     0.7084 0.000 0.000 0.040 0.960
#> SRR2443201     3  0.2149     0.8098 0.000 0.000 0.912 0.088
#> SRR2443200     4  0.4933     0.4909 0.000 0.432 0.000 0.568
#> SRR2443199     4  0.4103     0.7166 0.000 0.256 0.000 0.744
#> SRR2443197     4  0.4646     0.7679 0.084 0.000 0.120 0.796
#> SRR2443196     4  0.3149     0.7545 0.088 0.000 0.032 0.880
#> SRR2443198     4  0.3208     0.7241 0.148 0.000 0.004 0.848
#> SRR2443195     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443194     3  0.5031     0.7261 0.140 0.000 0.768 0.092
#> SRR2443193     1  0.7135     0.4573 0.560 0.000 0.240 0.200
#> SRR2443191     2  0.4610     0.8190 0.000 0.744 0.020 0.236
#> SRR2443192     4  0.5772     0.3841 0.000 0.176 0.116 0.708
#> SRR2443190     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.3975     0.6731 0.760 0.000 0.240 0.000
#> SRR2443188     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.0000     0.8332 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0000     0.8332 0.000 1.000 0.000 0.000
#> SRR2443185     4  0.4713     0.5897 0.000 0.000 0.360 0.640
#> SRR2443184     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443183     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.3444     0.7701 0.816 0.000 0.184 0.000
#> SRR2443181     2  0.2216     0.8435 0.000 0.908 0.000 0.092
#> SRR2443180     4  0.3975     0.7244 0.000 0.240 0.000 0.760
#> SRR2443179     4  0.3105     0.7272 0.140 0.000 0.004 0.856
#> SRR2443178     4  0.7343    -0.0839 0.156 0.000 0.416 0.428
#> SRR2443177     1  0.2011     0.8790 0.920 0.000 0.080 0.000
#> SRR2443176     3  0.3266     0.7396 0.168 0.000 0.832 0.000
#> SRR2443175     1  0.0592     0.9194 0.984 0.000 0.016 0.000
#> SRR2443174     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.0000     0.8332 0.000 1.000 0.000 0.000
#> SRR2443172     2  0.0188     0.8321 0.000 0.996 0.000 0.004
#> SRR2443171     1  0.0921     0.9129 0.972 0.000 0.028 0.000
#> SRR2443170     1  0.3894     0.8024 0.832 0.004 0.024 0.140
#> SRR2443169     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443168     3  0.1209     0.8283 0.000 0.004 0.964 0.032
#> SRR2443167     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443166     3  0.1211     0.8225 0.040 0.000 0.960 0.000
#> SRR2443165     3  0.7138     0.3138 0.164 0.000 0.540 0.296
#> SRR2443164     4  0.4103     0.7166 0.000 0.256 0.000 0.744
#> SRR2443163     3  0.1022     0.8294 0.000 0.000 0.968 0.032
#> SRR2443162     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443160     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443159     4  0.3649     0.7767 0.000 0.000 0.204 0.796
#> SRR2443158     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443157     3  0.4877     0.3078 0.408 0.000 0.592 0.000
#> SRR2443156     3  0.3306     0.7478 0.004 0.000 0.840 0.156
#> SRR2443155     1  0.7039     0.6260 0.636 0.024 0.196 0.144
#> SRR2443154     3  0.0000     0.8428 0.000 0.000 1.000 0.000
#> SRR2443153     1  0.0000     0.9263 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.3726     0.8340 0.000 0.788 0.000 0.212
#> SRR2443151     4  0.4103     0.7166 0.000 0.256 0.000 0.744
#> SRR2443150     2  0.4222     0.6194 0.000 0.728 0.000 0.272
#> SRR2443148     4  0.2973     0.7510 0.000 0.144 0.000 0.856
#> SRR2443147     4  0.2973     0.7510 0.000 0.144 0.000 0.856
#> SRR2443149     3  0.1022     0.8294 0.000 0.000 0.968 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.3476    0.70201 0.176 0.000 0.804 0.020 0.000
#> SRR2443262     4  0.1341    0.80603 0.000 0.000 0.056 0.944 0.000
#> SRR2443261     4  0.3966    0.63603 0.000 0.000 0.336 0.664 0.000
#> SRR2443260     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443259     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443258     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443257     4  0.2074    0.80770 0.000 0.000 0.104 0.896 0.000
#> SRR2443256     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443255     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443254     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443253     4  0.1341    0.80603 0.000 0.000 0.056 0.944 0.000
#> SRR2443251     3  0.4294   -0.21412 0.000 0.000 0.532 0.468 0.000
#> SRR2443250     4  0.2424    0.78842 0.000 0.000 0.132 0.868 0.000
#> SRR2443249     4  0.2516    0.78658 0.000 0.000 0.140 0.860 0.000
#> SRR2443252     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443247     1  0.4015    0.56182 0.652 0.000 0.348 0.000 0.000
#> SRR2443246     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443248     3  0.2929    0.61863 0.000 0.000 0.820 0.180 0.000
#> SRR2443244     4  0.3814    0.60187 0.000 0.000 0.004 0.720 0.276
#> SRR2443245     1  0.0609    0.90133 0.980 0.000 0.000 0.020 0.000
#> SRR2443243     1  0.0404    0.90215 0.988 0.000 0.000 0.012 0.000
#> SRR2443242     4  0.4524    0.61190 0.000 0.020 0.280 0.692 0.008
#> SRR2443241     5  0.1557    0.75618 0.000 0.000 0.052 0.008 0.940
#> SRR2443240     5  0.0162    0.77814 0.000 0.000 0.000 0.004 0.996
#> SRR2443239     2  0.4238    0.59202 0.000 0.628 0.000 0.004 0.368
#> SRR2443238     1  0.1211    0.89066 0.960 0.000 0.000 0.016 0.024
#> SRR2443237     3  0.6589    0.15858 0.000 0.000 0.456 0.232 0.312
#> SRR2443236     1  0.3913    0.53070 0.676 0.000 0.000 0.000 0.324
#> SRR2443235     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443233     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443234     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443232     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443231     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443230     1  0.0000    0.90228 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.4521    0.47244 0.008 0.000 0.316 0.012 0.664
#> SRR2443228     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443227     1  0.0609    0.90133 0.980 0.000 0.000 0.020 0.000
#> SRR2443226     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443225     3  0.3612    0.70053 0.172 0.000 0.800 0.028 0.000
#> SRR2443223     3  0.3876    0.43867 0.000 0.000 0.684 0.316 0.000
#> SRR2443224     5  0.0162    0.77820 0.000 0.000 0.000 0.004 0.996
#> SRR2443222     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443221     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443219     4  0.2124    0.75997 0.000 0.096 0.000 0.900 0.004
#> SRR2443220     4  0.3039    0.75058 0.000 0.000 0.192 0.808 0.000
#> SRR2443218     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443217     5  0.6167    0.22896 0.088 0.000 0.392 0.016 0.504
#> SRR2443216     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443215     5  0.2648    0.66692 0.000 0.000 0.000 0.152 0.848
#> SRR2443214     1  0.0703    0.89999 0.976 0.000 0.000 0.024 0.000
#> SRR2443213     1  0.1386    0.88459 0.952 0.000 0.000 0.016 0.032
#> SRR2443212     5  0.0290    0.77887 0.000 0.000 0.000 0.008 0.992
#> SRR2443211     5  0.0162    0.77820 0.000 0.000 0.000 0.004 0.996
#> SRR2443210     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443209     5  0.0290    0.77887 0.000 0.000 0.000 0.008 0.992
#> SRR2443208     5  0.4108    0.49262 0.000 0.000 0.308 0.008 0.684
#> SRR2443207     5  0.0771    0.76625 0.000 0.020 0.000 0.004 0.976
#> SRR2443206     2  0.4101    0.59035 0.000 0.628 0.000 0.000 0.372
#> SRR2443205     5  0.0324    0.77660 0.000 0.004 0.000 0.004 0.992
#> SRR2443204     1  0.0609    0.90133 0.980 0.000 0.000 0.020 0.000
#> SRR2443203     1  0.3639    0.76107 0.792 0.000 0.184 0.024 0.000
#> SRR2443202     4  0.4269    0.66650 0.000 0.000 0.232 0.732 0.036
#> SRR2443201     3  0.2624    0.76416 0.000 0.000 0.872 0.116 0.012
#> SRR2443200     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443199     2  0.0000    0.79283 0.000 1.000 0.000 0.000 0.000
#> SRR2443197     4  0.3283    0.78060 0.028 0.000 0.140 0.832 0.000
#> SRR2443196     4  0.1200    0.79334 0.008 0.000 0.012 0.964 0.016
#> SRR2443198     4  0.1981    0.79421 0.016 0.000 0.064 0.920 0.000
#> SRR2443195     1  0.0404    0.90215 0.988 0.000 0.000 0.012 0.000
#> SRR2443194     3  0.3594    0.72534 0.020 0.000 0.804 0.172 0.004
#> SRR2443193     5  0.4804    0.32841 0.364 0.000 0.016 0.008 0.612
#> SRR2443191     5  0.0290    0.77887 0.000 0.000 0.000 0.008 0.992
#> SRR2443192     4  0.5720    0.54401 0.000 0.000 0.268 0.604 0.128
#> SRR2443190     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443189     1  0.4491    0.52603 0.652 0.000 0.328 0.020 0.000
#> SRR2443188     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443186     2  0.4101    0.59035 0.000 0.628 0.000 0.000 0.372
#> SRR2443187     2  0.4101    0.59035 0.000 0.628 0.000 0.000 0.372
#> SRR2443185     4  0.4192    0.41604 0.000 0.000 0.404 0.596 0.000
#> SRR2443184     3  0.1671    0.78310 0.000 0.000 0.924 0.076 0.000
#> SRR2443183     1  0.0671    0.90094 0.980 0.000 0.000 0.016 0.004
#> SRR2443182     1  0.4089    0.75415 0.780 0.000 0.180 0.024 0.016
#> SRR2443181     5  0.2471    0.64681 0.000 0.136 0.000 0.000 0.864
#> SRR2443180     2  0.4015    0.29455 0.000 0.652 0.000 0.348 0.000
#> SRR2443179     4  0.0671    0.78571 0.016 0.000 0.000 0.980 0.004
#> SRR2443178     3  0.6868    0.27416 0.160 0.000 0.468 0.348 0.024
#> SRR2443177     1  0.3368    0.78960 0.820 0.000 0.156 0.024 0.000
#> SRR2443176     3  0.3565    0.69930 0.176 0.000 0.800 0.024 0.000
#> SRR2443175     1  0.1579    0.88528 0.944 0.000 0.032 0.024 0.000
#> SRR2443174     1  0.0609    0.90133 0.980 0.000 0.000 0.020 0.000
#> SRR2443173     2  0.0290    0.79078 0.000 0.992 0.000 0.000 0.008
#> SRR2443172     2  0.4218    0.61340 0.000 0.660 0.000 0.008 0.332
#> SRR2443171     1  0.3554    0.80040 0.828 0.000 0.136 0.020 0.016
#> SRR2443170     1  0.4570    0.50970 0.648 0.000 0.016 0.004 0.332
#> SRR2443169     1  0.0609    0.90133 0.980 0.000 0.000 0.020 0.000
#> SRR2443168     3  0.4317    0.67317 0.000 0.000 0.764 0.076 0.160
#> SRR2443167     4  0.3561    0.72301 0.000 0.000 0.260 0.740 0.000
#> SRR2443166     3  0.1608    0.76957 0.072 0.000 0.928 0.000 0.000
#> SRR2443165     3  0.5915    0.30588 0.108 0.000 0.508 0.384 0.000
#> SRR2443164     2  0.3730    0.48258 0.000 0.712 0.000 0.288 0.000
#> SRR2443163     3  0.1671    0.78310 0.000 0.000 0.924 0.076 0.000
#> SRR2443162     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443161     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443160     4  0.2179    0.80481 0.000 0.000 0.112 0.888 0.000
#> SRR2443159     4  0.2329    0.79998 0.000 0.000 0.124 0.876 0.000
#> SRR2443158     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000
#> SRR2443157     3  0.4827   -0.00174 0.476 0.000 0.504 0.020 0.000
#> SRR2443156     3  0.4104    0.71470 0.000 0.000 0.788 0.088 0.124
#> SRR2443155     5  0.5287    0.49672 0.260 0.000 0.092 0.000 0.648
#> SRR2443154     3  0.2962    0.76477 0.000 0.000 0.868 0.048 0.084
#> SRR2443153     1  0.0609    0.90133 0.980 0.000 0.000 0.020 0.000
#> SRR2443152     2  0.6157    0.43217 0.000 0.496 0.000 0.140 0.364
#> SRR2443151     2  0.0162    0.79140 0.000 0.996 0.000 0.004 0.000
#> SRR2443150     4  0.6728   -0.10686 0.000 0.260 0.000 0.404 0.336
#> SRR2443148     4  0.1571    0.77161 0.000 0.060 0.000 0.936 0.004
#> SRR2443147     4  0.1124    0.78208 0.000 0.036 0.000 0.960 0.004
#> SRR2443149     3  0.0000    0.81285 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.2793    0.62794 0.000 0.000 0.800 0.000 0.000 0.200
#> SRR2443262     4  0.0790    0.78999 0.000 0.000 0.032 0.968 0.000 0.000
#> SRR2443261     4  0.3198    0.64580 0.000 0.000 0.260 0.740 0.000 0.000
#> SRR2443260     3  0.0865    0.76731 0.000 0.000 0.964 0.036 0.000 0.000
#> SRR2443259     3  0.0260    0.77659 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443258     3  0.0000    0.77649 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443257     4  0.1610    0.78244 0.000 0.000 0.084 0.916 0.000 0.000
#> SRR2443256     3  0.0713    0.76751 0.000 0.000 0.972 0.000 0.000 0.028
#> SRR2443255     3  0.0260    0.77659 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443254     3  0.0260    0.77659 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443253     4  0.0937    0.79014 0.000 0.000 0.040 0.960 0.000 0.000
#> SRR2443251     3  0.3765    0.12954 0.000 0.000 0.596 0.404 0.000 0.000
#> SRR2443250     4  0.2092    0.75165 0.000 0.000 0.124 0.876 0.000 0.000
#> SRR2443249     4  0.2219    0.74600 0.000 0.000 0.136 0.864 0.000 0.000
#> SRR2443252     3  0.0146    0.77670 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2443247     1  0.3607    0.41019 0.652 0.000 0.348 0.000 0.000 0.000
#> SRR2443246     3  0.0000    0.77649 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443248     3  0.1141    0.76378 0.000 0.000 0.948 0.052 0.000 0.000
#> SRR2443244     4  0.5217    0.52760 0.000 0.000 0.008 0.600 0.292 0.100
#> SRR2443245     6  0.3076    0.72925 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR2443243     1  0.2631    0.70518 0.820 0.000 0.000 0.000 0.000 0.180
#> SRR2443242     4  0.4670    0.29104 0.000 0.012 0.380 0.580 0.000 0.028
#> SRR2443241     5  0.0260    0.72890 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR2443240     5  0.0000    0.73074 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443239     2  0.3634    0.59754 0.000 0.644 0.000 0.000 0.356 0.000
#> SRR2443238     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443237     3  0.6092    0.50227 0.000 0.000 0.604 0.180 0.124 0.092
#> SRR2443236     5  0.3823    0.11381 0.436 0.000 0.000 0.000 0.564 0.000
#> SRR2443235     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.1910    0.76574 0.892 0.000 0.000 0.000 0.000 0.108
#> SRR2443229     5  0.3769    0.26868 0.000 0.000 0.356 0.004 0.640 0.000
#> SRR2443228     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443227     6  0.3578    0.59950 0.340 0.000 0.000 0.000 0.000 0.660
#> SRR2443226     1  0.3717    0.06859 0.616 0.000 0.000 0.000 0.000 0.384
#> SRR2443225     6  0.3052    0.51949 0.000 0.000 0.216 0.004 0.000 0.780
#> SRR2443223     3  0.3261    0.65204 0.000 0.000 0.780 0.204 0.000 0.016
#> SRR2443224     5  0.0405    0.72859 0.000 0.000 0.000 0.004 0.988 0.008
#> SRR2443222     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443221     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443219     4  0.1556    0.75711 0.000 0.080 0.000 0.920 0.000 0.000
#> SRR2443220     4  0.1714    0.77103 0.000 0.000 0.092 0.908 0.000 0.000
#> SRR2443218     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443217     3  0.5472    0.21902 0.000 0.000 0.504 0.000 0.364 0.132
#> SRR2443216     3  0.0260    0.77659 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443215     5  0.3360    0.46150 0.000 0.000 0.004 0.264 0.732 0.000
#> SRR2443214     6  0.3076    0.72925 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR2443213     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.0000    0.73074 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443211     5  0.0260    0.72962 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR2443210     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443209     5  0.0000    0.73074 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443208     5  0.3607    0.28895 0.000 0.000 0.348 0.000 0.652 0.000
#> SRR2443207     5  0.0363    0.72422 0.000 0.012 0.000 0.000 0.988 0.000
#> SRR2443206     2  0.3634    0.59754 0.000 0.644 0.000 0.000 0.356 0.000
#> SRR2443205     5  0.0291    0.72837 0.000 0.004 0.000 0.004 0.992 0.000
#> SRR2443204     6  0.3076    0.72925 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR2443203     6  0.2872    0.72978 0.140 0.000 0.024 0.000 0.000 0.836
#> SRR2443202     4  0.5008    0.49877 0.000 0.000 0.268 0.628 0.004 0.100
#> SRR2443201     3  0.4107    0.65840 0.000 0.000 0.756 0.148 0.004 0.092
#> SRR2443200     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443199     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443197     4  0.4705    0.72235 0.000 0.000 0.088 0.652 0.000 0.260
#> SRR2443196     4  0.3298    0.75682 0.000 0.000 0.008 0.756 0.000 0.236
#> SRR2443198     4  0.3860    0.74534 0.000 0.000 0.036 0.728 0.000 0.236
#> SRR2443195     6  0.3266    0.70696 0.272 0.000 0.000 0.000 0.000 0.728
#> SRR2443194     3  0.4503    0.60596 0.000 0.000 0.700 0.192 0.000 0.108
#> SRR2443193     6  0.5571    0.50725 0.144 0.000 0.008 0.000 0.284 0.564
#> SRR2443191     5  0.0000    0.73074 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443192     3  0.7269    0.00533 0.000 0.000 0.328 0.304 0.276 0.092
#> SRR2443190     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     6  0.4313    0.71891 0.148 0.000 0.124 0.000 0.000 0.728
#> SRR2443188     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.3634    0.59754 0.000 0.644 0.000 0.000 0.356 0.000
#> SRR2443187     2  0.3634    0.59754 0.000 0.644 0.000 0.000 0.356 0.000
#> SRR2443185     3  0.4471    0.00533 0.000 0.000 0.500 0.472 0.000 0.028
#> SRR2443184     3  0.2070    0.74065 0.000 0.000 0.896 0.092 0.000 0.012
#> SRR2443183     1  0.0000    0.82557 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     6  0.3714    0.74435 0.196 0.000 0.044 0.000 0.000 0.760
#> SRR2443181     5  0.3421    0.36708 0.000 0.256 0.000 0.000 0.736 0.008
#> SRR2443180     2  0.3244    0.46000 0.000 0.732 0.000 0.268 0.000 0.000
#> SRR2443179     4  0.3050    0.75822 0.000 0.000 0.000 0.764 0.000 0.236
#> SRR2443178     6  0.5819   -0.10408 0.000 0.000 0.128 0.280 0.028 0.564
#> SRR2443177     6  0.3714    0.74407 0.196 0.000 0.044 0.000 0.000 0.760
#> SRR2443176     6  0.3076    0.60031 0.000 0.000 0.240 0.000 0.000 0.760
#> SRR2443175     6  0.4516    0.39977 0.400 0.000 0.036 0.000 0.000 0.564
#> SRR2443174     1  0.2762    0.68834 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR2443173     2  0.0405    0.79665 0.000 0.988 0.000 0.004 0.000 0.008
#> SRR2443172     2  0.4291    0.57627 0.000 0.620 0.000 0.016 0.356 0.008
#> SRR2443171     1  0.6604    0.11546 0.412 0.000 0.040 0.000 0.348 0.200
#> SRR2443170     5  0.3782    0.17520 0.412 0.000 0.000 0.000 0.588 0.000
#> SRR2443169     1  0.2793    0.68370 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR2443168     3  0.2629    0.73784 0.000 0.000 0.868 0.092 0.040 0.000
#> SRR2443167     4  0.5573    0.58917 0.000 0.000 0.288 0.536 0.000 0.176
#> SRR2443166     3  0.4751   -0.13102 0.048 0.000 0.500 0.000 0.000 0.452
#> SRR2443165     3  0.6039   -0.04620 0.000 0.000 0.408 0.332 0.000 0.260
#> SRR2443164     2  0.2454    0.67508 0.000 0.840 0.000 0.160 0.000 0.000
#> SRR2443163     3  0.2333    0.73731 0.000 0.000 0.884 0.092 0.000 0.024
#> SRR2443162     3  0.0000    0.77649 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443161     3  0.0000    0.77649 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443160     4  0.4406    0.74685 0.000 0.000 0.080 0.696 0.000 0.224
#> SRR2443159     4  0.4036    0.76259 0.000 0.000 0.108 0.756 0.000 0.136
#> SRR2443158     3  0.0000    0.77649 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443157     6  0.3997    0.72842 0.132 0.000 0.108 0.000 0.000 0.760
#> SRR2443156     3  0.5979    0.43840 0.000 0.000 0.560 0.104 0.284 0.052
#> SRR2443155     5  0.4330    0.44731 0.272 0.000 0.044 0.004 0.680 0.000
#> SRR2443154     3  0.4145    0.56695 0.000 0.000 0.700 0.048 0.252 0.000
#> SRR2443153     1  0.2793    0.68370 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR2443152     2  0.5917    0.37230 0.000 0.460 0.000 0.164 0.368 0.008
#> SRR2443151     2  0.0000    0.79979 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443150     5  0.6326   -0.28613 0.000 0.340 0.000 0.296 0.356 0.008
#> SRR2443148     4  0.1124    0.77662 0.000 0.036 0.000 0.956 0.000 0.008
#> SRR2443147     4  0.0146    0.78798 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR2443149     3  0.0622    0.77457 0.000 0.000 0.980 0.008 0.000 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.360           0.788       0.798         0.3677 0.509   0.509
#> 3 3 0.563           0.556       0.779         0.7610 0.660   0.423
#> 4 4 0.599           0.637       0.799         0.1099 0.834   0.573
#> 5 5 0.646           0.628       0.752         0.0836 0.837   0.506
#> 6 6 0.671           0.611       0.732         0.0357 0.951   0.785

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.8267      0.755 0.740 0.260
#> SRR2443262     1  0.7815      0.773 0.768 0.232
#> SRR2443261     1  0.0672      0.737 0.992 0.008
#> SRR2443260     1  0.0672      0.737 0.992 0.008
#> SRR2443259     1  0.0000      0.731 1.000 0.000
#> SRR2443258     1  0.0000      0.731 1.000 0.000
#> SRR2443257     1  0.8207      0.759 0.744 0.256
#> SRR2443256     1  0.0000      0.731 1.000 0.000
#> SRR2443255     1  0.0000      0.731 1.000 0.000
#> SRR2443254     1  0.0000      0.731 1.000 0.000
#> SRR2443253     1  0.8207      0.759 0.744 0.256
#> SRR2443251     1  0.0672      0.737 0.992 0.008
#> SRR2443250     1  0.2423      0.748 0.960 0.040
#> SRR2443249     1  0.0672      0.737 0.992 0.008
#> SRR2443252     1  0.0672      0.737 0.992 0.008
#> SRR2443247     1  0.7815      0.773 0.768 0.232
#> SRR2443246     1  0.8861      0.753 0.696 0.304
#> SRR2443248     1  0.0672      0.737 0.992 0.008
#> SRR2443244     2  0.8327      0.877 0.264 0.736
#> SRR2443245     2  0.8327      0.877 0.264 0.736
#> SRR2443243     2  0.8267      0.877 0.260 0.740
#> SRR2443242     2  0.8327      0.877 0.264 0.736
#> SRR2443241     2  0.7056      0.874 0.192 0.808
#> SRR2443240     2  0.7056      0.874 0.192 0.808
#> SRR2443239     2  0.7056      0.874 0.192 0.808
#> SRR2443238     2  0.7950      0.879 0.240 0.760
#> SRR2443237     2  0.8207      0.879 0.256 0.744
#> SRR2443236     2  0.7056      0.874 0.192 0.808
#> SRR2443235     2  0.0376      0.670 0.004 0.996
#> SRR2443233     2  0.0000      0.668 0.000 1.000
#> SRR2443234     2  0.0376      0.670 0.004 0.996
#> SRR2443232     2  0.0000      0.668 0.000 1.000
#> SRR2443231     2  0.1184      0.674 0.016 0.984
#> SRR2443230     2  0.3431      0.683 0.064 0.936
#> SRR2443229     2  0.7139      0.872 0.196 0.804
#> SRR2443228     2  0.7056      0.874 0.192 0.808
#> SRR2443227     2  0.8267      0.877 0.260 0.740
#> SRR2443226     2  0.8267      0.877 0.260 0.740
#> SRR2443225     2  0.8327      0.877 0.264 0.736
#> SRR2443223     1  0.8207      0.759 0.744 0.256
#> SRR2443224     1  0.8861      0.753 0.696 0.304
#> SRR2443222     2  0.7056      0.874 0.192 0.808
#> SRR2443221     2  0.7056      0.874 0.192 0.808
#> SRR2443219     2  0.8327      0.877 0.264 0.736
#> SRR2443220     1  0.8207      0.759 0.744 0.256
#> SRR2443218     2  0.8144      0.879 0.252 0.748
#> SRR2443217     2  0.8267      0.878 0.260 0.740
#> SRR2443216     1  0.2236      0.739 0.964 0.036
#> SRR2443215     2  0.7056      0.874 0.192 0.808
#> SRR2443214     2  0.8327      0.877 0.264 0.736
#> SRR2443213     2  0.0000      0.668 0.000 1.000
#> SRR2443212     2  0.7056      0.874 0.192 0.808
#> SRR2443211     2  0.7056      0.874 0.192 0.808
#> SRR2443210     2  0.7056      0.874 0.192 0.808
#> SRR2443209     2  0.7056      0.874 0.192 0.808
#> SRR2443208     2  0.7056      0.874 0.192 0.808
#> SRR2443207     2  0.7139      0.872 0.196 0.804
#> SRR2443206     2  0.7056      0.874 0.192 0.808
#> SRR2443205     2  0.7056      0.874 0.192 0.808
#> SRR2443204     2  0.8267      0.877 0.260 0.740
#> SRR2443203     2  0.8327      0.877 0.264 0.736
#> SRR2443202     2  0.8327      0.877 0.264 0.736
#> SRR2443201     2  0.9909      0.426 0.444 0.556
#> SRR2443200     2  0.7056      0.874 0.192 0.808
#> SRR2443199     2  0.8207      0.879 0.256 0.744
#> SRR2443197     2  0.8327      0.877 0.264 0.736
#> SRR2443196     2  0.8327      0.877 0.264 0.736
#> SRR2443198     2  0.8327      0.877 0.264 0.736
#> SRR2443195     2  0.8327      0.877 0.264 0.736
#> SRR2443194     2  0.8327      0.877 0.264 0.736
#> SRR2443193     2  0.7056      0.874 0.192 0.808
#> SRR2443191     2  0.7056      0.874 0.192 0.808
#> SRR2443192     2  0.8207      0.879 0.256 0.744
#> SRR2443190     2  0.1414      0.677 0.020 0.980
#> SRR2443189     2  0.8327      0.874 0.264 0.736
#> SRR2443188     2  0.0000      0.668 0.000 1.000
#> SRR2443186     2  0.7139      0.872 0.196 0.804
#> SRR2443187     2  0.7139      0.872 0.196 0.804
#> SRR2443185     2  0.9963      0.341 0.464 0.536
#> SRR2443184     1  0.9933      0.108 0.548 0.452
#> SRR2443183     2  0.3733      0.682 0.072 0.928
#> SRR2443182     2  0.8327      0.877 0.264 0.736
#> SRR2443181     2  0.7056      0.874 0.192 0.808
#> SRR2443180     2  0.8327      0.877 0.264 0.736
#> SRR2443179     2  0.8327      0.877 0.264 0.736
#> SRR2443178     2  0.8327      0.877 0.264 0.736
#> SRR2443177     2  0.8327      0.877 0.264 0.736
#> SRR2443176     2  0.8327      0.877 0.264 0.736
#> SRR2443175     1  0.9000      0.647 0.684 0.316
#> SRR2443174     1  0.8267      0.759 0.740 0.260
#> SRR2443173     1  0.8861      0.753 0.696 0.304
#> SRR2443172     1  0.8861      0.753 0.696 0.304
#> SRR2443171     1  0.8861      0.753 0.696 0.304
#> SRR2443170     1  0.8955      0.746 0.688 0.312
#> SRR2443169     1  0.8081      0.774 0.752 0.248
#> SRR2443168     1  0.8861      0.753 0.696 0.304
#> SRR2443167     1  0.8207      0.759 0.744 0.256
#> SRR2443166     1  0.6531      0.775 0.832 0.168
#> SRR2443165     1  0.9522      0.482 0.628 0.372
#> SRR2443164     1  0.8207      0.759 0.744 0.256
#> SRR2443163     1  0.2236      0.747 0.964 0.036
#> SRR2443162     1  0.0000      0.731 1.000 0.000
#> SRR2443161     1  0.0000      0.731 1.000 0.000
#> SRR2443160     1  0.8267      0.755 0.740 0.260
#> SRR2443159     1  0.8267      0.755 0.740 0.260
#> SRR2443158     1  0.0376      0.734 0.996 0.004
#> SRR2443157     1  0.8207      0.759 0.744 0.256
#> SRR2443156     1  0.8713      0.753 0.708 0.292
#> SRR2443155     1  0.8861      0.753 0.696 0.304
#> SRR2443154     1  0.8861      0.753 0.696 0.304
#> SRR2443153     2  0.7453      0.867 0.212 0.788
#> SRR2443152     1  0.8861      0.753 0.696 0.304
#> SRR2443151     1  0.9129      0.726 0.672 0.328
#> SRR2443150     1  0.8861      0.753 0.696 0.304
#> SRR2443148     2  0.8327      0.877 0.264 0.736
#> SRR2443147     2  0.8327      0.877 0.264 0.736
#> SRR2443149     1  0.7815      0.773 0.768 0.232

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.7505    0.16120 0.384 0.044 0.572
#> SRR2443262     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443261     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443260     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443259     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443258     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443257     3  0.3028    0.71608 0.032 0.048 0.920
#> SRR2443256     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443255     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443254     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443253     3  0.1877    0.72677 0.012 0.032 0.956
#> SRR2443251     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443250     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443249     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443252     3  0.0592    0.72762 0.000 0.012 0.988
#> SRR2443247     3  0.7641    0.20155 0.436 0.044 0.520
#> SRR2443246     3  0.7876    0.21700 0.424 0.056 0.520
#> SRR2443248     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443244     2  0.8322    0.00189 0.080 0.492 0.428
#> SRR2443245     1  0.6587    0.29520 0.568 0.008 0.424
#> SRR2443243     1  0.0983    0.71753 0.980 0.016 0.004
#> SRR2443242     3  0.8499    0.22876 0.096 0.388 0.516
#> SRR2443241     2  0.1031    0.77853 0.024 0.976 0.000
#> SRR2443240     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443239     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443238     1  0.2200    0.71452 0.940 0.056 0.004
#> SRR2443237     1  0.9231    0.35991 0.532 0.216 0.252
#> SRR2443236     2  0.0892    0.77844 0.020 0.980 0.000
#> SRR2443235     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443233     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443234     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443232     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443231     1  0.1753    0.71844 0.952 0.048 0.000
#> SRR2443230     1  0.1289    0.71928 0.968 0.032 0.000
#> SRR2443229     2  0.0592    0.78524 0.012 0.988 0.000
#> SRR2443228     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443227     1  0.0983    0.71822 0.980 0.016 0.004
#> SRR2443226     1  0.0475    0.71602 0.992 0.004 0.004
#> SRR2443225     1  0.7962    0.24372 0.512 0.060 0.428
#> SRR2443223     3  0.2663    0.72224 0.024 0.044 0.932
#> SRR2443224     2  0.6026    0.48001 0.000 0.624 0.376
#> SRR2443222     2  0.1031    0.78177 0.024 0.976 0.000
#> SRR2443221     2  0.1031    0.78177 0.024 0.976 0.000
#> SRR2443219     2  0.7715    0.06432 0.048 0.524 0.428
#> SRR2443220     3  0.6495    0.52750 0.200 0.060 0.740
#> SRR2443218     2  0.6012    0.55039 0.032 0.748 0.220
#> SRR2443217     1  0.3030    0.70244 0.904 0.092 0.004
#> SRR2443216     3  0.4883    0.53427 0.208 0.004 0.788
#> SRR2443215     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443214     1  0.0475    0.71594 0.992 0.004 0.004
#> SRR2443213     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443212     2  0.1031    0.78177 0.024 0.976 0.000
#> SRR2443211     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443210     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443209     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443208     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443207     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443206     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443205     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443204     1  0.6848    0.31504 0.568 0.016 0.416
#> SRR2443203     1  0.7004    0.26824 0.552 0.020 0.428
#> SRR2443202     1  0.7962    0.24372 0.512 0.060 0.428
#> SRR2443201     3  0.7809    0.16872 0.372 0.060 0.568
#> SRR2443200     2  0.1031    0.78177 0.024 0.976 0.000
#> SRR2443199     2  0.7401    0.31242 0.048 0.612 0.340
#> SRR2443197     1  0.7627    0.24421 0.528 0.044 0.428
#> SRR2443196     1  0.7627    0.24421 0.528 0.044 0.428
#> SRR2443198     1  0.7715    0.24444 0.524 0.048 0.428
#> SRR2443195     1  0.5503    0.56421 0.772 0.020 0.208
#> SRR2443194     3  0.7853    0.13336 0.384 0.060 0.556
#> SRR2443193     1  0.3112    0.70633 0.900 0.096 0.004
#> SRR2443191     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443192     1  0.9723    0.21821 0.424 0.348 0.228
#> SRR2443190     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443189     1  0.1711    0.72048 0.960 0.032 0.008
#> SRR2443188     1  0.2066    0.71631 0.940 0.060 0.000
#> SRR2443186     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443187     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443185     3  0.7809    0.16872 0.372 0.060 0.568
#> SRR2443184     3  0.7809    0.16872 0.372 0.060 0.568
#> SRR2443183     1  0.1525    0.72115 0.964 0.032 0.004
#> SRR2443182     1  0.2926    0.70357 0.924 0.036 0.040
#> SRR2443181     2  0.0424    0.78800 0.008 0.992 0.000
#> SRR2443180     2  0.7551    0.23856 0.048 0.580 0.372
#> SRR2443179     1  0.7627    0.24421 0.528 0.044 0.428
#> SRR2443178     1  0.7627    0.24421 0.528 0.044 0.428
#> SRR2443177     1  0.6737    0.36545 0.600 0.016 0.384
#> SRR2443176     3  0.7758   -0.14350 0.468 0.048 0.484
#> SRR2443175     1  0.4708    0.61673 0.844 0.036 0.120
#> SRR2443174     1  0.2187    0.71378 0.948 0.028 0.024
#> SRR2443173     2  0.6026    0.48001 0.000 0.624 0.376
#> SRR2443172     2  0.6026    0.48001 0.000 0.624 0.376
#> SRR2443171     3  0.7641    0.20155 0.436 0.044 0.520
#> SRR2443170     2  0.6566    0.47302 0.012 0.612 0.376
#> SRR2443169     3  0.7657    0.18288 0.448 0.044 0.508
#> SRR2443168     2  0.6026    0.48001 0.000 0.624 0.376
#> SRR2443167     3  0.5371    0.61867 0.140 0.048 0.812
#> SRR2443166     3  0.1482    0.72844 0.012 0.020 0.968
#> SRR2443165     3  0.7809    0.16786 0.372 0.060 0.568
#> SRR2443164     3  0.4504    0.56758 0.000 0.196 0.804
#> SRR2443163     3  0.1289    0.72938 0.000 0.032 0.968
#> SRR2443162     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443161     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443160     3  0.3791    0.69807 0.060 0.048 0.892
#> SRR2443159     3  0.3484    0.70647 0.048 0.048 0.904
#> SRR2443158     3  0.0000    0.72453 0.000 0.000 1.000
#> SRR2443157     3  0.2636    0.71666 0.048 0.020 0.932
#> SRR2443156     3  0.7876    0.21700 0.424 0.056 0.520
#> SRR2443155     2  0.7958    0.37876 0.064 0.544 0.392
#> SRR2443154     3  0.8393    0.23020 0.396 0.088 0.516
#> SRR2443153     1  0.1289    0.71928 0.968 0.032 0.000
#> SRR2443152     2  0.6026    0.48001 0.000 0.624 0.376
#> SRR2443151     2  0.6045    0.47408 0.000 0.620 0.380
#> SRR2443150     2  0.6026    0.48001 0.000 0.624 0.376
#> SRR2443148     2  0.8138   -0.01783 0.068 0.480 0.452
#> SRR2443147     3  0.7809    0.29440 0.060 0.372 0.568
#> SRR2443149     3  0.7153    0.40504 0.300 0.048 0.652

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.2928     0.7457 0.012 0.000 0.880 0.108
#> SRR2443262     3  0.0336     0.7886 0.000 0.000 0.992 0.008
#> SRR2443261     3  0.0188     0.7891 0.000 0.000 0.996 0.004
#> SRR2443260     3  0.0188     0.7895 0.000 0.000 0.996 0.004
#> SRR2443259     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443257     3  0.2530     0.7542 0.000 0.000 0.888 0.112
#> SRR2443256     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443253     3  0.2704     0.7157 0.000 0.000 0.876 0.124
#> SRR2443251     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443250     3  0.0336     0.7886 0.000 0.000 0.992 0.008
#> SRR2443249     3  0.0336     0.7886 0.000 0.000 0.992 0.008
#> SRR2443252     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443247     1  0.4973     0.5010 0.644 0.000 0.348 0.008
#> SRR2443246     1  0.5231     0.4505 0.604 0.000 0.384 0.012
#> SRR2443248     3  0.0188     0.7895 0.000 0.000 0.996 0.004
#> SRR2443244     3  0.9180    -0.2890 0.164 0.108 0.364 0.364
#> SRR2443245     1  0.7327     0.1401 0.504 0.000 0.320 0.176
#> SRR2443243     1  0.1109     0.7429 0.968 0.004 0.000 0.028
#> SRR2443242     3  0.7949     0.3295 0.160 0.092 0.600 0.148
#> SRR2443241     2  0.1151     0.8620 0.024 0.968 0.000 0.008
#> SRR2443240     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443239     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443238     1  0.1209     0.7423 0.964 0.004 0.000 0.032
#> SRR2443237     1  0.7142     0.4113 0.624 0.104 0.036 0.236
#> SRR2443236     2  0.1837     0.8518 0.028 0.944 0.000 0.028
#> SRR2443235     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443233     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443234     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443232     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443231     1  0.1139     0.7462 0.972 0.008 0.008 0.012
#> SRR2443230     1  0.0524     0.7465 0.988 0.008 0.000 0.004
#> SRR2443229     2  0.0336     0.8748 0.008 0.992 0.000 0.000
#> SRR2443228     2  0.1474     0.8568 0.000 0.948 0.000 0.052
#> SRR2443227     1  0.2149     0.7290 0.912 0.000 0.000 0.088
#> SRR2443226     1  0.1474     0.7355 0.948 0.000 0.000 0.052
#> SRR2443225     3  0.7188     0.2530 0.164 0.000 0.528 0.308
#> SRR2443223     3  0.2281     0.7560 0.000 0.000 0.904 0.096
#> SRR2443224     2  0.6075     0.6832 0.004 0.696 0.136 0.164
#> SRR2443222     2  0.1474     0.8568 0.000 0.948 0.000 0.052
#> SRR2443221     2  0.1474     0.8568 0.000 0.948 0.000 0.052
#> SRR2443219     4  0.4737     0.5024 0.020 0.252 0.000 0.728
#> SRR2443220     3  0.2593     0.7520 0.004 0.000 0.892 0.104
#> SRR2443218     4  0.4401     0.4854 0.004 0.272 0.000 0.724
#> SRR2443217     1  0.4328     0.6754 0.804 0.008 0.024 0.164
#> SRR2443216     3  0.2345     0.7538 0.000 0.000 0.900 0.100
#> SRR2443215     2  0.1209     0.8614 0.004 0.964 0.000 0.032
#> SRR2443214     1  0.3539     0.6758 0.820 0.000 0.004 0.176
#> SRR2443213     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443212     2  0.0921     0.8658 0.000 0.972 0.000 0.028
#> SRR2443211     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443210     2  0.0817     0.8691 0.000 0.976 0.000 0.024
#> SRR2443209     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443208     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443207     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443206     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443204     1  0.7172     0.1892 0.532 0.000 0.304 0.164
#> SRR2443203     1  0.7474    -0.0604 0.424 0.000 0.400 0.176
#> SRR2443202     3  0.7374     0.0631 0.164 0.000 0.456 0.380
#> SRR2443201     3  0.4379     0.6742 0.036 0.000 0.792 0.172
#> SRR2443200     2  0.1637     0.8524 0.000 0.940 0.000 0.060
#> SRR2443199     4  0.4511     0.4911 0.008 0.268 0.000 0.724
#> SRR2443197     3  0.7314     0.1456 0.164 0.000 0.488 0.348
#> SRR2443196     4  0.7170     0.3370 0.172 0.000 0.288 0.540
#> SRR2443198     3  0.7379     0.0483 0.164 0.000 0.452 0.384
#> SRR2443195     1  0.3453     0.6940 0.868 0.000 0.052 0.080
#> SRR2443194     3  0.5944     0.5261 0.164 0.000 0.696 0.140
#> SRR2443193     1  0.3108     0.6933 0.872 0.112 0.000 0.016
#> SRR2443191     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443192     1  0.7403    -0.0110 0.452 0.116 0.012 0.420
#> SRR2443190     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443189     1  0.2760     0.7071 0.872 0.000 0.000 0.128
#> SRR2443188     1  0.0469     0.7463 0.988 0.012 0.000 0.000
#> SRR2443186     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443185     3  0.5102     0.6313 0.100 0.000 0.764 0.136
#> SRR2443184     3  0.4224     0.6912 0.044 0.000 0.812 0.144
#> SRR2443183     1  0.0672     0.7463 0.984 0.008 0.000 0.008
#> SRR2443182     1  0.3538     0.6885 0.832 0.004 0.004 0.160
#> SRR2443181     2  0.0000     0.8776 0.000 1.000 0.000 0.000
#> SRR2443180     4  0.4511     0.4911 0.008 0.268 0.000 0.724
#> SRR2443179     4  0.7188     0.3277 0.172 0.000 0.292 0.536
#> SRR2443178     4  0.7375     0.1960 0.172 0.000 0.348 0.480
#> SRR2443177     1  0.6724     0.3542 0.612 0.000 0.224 0.164
#> SRR2443176     3  0.6546     0.4447 0.192 0.000 0.636 0.172
#> SRR2443175     1  0.5087     0.6649 0.772 0.004 0.140 0.084
#> SRR2443174     1  0.3937     0.6288 0.800 0.000 0.188 0.012
#> SRR2443173     2  0.6235     0.6769 0.004 0.680 0.136 0.180
#> SRR2443172     2  0.6235     0.6769 0.004 0.680 0.136 0.180
#> SRR2443171     1  0.4770     0.5587 0.700 0.000 0.288 0.012
#> SRR2443170     2  0.6335     0.6779 0.012 0.688 0.136 0.164
#> SRR2443169     1  0.4673     0.5584 0.700 0.000 0.292 0.008
#> SRR2443168     2  0.6259     0.6768 0.008 0.688 0.140 0.164
#> SRR2443167     3  0.2149     0.7561 0.000 0.000 0.912 0.088
#> SRR2443166     3  0.0707     0.7796 0.020 0.000 0.980 0.000
#> SRR2443165     3  0.5088     0.5584 0.024 0.000 0.688 0.288
#> SRR2443164     4  0.4661     0.2369 0.000 0.000 0.348 0.652
#> SRR2443163     3  0.0188     0.7895 0.000 0.000 0.996 0.004
#> SRR2443162     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443160     3  0.3024     0.7015 0.000 0.000 0.852 0.148
#> SRR2443159     3  0.3356     0.6731 0.000 0.000 0.824 0.176
#> SRR2443158     3  0.0000     0.7904 0.000 0.000 1.000 0.000
#> SRR2443157     3  0.1004     0.7781 0.024 0.000 0.972 0.004
#> SRR2443156     1  0.5054     0.5227 0.660 0.004 0.328 0.008
#> SRR2443155     2  0.7305     0.6292 0.056 0.644 0.136 0.164
#> SRR2443154     1  0.9298     0.0510 0.380 0.316 0.200 0.104
#> SRR2443153     1  0.1139     0.7462 0.972 0.008 0.008 0.012
#> SRR2443152     2  0.6116     0.6820 0.004 0.692 0.136 0.168
#> SRR2443151     4  0.7240    -0.3107 0.000 0.400 0.144 0.456
#> SRR2443150     2  0.6075     0.6832 0.004 0.696 0.136 0.164
#> SRR2443148     4  0.6898     0.5037 0.116 0.056 0.148 0.680
#> SRR2443147     4  0.7316     0.3630 0.148 0.012 0.276 0.564
#> SRR2443149     3  0.4222     0.4068 0.272 0.000 0.728 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.3878      0.705 0.016 0.000 0.748 0.000 0.236
#> SRR2443262     4  0.4599      0.616 0.000 0.000 0.016 0.600 0.384
#> SRR2443261     4  0.5708      0.520 0.000 0.000 0.088 0.528 0.384
#> SRR2443260     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443259     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443258     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443257     4  0.4737      0.622 0.016 0.000 0.004 0.600 0.380
#> SRR2443256     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443255     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443254     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443253     4  0.4655      0.618 0.004 0.000 0.012 0.600 0.384
#> SRR2443251     3  0.5616      0.647 0.000 0.000 0.536 0.080 0.384
#> SRR2443250     4  0.4599      0.616 0.000 0.000 0.016 0.600 0.384
#> SRR2443249     4  0.4599      0.616 0.000 0.000 0.016 0.600 0.384
#> SRR2443252     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443247     1  0.5655      0.549 0.600 0.000 0.000 0.112 0.288
#> SRR2443246     5  0.4411      0.329 0.048 0.000 0.044 0.112 0.796
#> SRR2443248     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443244     3  0.0510      0.624 0.016 0.000 0.984 0.000 0.000
#> SRR2443245     1  0.3305      0.722 0.776 0.000 0.224 0.000 0.000
#> SRR2443243     1  0.1965      0.768 0.904 0.000 0.096 0.000 0.000
#> SRR2443242     3  0.0510      0.624 0.016 0.000 0.984 0.000 0.000
#> SRR2443241     5  0.4874      0.628 0.032 0.368 0.000 0.000 0.600
#> SRR2443240     5  0.4182      0.631 0.000 0.400 0.000 0.000 0.600
#> SRR2443239     2  0.1608      0.709 0.000 0.928 0.000 0.000 0.072
#> SRR2443238     1  0.2852      0.744 0.828 0.000 0.172 0.000 0.000
#> SRR2443237     3  0.3010      0.564 0.172 0.000 0.824 0.000 0.004
#> SRR2443236     5  0.4920      0.618 0.032 0.384 0.000 0.000 0.584
#> SRR2443235     1  0.0162      0.774 0.996 0.004 0.000 0.000 0.000
#> SRR2443233     1  0.0162      0.774 0.996 0.004 0.000 0.000 0.000
#> SRR2443234     1  0.0162      0.774 0.996 0.004 0.000 0.000 0.000
#> SRR2443232     1  0.0671      0.776 0.980 0.004 0.016 0.000 0.000
#> SRR2443231     1  0.2806      0.751 0.844 0.004 0.152 0.000 0.000
#> SRR2443230     1  0.2179      0.770 0.896 0.004 0.100 0.000 0.000
#> SRR2443229     5  0.4517      0.629 0.012 0.388 0.000 0.000 0.600
#> SRR2443228     2  0.0510      0.725 0.016 0.984 0.000 0.000 0.000
#> SRR2443227     1  0.3774      0.725 0.704 0.000 0.296 0.000 0.000
#> SRR2443226     1  0.3143      0.732 0.796 0.000 0.204 0.000 0.000
#> SRR2443225     3  0.0510      0.624 0.016 0.000 0.984 0.000 0.000
#> SRR2443223     3  0.4288      0.723 0.004 0.000 0.612 0.000 0.384
#> SRR2443224     5  0.4138      0.514 0.000 0.000 0.000 0.384 0.616
#> SRR2443222     2  0.0510      0.730 0.000 0.984 0.000 0.016 0.000
#> SRR2443221     2  0.0510      0.730 0.000 0.984 0.000 0.016 0.000
#> SRR2443219     4  0.6258      0.525 0.016 0.156 0.236 0.592 0.000
#> SRR2443220     4  0.5898      0.608 0.016 0.000 0.080 0.580 0.324
#> SRR2443218     4  0.6243      0.326 0.020 0.388 0.088 0.504 0.000
#> SRR2443217     3  0.2020      0.615 0.100 0.000 0.900 0.000 0.000
#> SRR2443216     3  0.4288      0.723 0.004 0.000 0.612 0.000 0.384
#> SRR2443215     5  0.7199      0.307 0.020 0.316 0.260 0.000 0.404
#> SRR2443214     1  0.3305      0.722 0.776 0.000 0.224 0.000 0.000
#> SRR2443213     1  0.0162      0.774 0.996 0.004 0.000 0.000 0.000
#> SRR2443212     5  0.4599      0.627 0.016 0.384 0.000 0.000 0.600
#> SRR2443211     5  0.4182      0.631 0.000 0.400 0.000 0.000 0.600
#> SRR2443210     2  0.0000      0.730 0.000 1.000 0.000 0.000 0.000
#> SRR2443209     5  0.4517      0.633 0.012 0.388 0.000 0.000 0.600
#> SRR2443208     5  0.4182      0.631 0.000 0.400 0.000 0.000 0.600
#> SRR2443207     5  0.4182      0.631 0.000 0.400 0.000 0.000 0.600
#> SRR2443206     2  0.1341      0.718 0.000 0.944 0.000 0.000 0.056
#> SRR2443205     2  0.3752      0.219 0.000 0.708 0.000 0.000 0.292
#> SRR2443204     1  0.4114      0.678 0.624 0.000 0.376 0.000 0.000
#> SRR2443203     3  0.2813      0.567 0.168 0.000 0.832 0.000 0.000
#> SRR2443202     3  0.0510      0.624 0.016 0.000 0.984 0.000 0.000
#> SRR2443201     3  0.3819      0.704 0.016 0.000 0.756 0.000 0.228
#> SRR2443200     2  0.0609      0.724 0.020 0.980 0.000 0.000 0.000
#> SRR2443199     4  0.6411      0.355 0.020 0.368 0.108 0.504 0.000
#> SRR2443197     3  0.1216      0.611 0.020 0.000 0.960 0.020 0.000
#> SRR2443196     4  0.6284      0.480 0.172 0.000 0.320 0.508 0.000
#> SRR2443198     3  0.0671      0.622 0.016 0.000 0.980 0.004 0.000
#> SRR2443195     1  0.3242      0.726 0.784 0.000 0.216 0.000 0.000
#> SRR2443194     3  0.0912      0.632 0.016 0.000 0.972 0.000 0.012
#> SRR2443193     1  0.3394      0.745 0.824 0.004 0.152 0.000 0.020
#> SRR2443191     5  0.4182      0.631 0.000 0.400 0.000 0.000 0.600
#> SRR2443192     3  0.3921      0.527 0.172 0.000 0.784 0.000 0.044
#> SRR2443190     1  0.0162      0.774 0.996 0.004 0.000 0.000 0.000
#> SRR2443189     1  0.3816      0.723 0.696 0.000 0.304 0.000 0.000
#> SRR2443188     1  0.0162      0.774 0.996 0.004 0.000 0.000 0.000
#> SRR2443186     2  0.1732      0.703 0.000 0.920 0.000 0.000 0.080
#> SRR2443187     2  0.1792      0.699 0.000 0.916 0.000 0.000 0.084
#> SRR2443185     3  0.2464      0.669 0.016 0.000 0.888 0.000 0.096
#> SRR2443184     3  0.3819      0.704 0.016 0.000 0.756 0.000 0.228
#> SRR2443183     1  0.0162      0.775 0.996 0.000 0.004 0.000 0.000
#> SRR2443182     1  0.3816      0.721 0.696 0.000 0.304 0.000 0.000
#> SRR2443181     2  0.1908      0.688 0.000 0.908 0.000 0.000 0.092
#> SRR2443180     4  0.6366      0.356 0.016 0.368 0.112 0.504 0.000
#> SRR2443179     4  0.5880      0.512 0.172 0.000 0.228 0.600 0.000
#> SRR2443178     3  0.2852      0.567 0.172 0.000 0.828 0.000 0.000
#> SRR2443177     1  0.3837      0.712 0.692 0.000 0.308 0.000 0.000
#> SRR2443176     3  0.0794      0.624 0.028 0.000 0.972 0.000 0.000
#> SRR2443175     1  0.4796      0.706 0.728 0.000 0.152 0.000 0.120
#> SRR2443174     1  0.5013      0.660 0.696 0.000 0.100 0.000 0.204
#> SRR2443173     2  0.4686      0.484 0.000 0.596 0.000 0.384 0.020
#> SRR2443172     2  0.4686      0.484 0.000 0.596 0.000 0.384 0.020
#> SRR2443171     1  0.5655      0.549 0.600 0.000 0.000 0.112 0.288
#> SRR2443170     5  0.4288      0.513 0.004 0.000 0.000 0.384 0.612
#> SRR2443169     1  0.5655      0.549 0.600 0.000 0.000 0.112 0.288
#> SRR2443168     5  0.4138      0.514 0.000 0.000 0.000 0.384 0.616
#> SRR2443167     3  0.6216      0.639 0.016 0.000 0.516 0.096 0.372
#> SRR2443166     1  0.5467      0.395 0.548 0.000 0.068 0.000 0.384
#> SRR2443165     3  0.3256      0.687 0.016 0.000 0.832 0.004 0.148
#> SRR2443164     4  0.4507      0.482 0.016 0.096 0.000 0.780 0.108
#> SRR2443163     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443162     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443161     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443160     3  0.6272      0.629 0.016 0.000 0.504 0.100 0.380
#> SRR2443159     4  0.5292      0.602 0.016 0.000 0.028 0.576 0.380
#> SRR2443158     3  0.4138      0.723 0.000 0.000 0.616 0.000 0.384
#> SRR2443157     1  0.5360      0.406 0.556 0.000 0.060 0.000 0.384
#> SRR2443156     5  0.4123      0.293 0.000 0.000 0.104 0.108 0.788
#> SRR2443155     5  0.4138      0.514 0.000 0.000 0.000 0.384 0.616
#> SRR2443154     5  0.4276      0.514 0.000 0.000 0.004 0.380 0.616
#> SRR2443153     1  0.2806      0.751 0.844 0.004 0.152 0.000 0.000
#> SRR2443152     2  0.4920      0.482 0.000 0.584 0.000 0.384 0.032
#> SRR2443151     4  0.5332      0.401 0.016 0.168 0.000 0.704 0.112
#> SRR2443150     2  0.5123      0.477 0.000 0.572 0.000 0.384 0.044
#> SRR2443148     4  0.5174      0.547 0.020 0.020 0.364 0.596 0.000
#> SRR2443147     4  0.4748      0.535 0.016 0.004 0.384 0.596 0.000
#> SRR2443149     3  0.4273      0.666 0.000 0.000 0.552 0.000 0.448

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.4330      0.675 0.000 0.000 0.680 0.276 0.008 0.036
#> SRR2443262     4  0.0000      0.777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443261     4  0.1007      0.758 0.000 0.000 0.044 0.956 0.000 0.000
#> SRR2443260     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443259     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443258     3  0.4388      0.664 0.000 0.000 0.572 0.400 0.000 0.028
#> SRR2443257     4  0.1918      0.771 0.000 0.000 0.088 0.904 0.008 0.000
#> SRR2443256     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443255     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443254     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443253     4  0.0291      0.778 0.000 0.004 0.004 0.992 0.000 0.000
#> SRR2443251     4  0.1141      0.750 0.000 0.000 0.052 0.948 0.000 0.000
#> SRR2443250     4  0.0000      0.777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443249     4  0.0000      0.777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443252     3  0.3881      0.678 0.000 0.000 0.600 0.396 0.000 0.004
#> SRR2443247     1  0.6075      0.599 0.604 0.180 0.000 0.132 0.000 0.084
#> SRR2443246     5  0.6210      0.488 0.004 0.180 0.000 0.132 0.600 0.084
#> SRR2443248     3  0.3881      0.678 0.000 0.000 0.600 0.396 0.000 0.004
#> SRR2443244     3  0.2724      0.612 0.032 0.000 0.876 0.000 0.016 0.076
#> SRR2443245     1  0.5027      0.650 0.596 0.000 0.304 0.000 0.000 0.100
#> SRR2443243     1  0.4358      0.706 0.712 0.000 0.196 0.000 0.000 0.092
#> SRR2443242     3  0.2846      0.614 0.028 0.000 0.872 0.004 0.016 0.080
#> SRR2443241     5  0.1757      0.630 0.076 0.000 0.000 0.000 0.916 0.008
#> SRR2443240     5  0.0000      0.647 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443239     2  0.3756      0.673 0.000 0.600 0.000 0.000 0.400 0.000
#> SRR2443238     1  0.4941      0.684 0.648 0.000 0.212 0.000 0.000 0.140
#> SRR2443237     3  0.2752      0.597 0.036 0.000 0.856 0.000 0.000 0.108
#> SRR2443236     5  0.1088      0.639 0.016 0.000 0.024 0.000 0.960 0.000
#> SRR2443235     1  0.0000      0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000      0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000      0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000      0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.2119      0.732 0.904 0.000 0.060 0.000 0.000 0.036
#> SRR2443230     1  0.1387      0.745 0.932 0.000 0.068 0.000 0.000 0.000
#> SRR2443229     5  0.0935      0.649 0.004 0.000 0.000 0.000 0.964 0.032
#> SRR2443228     6  0.5250      0.565 0.000 0.052 0.036 0.000 0.308 0.604
#> SRR2443227     1  0.2969      0.721 0.776 0.000 0.224 0.000 0.000 0.000
#> SRR2443226     1  0.5238      0.656 0.592 0.000 0.268 0.000 0.000 0.140
#> SRR2443225     3  0.1572      0.605 0.036 0.000 0.936 0.000 0.000 0.028
#> SRR2443223     3  0.4371      0.679 0.000 0.000 0.620 0.344 0.000 0.036
#> SRR2443224     2  0.1663      0.489 0.000 0.912 0.000 0.000 0.088 0.000
#> SRR2443222     6  0.5542      0.483 0.000 0.096 0.020 0.000 0.324 0.560
#> SRR2443221     6  0.5306      0.529 0.000 0.080 0.020 0.000 0.304 0.596
#> SRR2443219     4  0.6254      0.227 0.000 0.000 0.168 0.556 0.056 0.220
#> SRR2443220     4  0.3604      0.732 0.004 0.000 0.160 0.796 0.008 0.032
#> SRR2443218     6  0.4800      0.685 0.000 0.000 0.056 0.052 0.176 0.716
#> SRR2443217     3  0.3053      0.579 0.168 0.000 0.812 0.000 0.020 0.000
#> SRR2443216     3  0.3847      0.679 0.000 0.000 0.644 0.348 0.000 0.008
#> SRR2443215     2  0.7093      0.312 0.000 0.444 0.112 0.000 0.248 0.196
#> SRR2443214     1  0.5238      0.656 0.592 0.000 0.268 0.000 0.000 0.140
#> SRR2443213     1  0.0000      0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.3683      0.328 0.000 0.192 0.044 0.000 0.764 0.000
#> SRR2443211     5  0.3647     -0.228 0.000 0.360 0.000 0.000 0.640 0.000
#> SRR2443210     2  0.4237      0.662 0.000 0.584 0.000 0.000 0.396 0.020
#> SRR2443209     5  0.0291      0.650 0.004 0.000 0.000 0.000 0.992 0.004
#> SRR2443208     5  0.0000      0.647 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443207     5  0.0000      0.647 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443206     2  0.3881      0.674 0.000 0.600 0.000 0.000 0.396 0.004
#> SRR2443205     2  0.3756      0.673 0.000 0.600 0.000 0.000 0.400 0.000
#> SRR2443204     1  0.4799      0.652 0.592 0.000 0.340 0.000 0.000 0.068
#> SRR2443203     3  0.2860      0.563 0.048 0.000 0.852 0.000 0.000 0.100
#> SRR2443202     3  0.1649      0.604 0.036 0.000 0.932 0.000 0.000 0.032
#> SRR2443201     3  0.4029      0.673 0.004 0.000 0.748 0.204 0.008 0.036
#> SRR2443200     6  0.4743      0.654 0.000 0.052 0.044 0.000 0.192 0.712
#> SRR2443199     6  0.4261      0.688 0.000 0.000 0.088 0.052 0.080 0.780
#> SRR2443197     3  0.5488     -0.139 0.036 0.004 0.552 0.360 0.000 0.048
#> SRR2443196     4  0.5689      0.364 0.020 0.004 0.316 0.560 0.000 0.100
#> SRR2443198     3  0.4538      0.379 0.036 0.004 0.740 0.172 0.000 0.048
#> SRR2443195     1  0.5238      0.656 0.592 0.000 0.268 0.000 0.000 0.140
#> SRR2443194     3  0.1577      0.634 0.016 0.000 0.940 0.036 0.008 0.000
#> SRR2443193     1  0.4704      0.450 0.660 0.000 0.056 0.000 0.272 0.012
#> SRR2443191     5  0.0458      0.650 0.000 0.000 0.000 0.000 0.984 0.016
#> SRR2443192     3  0.3535      0.586 0.036 0.000 0.808 0.000 0.016 0.140
#> SRR2443190     1  0.0000      0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.4284      0.701 0.688 0.000 0.256 0.000 0.000 0.056
#> SRR2443188     1  0.0935      0.731 0.964 0.000 0.004 0.000 0.000 0.032
#> SRR2443186     2  0.3881      0.674 0.000 0.600 0.000 0.000 0.396 0.004
#> SRR2443187     2  0.3881      0.674 0.000 0.600 0.000 0.000 0.396 0.004
#> SRR2443185     3  0.3234      0.671 0.004 0.000 0.812 0.164 0.008 0.012
#> SRR2443184     3  0.3989      0.674 0.004 0.000 0.748 0.208 0.008 0.032
#> SRR2443183     1  0.1327      0.748 0.936 0.000 0.064 0.000 0.000 0.000
#> SRR2443182     1  0.4720      0.548 0.560 0.000 0.388 0.000 0.000 0.052
#> SRR2443181     2  0.3756      0.673 0.000 0.600 0.000 0.000 0.400 0.000
#> SRR2443180     6  0.4261      0.688 0.000 0.000 0.088 0.052 0.080 0.780
#> SRR2443179     4  0.5248      0.339 0.004 0.004 0.292 0.600 0.000 0.100
#> SRR2443178     3  0.2199      0.596 0.020 0.000 0.892 0.000 0.000 0.088
#> SRR2443177     1  0.5001      0.651 0.596 0.000 0.308 0.000 0.000 0.096
#> SRR2443176     3  0.2394      0.584 0.036 0.000 0.900 0.004 0.008 0.052
#> SRR2443175     1  0.4370      0.703 0.772 0.000 0.060 0.096 0.000 0.072
#> SRR2443174     1  0.4774      0.674 0.728 0.000 0.048 0.148 0.000 0.076
#> SRR2443173     2  0.0146      0.582 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2443172     2  0.0146      0.582 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2443171     1  0.7081      0.568 0.552 0.184 0.000 0.112 0.052 0.100
#> SRR2443170     5  0.4367      0.514 0.000 0.364 0.000 0.000 0.604 0.032
#> SRR2443169     1  0.6102      0.603 0.604 0.180 0.000 0.116 0.000 0.100
#> SRR2443168     5  0.4367      0.514 0.000 0.364 0.000 0.000 0.604 0.032
#> SRR2443167     4  0.2615      0.770 0.000 0.004 0.136 0.852 0.008 0.000
#> SRR2443166     1  0.5222      0.360 0.528 0.000 0.020 0.400 0.000 0.052
#> SRR2443165     3  0.3089      0.668 0.004 0.004 0.836 0.136 0.004 0.016
#> SRR2443164     6  0.5727      0.457 0.000 0.148 0.016 0.272 0.000 0.564
#> SRR2443163     3  0.3881      0.678 0.000 0.000 0.600 0.396 0.000 0.004
#> SRR2443162     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443161     3  0.3756      0.678 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR2443160     4  0.2615      0.770 0.000 0.004 0.136 0.852 0.008 0.000
#> SRR2443159     4  0.2213      0.776 0.000 0.004 0.100 0.888 0.008 0.000
#> SRR2443158     3  0.3984      0.677 0.000 0.000 0.596 0.396 0.000 0.008
#> SRR2443157     1  0.5267      0.363 0.528 0.000 0.020 0.396 0.000 0.056
#> SRR2443156     5  0.8073      0.272 0.004 0.124 0.156 0.196 0.444 0.076
#> SRR2443155     5  0.4367      0.514 0.000 0.364 0.000 0.000 0.604 0.032
#> SRR2443154     5  0.4554      0.514 0.004 0.360 0.000 0.000 0.600 0.036
#> SRR2443153     1  0.2325      0.732 0.892 0.000 0.060 0.000 0.000 0.048
#> SRR2443152     2  0.0146      0.582 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2443151     6  0.5712      0.453 0.000 0.144 0.016 0.276 0.000 0.564
#> SRR2443150     2  0.0146      0.582 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR2443148     6  0.5069      0.632 0.000 0.004 0.176 0.080 0.040 0.700
#> SRR2443147     6  0.6605      0.315 0.036 0.004 0.216 0.276 0.000 0.468
#> SRR2443149     3  0.5416      0.647 0.000 0.008 0.556 0.364 0.044 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.912           0.944       0.974         0.4137 0.607   0.607
#> 3 3 0.643           0.762       0.872         0.5717 0.698   0.516
#> 4 4 0.773           0.761       0.899         0.1107 0.906   0.738
#> 5 5 0.633           0.570       0.776         0.0595 0.944   0.814
#> 6 6 0.556           0.420       0.676         0.0528 0.872   0.563

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000      0.965 1.000 0.000
#> SRR2443262     1  0.6048      0.823 0.852 0.148
#> SRR2443261     1  0.0000      0.965 1.000 0.000
#> SRR2443260     1  0.0000      0.965 1.000 0.000
#> SRR2443259     1  0.0000      0.965 1.000 0.000
#> SRR2443258     1  0.0000      0.965 1.000 0.000
#> SRR2443257     1  0.0000      0.965 1.000 0.000
#> SRR2443256     1  0.0000      0.965 1.000 0.000
#> SRR2443255     1  0.0000      0.965 1.000 0.000
#> SRR2443254     1  0.0000      0.965 1.000 0.000
#> SRR2443253     1  0.0000      0.965 1.000 0.000
#> SRR2443251     1  0.0000      0.965 1.000 0.000
#> SRR2443250     1  0.0000      0.965 1.000 0.000
#> SRR2443249     1  0.0000      0.965 1.000 0.000
#> SRR2443252     1  0.0000      0.965 1.000 0.000
#> SRR2443247     1  0.0000      0.965 1.000 0.000
#> SRR2443246     1  0.0000      0.965 1.000 0.000
#> SRR2443248     1  0.0000      0.965 1.000 0.000
#> SRR2443244     1  0.7674      0.732 0.776 0.224
#> SRR2443245     1  0.0000      0.965 1.000 0.000
#> SRR2443243     1  0.0000      0.965 1.000 0.000
#> SRR2443242     1  0.9491      0.477 0.632 0.368
#> SRR2443241     1  0.0938      0.955 0.988 0.012
#> SRR2443240     2  0.0000      0.999 0.000 1.000
#> SRR2443239     2  0.0000      0.999 0.000 1.000
#> SRR2443238     1  0.0000      0.965 1.000 0.000
#> SRR2443237     1  0.8016      0.703 0.756 0.244
#> SRR2443236     1  0.7453      0.748 0.788 0.212
#> SRR2443235     1  0.0000      0.965 1.000 0.000
#> SRR2443233     1  0.0000      0.965 1.000 0.000
#> SRR2443234     1  0.0000      0.965 1.000 0.000
#> SRR2443232     1  0.0000      0.965 1.000 0.000
#> SRR2443231     1  0.0000      0.965 1.000 0.000
#> SRR2443230     1  0.0000      0.965 1.000 0.000
#> SRR2443229     1  0.8861      0.607 0.696 0.304
#> SRR2443228     2  0.0000      0.999 0.000 1.000
#> SRR2443227     1  0.0000      0.965 1.000 0.000
#> SRR2443226     1  0.0000      0.965 1.000 0.000
#> SRR2443225     1  0.0000      0.965 1.000 0.000
#> SRR2443223     1  0.0000      0.965 1.000 0.000
#> SRR2443224     2  0.0000      0.999 0.000 1.000
#> SRR2443222     2  0.0000      0.999 0.000 1.000
#> SRR2443221     2  0.0000      0.999 0.000 1.000
#> SRR2443219     2  0.0000      0.999 0.000 1.000
#> SRR2443220     1  0.9522      0.470 0.628 0.372
#> SRR2443218     2  0.0000      0.999 0.000 1.000
#> SRR2443217     1  0.0000      0.965 1.000 0.000
#> SRR2443216     1  0.0000      0.965 1.000 0.000
#> SRR2443215     2  0.0000      0.999 0.000 1.000
#> SRR2443214     1  0.0000      0.965 1.000 0.000
#> SRR2443213     1  0.0000      0.965 1.000 0.000
#> SRR2443212     2  0.0000      0.999 0.000 1.000
#> SRR2443211     2  0.0000      0.999 0.000 1.000
#> SRR2443210     2  0.0000      0.999 0.000 1.000
#> SRR2443209     1  0.9323      0.524 0.652 0.348
#> SRR2443208     2  0.0000      0.999 0.000 1.000
#> SRR2443207     2  0.0000      0.999 0.000 1.000
#> SRR2443206     2  0.0000      0.999 0.000 1.000
#> SRR2443205     2  0.0000      0.999 0.000 1.000
#> SRR2443204     1  0.0000      0.965 1.000 0.000
#> SRR2443203     1  0.0000      0.965 1.000 0.000
#> SRR2443202     1  0.0000      0.965 1.000 0.000
#> SRR2443201     1  0.0000      0.965 1.000 0.000
#> SRR2443200     2  0.0000      0.999 0.000 1.000
#> SRR2443199     2  0.0000      0.999 0.000 1.000
#> SRR2443197     1  0.0000      0.965 1.000 0.000
#> SRR2443196     1  0.6887      0.783 0.816 0.184
#> SRR2443198     1  0.0000      0.965 1.000 0.000
#> SRR2443195     1  0.0000      0.965 1.000 0.000
#> SRR2443194     1  0.0000      0.965 1.000 0.000
#> SRR2443193     1  0.0000      0.965 1.000 0.000
#> SRR2443191     2  0.2043      0.964 0.032 0.968
#> SRR2443192     1  0.8813      0.614 0.700 0.300
#> SRR2443190     1  0.0000      0.965 1.000 0.000
#> SRR2443189     1  0.0000      0.965 1.000 0.000
#> SRR2443188     1  0.0000      0.965 1.000 0.000
#> SRR2443186     2  0.0000      0.999 0.000 1.000
#> SRR2443187     2  0.0000      0.999 0.000 1.000
#> SRR2443185     1  0.0000      0.965 1.000 0.000
#> SRR2443184     1  0.0000      0.965 1.000 0.000
#> SRR2443183     1  0.0000      0.965 1.000 0.000
#> SRR2443182     1  0.0000      0.965 1.000 0.000
#> SRR2443181     2  0.0000      0.999 0.000 1.000
#> SRR2443180     2  0.0000      0.999 0.000 1.000
#> SRR2443179     1  0.3584      0.907 0.932 0.068
#> SRR2443178     1  0.0000      0.965 1.000 0.000
#> SRR2443177     1  0.0000      0.965 1.000 0.000
#> SRR2443176     1  0.0000      0.965 1.000 0.000
#> SRR2443175     1  0.0000      0.965 1.000 0.000
#> SRR2443174     1  0.0000      0.965 1.000 0.000
#> SRR2443173     2  0.0000      0.999 0.000 1.000
#> SRR2443172     2  0.0000      0.999 0.000 1.000
#> SRR2443171     1  0.0000      0.965 1.000 0.000
#> SRR2443170     1  0.0000      0.965 1.000 0.000
#> SRR2443169     1  0.0000      0.965 1.000 0.000
#> SRR2443168     1  0.6712      0.794 0.824 0.176
#> SRR2443167     1  0.0000      0.965 1.000 0.000
#> SRR2443166     1  0.0000      0.965 1.000 0.000
#> SRR2443165     1  0.0000      0.965 1.000 0.000
#> SRR2443164     2  0.0000      0.999 0.000 1.000
#> SRR2443163     1  0.0000      0.965 1.000 0.000
#> SRR2443162     1  0.0000      0.965 1.000 0.000
#> SRR2443161     1  0.0000      0.965 1.000 0.000
#> SRR2443160     1  0.0000      0.965 1.000 0.000
#> SRR2443159     1  0.0000      0.965 1.000 0.000
#> SRR2443158     1  0.0000      0.965 1.000 0.000
#> SRR2443157     1  0.0000      0.965 1.000 0.000
#> SRR2443156     1  0.0000      0.965 1.000 0.000
#> SRR2443155     1  0.0000      0.965 1.000 0.000
#> SRR2443154     1  0.0000      0.965 1.000 0.000
#> SRR2443153     1  0.0000      0.965 1.000 0.000
#> SRR2443152     2  0.0000      0.999 0.000 1.000
#> SRR2443151     2  0.0000      0.999 0.000 1.000
#> SRR2443150     2  0.0000      0.999 0.000 1.000
#> SRR2443148     2  0.0000      0.999 0.000 1.000
#> SRR2443147     2  0.0000      0.999 0.000 1.000
#> SRR2443149     1  0.0000      0.965 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.4235     0.6993 0.824 0.000 0.176
#> SRR2443262     3  0.6264     0.3608 0.004 0.380 0.616
#> SRR2443261     3  0.3091     0.8319 0.072 0.016 0.912
#> SRR2443260     3  0.2959     0.8325 0.100 0.000 0.900
#> SRR2443259     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443258     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443257     3  0.2772     0.8361 0.080 0.004 0.916
#> SRR2443256     1  0.6008     0.3635 0.628 0.000 0.372
#> SRR2443255     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443254     1  0.6309    -0.0986 0.500 0.000 0.500
#> SRR2443253     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443251     3  0.2625     0.8374 0.084 0.000 0.916
#> SRR2443250     3  0.3263     0.8126 0.040 0.048 0.912
#> SRR2443249     3  0.3148     0.8104 0.036 0.048 0.916
#> SRR2443252     3  0.3192     0.8255 0.112 0.000 0.888
#> SRR2443247     1  0.3941     0.7369 0.844 0.000 0.156
#> SRR2443246     1  0.3816     0.7400 0.852 0.000 0.148
#> SRR2443248     1  0.7828     0.0619 0.500 0.052 0.448
#> SRR2443244     1  0.5719     0.7106 0.792 0.156 0.052
#> SRR2443245     1  0.5591     0.4484 0.696 0.000 0.304
#> SRR2443243     1  0.0424     0.8545 0.992 0.000 0.008
#> SRR2443242     3  0.6294     0.4732 0.020 0.288 0.692
#> SRR2443241     1  0.1031     0.8455 0.976 0.000 0.024
#> SRR2443240     1  0.5947     0.7001 0.776 0.172 0.052
#> SRR2443239     2  0.0829     0.9459 0.004 0.984 0.012
#> SRR2443238     1  0.3482     0.8093 0.872 0.000 0.128
#> SRR2443237     3  0.5706     0.3746 0.000 0.320 0.680
#> SRR2443236     1  0.2200     0.8238 0.940 0.004 0.056
#> SRR2443235     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443233     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443234     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443232     1  0.0000     0.8546 1.000 0.000 0.000
#> SRR2443231     1  0.0000     0.8546 1.000 0.000 0.000
#> SRR2443230     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443229     1  0.6999     0.5422 0.680 0.268 0.052
#> SRR2443228     2  0.0000     0.9443 0.000 1.000 0.000
#> SRR2443227     1  0.0592     0.8531 0.988 0.000 0.012
#> SRR2443226     1  0.5216     0.5498 0.740 0.000 0.260
#> SRR2443225     1  0.1031     0.8477 0.976 0.000 0.024
#> SRR2443223     3  0.6286     0.1914 0.464 0.000 0.536
#> SRR2443224     2  0.2356     0.9007 0.072 0.928 0.000
#> SRR2443222     2  0.1860     0.9407 0.000 0.948 0.052
#> SRR2443221     2  0.2261     0.9367 0.000 0.932 0.068
#> SRR2443219     2  0.2356     0.9354 0.000 0.928 0.072
#> SRR2443220     3  0.3276     0.7968 0.024 0.068 0.908
#> SRR2443218     2  0.2165     0.9391 0.000 0.936 0.064
#> SRR2443217     1  0.0424     0.8550 0.992 0.000 0.008
#> SRR2443216     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443215     2  0.2625     0.9307 0.000 0.916 0.084
#> SRR2443214     1  0.3816     0.7855 0.852 0.000 0.148
#> SRR2443213     1  0.0000     0.8546 1.000 0.000 0.000
#> SRR2443212     2  0.5181     0.8683 0.084 0.832 0.084
#> SRR2443211     2  0.1753     0.9220 0.048 0.952 0.000
#> SRR2443210     2  0.0000     0.9443 0.000 1.000 0.000
#> SRR2443209     1  0.4413     0.7722 0.860 0.104 0.036
#> SRR2443208     2  0.2096     0.9401 0.004 0.944 0.052
#> SRR2443207     2  0.0892     0.9458 0.000 0.980 0.020
#> SRR2443206     2  0.0237     0.9444 0.004 0.996 0.000
#> SRR2443205     2  0.0424     0.9438 0.008 0.992 0.000
#> SRR2443204     3  0.6192     0.4459 0.420 0.000 0.580
#> SRR2443203     3  0.6154     0.4712 0.408 0.000 0.592
#> SRR2443202     3  0.6204     0.4346 0.424 0.000 0.576
#> SRR2443201     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443200     2  0.2711     0.9297 0.000 0.912 0.088
#> SRR2443199     2  0.2165     0.9384 0.000 0.936 0.064
#> SRR2443197     3  0.4750     0.7505 0.216 0.000 0.784
#> SRR2443196     3  0.4768     0.7189 0.100 0.052 0.848
#> SRR2443198     3  0.5785     0.6134 0.332 0.000 0.668
#> SRR2443195     1  0.2878     0.8003 0.904 0.000 0.096
#> SRR2443194     1  0.6045     0.2240 0.620 0.000 0.380
#> SRR2443193     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443191     1  0.5473     0.7293 0.808 0.140 0.052
#> SRR2443192     1  0.8763     0.5378 0.588 0.196 0.216
#> SRR2443190     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443189     3  0.5254     0.7071 0.264 0.000 0.736
#> SRR2443188     1  0.1411     0.8389 0.964 0.000 0.036
#> SRR2443186     2  0.0237     0.9444 0.004 0.996 0.000
#> SRR2443187     2  0.1878     0.9422 0.004 0.952 0.044
#> SRR2443185     3  0.2625     0.8374 0.084 0.000 0.916
#> SRR2443184     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443183     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443182     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443181     2  0.2116     0.9419 0.012 0.948 0.040
#> SRR2443180     2  0.1289     0.9410 0.000 0.968 0.032
#> SRR2443179     3  0.5138     0.5960 0.252 0.000 0.748
#> SRR2443178     1  0.6260     0.2344 0.552 0.000 0.448
#> SRR2443177     1  0.2356     0.8160 0.928 0.000 0.072
#> SRR2443176     1  0.0747     0.8515 0.984 0.000 0.016
#> SRR2443175     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443174     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443173     2  0.0237     0.9444 0.004 0.996 0.000
#> SRR2443172     2  0.0000     0.9443 0.000 1.000 0.000
#> SRR2443171     1  0.0424     0.8538 0.992 0.000 0.008
#> SRR2443170     1  0.1289     0.8411 0.968 0.032 0.000
#> SRR2443169     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443168     2  0.9191    -0.0728 0.424 0.428 0.148
#> SRR2443167     3  0.2625     0.8374 0.084 0.000 0.916
#> SRR2443166     3  0.2711     0.8378 0.088 0.000 0.912
#> SRR2443165     3  0.5254     0.7071 0.264 0.000 0.736
#> SRR2443164     2  0.0237     0.9439 0.000 0.996 0.004
#> SRR2443163     3  0.2860     0.8373 0.084 0.004 0.912
#> SRR2443162     3  0.3267     0.8231 0.116 0.000 0.884
#> SRR2443161     3  0.6244     0.2522 0.440 0.000 0.560
#> SRR2443160     3  0.2625     0.8374 0.084 0.000 0.916
#> SRR2443159     3  0.2625     0.8374 0.084 0.000 0.916
#> SRR2443158     3  0.6295     0.1359 0.472 0.000 0.528
#> SRR2443157     1  0.2796     0.8079 0.908 0.000 0.092
#> SRR2443156     1  0.0424     0.8538 0.992 0.000 0.008
#> SRR2443155     1  0.1411     0.8383 0.964 0.036 0.000
#> SRR2443154     1  0.3983     0.7440 0.852 0.004 0.144
#> SRR2443153     1  0.0237     0.8555 0.996 0.000 0.004
#> SRR2443152     2  0.0237     0.9444 0.004 0.996 0.000
#> SRR2443151     2  0.0237     0.9439 0.000 0.996 0.004
#> SRR2443150     2  0.0237     0.9444 0.004 0.996 0.000
#> SRR2443148     2  0.2711     0.9297 0.000 0.912 0.088
#> SRR2443147     2  0.3267     0.9078 0.000 0.884 0.116
#> SRR2443149     3  0.2711     0.8378 0.088 0.000 0.912

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     1  0.1936     0.8708 0.940 0.000 0.028 0.032
#> SRR2443262     3  0.0817     0.9148 0.000 0.024 0.976 0.000
#> SRR2443261     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443260     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443259     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443257     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443256     1  0.4624     0.4626 0.660 0.000 0.340 0.000
#> SRR2443255     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.1022     0.9043 0.032 0.000 0.968 0.000
#> SRR2443253     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443251     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443250     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443249     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443252     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443247     1  0.0336     0.8905 0.992 0.000 0.008 0.000
#> SRR2443246     1  0.0524     0.8885 0.988 0.004 0.008 0.000
#> SRR2443248     3  0.1557     0.8870 0.000 0.056 0.944 0.000
#> SRR2443244     1  0.3528     0.7148 0.808 0.000 0.000 0.192
#> SRR2443245     1  0.5110     0.5130 0.656 0.000 0.016 0.328
#> SRR2443243     1  0.2589     0.8195 0.884 0.000 0.000 0.116
#> SRR2443242     3  0.0188     0.9313 0.000 0.004 0.996 0.000
#> SRR2443241     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443240     1  0.4008     0.6027 0.756 0.244 0.000 0.000
#> SRR2443239     2  0.0336     0.8686 0.000 0.992 0.000 0.008
#> SRR2443238     1  0.4817     0.4175 0.612 0.000 0.000 0.388
#> SRR2443237     4  0.0000     0.6251 0.000 0.000 0.000 1.000
#> SRR2443236     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443235     1  0.0469     0.8903 0.988 0.000 0.000 0.012
#> SRR2443233     1  0.0707     0.8883 0.980 0.000 0.000 0.020
#> SRR2443234     1  0.0707     0.8883 0.980 0.000 0.000 0.020
#> SRR2443232     1  0.0336     0.8910 0.992 0.000 0.000 0.008
#> SRR2443231     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0336     0.8910 0.992 0.000 0.000 0.008
#> SRR2443229     1  0.5839     0.5459 0.696 0.104 0.000 0.200
#> SRR2443228     2  0.1474     0.8482 0.000 0.948 0.000 0.052
#> SRR2443227     1  0.0657     0.8900 0.984 0.000 0.004 0.012
#> SRR2443226     1  0.5217     0.4167 0.608 0.000 0.012 0.380
#> SRR2443225     1  0.2813     0.8476 0.896 0.000 0.024 0.080
#> SRR2443223     3  0.1520     0.9031 0.024 0.020 0.956 0.000
#> SRR2443224     2  0.0707     0.8563 0.020 0.980 0.000 0.000
#> SRR2443222     2  0.1637     0.8447 0.000 0.940 0.000 0.060
#> SRR2443221     2  0.3649     0.7047 0.000 0.796 0.000 0.204
#> SRR2443219     2  0.4431     0.5462 0.000 0.696 0.000 0.304
#> SRR2443220     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443218     2  0.4925     0.2764 0.000 0.572 0.000 0.428
#> SRR2443217     1  0.3626     0.7190 0.812 0.000 0.004 0.184
#> SRR2443216     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443215     4  0.4830     0.1635 0.000 0.392 0.000 0.608
#> SRR2443214     4  0.5250    -0.0525 0.440 0.000 0.008 0.552
#> SRR2443213     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.7777    -0.0682 0.304 0.428 0.000 0.268
#> SRR2443211     2  0.0817     0.8551 0.024 0.976 0.000 0.000
#> SRR2443210     2  0.0592     0.8660 0.000 0.984 0.000 0.016
#> SRR2443209     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR2443208     2  0.3831     0.6715 0.004 0.792 0.000 0.204
#> SRR2443207     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443206     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.0188     0.8686 0.004 0.996 0.000 0.000
#> SRR2443204     3  0.6449     0.4866 0.152 0.000 0.644 0.204
#> SRR2443203     4  0.7845     0.1897 0.320 0.000 0.280 0.400
#> SRR2443202     4  0.6386     0.4667 0.212 0.000 0.140 0.648
#> SRR2443201     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443200     4  0.4925     0.0763 0.000 0.428 0.000 0.572
#> SRR2443199     4  0.4933     0.0649 0.000 0.432 0.000 0.568
#> SRR2443197     3  0.4679     0.4964 0.000 0.000 0.648 0.352
#> SRR2443196     4  0.2469     0.5995 0.000 0.000 0.108 0.892
#> SRR2443198     3  0.5320     0.3429 0.012 0.000 0.572 0.416
#> SRR2443195     1  0.4978     0.4205 0.612 0.000 0.004 0.384
#> SRR2443194     1  0.6377     0.4767 0.632 0.000 0.256 0.112
#> SRR2443193     1  0.1209     0.8776 0.964 0.000 0.004 0.032
#> SRR2443191     1  0.0336     0.8892 0.992 0.008 0.000 0.000
#> SRR2443192     4  0.0921     0.6304 0.028 0.000 0.000 0.972
#> SRR2443190     1  0.0707     0.8883 0.980 0.000 0.000 0.020
#> SRR2443189     3  0.0188     0.9310 0.004 0.000 0.996 0.000
#> SRR2443188     1  0.0336     0.8910 0.992 0.000 0.000 0.008
#> SRR2443186     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0469     0.8676 0.000 0.988 0.000 0.012
#> SRR2443185     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443184     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443183     1  0.0592     0.8896 0.984 0.000 0.000 0.016
#> SRR2443182     1  0.0469     0.8903 0.988 0.000 0.000 0.012
#> SRR2443181     2  0.0336     0.8670 0.008 0.992 0.000 0.000
#> SRR2443180     2  0.4843     0.3614 0.000 0.604 0.000 0.396
#> SRR2443179     4  0.0336     0.6264 0.000 0.000 0.008 0.992
#> SRR2443178     4  0.2149     0.6187 0.088 0.000 0.000 0.912
#> SRR2443177     1  0.2984     0.8246 0.888 0.000 0.084 0.028
#> SRR2443176     1  0.2867     0.8086 0.884 0.000 0.104 0.012
#> SRR2443175     1  0.0188     0.8911 0.996 0.000 0.004 0.000
#> SRR2443174     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443172     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443171     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR2443170     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR2443169     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443168     2  0.3813     0.6510 0.148 0.828 0.024 0.000
#> SRR2443167     3  0.0707     0.9204 0.000 0.000 0.980 0.020
#> SRR2443166     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443165     3  0.6275     0.4963 0.104 0.000 0.640 0.256
#> SRR2443164     2  0.0921     0.8612 0.000 0.972 0.000 0.028
#> SRR2443163     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443162     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443160     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443159     3  0.0000     0.9341 0.000 0.000 1.000 0.000
#> SRR2443158     3  0.4356     0.5201 0.292 0.000 0.708 0.000
#> SRR2443157     1  0.1488     0.8769 0.956 0.000 0.032 0.012
#> SRR2443156     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR2443155     1  0.0921     0.8777 0.972 0.028 0.000 0.000
#> SRR2443154     1  0.0921     0.8778 0.972 0.028 0.000 0.000
#> SRR2443153     1  0.0000     0.8911 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443151     2  0.0188     0.8687 0.000 0.996 0.000 0.004
#> SRR2443150     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR2443148     4  0.3172     0.5303 0.000 0.160 0.000 0.840
#> SRR2443147     4  0.4746     0.3448 0.000 0.304 0.008 0.688
#> SRR2443149     3  0.0000     0.9341 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     1  0.4846     0.3808 0.588 0.000 0.028 0.384 0.000
#> SRR2443262     3  0.1041     0.8761 0.000 0.004 0.964 0.000 0.032
#> SRR2443261     3  0.0290     0.8839 0.000 0.000 0.992 0.000 0.008
#> SRR2443260     3  0.0404     0.8832 0.000 0.000 0.988 0.000 0.012
#> SRR2443259     3  0.0162     0.8841 0.000 0.000 0.996 0.000 0.004
#> SRR2443258     3  0.0162     0.8841 0.000 0.000 0.996 0.000 0.004
#> SRR2443257     3  0.0162     0.8836 0.000 0.000 0.996 0.004 0.000
#> SRR2443256     1  0.4875     0.2889 0.576 0.000 0.400 0.004 0.020
#> SRR2443255     3  0.0579     0.8827 0.008 0.000 0.984 0.000 0.008
#> SRR2443254     3  0.2694     0.8309 0.032 0.000 0.888 0.004 0.076
#> SRR2443253     3  0.0162     0.8836 0.000 0.000 0.996 0.004 0.000
#> SRR2443251     3  0.0000     0.8839 0.000 0.000 1.000 0.000 0.000
#> SRR2443250     3  0.0162     0.8843 0.000 0.000 0.996 0.000 0.004
#> SRR2443249     3  0.0000     0.8839 0.000 0.000 1.000 0.000 0.000
#> SRR2443252     3  0.0404     0.8832 0.000 0.000 0.988 0.000 0.012
#> SRR2443247     1  0.1124     0.7202 0.960 0.000 0.000 0.004 0.036
#> SRR2443246     1  0.5509     0.5552 0.704 0.032 0.076 0.004 0.184
#> SRR2443248     3  0.2929     0.8032 0.000 0.012 0.856 0.004 0.128
#> SRR2443244     1  0.5822     0.3463 0.592 0.004 0.000 0.112 0.292
#> SRR2443245     1  0.4440     0.4927 0.660 0.000 0.012 0.324 0.004
#> SRR2443243     1  0.4015     0.4743 0.652 0.000 0.000 0.348 0.000
#> SRR2443242     3  0.4714     0.3718 0.012 0.000 0.576 0.004 0.408
#> SRR2443241     1  0.2766     0.7003 0.884 0.084 0.000 0.008 0.024
#> SRR2443240     1  0.4894     0.2542 0.520 0.456 0.000 0.024 0.000
#> SRR2443239     5  0.5036    -0.1610 0.036 0.404 0.000 0.000 0.560
#> SRR2443238     1  0.4537     0.3868 0.592 0.000 0.000 0.396 0.012
#> SRR2443237     4  0.4743     0.2541 0.008 0.000 0.008 0.568 0.416
#> SRR2443236     1  0.3934     0.6873 0.824 0.064 0.000 0.020 0.092
#> SRR2443235     1  0.1430     0.7182 0.944 0.000 0.000 0.052 0.004
#> SRR2443233     1  0.3048     0.6470 0.820 0.000 0.000 0.176 0.004
#> SRR2443234     1  0.2488     0.6862 0.872 0.000 0.000 0.124 0.004
#> SRR2443232     1  0.0898     0.7263 0.972 0.000 0.000 0.008 0.020
#> SRR2443231     1  0.0162     0.7244 0.996 0.000 0.000 0.004 0.000
#> SRR2443230     1  0.0290     0.7245 0.992 0.000 0.000 0.000 0.008
#> SRR2443229     5  0.5935     0.2054 0.340 0.004 0.092 0.004 0.560
#> SRR2443228     2  0.3241     0.7034 0.000 0.832 0.000 0.024 0.144
#> SRR2443227     1  0.0693     0.7246 0.980 0.000 0.000 0.012 0.008
#> SRR2443226     1  0.5394     0.3905 0.580 0.000 0.008 0.364 0.048
#> SRR2443225     1  0.3711     0.6674 0.820 0.000 0.032 0.012 0.136
#> SRR2443223     3  0.1731     0.8667 0.012 0.040 0.940 0.008 0.000
#> SRR2443224     2  0.1168     0.7175 0.008 0.960 0.000 0.000 0.032
#> SRR2443222     2  0.3723     0.6895 0.000 0.804 0.000 0.044 0.152
#> SRR2443221     2  0.4571     0.6348 0.000 0.736 0.000 0.076 0.188
#> SRR2443219     5  0.4420     0.3134 0.000 0.040 0.080 0.080 0.800
#> SRR2443220     3  0.0162     0.8843 0.000 0.000 0.996 0.000 0.004
#> SRR2443218     2  0.6337     0.2827 0.000 0.500 0.000 0.320 0.180
#> SRR2443217     5  0.5928     0.0110 0.420 0.000 0.080 0.008 0.492
#> SRR2443216     3  0.0000     0.8839 0.000 0.000 1.000 0.000 0.000
#> SRR2443215     5  0.1270     0.2995 0.000 0.000 0.000 0.052 0.948
#> SRR2443214     1  0.5756     0.4659 0.620 0.000 0.000 0.176 0.204
#> SRR2443213     1  0.0703     0.7229 0.976 0.000 0.000 0.000 0.024
#> SRR2443212     2  0.8371    -0.1414 0.256 0.304 0.000 0.140 0.300
#> SRR2443211     2  0.1124     0.7035 0.036 0.960 0.000 0.004 0.000
#> SRR2443210     2  0.2561     0.7124 0.000 0.856 0.000 0.000 0.144
#> SRR2443209     1  0.4904     0.4277 0.644 0.036 0.000 0.004 0.316
#> SRR2443208     5  0.4922    -0.2082 0.020 0.424 0.000 0.004 0.552
#> SRR2443207     2  0.4088     0.5427 0.000 0.632 0.000 0.000 0.368
#> SRR2443206     2  0.4030     0.5529 0.000 0.648 0.000 0.000 0.352
#> SRR2443205     2  0.2149     0.6921 0.048 0.916 0.000 0.000 0.036
#> SRR2443204     3  0.6083     0.4608 0.204 0.000 0.632 0.140 0.024
#> SRR2443203     4  0.4953     0.3428 0.284 0.000 0.048 0.664 0.004
#> SRR2443202     4  0.3854     0.4873 0.080 0.000 0.100 0.816 0.004
#> SRR2443201     3  0.1357     0.8694 0.000 0.000 0.948 0.048 0.004
#> SRR2443200     5  0.6500    -0.0684 0.000 0.400 0.000 0.188 0.412
#> SRR2443199     5  0.6185     0.1663 0.000 0.264 0.000 0.188 0.548
#> SRR2443197     3  0.4138     0.4528 0.000 0.000 0.616 0.384 0.000
#> SRR2443196     4  0.6299     0.2991 0.000 0.000 0.156 0.464 0.380
#> SRR2443198     3  0.5693     0.2164 0.032 0.000 0.512 0.428 0.028
#> SRR2443195     1  0.4350     0.3788 0.588 0.000 0.000 0.408 0.004
#> SRR2443194     1  0.5939     0.2781 0.536 0.000 0.120 0.344 0.000
#> SRR2443193     1  0.5315     0.0806 0.500 0.000 0.040 0.004 0.456
#> SRR2443191     1  0.5084     0.3656 0.616 0.052 0.000 0.000 0.332
#> SRR2443192     5  0.5264    -0.1885 0.052 0.000 0.000 0.392 0.556
#> SRR2443190     1  0.1282     0.7197 0.952 0.000 0.000 0.044 0.004
#> SRR2443189     3  0.4126     0.7319 0.104 0.000 0.796 0.004 0.096
#> SRR2443188     1  0.1410     0.7186 0.940 0.000 0.000 0.000 0.060
#> SRR2443186     2  0.4182     0.4771 0.000 0.600 0.000 0.000 0.400
#> SRR2443187     2  0.4256     0.4272 0.000 0.564 0.000 0.000 0.436
#> SRR2443185     3  0.0510     0.8812 0.000 0.000 0.984 0.016 0.000
#> SRR2443184     3  0.1041     0.8767 0.004 0.000 0.964 0.032 0.000
#> SRR2443183     1  0.0794     0.7247 0.972 0.000 0.000 0.028 0.000
#> SRR2443182     1  0.0404     0.7246 0.988 0.000 0.000 0.012 0.000
#> SRR2443181     2  0.4183     0.6002 0.084 0.780 0.000 0.000 0.136
#> SRR2443180     2  0.5413     0.5447 0.000 0.664 0.000 0.164 0.172
#> SRR2443179     4  0.2370     0.4706 0.000 0.000 0.040 0.904 0.056
#> SRR2443178     4  0.3988     0.4747 0.196 0.000 0.000 0.768 0.036
#> SRR2443177     1  0.6504     0.2330 0.528 0.000 0.192 0.008 0.272
#> SRR2443176     1  0.4901     0.5542 0.716 0.000 0.168 0.000 0.116
#> SRR2443175     1  0.2488     0.6845 0.872 0.000 0.000 0.004 0.124
#> SRR2443174     1  0.0404     0.7243 0.988 0.000 0.000 0.000 0.012
#> SRR2443173     2  0.0794     0.7240 0.000 0.972 0.000 0.000 0.028
#> SRR2443172     2  0.0000     0.7227 0.000 1.000 0.000 0.000 0.000
#> SRR2443171     1  0.2286     0.6925 0.888 0.108 0.000 0.004 0.000
#> SRR2443170     1  0.3550     0.6038 0.760 0.236 0.000 0.004 0.000
#> SRR2443169     1  0.0290     0.7241 0.992 0.000 0.000 0.000 0.008
#> SRR2443168     2  0.1430     0.7137 0.000 0.944 0.004 0.000 0.052
#> SRR2443167     3  0.3305     0.7117 0.000 0.000 0.776 0.224 0.000
#> SRR2443166     3  0.1251     0.8686 0.036 0.000 0.956 0.000 0.008
#> SRR2443165     4  0.5271    -0.0779 0.432 0.000 0.048 0.520 0.000
#> SRR2443164     2  0.3788     0.6971 0.000 0.820 0.004 0.072 0.104
#> SRR2443163     3  0.0566     0.8825 0.000 0.004 0.984 0.012 0.000
#> SRR2443162     3  0.3577     0.7108 0.160 0.000 0.808 0.032 0.000
#> SRR2443161     3  0.2890     0.7353 0.160 0.000 0.836 0.004 0.000
#> SRR2443160     3  0.3336     0.7073 0.000 0.000 0.772 0.228 0.000
#> SRR2443159     3  0.0963     0.8734 0.000 0.000 0.964 0.036 0.000
#> SRR2443158     1  0.5989     0.2554 0.536 0.000 0.336 0.128 0.000
#> SRR2443157     1  0.3993     0.5948 0.756 0.000 0.028 0.216 0.000
#> SRR2443156     1  0.3798     0.6668 0.816 0.120 0.000 0.060 0.004
#> SRR2443155     1  0.2890     0.6674 0.836 0.160 0.000 0.004 0.000
#> SRR2443154     1  0.4691     0.5311 0.680 0.276 0.000 0.044 0.000
#> SRR2443153     1  0.0162     0.7244 0.996 0.000 0.000 0.000 0.004
#> SRR2443152     2  0.0324     0.7221 0.004 0.992 0.000 0.000 0.004
#> SRR2443151     2  0.2179     0.7186 0.000 0.888 0.000 0.000 0.112
#> SRR2443150     2  0.0000     0.7227 0.000 1.000 0.000 0.000 0.000
#> SRR2443148     4  0.5118     0.1868 0.000 0.040 0.000 0.548 0.412
#> SRR2443147     4  0.5942     0.1167 0.000 0.052 0.024 0.476 0.448
#> SRR2443149     3  0.1526     0.8698 0.004 0.004 0.948 0.004 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     1  0.4517     0.2650 0.616 0.000 0.008 0.016 0.008 0.352
#> SRR2443262     3  0.2152     0.7572 0.012 0.000 0.920 0.016 0.028 0.024
#> SRR2443261     3  0.1296     0.7683 0.000 0.000 0.952 0.004 0.032 0.012
#> SRR2443260     3  0.1700     0.7672 0.000 0.000 0.928 0.000 0.048 0.024
#> SRR2443259     3  0.2448     0.7596 0.000 0.000 0.884 0.000 0.064 0.052
#> SRR2443258     3  0.3098     0.7483 0.012 0.000 0.852 0.000 0.068 0.068
#> SRR2443257     3  0.1944     0.7641 0.000 0.000 0.924 0.036 0.016 0.024
#> SRR2443256     3  0.6135     0.1622 0.380 0.000 0.484 0.004 0.060 0.072
#> SRR2443255     3  0.2645     0.7612 0.008 0.000 0.880 0.000 0.056 0.056
#> SRR2443254     3  0.3093     0.7512 0.032 0.000 0.864 0.004 0.064 0.036
#> SRR2443253     3  0.3076     0.7420 0.016 0.000 0.872 0.048 0.036 0.028
#> SRR2443251     3  0.0964     0.7717 0.000 0.000 0.968 0.004 0.016 0.012
#> SRR2443250     3  0.1877     0.7601 0.008 0.000 0.932 0.012 0.024 0.024
#> SRR2443249     3  0.1167     0.7659 0.000 0.000 0.960 0.012 0.008 0.020
#> SRR2443252     3  0.2488     0.7566 0.000 0.000 0.880 0.000 0.076 0.044
#> SRR2443247     1  0.3911     0.5296 0.804 0.000 0.088 0.000 0.068 0.040
#> SRR2443246     1  0.6810     0.0733 0.468 0.024 0.228 0.000 0.256 0.024
#> SRR2443248     3  0.2765     0.7577 0.008 0.016 0.876 0.004 0.088 0.008
#> SRR2443244     1  0.6013     0.0511 0.436 0.000 0.000 0.148 0.400 0.016
#> SRR2443245     6  0.4647     0.4094 0.316 0.000 0.020 0.008 0.016 0.640
#> SRR2443243     1  0.4114     0.0516 0.532 0.000 0.000 0.004 0.004 0.460
#> SRR2443242     5  0.5327    -0.0326 0.004 0.004 0.464 0.024 0.472 0.032
#> SRR2443241     1  0.3672     0.5550 0.776 0.056 0.000 0.000 0.168 0.000
#> SRR2443240     1  0.6440     0.2784 0.512 0.324 0.000 0.020 0.100 0.044
#> SRR2443239     5  0.4355     0.4584 0.032 0.108 0.052 0.016 0.788 0.004
#> SRR2443238     6  0.5300     0.4236 0.304 0.000 0.000 0.048 0.044 0.604
#> SRR2443237     6  0.6049    -0.1175 0.008 0.000 0.004 0.264 0.212 0.512
#> SRR2443236     1  0.3997     0.4869 0.688 0.020 0.000 0.000 0.288 0.004
#> SRR2443235     1  0.3404     0.4925 0.760 0.000 0.000 0.000 0.016 0.224
#> SRR2443233     1  0.4493     0.1055 0.548 0.004 0.000 0.000 0.024 0.424
#> SRR2443234     1  0.3601     0.3835 0.684 0.000 0.000 0.000 0.004 0.312
#> SRR2443232     1  0.4751     0.4583 0.680 0.004 0.000 0.000 0.108 0.208
#> SRR2443231     1  0.0972     0.6020 0.964 0.000 0.000 0.000 0.008 0.028
#> SRR2443230     1  0.5517     0.1388 0.520 0.000 0.004 0.000 0.124 0.352
#> SRR2443229     5  0.4616     0.5285 0.068 0.008 0.172 0.008 0.736 0.008
#> SRR2443228     2  0.3044     0.6116 0.000 0.836 0.000 0.116 0.048 0.000
#> SRR2443227     1  0.3500     0.5043 0.768 0.000 0.000 0.000 0.028 0.204
#> SRR2443226     6  0.5599     0.3863 0.276 0.000 0.008 0.000 0.152 0.564
#> SRR2443225     5  0.6849    -0.0315 0.380 0.000 0.052 0.020 0.420 0.128
#> SRR2443223     3  0.3429     0.7363 0.024 0.052 0.860 0.020 0.032 0.012
#> SRR2443224     2  0.2122     0.6357 0.024 0.900 0.000 0.000 0.076 0.000
#> SRR2443222     2  0.3493     0.5764 0.000 0.796 0.000 0.148 0.056 0.000
#> SRR2443221     2  0.5115    -0.1267 0.000 0.460 0.000 0.460 0.080 0.000
#> SRR2443219     5  0.6594     0.1762 0.000 0.008 0.180 0.300 0.476 0.036
#> SRR2443220     3  0.1261     0.7707 0.000 0.004 0.956 0.004 0.028 0.008
#> SRR2443218     4  0.4354     0.4523 0.000 0.236 0.000 0.704 0.052 0.008
#> SRR2443217     5  0.4838     0.5239 0.136 0.000 0.168 0.000 0.688 0.008
#> SRR2443216     3  0.4320     0.5936 0.004 0.000 0.688 0.004 0.036 0.268
#> SRR2443215     5  0.3801     0.3951 0.000 0.000 0.036 0.128 0.800 0.036
#> SRR2443214     6  0.6937     0.1353 0.240 0.000 0.004 0.048 0.324 0.384
#> SRR2443213     1  0.2912     0.5666 0.784 0.000 0.000 0.000 0.216 0.000
#> SRR2443212     4  0.7848     0.1265 0.260 0.256 0.000 0.328 0.140 0.016
#> SRR2443211     1  0.5509     0.0784 0.496 0.416 0.000 0.012 0.068 0.008
#> SRR2443210     2  0.2905     0.6255 0.000 0.852 0.000 0.084 0.064 0.000
#> SRR2443209     1  0.4283     0.4513 0.676 0.028 0.004 0.000 0.288 0.004
#> SRR2443208     5  0.6371     0.0265 0.020 0.356 0.000 0.080 0.496 0.048
#> SRR2443207     2  0.4872     0.3461 0.000 0.548 0.000 0.064 0.388 0.000
#> SRR2443206     2  0.5004     0.3329 0.004 0.516 0.000 0.060 0.420 0.000
#> SRR2443205     2  0.5649     0.3136 0.284 0.568 0.000 0.016 0.132 0.000
#> SRR2443204     6  0.6211     0.4705 0.212 0.000 0.168 0.000 0.056 0.564
#> SRR2443203     6  0.4464     0.4694 0.132 0.000 0.024 0.076 0.008 0.760
#> SRR2443202     6  0.5303    -0.0373 0.032 0.000 0.016 0.380 0.020 0.552
#> SRR2443201     3  0.5717     0.5173 0.004 0.004 0.640 0.080 0.056 0.216
#> SRR2443200     4  0.5757     0.1921 0.000 0.376 0.000 0.468 0.152 0.004
#> SRR2443199     4  0.5524     0.4782 0.000 0.144 0.000 0.592 0.252 0.012
#> SRR2443197     6  0.4516     0.3789 0.008 0.000 0.276 0.048 0.000 0.668
#> SRR2443196     4  0.6480     0.3538 0.000 0.000 0.052 0.468 0.152 0.328
#> SRR2443198     6  0.6875     0.2819 0.024 0.000 0.260 0.168 0.048 0.500
#> SRR2443195     6  0.4570     0.2975 0.376 0.000 0.000 0.028 0.008 0.588
#> SRR2443194     6  0.5216     0.4256 0.300 0.000 0.088 0.012 0.000 0.600
#> SRR2443193     5  0.5699     0.4832 0.188 0.000 0.128 0.000 0.632 0.052
#> SRR2443191     1  0.4487     0.4608 0.672 0.036 0.000 0.008 0.280 0.004
#> SRR2443192     5  0.5614    -0.0382 0.012 0.000 0.000 0.328 0.540 0.120
#> SRR2443190     1  0.3658     0.4940 0.752 0.000 0.000 0.000 0.032 0.216
#> SRR2443189     3  0.6722     0.1406 0.048 0.000 0.444 0.004 0.320 0.184
#> SRR2443188     1  0.4443     0.3189 0.596 0.000 0.000 0.000 0.368 0.036
#> SRR2443186     2  0.4911     0.3426 0.000 0.524 0.000 0.064 0.412 0.000
#> SRR2443187     5  0.4957    -0.2042 0.000 0.412 0.000 0.068 0.520 0.000
#> SRR2443185     3  0.3895     0.5890 0.004 0.000 0.708 0.008 0.008 0.272
#> SRR2443184     6  0.4866    -0.1232 0.016 0.000 0.472 0.000 0.028 0.484
#> SRR2443183     1  0.2350     0.5974 0.888 0.000 0.000 0.000 0.036 0.076
#> SRR2443182     1  0.1285     0.5977 0.944 0.000 0.000 0.000 0.004 0.052
#> SRR2443181     2  0.6323     0.1014 0.368 0.376 0.000 0.012 0.244 0.000
#> SRR2443180     4  0.4709     0.1413 0.000 0.412 0.000 0.540 0.048 0.000
#> SRR2443179     4  0.4370     0.3822 0.000 0.000 0.008 0.616 0.020 0.356
#> SRR2443178     4  0.6070     0.0169 0.148 0.000 0.000 0.452 0.020 0.380
#> SRR2443177     5  0.6903     0.3142 0.252 0.000 0.196 0.000 0.464 0.088
#> SRR2443176     1  0.7686    -0.1308 0.328 0.000 0.160 0.004 0.256 0.252
#> SRR2443175     1  0.4609     0.4416 0.648 0.000 0.048 0.000 0.296 0.008
#> SRR2443174     1  0.1719     0.6076 0.924 0.000 0.000 0.000 0.060 0.016
#> SRR2443173     2  0.0146     0.6601 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR2443172     2  0.0653     0.6607 0.004 0.980 0.004 0.000 0.012 0.000
#> SRR2443171     1  0.2933     0.5925 0.860 0.096 0.004 0.000 0.032 0.008
#> SRR2443170     1  0.3230     0.5606 0.776 0.212 0.000 0.000 0.000 0.012
#> SRR2443169     1  0.1151     0.6009 0.956 0.000 0.012 0.000 0.000 0.032
#> SRR2443168     2  0.1483     0.6596 0.008 0.944 0.012 0.000 0.036 0.000
#> SRR2443167     6  0.6163     0.0882 0.000 0.000 0.360 0.156 0.024 0.460
#> SRR2443166     3  0.5016     0.5765 0.036 0.000 0.668 0.000 0.060 0.236
#> SRR2443165     6  0.4648     0.4633 0.272 0.000 0.024 0.036 0.000 0.668
#> SRR2443164     2  0.4999     0.4458 0.000 0.696 0.036 0.212 0.040 0.016
#> SRR2443163     3  0.2623     0.7466 0.000 0.004 0.892 0.048 0.028 0.028
#> SRR2443162     3  0.6114     0.1439 0.220 0.000 0.516 0.004 0.012 0.248
#> SRR2443161     3  0.5168     0.5415 0.184 0.016 0.688 0.000 0.016 0.096
#> SRR2443160     3  0.6347    -0.0829 0.000 0.000 0.388 0.204 0.020 0.388
#> SRR2443159     3  0.4027     0.6674 0.000 0.000 0.772 0.052 0.020 0.156
#> SRR2443158     1  0.5825     0.2107 0.592 0.004 0.200 0.004 0.012 0.188
#> SRR2443157     1  0.4560     0.2182 0.592 0.000 0.028 0.000 0.008 0.372
#> SRR2443156     1  0.5283     0.5368 0.728 0.096 0.000 0.036 0.080 0.060
#> SRR2443155     1  0.2851     0.5852 0.844 0.132 0.000 0.000 0.020 0.004
#> SRR2443154     1  0.3695     0.5325 0.732 0.244 0.000 0.000 0.000 0.024
#> SRR2443153     1  0.3789     0.5076 0.760 0.000 0.004 0.000 0.040 0.196
#> SRR2443152     2  0.1765     0.6455 0.024 0.924 0.000 0.000 0.052 0.000
#> SRR2443151     2  0.2519     0.6348 0.000 0.884 0.004 0.068 0.044 0.000
#> SRR2443150     2  0.0146     0.6601 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR2443148     4  0.3424     0.5255 0.000 0.000 0.000 0.812 0.092 0.096
#> SRR2443147     4  0.3087     0.5128 0.000 0.004 0.056 0.864 0.052 0.024
#> SRR2443149     3  0.3309     0.7338 0.004 0.000 0.824 0.000 0.116 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.326           0.656       0.797         0.4203 0.564   0.564
#> 3 3 0.413           0.649       0.815         0.3668 0.723   0.549
#> 4 4 0.436           0.612       0.768         0.1561 0.923   0.807
#> 5 5 0.470           0.560       0.735         0.0685 0.935   0.817
#> 6 6 0.506           0.451       0.682         0.0706 0.904   0.697

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.9996     0.0151 0.488 0.512
#> SRR2443262     2  0.0376     0.8082 0.004 0.996
#> SRR2443261     2  0.0672     0.8080 0.008 0.992
#> SRR2443260     2  0.9963     0.1200 0.464 0.536
#> SRR2443259     2  0.9988     0.0523 0.480 0.520
#> SRR2443258     2  0.9963     0.1196 0.464 0.536
#> SRR2443257     2  0.0000     0.8078 0.000 1.000
#> SRR2443256     1  0.9998     0.0399 0.508 0.492
#> SRR2443255     2  0.9963     0.1200 0.464 0.536
#> SRR2443254     2  0.9922     0.1775 0.448 0.552
#> SRR2443253     2  0.0000     0.8078 0.000 1.000
#> SRR2443251     2  0.0672     0.8080 0.008 0.992
#> SRR2443250     2  0.0376     0.8082 0.004 0.996
#> SRR2443249     2  0.0376     0.8082 0.004 0.996
#> SRR2443252     2  0.9963     0.1200 0.464 0.536
#> SRR2443247     1  0.5294     0.7656 0.880 0.120
#> SRR2443246     1  0.5842     0.7595 0.860 0.140
#> SRR2443248     2  0.6247     0.7305 0.156 0.844
#> SRR2443244     2  0.0672     0.8080 0.008 0.992
#> SRR2443245     1  0.7528     0.7246 0.784 0.216
#> SRR2443243     1  0.4939     0.7731 0.892 0.108
#> SRR2443242     2  0.4022     0.7798 0.080 0.920
#> SRR2443241     2  0.8327     0.6189 0.264 0.736
#> SRR2443240     2  0.7674     0.6644 0.224 0.776
#> SRR2443239     2  0.0672     0.8080 0.008 0.992
#> SRR2443238     1  0.8327     0.6702 0.736 0.264
#> SRR2443237     2  0.2236     0.8001 0.036 0.964
#> SRR2443236     1  0.7219     0.7382 0.800 0.200
#> SRR2443235     1  0.1843     0.7833 0.972 0.028
#> SRR2443233     1  0.0376     0.7810 0.996 0.004
#> SRR2443234     1  0.0000     0.7788 1.000 0.000
#> SRR2443232     1  0.0376     0.7809 0.996 0.004
#> SRR2443231     1  0.0000     0.7788 1.000 0.000
#> SRR2443230     1  0.0672     0.7821 0.992 0.008
#> SRR2443229     2  0.9170     0.5036 0.332 0.668
#> SRR2443228     2  0.0000     0.8078 0.000 1.000
#> SRR2443227     1  0.0000     0.7788 1.000 0.000
#> SRR2443226     1  0.8713     0.6405 0.708 0.292
#> SRR2443225     2  0.9850     0.2547 0.428 0.572
#> SRR2443223     2  0.0376     0.8082 0.004 0.996
#> SRR2443224     2  0.0376     0.8083 0.004 0.996
#> SRR2443222     2  0.0000     0.8078 0.000 1.000
#> SRR2443221     2  0.0000     0.8078 0.000 1.000
#> SRR2443219     2  0.0672     0.8080 0.008 0.992
#> SRR2443220     2  0.0376     0.8082 0.004 0.996
#> SRR2443218     2  0.0000     0.8078 0.000 1.000
#> SRR2443217     2  0.9170     0.5056 0.332 0.668
#> SRR2443216     2  0.9552     0.3925 0.376 0.624
#> SRR2443215     2  0.1633     0.8028 0.024 0.976
#> SRR2443214     1  0.9358     0.5118 0.648 0.352
#> SRR2443213     1  0.0000     0.7788 1.000 0.000
#> SRR2443212     2  0.6623     0.7155 0.172 0.828
#> SRR2443211     2  0.7674     0.6644 0.224 0.776
#> SRR2443210     2  0.0000     0.8078 0.000 1.000
#> SRR2443209     2  0.9170     0.5056 0.332 0.668
#> SRR2443208     2  0.7674     0.6662 0.224 0.776
#> SRR2443207     2  0.0000     0.8078 0.000 1.000
#> SRR2443206     2  0.0000     0.8078 0.000 1.000
#> SRR2443205     2  0.0938     0.8067 0.012 0.988
#> SRR2443204     1  0.7528     0.7246 0.784 0.216
#> SRR2443203     2  0.8443     0.5987 0.272 0.728
#> SRR2443202     2  0.6148     0.7309 0.152 0.848
#> SRR2443201     2  0.6247     0.7279 0.156 0.844
#> SRR2443200     2  0.0000     0.8078 0.000 1.000
#> SRR2443199     2  0.0000     0.8078 0.000 1.000
#> SRR2443197     2  0.2043     0.8010 0.032 0.968
#> SRR2443196     2  0.0376     0.8073 0.004 0.996
#> SRR2443198     2  0.3584     0.7860 0.068 0.932
#> SRR2443195     1  0.7602     0.7213 0.780 0.220
#> SRR2443194     2  0.8499     0.5922 0.276 0.724
#> SRR2443193     1  0.7453     0.7277 0.788 0.212
#> SRR2443191     2  0.8327     0.6189 0.264 0.736
#> SRR2443192     2  0.4815     0.7666 0.104 0.896
#> SRR2443190     1  0.0376     0.7810 0.996 0.004
#> SRR2443189     1  0.8713     0.6405 0.708 0.292
#> SRR2443188     1  0.0000     0.7788 1.000 0.000
#> SRR2443186     2  0.0000     0.8078 0.000 1.000
#> SRR2443187     2  0.0000     0.8078 0.000 1.000
#> SRR2443185     2  0.3733     0.7838 0.072 0.928
#> SRR2443184     2  0.9248     0.4741 0.340 0.660
#> SRR2443183     1  0.0376     0.7810 0.996 0.004
#> SRR2443182     1  0.7674     0.7120 0.776 0.224
#> SRR2443181     2  0.0376     0.8083 0.004 0.996
#> SRR2443180     2  0.0000     0.8078 0.000 1.000
#> SRR2443179     2  0.0000     0.8078 0.000 1.000
#> SRR2443178     2  0.9833     0.2483 0.424 0.576
#> SRR2443177     1  0.8713     0.6405 0.708 0.292
#> SRR2443176     2  1.0000    -0.0407 0.500 0.500
#> SRR2443175     1  0.6148     0.7532 0.848 0.152
#> SRR2443174     1  0.0672     0.7821 0.992 0.008
#> SRR2443173     2  0.0000     0.8078 0.000 1.000
#> SRR2443172     2  0.0000     0.8078 0.000 1.000
#> SRR2443171     1  0.0672     0.7821 0.992 0.008
#> SRR2443170     1  0.9209     0.5470 0.664 0.336
#> SRR2443169     1  0.0672     0.7821 0.992 0.008
#> SRR2443168     2  0.8608     0.5886 0.284 0.716
#> SRR2443167     2  0.0000     0.8078 0.000 1.000
#> SRR2443166     1  0.9000     0.5927 0.684 0.316
#> SRR2443165     2  0.9358     0.4452 0.352 0.648
#> SRR2443164     2  0.0000     0.8078 0.000 1.000
#> SRR2443163     2  0.0938     0.8072 0.012 0.988
#> SRR2443162     1  0.9996     0.0586 0.512 0.488
#> SRR2443161     2  0.9983     0.0710 0.476 0.524
#> SRR2443160     2  0.0000     0.8078 0.000 1.000
#> SRR2443159     2  0.0000     0.8078 0.000 1.000
#> SRR2443158     2  0.9963     0.1190 0.464 0.536
#> SRR2443157     1  0.7299     0.7314 0.796 0.204
#> SRR2443156     2  0.7815     0.6558 0.232 0.768
#> SRR2443155     1  0.9170     0.5552 0.668 0.332
#> SRR2443154     1  0.9661     0.4027 0.608 0.392
#> SRR2443153     1  0.0000     0.7788 1.000 0.000
#> SRR2443152     2  0.0000     0.8078 0.000 1.000
#> SRR2443151     2  0.0000     0.8078 0.000 1.000
#> SRR2443150     2  0.0000     0.8078 0.000 1.000
#> SRR2443148     2  0.0000     0.8078 0.000 1.000
#> SRR2443147     2  0.0000     0.8078 0.000 1.000
#> SRR2443149     2  0.9866     0.2329 0.432 0.568

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.5803    0.72903 0.028 0.212 0.760
#> SRR2443262     2  0.0892    0.84846 0.000 0.980 0.020
#> SRR2443261     2  0.1163    0.84727 0.000 0.972 0.028
#> SRR2443260     3  0.5292    0.72120 0.008 0.228 0.764
#> SRR2443259     3  0.5680    0.72717 0.024 0.212 0.764
#> SRR2443258     3  0.5115    0.72116 0.004 0.228 0.768
#> SRR2443257     2  0.0592    0.84704 0.000 0.988 0.012
#> SRR2443256     3  0.5792    0.72277 0.036 0.192 0.772
#> SRR2443255     3  0.5292    0.72120 0.008 0.228 0.764
#> SRR2443254     3  0.5058    0.70900 0.000 0.244 0.756
#> SRR2443253     2  0.0424    0.84741 0.000 0.992 0.008
#> SRR2443251     2  0.1163    0.84727 0.000 0.972 0.028
#> SRR2443250     2  0.0892    0.84846 0.000 0.980 0.020
#> SRR2443249     2  0.0892    0.84846 0.000 0.980 0.020
#> SRR2443252     3  0.5292    0.72120 0.008 0.228 0.764
#> SRR2443247     1  0.7007    0.61493 0.724 0.100 0.176
#> SRR2443246     1  0.7916    0.48827 0.636 0.100 0.264
#> SRR2443248     2  0.5760    0.43233 0.000 0.672 0.328
#> SRR2443244     2  0.2448    0.82177 0.000 0.924 0.076
#> SRR2443245     3  0.3686    0.46404 0.140 0.000 0.860
#> SRR2443243     3  0.5859    0.09146 0.344 0.000 0.656
#> SRR2443242     2  0.5024    0.66088 0.004 0.776 0.220
#> SRR2443241     2  0.6518   -0.08283 0.004 0.512 0.484
#> SRR2443240     2  0.6180    0.18778 0.000 0.584 0.416
#> SRR2443239     2  0.2448    0.82177 0.000 0.924 0.076
#> SRR2443238     3  0.2448    0.51617 0.076 0.000 0.924
#> SRR2443237     2  0.3816    0.75623 0.000 0.852 0.148
#> SRR2443236     3  0.4883    0.37859 0.208 0.004 0.788
#> SRR2443235     1  0.5465    0.72797 0.712 0.000 0.288
#> SRR2443233     1  0.4346    0.80759 0.816 0.000 0.184
#> SRR2443234     1  0.3551    0.82016 0.868 0.000 0.132
#> SRR2443232     1  0.3038    0.81979 0.896 0.000 0.104
#> SRR2443231     1  0.3482    0.81971 0.872 0.000 0.128
#> SRR2443230     1  0.1529    0.79570 0.960 0.000 0.040
#> SRR2443229     3  0.6225    0.35144 0.000 0.432 0.568
#> SRR2443228     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443227     1  0.3551    0.81915 0.868 0.000 0.132
#> SRR2443226     3  0.5117    0.57694 0.108 0.060 0.832
#> SRR2443225     3  0.6019    0.64467 0.012 0.288 0.700
#> SRR2443223     2  0.1289    0.84609 0.000 0.968 0.032
#> SRR2443224     2  0.1411    0.84384 0.000 0.964 0.036
#> SRR2443222     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443221     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443219     2  0.2356    0.82464 0.000 0.928 0.072
#> SRR2443220     2  0.1289    0.84609 0.000 0.968 0.032
#> SRR2443218     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443217     3  0.6442    0.34846 0.004 0.432 0.564
#> SRR2443216     3  0.5882    0.57713 0.000 0.348 0.652
#> SRR2443215     2  0.2796    0.81485 0.000 0.908 0.092
#> SRR2443214     3  0.4379    0.60529 0.060 0.072 0.868
#> SRR2443213     1  0.3482    0.81971 0.872 0.000 0.128
#> SRR2443212     2  0.6062    0.28094 0.000 0.616 0.384
#> SRR2443211     2  0.6168    0.20152 0.000 0.588 0.412
#> SRR2443210     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443209     3  0.6442    0.34846 0.004 0.432 0.564
#> SRR2443208     2  0.6274    0.00697 0.000 0.544 0.456
#> SRR2443207     2  0.0592    0.84817 0.000 0.988 0.012
#> SRR2443206     2  0.0592    0.84817 0.000 0.988 0.012
#> SRR2443205     2  0.1753    0.83614 0.000 0.952 0.048
#> SRR2443204     3  0.3686    0.46404 0.140 0.000 0.860
#> SRR2443203     2  0.6495   -0.04491 0.004 0.536 0.460
#> SRR2443202     2  0.5529    0.51466 0.000 0.704 0.296
#> SRR2443201     2  0.5560    0.50747 0.000 0.700 0.300
#> SRR2443200     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443199     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443197     2  0.3349    0.78915 0.004 0.888 0.108
#> SRR2443196     2  0.0829    0.84666 0.004 0.984 0.012
#> SRR2443198     2  0.3941    0.73490 0.000 0.844 0.156
#> SRR2443195     3  0.3551    0.46715 0.132 0.000 0.868
#> SRR2443194     2  0.6302   -0.11859 0.000 0.520 0.480
#> SRR2443193     3  0.4178    0.44765 0.172 0.000 0.828
#> SRR2443191     2  0.6518   -0.08283 0.004 0.512 0.484
#> SRR2443192     2  0.5178    0.60741 0.000 0.744 0.256
#> SRR2443190     1  0.3816    0.81705 0.852 0.000 0.148
#> SRR2443189     3  0.5117    0.57694 0.108 0.060 0.832
#> SRR2443188     1  0.3686    0.81927 0.860 0.000 0.140
#> SRR2443186     2  0.0592    0.84817 0.000 0.988 0.012
#> SRR2443187     2  0.0592    0.84817 0.000 0.988 0.012
#> SRR2443185     2  0.4062    0.73045 0.000 0.836 0.164
#> SRR2443184     3  0.6126    0.47398 0.000 0.400 0.600
#> SRR2443183     1  0.3816    0.81705 0.852 0.000 0.148
#> SRR2443182     1  0.8848    0.17943 0.504 0.124 0.372
#> SRR2443181     2  0.1411    0.84384 0.000 0.964 0.036
#> SRR2443180     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443179     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443178     3  0.7140    0.44097 0.040 0.328 0.632
#> SRR2443177     3  0.5117    0.57694 0.108 0.060 0.832
#> SRR2443176     3  0.6927    0.72098 0.060 0.240 0.700
#> SRR2443175     1  0.8111    0.46012 0.624 0.112 0.264
#> SRR2443174     1  0.1643    0.79964 0.956 0.000 0.044
#> SRR2443173     2  0.0892    0.84813 0.000 0.980 0.020
#> SRR2443172     2  0.0892    0.84813 0.000 0.980 0.020
#> SRR2443171     1  0.3879    0.74641 0.848 0.000 0.152
#> SRR2443170     3  0.9287    0.45540 0.304 0.188 0.508
#> SRR2443169     1  0.1289    0.79214 0.968 0.000 0.032
#> SRR2443168     3  0.6518    0.18731 0.004 0.484 0.512
#> SRR2443167     2  0.0424    0.84741 0.000 0.992 0.008
#> SRR2443166     3  0.9029    0.31664 0.352 0.144 0.504
#> SRR2443165     3  0.5905    0.57624 0.000 0.352 0.648
#> SRR2443164     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443163     2  0.1163    0.84743 0.000 0.972 0.028
#> SRR2443162     3  0.5850    0.72068 0.040 0.188 0.772
#> SRR2443161     3  0.5551    0.72436 0.016 0.224 0.760
#> SRR2443160     2  0.0424    0.84741 0.000 0.992 0.008
#> SRR2443159     2  0.0592    0.84704 0.000 0.988 0.012
#> SRR2443158     3  0.5536    0.71818 0.012 0.236 0.752
#> SRR2443157     1  0.8561    0.25000 0.528 0.104 0.368
#> SRR2443156     2  0.6204    0.16090 0.000 0.576 0.424
#> SRR2443155     3  0.9250    0.45172 0.304 0.184 0.512
#> SRR2443154     3  0.9333    0.50795 0.268 0.216 0.516
#> SRR2443153     1  0.3192    0.80890 0.888 0.000 0.112
#> SRR2443152     2  0.0892    0.84813 0.000 0.980 0.020
#> SRR2443151     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443150     2  0.0892    0.84813 0.000 0.980 0.020
#> SRR2443148     2  0.0000    0.84724 0.000 1.000 0.000
#> SRR2443147     2  0.0424    0.84741 0.000 0.992 0.008
#> SRR2443149     3  0.5656    0.69160 0.008 0.264 0.728

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.2928    0.58698 0.012 0.028 0.904 0.056
#> SRR2443262     4  0.2647    0.80527 0.000 0.000 0.120 0.880
#> SRR2443261     4  0.2647    0.80529 0.000 0.000 0.120 0.880
#> SRR2443260     3  0.2335    0.59913 0.000 0.020 0.920 0.060
#> SRR2443259     3  0.1398    0.58294 0.004 0.000 0.956 0.040
#> SRR2443258     3  0.2142    0.59767 0.000 0.016 0.928 0.056
#> SRR2443257     4  0.2011    0.81211 0.000 0.000 0.080 0.920
#> SRR2443256     3  0.2400    0.55963 0.012 0.028 0.928 0.032
#> SRR2443255     3  0.2335    0.59913 0.000 0.020 0.920 0.060
#> SRR2443254     3  0.2973    0.60492 0.000 0.020 0.884 0.096
#> SRR2443253     4  0.1940    0.81207 0.000 0.000 0.076 0.924
#> SRR2443251     4  0.2814    0.80153 0.000 0.000 0.132 0.868
#> SRR2443250     4  0.2530    0.80694 0.000 0.000 0.112 0.888
#> SRR2443249     4  0.2530    0.80694 0.000 0.000 0.112 0.888
#> SRR2443252     3  0.2489    0.60184 0.000 0.020 0.912 0.068
#> SRR2443247     1  0.6158    0.56814 0.664 0.076 0.252 0.008
#> SRR2443246     1  0.7024    0.46145 0.572 0.120 0.300 0.008
#> SRR2443248     4  0.5597    0.16278 0.000 0.020 0.464 0.516
#> SRR2443244     4  0.3217    0.78907 0.000 0.012 0.128 0.860
#> SRR2443245     2  0.6157    0.83550 0.108 0.660 0.232 0.000
#> SRR2443243     2  0.7096    0.53234 0.332 0.524 0.144 0.000
#> SRR2443242     4  0.5298    0.62539 0.000 0.048 0.244 0.708
#> SRR2443241     3  0.7684    0.17960 0.000 0.216 0.392 0.392
#> SRR2443240     4  0.7478    0.19884 0.000 0.256 0.240 0.504
#> SRR2443239     4  0.3217    0.78907 0.000 0.012 0.128 0.860
#> SRR2443238     2  0.4552    0.77260 0.044 0.784 0.172 0.000
#> SRR2443237     4  0.4514    0.73476 0.000 0.056 0.148 0.796
#> SRR2443236     2  0.3707    0.54540 0.132 0.840 0.028 0.000
#> SRR2443235     1  0.5222    0.57580 0.688 0.280 0.032 0.000
#> SRR2443233     1  0.3791    0.69967 0.796 0.200 0.004 0.000
#> SRR2443234     1  0.2814    0.72969 0.868 0.132 0.000 0.000
#> SRR2443232     1  0.2943    0.74519 0.892 0.076 0.032 0.000
#> SRR2443231     1  0.2589    0.73232 0.884 0.116 0.000 0.000
#> SRR2443230     1  0.2996    0.72755 0.892 0.044 0.064 0.000
#> SRR2443229     3  0.7807    0.40847 0.000 0.288 0.420 0.292
#> SRR2443228     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443227     1  0.2647    0.73123 0.880 0.120 0.000 0.000
#> SRR2443226     2  0.6414    0.78795 0.056 0.632 0.292 0.020
#> SRR2443225     3  0.7499    0.33554 0.008 0.256 0.540 0.196
#> SRR2443223     4  0.2814    0.80156 0.000 0.000 0.132 0.868
#> SRR2443224     4  0.4624    0.73934 0.000 0.052 0.164 0.784
#> SRR2443222     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443221     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443219     4  0.3088    0.79194 0.000 0.008 0.128 0.864
#> SRR2443220     4  0.2469    0.80882 0.000 0.000 0.108 0.892
#> SRR2443218     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443217     3  0.7796    0.41346 0.000 0.292 0.424 0.284
#> SRR2443216     3  0.3933    0.59140 0.000 0.008 0.792 0.200
#> SRR2443215     4  0.3910    0.77399 0.000 0.024 0.156 0.820
#> SRR2443214     3  0.6256   -0.01331 0.044 0.324 0.616 0.016
#> SRR2443213     1  0.2589    0.73232 0.884 0.116 0.000 0.000
#> SRR2443212     4  0.6510    0.20452 0.000 0.080 0.380 0.540
#> SRR2443211     4  0.7297    0.26144 0.000 0.244 0.220 0.536
#> SRR2443210     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443209     3  0.7796    0.41346 0.000 0.292 0.424 0.284
#> SRR2443208     4  0.6926   -0.08413 0.000 0.108 0.432 0.460
#> SRR2443207     4  0.2197    0.80793 0.000 0.024 0.048 0.928
#> SRR2443206     4  0.1182    0.80837 0.000 0.016 0.016 0.968
#> SRR2443205     4  0.2675    0.80177 0.000 0.048 0.044 0.908
#> SRR2443204     2  0.6157    0.83550 0.108 0.660 0.232 0.000
#> SRR2443203     3  0.5488    0.13139 0.000 0.016 0.532 0.452
#> SRR2443202     4  0.4897    0.48019 0.000 0.008 0.332 0.660
#> SRR2443201     4  0.5112    0.42520 0.000 0.008 0.384 0.608
#> SRR2443200     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443199     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443197     4  0.3539    0.75946 0.000 0.004 0.176 0.820
#> SRR2443196     4  0.1398    0.81522 0.000 0.004 0.040 0.956
#> SRR2443198     4  0.4018    0.69612 0.000 0.004 0.224 0.772
#> SRR2443195     2  0.6050    0.83497 0.100 0.668 0.232 0.000
#> SRR2443194     3  0.5360    0.21069 0.000 0.012 0.552 0.436
#> SRR2443193     2  0.6790    0.80905 0.168 0.604 0.228 0.000
#> SRR2443191     4  0.7684   -0.22086 0.000 0.216 0.392 0.392
#> SRR2443192     4  0.5619    0.57111 0.000 0.056 0.268 0.676
#> SRR2443190     1  0.3300    0.72806 0.848 0.144 0.008 0.000
#> SRR2443189     2  0.6414    0.78795 0.056 0.632 0.292 0.020
#> SRR2443188     1  0.2814    0.72770 0.868 0.132 0.000 0.000
#> SRR2443186     4  0.2197    0.80793 0.000 0.024 0.048 0.928
#> SRR2443187     4  0.1297    0.80921 0.000 0.016 0.020 0.964
#> SRR2443185     4  0.4511    0.66788 0.000 0.008 0.268 0.724
#> SRR2443184     3  0.4328    0.57196 0.000 0.008 0.748 0.244
#> SRR2443183     1  0.3351    0.72743 0.844 0.148 0.008 0.000
#> SRR2443182     1  0.7578    0.22975 0.440 0.124 0.420 0.016
#> SRR2443181     4  0.4624    0.73934 0.000 0.052 0.164 0.784
#> SRR2443180     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443179     4  0.0376    0.80945 0.000 0.004 0.004 0.992
#> SRR2443178     3  0.8885    0.19021 0.048 0.308 0.368 0.276
#> SRR2443177     2  0.6574    0.74148 0.056 0.600 0.324 0.020
#> SRR2443176     3  0.6306    0.52521 0.040 0.120 0.720 0.120
#> SRR2443175     1  0.7177    0.44762 0.560 0.120 0.308 0.012
#> SRR2443174     1  0.2483    0.73255 0.916 0.032 0.052 0.000
#> SRR2443173     4  0.4307    0.75496 0.000 0.048 0.144 0.808
#> SRR2443172     4  0.4307    0.75496 0.000 0.048 0.144 0.808
#> SRR2443171     1  0.4982    0.65410 0.772 0.092 0.136 0.000
#> SRR2443170     3  0.8541    0.01256 0.240 0.324 0.404 0.032
#> SRR2443169     1  0.2773    0.71860 0.900 0.028 0.072 0.000
#> SRR2443168     3  0.7067    0.43886 0.000 0.160 0.552 0.288
#> SRR2443167     4  0.2345    0.81001 0.000 0.000 0.100 0.900
#> SRR2443166     3  0.7134    0.06887 0.296 0.096 0.584 0.024
#> SRR2443165     3  0.4799    0.57025 0.000 0.032 0.744 0.224
#> SRR2443164     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443163     4  0.2814    0.80167 0.000 0.000 0.132 0.868
#> SRR2443162     3  0.2301    0.55337 0.012 0.028 0.932 0.028
#> SRR2443161     3  0.2877    0.59522 0.008 0.028 0.904 0.060
#> SRR2443160     4  0.2216    0.81104 0.000 0.000 0.092 0.908
#> SRR2443159     4  0.2011    0.81211 0.000 0.000 0.080 0.920
#> SRR2443158     3  0.3245    0.60415 0.008 0.028 0.884 0.080
#> SRR2443157     1  0.7329    0.25906 0.456 0.120 0.416 0.008
#> SRR2443156     4  0.7479    0.18741 0.000 0.252 0.244 0.504
#> SRR2443155     3  0.8392    0.00103 0.240 0.328 0.408 0.024
#> SRR2443154     3  0.8699    0.08669 0.208 0.344 0.400 0.048
#> SRR2443153     1  0.3392    0.73200 0.872 0.056 0.072 0.000
#> SRR2443152     4  0.4307    0.75496 0.000 0.048 0.144 0.808
#> SRR2443151     4  0.0188    0.80841 0.000 0.004 0.000 0.996
#> SRR2443150     4  0.4307    0.75496 0.000 0.048 0.144 0.808
#> SRR2443148     4  0.0376    0.80945 0.000 0.004 0.004 0.992
#> SRR2443147     4  0.1557    0.81382 0.000 0.000 0.056 0.944
#> SRR2443149     3  0.2266    0.60745 0.000 0.004 0.912 0.084

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.2436     0.5132 0.000 0.020 0.912 0.032 0.036
#> SRR2443262     4  0.2629     0.7703 0.000 0.000 0.136 0.860 0.004
#> SRR2443261     4  0.2629     0.7703 0.000 0.000 0.136 0.860 0.004
#> SRR2443260     3  0.1932     0.5309 0.004 0.020 0.936 0.032 0.008
#> SRR2443259     3  0.1679     0.5150 0.004 0.012 0.948 0.020 0.016
#> SRR2443258     3  0.1471     0.5273 0.000 0.020 0.952 0.024 0.004
#> SRR2443257     4  0.2249     0.7798 0.000 0.000 0.096 0.896 0.008
#> SRR2443256     3  0.2311     0.4836 0.004 0.020 0.920 0.016 0.040
#> SRR2443255     3  0.1932     0.5309 0.004 0.020 0.936 0.032 0.008
#> SRR2443254     3  0.2429     0.5430 0.000 0.020 0.904 0.068 0.008
#> SRR2443253     4  0.2193     0.7804 0.000 0.000 0.092 0.900 0.008
#> SRR2443251     4  0.2806     0.7636 0.000 0.000 0.152 0.844 0.004
#> SRR2443250     4  0.2536     0.7726 0.000 0.000 0.128 0.868 0.004
#> SRR2443249     4  0.2536     0.7726 0.000 0.000 0.128 0.868 0.004
#> SRR2443252     3  0.2094     0.5357 0.004 0.020 0.928 0.040 0.008
#> SRR2443247     5  0.7997     0.4681 0.320 0.092 0.224 0.000 0.364
#> SRR2443246     5  0.8241     0.5851 0.240 0.128 0.268 0.000 0.364
#> SRR2443248     3  0.6036    -0.0553 0.000 0.004 0.460 0.436 0.100
#> SRR2443244     4  0.4010     0.7426 0.000 0.000 0.116 0.796 0.088
#> SRR2443245     2  0.3075     0.7318 0.048 0.860 0.092 0.000 0.000
#> SRR2443243     2  0.5438     0.4820 0.340 0.592 0.064 0.000 0.004
#> SRR2443242     4  0.5948     0.5821 0.000 0.028 0.196 0.652 0.124
#> SRR2443241     3  0.8133     0.2302 0.000 0.100 0.336 0.304 0.260
#> SRR2443240     4  0.7439     0.1437 0.000 0.056 0.176 0.428 0.340
#> SRR2443239     4  0.4010     0.7426 0.000 0.000 0.116 0.796 0.088
#> SRR2443238     2  0.3701     0.6697 0.024 0.840 0.048 0.000 0.088
#> SRR2443237     4  0.5164     0.6835 0.000 0.020 0.120 0.728 0.132
#> SRR2443236     2  0.5964     0.4130 0.180 0.588 0.000 0.000 0.232
#> SRR2443235     1  0.5178     0.6395 0.704 0.204 0.016 0.000 0.076
#> SRR2443233     1  0.2771     0.7671 0.860 0.128 0.000 0.000 0.012
#> SRR2443234     1  0.1270     0.7922 0.948 0.052 0.000 0.000 0.000
#> SRR2443232     1  0.4372     0.6896 0.756 0.036 0.012 0.000 0.196
#> SRR2443231     1  0.1041     0.7909 0.964 0.032 0.000 0.000 0.004
#> SRR2443230     1  0.5012     0.6617 0.696 0.028 0.032 0.000 0.244
#> SRR2443229     3  0.8257     0.3054 0.000 0.140 0.376 0.228 0.256
#> SRR2443228     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443227     1  0.1357     0.7894 0.948 0.048 0.000 0.000 0.004
#> SRR2443226     2  0.3280     0.6977 0.004 0.824 0.160 0.012 0.000
#> SRR2443225     3  0.7342     0.2128 0.000 0.316 0.468 0.152 0.064
#> SRR2443223     4  0.2806     0.7642 0.000 0.000 0.152 0.844 0.004
#> SRR2443224     4  0.5395     0.6523 0.000 0.004 0.132 0.676 0.188
#> SRR2443222     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443221     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443219     4  0.3898     0.7479 0.000 0.000 0.116 0.804 0.080
#> SRR2443220     4  0.2660     0.7751 0.000 0.000 0.128 0.864 0.008
#> SRR2443218     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443217     3  0.8225     0.3047 0.000 0.136 0.380 0.220 0.264
#> SRR2443216     3  0.3368     0.5437 0.000 0.000 0.820 0.156 0.024
#> SRR2443215     4  0.4775     0.7238 0.000 0.016 0.136 0.756 0.092
#> SRR2443214     3  0.6490    -0.0195 0.012 0.388 0.488 0.008 0.104
#> SRR2443213     1  0.1041     0.7909 0.964 0.032 0.000 0.000 0.004
#> SRR2443212     4  0.7258     0.1575 0.000 0.044 0.300 0.468 0.188
#> SRR2443211     4  0.7268     0.2108 0.000 0.056 0.152 0.464 0.328
#> SRR2443210     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443209     3  0.8225     0.3047 0.000 0.136 0.380 0.220 0.264
#> SRR2443208     4  0.7629    -0.0986 0.000 0.064 0.356 0.388 0.192
#> SRR2443207     4  0.3262     0.7555 0.000 0.000 0.036 0.840 0.124
#> SRR2443206     4  0.2338     0.7655 0.000 0.000 0.004 0.884 0.112
#> SRR2443205     4  0.3398     0.7539 0.000 0.004 0.024 0.828 0.144
#> SRR2443204     2  0.3075     0.7318 0.048 0.860 0.092 0.000 0.000
#> SRR2443203     3  0.5757     0.1927 0.000 0.008 0.524 0.400 0.068
#> SRR2443202     4  0.5053     0.4285 0.000 0.000 0.324 0.624 0.052
#> SRR2443201     4  0.5246     0.3568 0.000 0.000 0.384 0.564 0.052
#> SRR2443200     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443199     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443197     4  0.3488     0.7258 0.000 0.008 0.180 0.804 0.008
#> SRR2443196     4  0.1618     0.7881 0.000 0.008 0.040 0.944 0.008
#> SRR2443198     4  0.3942     0.6575 0.000 0.000 0.232 0.748 0.020
#> SRR2443195     2  0.3003     0.7318 0.044 0.864 0.092 0.000 0.000
#> SRR2443194     3  0.5449     0.2739 0.000 0.000 0.556 0.376 0.068
#> SRR2443193     2  0.4675     0.6818 0.164 0.744 0.088 0.000 0.004
#> SRR2443191     3  0.8133     0.2302 0.000 0.100 0.336 0.304 0.260
#> SRR2443192     4  0.6275     0.5310 0.000 0.032 0.204 0.620 0.144
#> SRR2443190     1  0.3648     0.7792 0.824 0.092 0.000 0.000 0.084
#> SRR2443189     2  0.3280     0.6977 0.004 0.824 0.160 0.012 0.000
#> SRR2443188     1  0.1638     0.7866 0.932 0.064 0.000 0.000 0.004
#> SRR2443186     4  0.3262     0.7555 0.000 0.000 0.036 0.840 0.124
#> SRR2443187     4  0.2389     0.7645 0.000 0.000 0.004 0.880 0.116
#> SRR2443185     4  0.4541     0.6106 0.000 0.000 0.288 0.680 0.032
#> SRR2443184     3  0.3910     0.5296 0.000 0.000 0.772 0.196 0.032
#> SRR2443183     1  0.3806     0.7750 0.812 0.104 0.000 0.000 0.084
#> SRR2443182     3  0.8152    -0.6049 0.140 0.148 0.388 0.004 0.320
#> SRR2443181     4  0.5395     0.6523 0.000 0.004 0.132 0.676 0.188
#> SRR2443180     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443179     4  0.0798     0.7844 0.000 0.000 0.008 0.976 0.016
#> SRR2443178     2  0.8978    -0.0568 0.032 0.352 0.224 0.232 0.160
#> SRR2443177     2  0.3618     0.6606 0.004 0.788 0.196 0.012 0.000
#> SRR2443176     3  0.6330     0.4286 0.000 0.124 0.652 0.080 0.144
#> SRR2443175     5  0.8382     0.5893 0.236 0.128 0.276 0.004 0.356
#> SRR2443174     1  0.4426     0.7143 0.760 0.024 0.028 0.000 0.188
#> SRR2443173     4  0.5169     0.6718 0.000 0.004 0.120 0.700 0.176
#> SRR2443172     4  0.5169     0.6718 0.000 0.004 0.120 0.700 0.176
#> SRR2443171     5  0.7472     0.1326 0.348 0.120 0.092 0.000 0.440
#> SRR2443170     5  0.7120     0.5485 0.024 0.184 0.328 0.004 0.460
#> SRR2443169     1  0.5694     0.2870 0.504 0.024 0.036 0.000 0.436
#> SRR2443168     3  0.6862     0.3738 0.000 0.028 0.524 0.192 0.256
#> SRR2443167     4  0.2513     0.7756 0.000 0.000 0.116 0.876 0.008
#> SRR2443166     3  0.7316    -0.3177 0.080 0.124 0.556 0.012 0.228
#> SRR2443165     3  0.5649     0.5009 0.000 0.032 0.684 0.188 0.096
#> SRR2443164     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443163     4  0.2763     0.7657 0.000 0.000 0.148 0.848 0.004
#> SRR2443162     3  0.2388     0.4786 0.004 0.020 0.916 0.016 0.044
#> SRR2443161     3  0.2675     0.5246 0.004 0.020 0.904 0.040 0.032
#> SRR2443160     4  0.2411     0.7772 0.000 0.000 0.108 0.884 0.008
#> SRR2443159     4  0.2249     0.7798 0.000 0.000 0.096 0.896 0.008
#> SRR2443158     3  0.2875     0.5364 0.000 0.020 0.888 0.060 0.032
#> SRR2443157     3  0.8008    -0.6232 0.140 0.144 0.376 0.000 0.340
#> SRR2443156     4  0.7439     0.1329 0.000 0.056 0.176 0.428 0.340
#> SRR2443155     5  0.6977     0.5513 0.024 0.184 0.328 0.000 0.464
#> SRR2443154     5  0.6869     0.4897 0.016 0.140 0.328 0.012 0.504
#> SRR2443153     1  0.5855     0.5261 0.632 0.048 0.052 0.000 0.268
#> SRR2443152     4  0.5169     0.6718 0.000 0.004 0.120 0.700 0.176
#> SRR2443151     4  0.0609     0.7840 0.000 0.000 0.000 0.980 0.020
#> SRR2443150     4  0.5169     0.6718 0.000 0.004 0.120 0.700 0.176
#> SRR2443148     4  0.0798     0.7844 0.000 0.000 0.008 0.976 0.016
#> SRR2443147     4  0.1942     0.7847 0.000 0.000 0.068 0.920 0.012
#> SRR2443149     3  0.2086     0.5428 0.000 0.008 0.924 0.048 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.2151    0.60349 0.000 0.032 0.920 0.016 0.016 0.016
#> SRR2443262     4  0.2988    0.64446 0.000 0.000 0.152 0.824 0.024 0.000
#> SRR2443261     4  0.3065    0.64476 0.000 0.000 0.152 0.820 0.028 0.000
#> SRR2443260     3  0.1180    0.61957 0.000 0.012 0.960 0.012 0.000 0.016
#> SRR2443259     3  0.1294    0.60855 0.000 0.024 0.956 0.008 0.004 0.008
#> SRR2443258     3  0.0976    0.61812 0.000 0.008 0.968 0.008 0.000 0.016
#> SRR2443257     4  0.2355    0.65440 0.000 0.008 0.112 0.876 0.004 0.000
#> SRR2443256     3  0.1679    0.57909 0.000 0.036 0.936 0.000 0.012 0.016
#> SRR2443255     3  0.1180    0.61957 0.000 0.012 0.960 0.012 0.000 0.016
#> SRR2443254     3  0.1605    0.62412 0.000 0.004 0.936 0.044 0.000 0.016
#> SRR2443253     4  0.2308    0.65540 0.000 0.008 0.108 0.880 0.004 0.000
#> SRR2443251     4  0.3210    0.63419 0.000 0.000 0.168 0.804 0.028 0.000
#> SRR2443250     4  0.2988    0.64672 0.000 0.000 0.144 0.828 0.028 0.000
#> SRR2443249     4  0.2988    0.64672 0.000 0.000 0.144 0.828 0.028 0.000
#> SRR2443252     3  0.1364    0.62200 0.000 0.012 0.952 0.020 0.000 0.016
#> SRR2443247     2  0.6706    0.68426 0.168 0.540 0.208 0.000 0.012 0.072
#> SRR2443246     2  0.6637    0.73706 0.088 0.548 0.244 0.000 0.016 0.104
#> SRR2443248     3  0.6088    0.03026 0.000 0.008 0.460 0.316 0.216 0.000
#> SRR2443244     4  0.4952    0.43445 0.000 0.000 0.116 0.632 0.252 0.000
#> SRR2443245     6  0.2066    0.73312 0.040 0.000 0.052 0.000 0.000 0.908
#> SRR2443243     6  0.4575    0.48766 0.352 0.000 0.048 0.000 0.000 0.600
#> SRR2443242     4  0.6682    0.17666 0.000 0.044 0.152 0.496 0.292 0.016
#> SRR2443241     5  0.7421    0.11596 0.000 0.068 0.312 0.148 0.428 0.044
#> SRR2443240     5  0.6870    0.40641 0.000 0.088 0.116 0.256 0.520 0.020
#> SRR2443239     4  0.4952    0.43445 0.000 0.000 0.116 0.632 0.252 0.000
#> SRR2443238     6  0.4124    0.64967 0.008 0.076 0.024 0.000 0.100 0.792
#> SRR2443237     4  0.5711    0.28165 0.000 0.020 0.096 0.572 0.304 0.008
#> SRR2443236     6  0.7176    0.32835 0.168 0.144 0.000 0.000 0.248 0.440
#> SRR2443235     1  0.5484    0.64170 0.692 0.088 0.016 0.000 0.060 0.144
#> SRR2443233     1  0.3097    0.75657 0.856 0.028 0.000 0.000 0.036 0.080
#> SRR2443234     1  0.0909    0.77874 0.968 0.012 0.000 0.000 0.000 0.020
#> SRR2443232     1  0.4141    0.58130 0.676 0.296 0.008 0.000 0.000 0.020
#> SRR2443231     1  0.0405    0.77684 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR2443230     1  0.4230    0.54565 0.584 0.400 0.008 0.000 0.008 0.000
#> SRR2443229     3  0.7744   -0.01160 0.000 0.052 0.376 0.124 0.340 0.108
#> SRR2443228     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443227     1  0.0858    0.77484 0.968 0.000 0.000 0.000 0.004 0.028
#> SRR2443226     6  0.2278    0.70861 0.000 0.000 0.128 0.000 0.004 0.868
#> SRR2443225     3  0.6829    0.22514 0.000 0.008 0.456 0.100 0.100 0.336
#> SRR2443223     4  0.3417    0.63347 0.000 0.000 0.160 0.796 0.044 0.000
#> SRR2443224     5  0.5137    0.26861 0.000 0.008 0.064 0.408 0.520 0.000
#> SRR2443222     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443221     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443219     4  0.4843    0.46640 0.000 0.000 0.116 0.652 0.232 0.000
#> SRR2443220     4  0.3213    0.64558 0.000 0.000 0.132 0.820 0.048 0.000
#> SRR2443218     4  0.2066    0.62759 0.000 0.024 0.000 0.904 0.072 0.000
#> SRR2443217     3  0.7589   -0.00513 0.000 0.052 0.380 0.108 0.360 0.100
#> SRR2443216     3  0.3141    0.59559 0.000 0.004 0.832 0.124 0.040 0.000
#> SRR2443215     4  0.5548    0.36723 0.000 0.000 0.132 0.592 0.260 0.016
#> SRR2443214     3  0.6975   -0.00629 0.012 0.104 0.428 0.004 0.084 0.368
#> SRR2443213     1  0.0405    0.77684 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR2443212     4  0.7778   -0.20960 0.000 0.104 0.236 0.332 0.304 0.024
#> SRR2443211     5  0.6844    0.37131 0.000 0.088 0.100 0.288 0.504 0.020
#> SRR2443210     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443209     3  0.7589   -0.00513 0.000 0.052 0.380 0.108 0.360 0.100
#> SRR2443208     5  0.8126    0.07873 0.000 0.116 0.288 0.264 0.288 0.044
#> SRR2443207     4  0.4350    0.06038 0.000 0.004 0.016 0.552 0.428 0.000
#> SRR2443206     4  0.3915    0.16652 0.000 0.004 0.000 0.584 0.412 0.000
#> SRR2443205     4  0.4274    0.07141 0.000 0.012 0.004 0.552 0.432 0.000
#> SRR2443204     6  0.2066    0.73312 0.040 0.000 0.052 0.000 0.000 0.908
#> SRR2443203     3  0.5803    0.20396 0.000 0.004 0.524 0.324 0.140 0.008
#> SRR2443202     4  0.5301    0.27024 0.000 0.000 0.320 0.556 0.124 0.000
#> SRR2443201     4  0.5386    0.23401 0.000 0.000 0.388 0.496 0.116 0.000
#> SRR2443200     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443199     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443197     4  0.3667    0.60206 0.000 0.000 0.184 0.776 0.032 0.008
#> SRR2443196     4  0.2699    0.65739 0.000 0.016 0.052 0.888 0.036 0.008
#> SRR2443198     4  0.4431    0.51277 0.000 0.000 0.228 0.692 0.080 0.000
#> SRR2443195     6  0.2066    0.73350 0.040 0.000 0.052 0.000 0.000 0.908
#> SRR2443194     3  0.5567    0.25398 0.000 0.008 0.556 0.300 0.136 0.000
#> SRR2443193     6  0.3679    0.68372 0.176 0.000 0.052 0.000 0.000 0.772
#> SRR2443191     5  0.7421    0.11596 0.000 0.068 0.312 0.148 0.428 0.044
#> SRR2443192     4  0.7024    0.08960 0.000 0.056 0.168 0.456 0.300 0.020
#> SRR2443190     1  0.4269    0.73575 0.752 0.168 0.000 0.000 0.024 0.056
#> SRR2443189     6  0.2278    0.70861 0.000 0.000 0.128 0.000 0.004 0.868
#> SRR2443188     1  0.1296    0.77148 0.948 0.004 0.000 0.000 0.004 0.044
#> SRR2443186     4  0.4350    0.06038 0.000 0.004 0.016 0.552 0.428 0.000
#> SRR2443187     4  0.3923    0.15632 0.000 0.004 0.000 0.580 0.416 0.000
#> SRR2443185     4  0.4705    0.46860 0.000 0.004 0.292 0.640 0.064 0.000
#> SRR2443184     3  0.3765    0.54697 0.000 0.004 0.780 0.156 0.060 0.000
#> SRR2443183     1  0.4543    0.72841 0.732 0.172 0.000 0.000 0.028 0.068
#> SRR2443182     2  0.6606    0.63107 0.040 0.452 0.372 0.000 0.020 0.116
#> SRR2443181     5  0.5137    0.26861 0.000 0.008 0.064 0.408 0.520 0.000
#> SRR2443180     4  0.2122    0.62653 0.000 0.024 0.000 0.900 0.076 0.000
#> SRR2443179     4  0.2187    0.64698 0.000 0.024 0.024 0.912 0.040 0.000
#> SRR2443178     6  0.8906   -0.06050 0.028 0.084 0.172 0.144 0.232 0.340
#> SRR2443177     6  0.2632    0.67784 0.000 0.000 0.164 0.000 0.004 0.832
#> SRR2443176     3  0.6639    0.44787 0.000 0.132 0.612 0.056 0.104 0.096
#> SRR2443175     2  0.6689    0.73656 0.088 0.536 0.256 0.000 0.016 0.104
#> SRR2443174     1  0.4077    0.63471 0.660 0.320 0.012 0.000 0.008 0.000
#> SRR2443173     5  0.4964    0.23768 0.000 0.004 0.056 0.428 0.512 0.000
#> SRR2443172     5  0.4964    0.23768 0.000 0.004 0.056 0.428 0.512 0.000
#> SRR2443171     2  0.5237    0.48395 0.160 0.696 0.060 0.000 0.004 0.080
#> SRR2443170     5  0.7350   -0.41853 0.000 0.332 0.228 0.004 0.340 0.096
#> SRR2443169     2  0.4058    0.04782 0.320 0.660 0.016 0.000 0.004 0.000
#> SRR2443168     3  0.6014    0.09028 0.000 0.040 0.456 0.096 0.408 0.000
#> SRR2443167     4  0.2320    0.65207 0.000 0.000 0.132 0.864 0.004 0.000
#> SRR2443166     3  0.5568   -0.29809 0.004 0.316 0.564 0.000 0.012 0.104
#> SRR2443165     3  0.6091    0.48003 0.000 0.100 0.636 0.160 0.088 0.016
#> SRR2443164     4  0.2066    0.62759 0.000 0.024 0.000 0.904 0.072 0.000
#> SRR2443163     4  0.3175    0.63810 0.000 0.000 0.164 0.808 0.028 0.000
#> SRR2443162     3  0.1750    0.57411 0.000 0.040 0.932 0.000 0.012 0.016
#> SRR2443161     3  0.1817    0.61269 0.000 0.020 0.936 0.016 0.012 0.016
#> SRR2443160     4  0.2234    0.65425 0.000 0.000 0.124 0.872 0.004 0.000
#> SRR2443159     4  0.2355    0.65440 0.000 0.008 0.112 0.876 0.004 0.000
#> SRR2443158     3  0.2151    0.62091 0.000 0.016 0.920 0.032 0.016 0.016
#> SRR2443157     2  0.6554    0.66216 0.040 0.472 0.356 0.000 0.020 0.112
#> SRR2443156     5  0.6981    0.39473 0.000 0.088 0.128 0.260 0.504 0.020
#> SRR2443155     5  0.7209   -0.42371 0.000 0.332 0.220 0.000 0.352 0.096
#> SRR2443154     5  0.7016   -0.35073 0.000 0.324 0.236 0.004 0.380 0.056
#> SRR2443153     1  0.5320    0.28733 0.524 0.408 0.032 0.000 0.008 0.028
#> SRR2443152     5  0.4964    0.23768 0.000 0.004 0.056 0.428 0.512 0.000
#> SRR2443151     4  0.2066    0.62759 0.000 0.024 0.000 0.904 0.072 0.000
#> SRR2443150     5  0.4964    0.23768 0.000 0.004 0.056 0.428 0.512 0.000
#> SRR2443148     4  0.2187    0.64698 0.000 0.024 0.024 0.912 0.040 0.000
#> SRR2443147     4  0.2199    0.65856 0.000 0.020 0.088 0.892 0.000 0.000
#> SRR2443149     3  0.1856    0.62500 0.000 0.008 0.932 0.024 0.028 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.784           0.886       0.951         0.4497 0.536   0.536
#> 3 3 0.615           0.678       0.868         0.4471 0.704   0.493
#> 4 4 0.548           0.550       0.732         0.1314 0.825   0.539
#> 5 5 0.591           0.399       0.598         0.0673 0.900   0.639
#> 6 6 0.660           0.478       0.647         0.0447 0.819   0.359

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2   1.000    -0.1299 0.488 0.512
#> SRR2443262     2   0.000     0.9687 0.000 1.000
#> SRR2443261     2   0.000     0.9687 0.000 1.000
#> SRR2443260     2   0.000     0.9687 0.000 1.000
#> SRR2443259     2   0.529     0.8324 0.120 0.880
#> SRR2443258     2   0.993     0.0191 0.452 0.548
#> SRR2443257     2   0.000     0.9687 0.000 1.000
#> SRR2443256     1   0.722     0.7794 0.800 0.200
#> SRR2443255     2   0.416     0.8784 0.084 0.916
#> SRR2443254     2   0.000     0.9687 0.000 1.000
#> SRR2443253     2   0.000     0.9687 0.000 1.000
#> SRR2443251     2   0.000     0.9687 0.000 1.000
#> SRR2443250     2   0.000     0.9687 0.000 1.000
#> SRR2443249     2   0.000     0.9687 0.000 1.000
#> SRR2443252     2   0.000     0.9687 0.000 1.000
#> SRR2443247     1   0.402     0.8733 0.920 0.080
#> SRR2443246     1   0.714     0.7836 0.804 0.196
#> SRR2443248     2   0.000     0.9687 0.000 1.000
#> SRR2443244     2   0.000     0.9687 0.000 1.000
#> SRR2443245     1   0.000     0.9032 1.000 0.000
#> SRR2443243     1   0.000     0.9032 1.000 0.000
#> SRR2443242     2   0.000     0.9687 0.000 1.000
#> SRR2443241     1   0.973     0.4456 0.596 0.404
#> SRR2443240     2   0.000     0.9687 0.000 1.000
#> SRR2443239     2   0.000     0.9687 0.000 1.000
#> SRR2443238     1   0.000     0.9032 1.000 0.000
#> SRR2443237     2   0.000     0.9687 0.000 1.000
#> SRR2443236     1   0.000     0.9032 1.000 0.000
#> SRR2443235     1   0.000     0.9032 1.000 0.000
#> SRR2443233     1   0.000     0.9032 1.000 0.000
#> SRR2443234     1   0.000     0.9032 1.000 0.000
#> SRR2443232     1   0.000     0.9032 1.000 0.000
#> SRR2443231     1   0.000     0.9032 1.000 0.000
#> SRR2443230     1   0.000     0.9032 1.000 0.000
#> SRR2443229     1   0.900     0.6190 0.684 0.316
#> SRR2443228     2   0.000     0.9687 0.000 1.000
#> SRR2443227     1   0.000     0.9032 1.000 0.000
#> SRR2443226     1   0.000     0.9032 1.000 0.000
#> SRR2443225     2   0.000     0.9687 0.000 1.000
#> SRR2443223     2   0.000     0.9687 0.000 1.000
#> SRR2443224     2   0.000     0.9687 0.000 1.000
#> SRR2443222     2   0.000     0.9687 0.000 1.000
#> SRR2443221     2   0.000     0.9687 0.000 1.000
#> SRR2443219     2   0.000     0.9687 0.000 1.000
#> SRR2443220     2   0.000     0.9687 0.000 1.000
#> SRR2443218     2   0.000     0.9687 0.000 1.000
#> SRR2443217     2   0.000     0.9687 0.000 1.000
#> SRR2443216     2   0.000     0.9687 0.000 1.000
#> SRR2443215     2   0.000     0.9687 0.000 1.000
#> SRR2443214     1   0.000     0.9032 1.000 0.000
#> SRR2443213     1   0.000     0.9032 1.000 0.000
#> SRR2443212     2   0.000     0.9687 0.000 1.000
#> SRR2443211     2   0.000     0.9687 0.000 1.000
#> SRR2443210     2   0.000     0.9687 0.000 1.000
#> SRR2443209     1   0.969     0.4646 0.604 0.396
#> SRR2443208     2   0.000     0.9687 0.000 1.000
#> SRR2443207     2   0.000     0.9687 0.000 1.000
#> SRR2443206     2   0.000     0.9687 0.000 1.000
#> SRR2443205     2   0.000     0.9687 0.000 1.000
#> SRR2443204     1   0.000     0.9032 1.000 0.000
#> SRR2443203     2   0.000     0.9687 0.000 1.000
#> SRR2443202     2   0.000     0.9687 0.000 1.000
#> SRR2443201     2   0.000     0.9687 0.000 1.000
#> SRR2443200     2   0.000     0.9687 0.000 1.000
#> SRR2443199     2   0.000     0.9687 0.000 1.000
#> SRR2443197     2   0.000     0.9687 0.000 1.000
#> SRR2443196     2   0.000     0.9687 0.000 1.000
#> SRR2443198     2   0.000     0.9687 0.000 1.000
#> SRR2443195     1   0.000     0.9032 1.000 0.000
#> SRR2443194     2   0.000     0.9687 0.000 1.000
#> SRR2443193     1   0.000     0.9032 1.000 0.000
#> SRR2443191     1   0.978     0.4252 0.588 0.412
#> SRR2443192     2   0.000     0.9687 0.000 1.000
#> SRR2443190     1   0.000     0.9032 1.000 0.000
#> SRR2443189     1   0.000     0.9032 1.000 0.000
#> SRR2443188     1   0.000     0.9032 1.000 0.000
#> SRR2443186     2   0.000     0.9687 0.000 1.000
#> SRR2443187     2   0.000     0.9687 0.000 1.000
#> SRR2443185     2   0.000     0.9687 0.000 1.000
#> SRR2443184     2   0.000     0.9687 0.000 1.000
#> SRR2443183     1   0.000     0.9032 1.000 0.000
#> SRR2443182     1   0.456     0.8648 0.904 0.096
#> SRR2443181     2   0.000     0.9687 0.000 1.000
#> SRR2443180     2   0.000     0.9687 0.000 1.000
#> SRR2443179     2   0.000     0.9687 0.000 1.000
#> SRR2443178     2   0.722     0.7189 0.200 0.800
#> SRR2443177     1   0.000     0.9032 1.000 0.000
#> SRR2443176     1   0.242     0.8898 0.960 0.040
#> SRR2443175     1   0.595     0.8304 0.856 0.144
#> SRR2443174     1   0.000     0.9032 1.000 0.000
#> SRR2443173     2   0.000     0.9687 0.000 1.000
#> SRR2443172     2   0.000     0.9687 0.000 1.000
#> SRR2443171     1   0.402     0.8733 0.920 0.080
#> SRR2443170     1   0.722     0.7794 0.800 0.200
#> SRR2443169     1   0.000     0.9032 1.000 0.000
#> SRR2443168     2   0.000     0.9687 0.000 1.000
#> SRR2443167     2   0.000     0.9687 0.000 1.000
#> SRR2443166     1   0.482     0.8599 0.896 0.104
#> SRR2443165     2   0.000     0.9687 0.000 1.000
#> SRR2443164     2   0.000     0.9687 0.000 1.000
#> SRR2443163     2   0.000     0.9687 0.000 1.000
#> SRR2443162     1   0.961     0.4912 0.616 0.384
#> SRR2443161     2   0.000     0.9687 0.000 1.000
#> SRR2443160     2   0.000     0.9687 0.000 1.000
#> SRR2443159     2   0.000     0.9687 0.000 1.000
#> SRR2443158     2   0.969     0.2303 0.396 0.604
#> SRR2443157     1   0.469     0.8625 0.900 0.100
#> SRR2443156     2   0.730     0.7016 0.204 0.796
#> SRR2443155     1   0.689     0.7954 0.816 0.184
#> SRR2443154     1   0.973     0.4452 0.596 0.404
#> SRR2443153     1   0.000     0.9032 1.000 0.000
#> SRR2443152     2   0.000     0.9687 0.000 1.000
#> SRR2443151     2   0.000     0.9687 0.000 1.000
#> SRR2443150     2   0.000     0.9687 0.000 1.000
#> SRR2443148     2   0.000     0.9687 0.000 1.000
#> SRR2443147     2   0.000     0.9687 0.000 1.000
#> SRR2443149     2   0.358     0.8973 0.068 0.932

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443262     2  0.5905     0.4671 0.000 0.648 0.352
#> SRR2443261     3  0.6204     0.1099 0.000 0.424 0.576
#> SRR2443260     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443259     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443258     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443257     2  0.5835     0.4886 0.000 0.660 0.340
#> SRR2443256     3  0.0424     0.7908 0.008 0.000 0.992
#> SRR2443255     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443254     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443253     2  0.5835     0.4886 0.000 0.660 0.340
#> SRR2443251     3  0.6168     0.1444 0.000 0.412 0.588
#> SRR2443250     2  0.5926     0.4588 0.000 0.644 0.356
#> SRR2443249     2  0.5882     0.4744 0.000 0.652 0.348
#> SRR2443252     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443247     1  0.5591     0.5681 0.696 0.000 0.304
#> SRR2443246     3  0.6062     0.1445 0.384 0.000 0.616
#> SRR2443248     3  0.3340     0.7050 0.000 0.120 0.880
#> SRR2443244     2  0.2165     0.8234 0.000 0.936 0.064
#> SRR2443245     1  0.3500     0.8374 0.880 0.004 0.116
#> SRR2443243     1  0.0475     0.8691 0.992 0.004 0.004
#> SRR2443242     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443241     3  0.2939     0.7396 0.072 0.012 0.916
#> SRR2443240     2  0.6302     0.0957 0.000 0.520 0.480
#> SRR2443239     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443238     1  0.3573     0.8351 0.876 0.004 0.120
#> SRR2443237     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443236     1  0.0475     0.8691 0.992 0.004 0.004
#> SRR2443235     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443233     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443234     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443232     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443231     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443230     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443229     3  0.5042     0.6831 0.060 0.104 0.836
#> SRR2443228     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443227     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443226     1  0.3918     0.8208 0.856 0.004 0.140
#> SRR2443225     3  0.0892     0.7965 0.000 0.020 0.980
#> SRR2443223     3  0.6286    -0.0300 0.000 0.464 0.536
#> SRR2443224     3  0.5431     0.4671 0.000 0.284 0.716
#> SRR2443222     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443221     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443219     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443220     2  0.5621     0.5424 0.000 0.692 0.308
#> SRR2443218     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443217     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443216     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443215     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443214     1  0.3918     0.8208 0.856 0.004 0.140
#> SRR2443213     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443212     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443211     2  0.5291     0.5960 0.000 0.732 0.268
#> SRR2443210     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443209     3  0.2280     0.7601 0.052 0.008 0.940
#> SRR2443208     2  0.6308     0.0433 0.000 0.508 0.492
#> SRR2443207     2  0.5810     0.4735 0.000 0.664 0.336
#> SRR2443206     2  0.0000     0.8368 0.000 1.000 0.000
#> SRR2443205     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443204     1  0.3349     0.8410 0.888 0.004 0.108
#> SRR2443203     3  0.3116     0.7229 0.000 0.108 0.892
#> SRR2443202     2  0.2165     0.8234 0.000 0.936 0.064
#> SRR2443201     3  0.6225     0.0827 0.000 0.432 0.568
#> SRR2443200     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443199     2  0.0000     0.8368 0.000 1.000 0.000
#> SRR2443197     2  0.6244     0.3062 0.000 0.560 0.440
#> SRR2443196     2  0.0000     0.8368 0.000 1.000 0.000
#> SRR2443198     3  0.6291    -0.0448 0.000 0.468 0.532
#> SRR2443195     1  0.3500     0.8374 0.880 0.004 0.116
#> SRR2443194     3  0.0747     0.7970 0.000 0.016 0.984
#> SRR2443193     1  0.1878     0.8625 0.952 0.004 0.044
#> SRR2443191     3  0.1170     0.7902 0.016 0.008 0.976
#> SRR2443192     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443190     1  0.0000     0.8711 1.000 0.000 0.000
#> SRR2443189     1  0.3918     0.8208 0.856 0.004 0.140
#> SRR2443188     1  0.0237     0.8700 0.996 0.004 0.000
#> SRR2443186     2  0.1964     0.8267 0.000 0.944 0.056
#> SRR2443187     2  0.1860     0.8266 0.000 0.948 0.052
#> SRR2443185     3  0.6252     0.0428 0.000 0.444 0.556
#> SRR2443184     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443183     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443182     3  0.6062     0.1445 0.384 0.000 0.616
#> SRR2443181     2  0.2066     0.8237 0.000 0.940 0.060
#> SRR2443180     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443179     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443178     2  0.6585     0.6695 0.200 0.736 0.064
#> SRR2443177     1  0.3573     0.8351 0.876 0.004 0.120
#> SRR2443176     3  0.6045     0.1458 0.380 0.000 0.620
#> SRR2443175     1  0.6168     0.3798 0.588 0.000 0.412
#> SRR2443174     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443173     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443172     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443171     1  0.6008     0.4487 0.628 0.000 0.372
#> SRR2443170     3  0.7207     0.0971 0.384 0.032 0.584
#> SRR2443169     1  0.4555     0.7006 0.800 0.000 0.200
#> SRR2443168     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443167     2  0.5733     0.5145 0.000 0.676 0.324
#> SRR2443166     3  0.6026     0.1772 0.376 0.000 0.624
#> SRR2443165     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443164     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443163     3  0.6192     0.1209 0.000 0.420 0.580
#> SRR2443162     3  0.0237     0.7971 0.000 0.004 0.996
#> SRR2443161     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443160     2  0.5882     0.4744 0.000 0.652 0.348
#> SRR2443159     2  0.5882     0.4744 0.000 0.652 0.348
#> SRR2443158     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443157     1  0.6309     0.2101 0.504 0.000 0.496
#> SRR2443156     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443155     1  0.6026     0.4405 0.624 0.000 0.376
#> SRR2443154     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443153     1  0.0237     0.8718 0.996 0.000 0.004
#> SRR2443152     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443151     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443150     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443148     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443147     2  0.0237     0.8388 0.000 0.996 0.004
#> SRR2443149     3  0.0424     0.8001 0.000 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.4585     0.5947 0.000 0.000 0.668 0.332
#> SRR2443262     4  0.1722     0.6767 0.000 0.048 0.008 0.944
#> SRR2443261     4  0.2888     0.6101 0.000 0.004 0.124 0.872
#> SRR2443260     3  0.4855     0.5570 0.000 0.000 0.600 0.400
#> SRR2443259     3  0.4843     0.5608 0.000 0.000 0.604 0.396
#> SRR2443258     3  0.4830     0.5625 0.000 0.000 0.608 0.392
#> SRR2443257     4  0.1576     0.6753 0.000 0.048 0.004 0.948
#> SRR2443256     3  0.3610     0.6167 0.000 0.000 0.800 0.200
#> SRR2443255     3  0.4866     0.5524 0.000 0.000 0.596 0.404
#> SRR2443254     3  0.4877     0.5471 0.000 0.000 0.592 0.408
#> SRR2443253     4  0.1576     0.6753 0.000 0.048 0.004 0.948
#> SRR2443251     4  0.2944     0.6056 0.000 0.004 0.128 0.868
#> SRR2443250     4  0.1635     0.6780 0.000 0.044 0.008 0.948
#> SRR2443249     4  0.1576     0.6753 0.000 0.048 0.004 0.948
#> SRR2443252     3  0.5126     0.4857 0.000 0.004 0.552 0.444
#> SRR2443247     1  0.6054     0.4193 0.592 0.000 0.352 0.056
#> SRR2443246     3  0.5109     0.4452 0.196 0.000 0.744 0.060
#> SRR2443248     4  0.5728    -0.0818 0.000 0.036 0.364 0.600
#> SRR2443244     2  0.4914     0.7078 0.000 0.748 0.044 0.208
#> SRR2443245     1  0.5878     0.7624 0.720 0.092 0.176 0.012
#> SRR2443243     1  0.4489     0.7959 0.824 0.088 0.076 0.012
#> SRR2443242     2  0.5021     0.7103 0.000 0.756 0.064 0.180
#> SRR2443241     3  0.5325     0.4879 0.000 0.204 0.728 0.068
#> SRR2443240     2  0.5327     0.5909 0.000 0.720 0.220 0.060
#> SRR2443239     2  0.3450     0.7372 0.000 0.836 0.008 0.156
#> SRR2443238     1  0.6222     0.7426 0.688 0.100 0.200 0.012
#> SRR2443237     2  0.5062     0.7105 0.000 0.752 0.064 0.184
#> SRR2443236     1  0.2737     0.8113 0.888 0.008 0.104 0.000
#> SRR2443235     1  0.4072     0.7226 0.748 0.000 0.252 0.000
#> SRR2443233     1  0.0336     0.8173 0.992 0.000 0.008 0.000
#> SRR2443234     1  0.0336     0.8173 0.992 0.000 0.008 0.000
#> SRR2443232     1  0.2973     0.7629 0.856 0.000 0.144 0.000
#> SRR2443231     1  0.0707     0.8153 0.980 0.000 0.020 0.000
#> SRR2443230     1  0.3172     0.7519 0.840 0.000 0.160 0.000
#> SRR2443229     3  0.4991     0.4726 0.008 0.220 0.744 0.028
#> SRR2443228     2  0.4522     0.6514 0.000 0.680 0.000 0.320
#> SRR2443227     1  0.0188     0.8171 0.996 0.000 0.004 0.000
#> SRR2443226     1  0.6565     0.7200 0.656 0.100 0.228 0.016
#> SRR2443225     3  0.6176     0.3953 0.000 0.052 0.524 0.424
#> SRR2443223     4  0.3108     0.6196 0.000 0.016 0.112 0.872
#> SRR2443224     2  0.5924     0.2520 0.000 0.556 0.404 0.040
#> SRR2443222     2  0.4522     0.6514 0.000 0.680 0.000 0.320
#> SRR2443221     2  0.4356     0.6712 0.000 0.708 0.000 0.292
#> SRR2443219     4  0.4998    -0.4436 0.000 0.488 0.000 0.512
#> SRR2443220     4  0.1743     0.6669 0.000 0.056 0.004 0.940
#> SRR2443218     2  0.4907     0.5329 0.000 0.580 0.000 0.420
#> SRR2443217     3  0.5235     0.5974 0.000 0.048 0.716 0.236
#> SRR2443216     3  0.5161     0.4219 0.000 0.004 0.520 0.476
#> SRR2443215     2  0.4949     0.7122 0.000 0.760 0.060 0.180
#> SRR2443214     1  0.6565     0.7200 0.656 0.100 0.228 0.016
#> SRR2443213     1  0.0336     0.8173 0.992 0.000 0.008 0.000
#> SRR2443212     2  0.3958     0.7337 0.000 0.836 0.052 0.112
#> SRR2443211     2  0.5128     0.6721 0.000 0.760 0.148 0.092
#> SRR2443210     2  0.4522     0.6514 0.000 0.680 0.000 0.320
#> SRR2443209     3  0.5325     0.4988 0.000 0.204 0.728 0.068
#> SRR2443208     2  0.5354     0.5791 0.000 0.712 0.232 0.056
#> SRR2443207     2  0.5495     0.6308 0.000 0.728 0.176 0.096
#> SRR2443206     2  0.2737     0.7380 0.000 0.888 0.008 0.104
#> SRR2443205     2  0.4535     0.7255 0.000 0.804 0.084 0.112
#> SRR2443204     1  0.5735     0.7669 0.732 0.088 0.168 0.012
#> SRR2443203     4  0.6148    -0.3191 0.000 0.048 0.468 0.484
#> SRR2443202     4  0.5592    -0.2346 0.000 0.404 0.024 0.572
#> SRR2443201     4  0.3803     0.5742 0.000 0.032 0.132 0.836
#> SRR2443200     2  0.4522     0.6514 0.000 0.680 0.000 0.320
#> SRR2443199     2  0.5220     0.5256 0.000 0.568 0.008 0.424
#> SRR2443197     4  0.3219     0.6334 0.000 0.020 0.112 0.868
#> SRR2443196     4  0.5638    -0.2347 0.000 0.388 0.028 0.584
#> SRR2443198     4  0.3166     0.6213 0.000 0.016 0.116 0.868
#> SRR2443195     1  0.5896     0.7629 0.720 0.096 0.172 0.012
#> SRR2443194     3  0.5277     0.4390 0.000 0.008 0.532 0.460
#> SRR2443193     1  0.5054     0.7897 0.788 0.092 0.108 0.012
#> SRR2443191     3  0.5066     0.5489 0.000 0.148 0.764 0.088
#> SRR2443192     2  0.4849     0.7192 0.000 0.772 0.064 0.164
#> SRR2443190     1  0.0000     0.8169 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.6212     0.7388 0.684 0.092 0.212 0.012
#> SRR2443188     1  0.0000     0.8169 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.3581     0.7391 0.000 0.852 0.032 0.116
#> SRR2443187     2  0.3166     0.7396 0.000 0.868 0.016 0.116
#> SRR2443185     4  0.2773     0.6186 0.000 0.004 0.116 0.880
#> SRR2443184     4  0.5167    -0.3891 0.000 0.004 0.488 0.508
#> SRR2443183     1  0.0336     0.8173 0.992 0.000 0.008 0.000
#> SRR2443182     3  0.4874     0.4613 0.180 0.000 0.764 0.056
#> SRR2443181     2  0.4535     0.7255 0.000 0.804 0.084 0.112
#> SRR2443180     2  0.4907     0.5329 0.000 0.580 0.000 0.420
#> SRR2443179     4  0.5220    -0.2663 0.000 0.424 0.008 0.568
#> SRR2443178     2  0.8036     0.4706 0.168 0.592 0.096 0.144
#> SRR2443177     1  0.6034     0.7531 0.704 0.092 0.192 0.012
#> SRR2443176     3  0.4821     0.4271 0.160 0.008 0.784 0.048
#> SRR2443175     3  0.6257    -0.1850 0.436 0.000 0.508 0.056
#> SRR2443174     1  0.3024     0.7605 0.852 0.000 0.148 0.000
#> SRR2443173     2  0.4957     0.6681 0.000 0.684 0.016 0.300
#> SRR2443172     2  0.4980     0.6685 0.000 0.680 0.016 0.304
#> SRR2443171     1  0.6252     0.3004 0.512 0.000 0.432 0.056
#> SRR2443170     3  0.4477     0.4361 0.140 0.032 0.812 0.016
#> SRR2443169     1  0.5256     0.6013 0.700 0.000 0.260 0.040
#> SRR2443168     3  0.5339     0.5665 0.000 0.020 0.624 0.356
#> SRR2443167     4  0.1661     0.6719 0.000 0.052 0.004 0.944
#> SRR2443166     3  0.5397     0.4749 0.160 0.008 0.752 0.080
#> SRR2443165     4  0.5119    -0.2704 0.000 0.004 0.440 0.556
#> SRR2443164     2  0.4907     0.5329 0.000 0.580 0.000 0.420
#> SRR2443163     4  0.3161     0.6064 0.000 0.012 0.124 0.864
#> SRR2443162     3  0.4382     0.6054 0.000 0.000 0.704 0.296
#> SRR2443161     3  0.4866     0.5524 0.000 0.000 0.596 0.404
#> SRR2443160     4  0.1576     0.6753 0.000 0.048 0.004 0.948
#> SRR2443159     4  0.1576     0.6753 0.000 0.048 0.004 0.948
#> SRR2443158     3  0.4790     0.5720 0.000 0.000 0.620 0.380
#> SRR2443157     3  0.6007     0.1110 0.340 0.000 0.604 0.056
#> SRR2443156     3  0.4761     0.6040 0.000 0.044 0.764 0.192
#> SRR2443155     3  0.5859    -0.2858 0.472 0.000 0.496 0.032
#> SRR2443154     3  0.2401     0.6096 0.000 0.004 0.904 0.092
#> SRR2443153     1  0.0707     0.8153 0.980 0.000 0.020 0.000
#> SRR2443152     2  0.4072     0.7383 0.000 0.828 0.052 0.120
#> SRR2443151     2  0.4907     0.5329 0.000 0.580 0.000 0.420
#> SRR2443150     2  0.4072     0.7383 0.000 0.828 0.052 0.120
#> SRR2443148     2  0.5112     0.5066 0.000 0.560 0.004 0.436
#> SRR2443147     4  0.4608     0.1686 0.000 0.304 0.004 0.692
#> SRR2443149     3  0.5004     0.5630 0.000 0.004 0.604 0.392

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4456     0.5240 0.000 0.000 0.660 0.320 0.020
#> SRR2443262     4  0.2377     0.6809 0.000 0.128 0.000 0.872 0.000
#> SRR2443261     4  0.0912     0.6823 0.000 0.000 0.016 0.972 0.012
#> SRR2443260     3  0.4696     0.4009 0.000 0.000 0.556 0.428 0.016
#> SRR2443259     3  0.4658     0.4310 0.000 0.000 0.576 0.408 0.016
#> SRR2443258     3  0.4565     0.4313 0.000 0.000 0.580 0.408 0.012
#> SRR2443257     4  0.2471     0.6742 0.000 0.136 0.000 0.864 0.000
#> SRR2443256     3  0.3163     0.6034 0.000 0.000 0.824 0.164 0.012
#> SRR2443255     3  0.4666     0.4248 0.000 0.000 0.572 0.412 0.016
#> SRR2443254     3  0.4746     0.2886 0.000 0.000 0.504 0.480 0.016
#> SRR2443253     4  0.2516     0.6705 0.000 0.140 0.000 0.860 0.000
#> SRR2443251     4  0.0912     0.6823 0.000 0.000 0.016 0.972 0.012
#> SRR2443250     4  0.2179     0.6889 0.000 0.112 0.000 0.888 0.000
#> SRR2443249     4  0.2377     0.6809 0.000 0.128 0.000 0.872 0.000
#> SRR2443252     4  0.4696    -0.1101 0.000 0.000 0.428 0.556 0.016
#> SRR2443247     1  0.4887     0.2734 0.536 0.000 0.444 0.012 0.008
#> SRR2443246     3  0.3103     0.5637 0.072 0.000 0.872 0.012 0.044
#> SRR2443248     4  0.3783     0.4198 0.000 0.004 0.216 0.768 0.012
#> SRR2443244     2  0.5987     0.3920 0.000 0.544 0.000 0.132 0.324
#> SRR2443245     1  0.6480     0.1706 0.412 0.000 0.184 0.000 0.404
#> SRR2443243     1  0.5895     0.2890 0.500 0.000 0.104 0.000 0.396
#> SRR2443242     2  0.5800     0.3604 0.000 0.544 0.008 0.076 0.372
#> SRR2443241     3  0.5985     0.2902 0.000 0.084 0.536 0.012 0.368
#> SRR2443240     5  0.5917    -0.0643 0.000 0.416 0.064 0.016 0.504
#> SRR2443239     2  0.5359     0.4520 0.000 0.644 0.000 0.100 0.256
#> SRR2443238     5  0.6450    -0.2212 0.384 0.000 0.180 0.000 0.436
#> SRR2443237     2  0.5792     0.3641 0.000 0.536 0.004 0.084 0.376
#> SRR2443236     1  0.3916     0.6302 0.812 0.004 0.092 0.000 0.092
#> SRR2443235     1  0.4787     0.5562 0.640 0.000 0.324 0.000 0.036
#> SRR2443233     1  0.0000     0.7216 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.7216 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.2806     0.6663 0.844 0.000 0.152 0.000 0.004
#> SRR2443231     1  0.0290     0.7211 0.992 0.000 0.008 0.000 0.000
#> SRR2443230     1  0.3487     0.6357 0.780 0.000 0.212 0.000 0.008
#> SRR2443229     3  0.5265     0.4616 0.000 0.064 0.668 0.012 0.256
#> SRR2443228     2  0.2074     0.5857 0.000 0.896 0.000 0.104 0.000
#> SRR2443227     1  0.0000     0.7216 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     5  0.6447    -0.1594 0.336 0.000 0.192 0.000 0.472
#> SRR2443225     4  0.6489    -0.1753 0.000 0.016 0.408 0.456 0.120
#> SRR2443223     4  0.0290     0.6910 0.000 0.000 0.008 0.992 0.000
#> SRR2443224     5  0.6611     0.0324 0.000 0.320 0.168 0.012 0.500
#> SRR2443222     2  0.2020     0.5856 0.000 0.900 0.000 0.100 0.000
#> SRR2443221     2  0.1851     0.5833 0.000 0.912 0.000 0.088 0.000
#> SRR2443219     2  0.4900     0.2341 0.000 0.512 0.000 0.464 0.024
#> SRR2443220     4  0.2629     0.6720 0.000 0.136 0.000 0.860 0.004
#> SRR2443218     2  0.3210     0.5595 0.000 0.788 0.000 0.212 0.000
#> SRR2443217     3  0.6252     0.5535 0.000 0.016 0.600 0.188 0.196
#> SRR2443216     4  0.4666    -0.0476 0.000 0.000 0.412 0.572 0.016
#> SRR2443215     2  0.5858     0.3552 0.000 0.536 0.008 0.080 0.376
#> SRR2443214     5  0.6452    -0.1523 0.328 0.000 0.196 0.000 0.476
#> SRR2443213     1  0.0000     0.7216 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     2  0.4928     0.2514 0.000 0.568 0.012 0.012 0.408
#> SRR2443211     5  0.5847    -0.0830 0.000 0.424 0.052 0.020 0.504
#> SRR2443210     2  0.2020     0.5856 0.000 0.900 0.000 0.100 0.000
#> SRR2443209     3  0.5840     0.3435 0.000 0.084 0.584 0.012 0.320
#> SRR2443208     5  0.5889    -0.1498 0.000 0.444 0.060 0.016 0.480
#> SRR2443207     2  0.5639     0.1059 0.000 0.492 0.032 0.024 0.452
#> SRR2443206     2  0.3766     0.4324 0.000 0.728 0.000 0.004 0.268
#> SRR2443205     5  0.5255    -0.1611 0.000 0.468 0.024 0.012 0.496
#> SRR2443204     1  0.6478     0.1813 0.420 0.000 0.184 0.000 0.396
#> SRR2443203     4  0.6249     0.0581 0.000 0.016 0.336 0.540 0.108
#> SRR2443202     4  0.5599     0.2043 0.000 0.260 0.000 0.620 0.120
#> SRR2443201     4  0.0854     0.6878 0.000 0.008 0.012 0.976 0.004
#> SRR2443200     2  0.2074     0.5857 0.000 0.896 0.000 0.104 0.000
#> SRR2443199     2  0.4400     0.5382 0.000 0.736 0.000 0.212 0.052
#> SRR2443197     4  0.1153     0.6906 0.000 0.004 0.008 0.964 0.024
#> SRR2443196     4  0.5813    -0.0260 0.000 0.404 0.008 0.516 0.072
#> SRR2443198     4  0.0693     0.6915 0.000 0.000 0.008 0.980 0.012
#> SRR2443195     1  0.6439     0.1686 0.416 0.000 0.176 0.000 0.408
#> SRR2443194     4  0.4885    -0.0210 0.000 0.000 0.400 0.572 0.028
#> SRR2443193     1  0.6373     0.1838 0.424 0.000 0.164 0.000 0.412
#> SRR2443191     3  0.4464     0.4966 0.000 0.012 0.692 0.012 0.284
#> SRR2443192     2  0.5596     0.3629 0.000 0.552 0.004 0.068 0.376
#> SRR2443190     1  0.0000     0.7216 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     5  0.6564    -0.1852 0.344 0.000 0.212 0.000 0.444
#> SRR2443188     1  0.0000     0.7216 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.4770     0.2877 0.000 0.596 0.008 0.012 0.384
#> SRR2443187     2  0.4567     0.3358 0.000 0.628 0.004 0.012 0.356
#> SRR2443185     4  0.0290     0.6910 0.000 0.000 0.008 0.992 0.000
#> SRR2443184     4  0.4348     0.2300 0.000 0.000 0.316 0.668 0.016
#> SRR2443183     1  0.0162     0.7216 0.996 0.000 0.004 0.000 0.000
#> SRR2443182     3  0.2151     0.5836 0.040 0.000 0.924 0.020 0.016
#> SRR2443181     5  0.5255    -0.1611 0.000 0.468 0.024 0.012 0.496
#> SRR2443180     2  0.3366     0.5588 0.000 0.784 0.000 0.212 0.004
#> SRR2443179     2  0.5193     0.2791 0.000 0.584 0.000 0.364 0.052
#> SRR2443178     5  0.7392     0.0514 0.104 0.240 0.024 0.076 0.556
#> SRR2443177     5  0.6519    -0.2491 0.400 0.000 0.192 0.000 0.408
#> SRR2443176     3  0.1830     0.5705 0.012 0.000 0.932 0.004 0.052
#> SRR2443175     3  0.4583     0.2480 0.272 0.000 0.696 0.012 0.020
#> SRR2443174     1  0.3123     0.6505 0.812 0.000 0.184 0.000 0.004
#> SRR2443173     2  0.4955     0.5298 0.000 0.720 0.008 0.084 0.188
#> SRR2443172     2  0.5205     0.5265 0.000 0.696 0.008 0.096 0.200
#> SRR2443171     3  0.5128    -0.1393 0.420 0.000 0.548 0.012 0.020
#> SRR2443170     3  0.4925     0.5177 0.036 0.024 0.708 0.000 0.232
#> SRR2443169     1  0.4003     0.5562 0.704 0.000 0.288 0.000 0.008
#> SRR2443168     3  0.6402     0.4679 0.000 0.004 0.508 0.320 0.168
#> SRR2443167     4  0.2516     0.6705 0.000 0.140 0.000 0.860 0.000
#> SRR2443166     3  0.2722     0.6042 0.020 0.000 0.896 0.056 0.028
#> SRR2443165     4  0.3430     0.4287 0.000 0.000 0.220 0.776 0.004
#> SRR2443164     2  0.3210     0.5595 0.000 0.788 0.000 0.212 0.000
#> SRR2443163     4  0.0290     0.6910 0.000 0.000 0.008 0.992 0.000
#> SRR2443162     3  0.4063     0.5533 0.000 0.000 0.708 0.280 0.012
#> SRR2443161     3  0.4708     0.3856 0.000 0.000 0.548 0.436 0.016
#> SRR2443160     4  0.2377     0.6809 0.000 0.128 0.000 0.872 0.000
#> SRR2443159     4  0.2424     0.6779 0.000 0.132 0.000 0.868 0.000
#> SRR2443158     3  0.4551     0.4808 0.000 0.000 0.616 0.368 0.016
#> SRR2443157     3  0.3307     0.5121 0.116 0.000 0.848 0.012 0.024
#> SRR2443156     3  0.5999     0.5617 0.000 0.004 0.584 0.140 0.272
#> SRR2443155     3  0.6347    -0.0419 0.356 0.004 0.492 0.000 0.148
#> SRR2443154     3  0.4052     0.5806 0.000 0.004 0.764 0.028 0.204
#> SRR2443153     1  0.0290     0.7211 0.992 0.000 0.008 0.000 0.000
#> SRR2443152     2  0.5104     0.2588 0.000 0.564 0.016 0.016 0.404
#> SRR2443151     2  0.3305     0.5519 0.000 0.776 0.000 0.224 0.000
#> SRR2443150     2  0.5104     0.2588 0.000 0.564 0.016 0.016 0.404
#> SRR2443148     2  0.4114     0.5136 0.000 0.732 0.000 0.244 0.024
#> SRR2443147     4  0.4658     0.0574 0.000 0.484 0.000 0.504 0.012
#> SRR2443149     3  0.4658     0.4335 0.000 0.000 0.576 0.408 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.2543    0.50641 0.004 0.000 0.868 0.004 0.116 0.008
#> SRR2443262     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443261     3  0.5347    0.06935 0.000 0.000 0.480 0.108 0.412 0.000
#> SRR2443260     3  0.0000    0.58179 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443259     3  0.0551    0.58007 0.004 0.000 0.984 0.000 0.004 0.008
#> SRR2443258     3  0.0520    0.57981 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR2443257     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443256     3  0.4173    0.32327 0.028 0.000 0.692 0.000 0.272 0.008
#> SRR2443255     3  0.0260    0.58127 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR2443254     3  0.0547    0.57886 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR2443253     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443251     3  0.5347    0.06935 0.000 0.000 0.480 0.108 0.412 0.000
#> SRR2443250     5  0.6054    0.20465 0.000 0.000 0.284 0.304 0.412 0.000
#> SRR2443249     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443252     3  0.1814    0.55244 0.000 0.000 0.900 0.000 0.100 0.000
#> SRR2443247     1  0.5676    0.34882 0.448 0.004 0.116 0.000 0.428 0.004
#> SRR2443246     5  0.6591    0.05777 0.084 0.004 0.308 0.000 0.496 0.108
#> SRR2443248     3  0.4209    0.24202 0.000 0.004 0.588 0.012 0.396 0.000
#> SRR2443244     2  0.5640    0.61039 0.000 0.588 0.000 0.256 0.136 0.020
#> SRR2443245     6  0.2669    0.88113 0.108 0.000 0.024 0.000 0.004 0.864
#> SRR2443243     6  0.2300    0.84496 0.144 0.000 0.000 0.000 0.000 0.856
#> SRR2443242     2  0.6008    0.65502 0.000 0.600 0.000 0.216 0.092 0.092
#> SRR2443241     5  0.8055   -0.05920 0.008 0.312 0.172 0.028 0.344 0.136
#> SRR2443240     2  0.2518    0.72646 0.000 0.892 0.016 0.004 0.068 0.020
#> SRR2443239     2  0.4635    0.66504 0.000 0.672 0.000 0.256 0.064 0.008
#> SRR2443238     6  0.2561    0.88125 0.092 0.004 0.016 0.000 0.008 0.880
#> SRR2443237     2  0.5985    0.63284 0.000 0.580 0.000 0.252 0.108 0.060
#> SRR2443236     1  0.6387    0.25847 0.496 0.040 0.000 0.000 0.184 0.280
#> SRR2443235     1  0.5581    0.36602 0.460 0.004 0.000 0.004 0.428 0.104
#> SRR2443233     1  0.1204    0.80514 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR2443234     1  0.1204    0.80514 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR2443232     1  0.1588    0.77678 0.924 0.000 0.000 0.000 0.072 0.004
#> SRR2443231     1  0.1152    0.80691 0.952 0.004 0.000 0.000 0.000 0.044
#> SRR2443230     1  0.2989    0.72920 0.824 0.008 0.004 0.004 0.160 0.000
#> SRR2443229     3  0.8587   -0.02092 0.000 0.180 0.280 0.076 0.240 0.224
#> SRR2443228     4  0.2996    0.69411 0.000 0.228 0.000 0.772 0.000 0.000
#> SRR2443227     1  0.1531    0.80148 0.928 0.004 0.000 0.000 0.000 0.068
#> SRR2443226     6  0.1844    0.86442 0.028 0.000 0.024 0.012 0.004 0.932
#> SRR2443225     3  0.6179    0.43352 0.000 0.016 0.620 0.084 0.184 0.096
#> SRR2443223     5  0.5714   -0.05825 0.000 0.004 0.428 0.140 0.428 0.000
#> SRR2443224     2  0.2425    0.71585 0.000 0.900 0.016 0.008 0.060 0.016
#> SRR2443222     4  0.2996    0.69411 0.000 0.228 0.000 0.772 0.000 0.000
#> SRR2443221     4  0.2941    0.69701 0.000 0.220 0.000 0.780 0.000 0.000
#> SRR2443219     4  0.5199    0.36105 0.000 0.064 0.008 0.588 0.332 0.008
#> SRR2443220     5  0.5962    0.22706 0.000 0.000 0.228 0.348 0.424 0.000
#> SRR2443218     4  0.2146    0.77340 0.000 0.116 0.000 0.880 0.004 0.000
#> SRR2443217     3  0.6167    0.39030 0.004 0.112 0.660 0.040 0.112 0.072
#> SRR2443216     3  0.2092    0.54012 0.000 0.000 0.876 0.000 0.124 0.000
#> SRR2443215     2  0.5896    0.66232 0.000 0.612 0.000 0.212 0.096 0.080
#> SRR2443214     6  0.1807    0.85975 0.024 0.004 0.024 0.008 0.004 0.936
#> SRR2443213     1  0.1411    0.80460 0.936 0.004 0.000 0.000 0.000 0.060
#> SRR2443212     2  0.4026    0.74818 0.000 0.780 0.000 0.144 0.040 0.036
#> SRR2443211     2  0.1799    0.74094 0.000 0.928 0.008 0.004 0.052 0.008
#> SRR2443210     4  0.2996    0.69411 0.000 0.228 0.000 0.772 0.000 0.000
#> SRR2443209     5  0.7540   -0.01911 0.012 0.332 0.192 0.004 0.364 0.096
#> SRR2443208     2  0.4429    0.73727 0.000 0.784 0.016 0.068 0.048 0.084
#> SRR2443207     2  0.3312    0.76057 0.000 0.856 0.016 0.064 0.040 0.024
#> SRR2443206     2  0.3081    0.68552 0.000 0.776 0.000 0.220 0.000 0.004
#> SRR2443205     2  0.1268    0.75093 0.000 0.952 0.000 0.008 0.036 0.004
#> SRR2443204     6  0.2573    0.87814 0.112 0.000 0.024 0.000 0.000 0.864
#> SRR2443203     3  0.6461    0.37796 0.000 0.012 0.564 0.092 0.240 0.092
#> SRR2443202     5  0.6716   -0.01465 0.000 0.096 0.068 0.384 0.436 0.016
#> SRR2443201     5  0.6006   -0.05443 0.000 0.008 0.408 0.152 0.428 0.004
#> SRR2443200     4  0.2941    0.69701 0.000 0.220 0.000 0.780 0.000 0.000
#> SRR2443199     4  0.1682    0.75570 0.000 0.052 0.000 0.928 0.000 0.020
#> SRR2443197     5  0.6092    0.01756 0.000 0.000 0.364 0.200 0.428 0.008
#> SRR2443196     4  0.5134    0.36902 0.000 0.020 0.000 0.616 0.296 0.068
#> SRR2443198     5  0.6138   -0.01984 0.000 0.008 0.376 0.180 0.432 0.004
#> SRR2443195     6  0.2527    0.88079 0.108 0.000 0.024 0.000 0.000 0.868
#> SRR2443194     3  0.4151    0.49347 0.000 0.000 0.748 0.084 0.164 0.004
#> SRR2443193     6  0.2689    0.87630 0.112 0.000 0.016 0.004 0.004 0.864
#> SRR2443191     5  0.7945    0.03998 0.024 0.220 0.236 0.008 0.392 0.120
#> SRR2443192     2  0.5877    0.66779 0.000 0.612 0.000 0.216 0.080 0.092
#> SRR2443190     1  0.1327    0.80202 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR2443189     6  0.1743    0.86466 0.028 0.000 0.024 0.008 0.004 0.936
#> SRR2443188     1  0.1387    0.80139 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR2443186     2  0.2389    0.74575 0.000 0.864 0.000 0.128 0.000 0.008
#> SRR2443187     2  0.2948    0.72129 0.000 0.804 0.000 0.188 0.000 0.008
#> SRR2443185     3  0.5712    0.00305 0.000 0.000 0.440 0.140 0.416 0.004
#> SRR2443184     3  0.3370    0.46053 0.000 0.000 0.772 0.012 0.212 0.004
#> SRR2443183     1  0.1075    0.80695 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR2443182     5  0.6384   -0.01550 0.052 0.000 0.392 0.004 0.444 0.108
#> SRR2443181     2  0.1059    0.74898 0.000 0.964 0.000 0.016 0.016 0.004
#> SRR2443180     4  0.2288    0.77349 0.000 0.116 0.000 0.876 0.004 0.004
#> SRR2443179     4  0.1793    0.71051 0.000 0.012 0.000 0.928 0.048 0.012
#> SRR2443178     6  0.5694    0.05994 0.000 0.348 0.000 0.044 0.068 0.540
#> SRR2443177     6  0.2296    0.88178 0.068 0.000 0.024 0.004 0.004 0.900
#> SRR2443176     5  0.6737   -0.01193 0.040 0.000 0.372 0.008 0.404 0.176
#> SRR2443175     5  0.6913    0.05547 0.136 0.000 0.280 0.004 0.476 0.104
#> SRR2443174     1  0.2070    0.76403 0.892 0.008 0.000 0.000 0.100 0.000
#> SRR2443173     2  0.3930    0.14561 0.000 0.576 0.000 0.420 0.004 0.000
#> SRR2443172     2  0.3862    0.22490 0.000 0.608 0.000 0.388 0.004 0.000
#> SRR2443171     5  0.6438   -0.22957 0.320 0.000 0.156 0.000 0.476 0.048
#> SRR2443170     5  0.7764    0.09634 0.024 0.236 0.164 0.004 0.428 0.144
#> SRR2443169     1  0.3945    0.67437 0.748 0.008 0.028 0.000 0.212 0.004
#> SRR2443168     3  0.4235    0.45823 0.000 0.168 0.756 0.000 0.044 0.032
#> SRR2443167     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443166     3  0.5587    0.12281 0.028 0.000 0.528 0.000 0.368 0.076
#> SRR2443165     3  0.4841    0.18469 0.000 0.000 0.536 0.048 0.412 0.004
#> SRR2443164     4  0.2191    0.77184 0.000 0.120 0.000 0.876 0.004 0.000
#> SRR2443163     3  0.5661    0.01304 0.000 0.004 0.444 0.132 0.420 0.000
#> SRR2443162     3  0.2883    0.47623 0.008 0.000 0.832 0.000 0.152 0.008
#> SRR2443161     3  0.0000    0.58179 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443160     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443159     5  0.6034    0.23228 0.000 0.000 0.260 0.328 0.412 0.000
#> SRR2443158     3  0.1643    0.54679 0.000 0.000 0.924 0.000 0.068 0.008
#> SRR2443157     5  0.6576    0.02374 0.080 0.000 0.352 0.004 0.464 0.100
#> SRR2443156     3  0.7354    0.02027 0.000 0.224 0.352 0.032 0.348 0.044
#> SRR2443155     5  0.7835   -0.11034 0.192 0.160 0.080 0.000 0.464 0.104
#> SRR2443154     5  0.6903   -0.03638 0.000 0.176 0.348 0.004 0.408 0.064
#> SRR2443153     1  0.1082    0.80669 0.956 0.004 0.000 0.000 0.000 0.040
#> SRR2443152     2  0.1707    0.74917 0.000 0.928 0.000 0.056 0.012 0.004
#> SRR2443151     4  0.2118    0.77081 0.000 0.104 0.000 0.888 0.008 0.000
#> SRR2443150     2  0.1707    0.74917 0.000 0.928 0.000 0.056 0.012 0.004
#> SRR2443148     4  0.1442    0.75257 0.000 0.040 0.000 0.944 0.012 0.004
#> SRR2443147     4  0.3795    0.54455 0.000 0.004 0.088 0.796 0.108 0.004
#> SRR2443149     3  0.0964    0.57504 0.004 0.000 0.968 0.000 0.016 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.896           0.946       0.976         0.4990 0.499   0.499
#> 3 3 0.791           0.911       0.946         0.3249 0.742   0.524
#> 4 4 0.811           0.771       0.890         0.1205 0.902   0.717
#> 5 5 0.722           0.701       0.800         0.0654 0.912   0.690
#> 6 6 0.746           0.711       0.822         0.0409 0.923   0.671

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1   0.141      0.947 0.980 0.020
#> SRR2443262     2   0.000      0.985 0.000 1.000
#> SRR2443261     2   0.000      0.985 0.000 1.000
#> SRR2443260     1   0.802      0.704 0.756 0.244
#> SRR2443259     1   0.000      0.962 1.000 0.000
#> SRR2443258     1   0.714      0.772 0.804 0.196
#> SRR2443257     2   0.000      0.985 0.000 1.000
#> SRR2443256     1   0.000      0.962 1.000 0.000
#> SRR2443255     1   0.443      0.887 0.908 0.092
#> SRR2443254     1   0.969      0.388 0.604 0.396
#> SRR2443253     2   0.000      0.985 0.000 1.000
#> SRR2443251     2   0.000      0.985 0.000 1.000
#> SRR2443250     2   0.000      0.985 0.000 1.000
#> SRR2443249     2   0.000      0.985 0.000 1.000
#> SRR2443252     2   0.000      0.985 0.000 1.000
#> SRR2443247     1   0.000      0.962 1.000 0.000
#> SRR2443246     1   0.000      0.962 1.000 0.000
#> SRR2443248     2   0.000      0.985 0.000 1.000
#> SRR2443244     2   0.000      0.985 0.000 1.000
#> SRR2443245     1   0.000      0.962 1.000 0.000
#> SRR2443243     1   0.000      0.962 1.000 0.000
#> SRR2443242     2   0.000      0.985 0.000 1.000
#> SRR2443241     1   0.000      0.962 1.000 0.000
#> SRR2443240     2   0.000      0.985 0.000 1.000
#> SRR2443239     2   0.000      0.985 0.000 1.000
#> SRR2443238     1   0.000      0.962 1.000 0.000
#> SRR2443237     2   0.000      0.985 0.000 1.000
#> SRR2443236     1   0.000      0.962 1.000 0.000
#> SRR2443235     1   0.000      0.962 1.000 0.000
#> SRR2443233     1   0.000      0.962 1.000 0.000
#> SRR2443234     1   0.000      0.962 1.000 0.000
#> SRR2443232     1   0.000      0.962 1.000 0.000
#> SRR2443231     1   0.000      0.962 1.000 0.000
#> SRR2443230     1   0.000      0.962 1.000 0.000
#> SRR2443229     1   0.000      0.962 1.000 0.000
#> SRR2443228     2   0.000      0.985 0.000 1.000
#> SRR2443227     1   0.000      0.962 1.000 0.000
#> SRR2443226     1   0.000      0.962 1.000 0.000
#> SRR2443225     1   0.775      0.709 0.772 0.228
#> SRR2443223     2   0.000      0.985 0.000 1.000
#> SRR2443224     2   0.000      0.985 0.000 1.000
#> SRR2443222     2   0.000      0.985 0.000 1.000
#> SRR2443221     2   0.000      0.985 0.000 1.000
#> SRR2443219     2   0.000      0.985 0.000 1.000
#> SRR2443220     2   0.000      0.985 0.000 1.000
#> SRR2443218     2   0.000      0.985 0.000 1.000
#> SRR2443217     1   0.000      0.962 1.000 0.000
#> SRR2443216     2   0.730      0.734 0.204 0.796
#> SRR2443215     2   0.000      0.985 0.000 1.000
#> SRR2443214     1   0.000      0.962 1.000 0.000
#> SRR2443213     1   0.000      0.962 1.000 0.000
#> SRR2443212     2   0.000      0.985 0.000 1.000
#> SRR2443211     2   0.000      0.985 0.000 1.000
#> SRR2443210     2   0.000      0.985 0.000 1.000
#> SRR2443209     1   0.000      0.962 1.000 0.000
#> SRR2443208     2   0.000      0.985 0.000 1.000
#> SRR2443207     2   0.000      0.985 0.000 1.000
#> SRR2443206     2   0.000      0.985 0.000 1.000
#> SRR2443205     2   0.000      0.985 0.000 1.000
#> SRR2443204     1   0.000      0.962 1.000 0.000
#> SRR2443203     2   0.118      0.969 0.016 0.984
#> SRR2443202     2   0.000      0.985 0.000 1.000
#> SRR2443201     2   0.000      0.985 0.000 1.000
#> SRR2443200     2   0.000      0.985 0.000 1.000
#> SRR2443199     2   0.000      0.985 0.000 1.000
#> SRR2443197     2   0.000      0.985 0.000 1.000
#> SRR2443196     2   0.000      0.985 0.000 1.000
#> SRR2443198     2   0.000      0.985 0.000 1.000
#> SRR2443195     1   0.000      0.962 1.000 0.000
#> SRR2443194     2   0.839      0.620 0.268 0.732
#> SRR2443193     1   0.000      0.962 1.000 0.000
#> SRR2443191     1   0.000      0.962 1.000 0.000
#> SRR2443192     2   0.000      0.985 0.000 1.000
#> SRR2443190     1   0.000      0.962 1.000 0.000
#> SRR2443189     1   0.000      0.962 1.000 0.000
#> SRR2443188     1   0.000      0.962 1.000 0.000
#> SRR2443186     2   0.000      0.985 0.000 1.000
#> SRR2443187     2   0.000      0.985 0.000 1.000
#> SRR2443185     2   0.000      0.985 0.000 1.000
#> SRR2443184     2   0.000      0.985 0.000 1.000
#> SRR2443183     1   0.000      0.962 1.000 0.000
#> SRR2443182     1   0.000      0.962 1.000 0.000
#> SRR2443181     2   0.000      0.985 0.000 1.000
#> SRR2443180     2   0.000      0.985 0.000 1.000
#> SRR2443179     2   0.000      0.985 0.000 1.000
#> SRR2443178     2   0.722      0.742 0.200 0.800
#> SRR2443177     1   0.000      0.962 1.000 0.000
#> SRR2443176     1   0.000      0.962 1.000 0.000
#> SRR2443175     1   0.000      0.962 1.000 0.000
#> SRR2443174     1   0.000      0.962 1.000 0.000
#> SRR2443173     2   0.000      0.985 0.000 1.000
#> SRR2443172     2   0.000      0.985 0.000 1.000
#> SRR2443171     1   0.000      0.962 1.000 0.000
#> SRR2443170     1   0.000      0.962 1.000 0.000
#> SRR2443169     1   0.000      0.962 1.000 0.000
#> SRR2443168     2   0.730      0.734 0.204 0.796
#> SRR2443167     2   0.000      0.985 0.000 1.000
#> SRR2443166     1   0.000      0.962 1.000 0.000
#> SRR2443165     2   0.000      0.985 0.000 1.000
#> SRR2443164     2   0.000      0.985 0.000 1.000
#> SRR2443163     2   0.000      0.985 0.000 1.000
#> SRR2443162     1   0.000      0.962 1.000 0.000
#> SRR2443161     1   0.833      0.671 0.736 0.264
#> SRR2443160     2   0.000      0.985 0.000 1.000
#> SRR2443159     2   0.000      0.985 0.000 1.000
#> SRR2443158     1   0.722      0.767 0.800 0.200
#> SRR2443157     1   0.000      0.962 1.000 0.000
#> SRR2443156     1   0.722      0.767 0.800 0.200
#> SRR2443155     1   0.000      0.962 1.000 0.000
#> SRR2443154     1   0.518      0.863 0.884 0.116
#> SRR2443153     1   0.000      0.962 1.000 0.000
#> SRR2443152     2   0.000      0.985 0.000 1.000
#> SRR2443151     2   0.000      0.985 0.000 1.000
#> SRR2443150     2   0.000      0.985 0.000 1.000
#> SRR2443148     2   0.000      0.985 0.000 1.000
#> SRR2443147     2   0.000      0.985 0.000 1.000
#> SRR2443149     1   0.000      0.962 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.3879      0.729 0.152 0.000 0.848
#> SRR2443262     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443261     3  0.4291      0.840 0.000 0.180 0.820
#> SRR2443260     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443259     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443258     3  0.0424      0.849 0.008 0.000 0.992
#> SRR2443257     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443256     3  0.6204      0.127 0.424 0.000 0.576
#> SRR2443255     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443254     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443253     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443251     3  0.4235      0.841 0.000 0.176 0.824
#> SRR2443250     3  0.4702      0.831 0.000 0.212 0.788
#> SRR2443249     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443252     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443247     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443246     1  0.3412      0.849 0.876 0.000 0.124
#> SRR2443248     3  0.4291      0.840 0.000 0.180 0.820
#> SRR2443244     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443245     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443242     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443241     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443240     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443239     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443238     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443237     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443236     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443229     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443228     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443225     3  0.5480      0.576 0.264 0.004 0.732
#> SRR2443223     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443224     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443222     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443219     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443220     3  0.4842      0.821 0.000 0.224 0.776
#> SRR2443218     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443217     1  0.1529      0.941 0.960 0.000 0.040
#> SRR2443216     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443215     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443214     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443212     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443211     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443210     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443209     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443208     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443207     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443206     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443205     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443204     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443203     3  0.0424      0.852 0.000 0.008 0.992
#> SRR2443202     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443201     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443200     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443199     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443197     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443196     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443198     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443195     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443194     3  0.0424      0.851 0.000 0.008 0.992
#> SRR2443193     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443191     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443192     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443190     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443189     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443188     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443186     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443187     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443185     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443184     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443183     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443182     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443181     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443180     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443179     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443178     2  0.4555      0.732 0.200 0.800 0.000
#> SRR2443177     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443176     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443175     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443171     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443170     1  0.2066      0.918 0.940 0.060 0.000
#> SRR2443169     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443168     3  0.0747      0.847 0.016 0.000 0.984
#> SRR2443167     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443166     1  0.5926      0.517 0.644 0.000 0.356
#> SRR2443165     3  0.0424      0.852 0.000 0.008 0.992
#> SRR2443164     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443163     3  0.4702      0.831 0.000 0.212 0.788
#> SRR2443162     3  0.3340      0.766 0.120 0.000 0.880
#> SRR2443161     3  0.0000      0.851 0.000 0.000 1.000
#> SRR2443160     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443159     3  0.4750      0.830 0.000 0.216 0.784
#> SRR2443158     3  0.0892      0.845 0.020 0.000 0.980
#> SRR2443157     1  0.3192      0.863 0.888 0.000 0.112
#> SRR2443156     1  0.5974      0.757 0.784 0.068 0.148
#> SRR2443155     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443154     1  0.4733      0.745 0.800 0.004 0.196
#> SRR2443153     1  0.0000      0.972 1.000 0.000 0.000
#> SRR2443152     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443151     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443150     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443148     2  0.0000      0.988 0.000 1.000 0.000
#> SRR2443147     2  0.3941      0.770 0.000 0.844 0.156
#> SRR2443149     3  0.0424      0.849 0.008 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.1022     0.8569 0.000 0.000 0.968 0.032
#> SRR2443262     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443261     4  0.0336     0.9363 0.000 0.000 0.008 0.992
#> SRR2443260     3  0.2149     0.8678 0.000 0.000 0.912 0.088
#> SRR2443259     3  0.2011     0.8685 0.000 0.000 0.920 0.080
#> SRR2443258     3  0.2149     0.8678 0.000 0.000 0.912 0.088
#> SRR2443257     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443256     3  0.0000     0.8364 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.2149     0.8678 0.000 0.000 0.912 0.088
#> SRR2443254     3  0.2216     0.8655 0.000 0.000 0.908 0.092
#> SRR2443253     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443251     4  0.0336     0.9363 0.000 0.000 0.008 0.992
#> SRR2443250     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443249     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443252     3  0.3688     0.7516 0.000 0.000 0.792 0.208
#> SRR2443247     1  0.4866     0.5523 0.596 0.000 0.404 0.000
#> SRR2443246     1  0.4898     0.5326 0.584 0.000 0.416 0.000
#> SRR2443248     4  0.1867     0.8719 0.000 0.000 0.072 0.928
#> SRR2443244     2  0.4454     0.5996 0.000 0.692 0.000 0.308
#> SRR2443245     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443242     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443241     1  0.0188     0.8695 0.996 0.000 0.004 0.000
#> SRR2443240     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443239     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443238     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443237     2  0.4605     0.5603 0.000 0.664 0.000 0.336
#> SRR2443236     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443235     1  0.0188     0.8695 0.996 0.000 0.004 0.000
#> SRR2443233     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.1637     0.8509 0.940 0.000 0.060 0.000
#> SRR2443231     1  0.0188     0.8695 0.996 0.000 0.004 0.000
#> SRR2443230     1  0.1940     0.8447 0.924 0.000 0.076 0.000
#> SRR2443229     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443228     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443227     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443225     4  0.4008     0.6563 0.244 0.000 0.000 0.756
#> SRR2443223     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443224     2  0.0817     0.8295 0.000 0.976 0.024 0.000
#> SRR2443222     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443221     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443219     2  0.5000     0.2446 0.000 0.504 0.000 0.496
#> SRR2443220     4  0.0000     0.9367 0.000 0.000 0.000 1.000
#> SRR2443218     2  0.4877     0.4496 0.000 0.592 0.000 0.408
#> SRR2443217     3  0.5167    -0.2920 0.488 0.000 0.508 0.004
#> SRR2443216     3  0.4661     0.5246 0.000 0.000 0.652 0.348
#> SRR2443215     2  0.0469     0.8465 0.000 0.988 0.000 0.012
#> SRR2443214     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443213     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443211     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443210     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443209     1  0.2011     0.8426 0.920 0.000 0.080 0.000
#> SRR2443208     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443207     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443206     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443204     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443203     4  0.0707     0.9229 0.000 0.000 0.020 0.980
#> SRR2443202     4  0.2530     0.8181 0.000 0.112 0.000 0.888
#> SRR2443201     4  0.0000     0.9367 0.000 0.000 0.000 1.000
#> SRR2443200     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443199     2  0.4855     0.4635 0.000 0.600 0.000 0.400
#> SRR2443197     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443196     4  0.2647     0.8076 0.000 0.120 0.000 0.880
#> SRR2443198     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443195     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443194     4  0.4977    -0.0944 0.000 0.000 0.460 0.540
#> SRR2443193     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443191     1  0.3610     0.7647 0.800 0.000 0.200 0.000
#> SRR2443192     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR2443190     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443188     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0188     0.8477 0.000 0.996 0.000 0.004
#> SRR2443185     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443184     3  0.4985     0.2402 0.000 0.000 0.532 0.468
#> SRR2443183     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.4697     0.6131 0.644 0.000 0.356 0.000
#> SRR2443181     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443180     2  0.4898     0.4346 0.000 0.584 0.000 0.416
#> SRR2443179     4  0.2647     0.8076 0.000 0.120 0.000 0.880
#> SRR2443178     2  0.7870     0.1315 0.276 0.364 0.000 0.360
#> SRR2443177     1  0.0000     0.8701 1.000 0.000 0.000 0.000
#> SRR2443176     1  0.1022     0.8615 0.968 0.000 0.032 0.000
#> SRR2443175     1  0.4866     0.5523 0.596 0.000 0.404 0.000
#> SRR2443174     1  0.2216     0.8368 0.908 0.000 0.092 0.000
#> SRR2443173     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443172     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443171     1  0.4866     0.5523 0.596 0.000 0.404 0.000
#> SRR2443170     1  0.4764     0.7581 0.788 0.088 0.124 0.000
#> SRR2443169     1  0.4843     0.5638 0.604 0.000 0.396 0.000
#> SRR2443168     3  0.2949     0.8606 0.000 0.024 0.888 0.088
#> SRR2443167     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443166     3  0.0188     0.8327 0.004 0.000 0.996 0.000
#> SRR2443165     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443164     2  0.4925     0.4103 0.000 0.572 0.000 0.428
#> SRR2443163     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443162     3  0.0000     0.8364 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.2149     0.8678 0.000 0.000 0.912 0.088
#> SRR2443160     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443159     4  0.0188     0.9389 0.000 0.000 0.004 0.996
#> SRR2443158     3  0.1867     0.8677 0.000 0.000 0.928 0.072
#> SRR2443157     1  0.4898     0.5328 0.584 0.000 0.416 0.000
#> SRR2443156     1  0.6698     0.4168 0.540 0.008 0.380 0.072
#> SRR2443155     1  0.4817     0.5744 0.612 0.000 0.388 0.000
#> SRR2443154     1  0.5112     0.4903 0.560 0.004 0.436 0.000
#> SRR2443153     1  0.0188     0.8695 0.996 0.000 0.004 0.000
#> SRR2443152     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443151     2  0.5000     0.2452 0.000 0.504 0.000 0.496
#> SRR2443150     2  0.0000     0.8478 0.000 1.000 0.000 0.000
#> SRR2443148     2  0.5000     0.2454 0.000 0.504 0.000 0.496
#> SRR2443147     4  0.0336     0.9306 0.000 0.008 0.000 0.992
#> SRR2443149     3  0.0921     0.8551 0.000 0.000 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.1741    0.86842 0.040 0.000 0.936 0.024 0.000
#> SRR2443262     4  0.0963    0.86984 0.000 0.000 0.036 0.964 0.000
#> SRR2443261     4  0.2020    0.81730 0.000 0.000 0.100 0.900 0.000
#> SRR2443260     3  0.1043    0.88932 0.000 0.000 0.960 0.040 0.000
#> SRR2443259     3  0.0880    0.88736 0.000 0.000 0.968 0.032 0.000
#> SRR2443258     3  0.1043    0.88932 0.000 0.000 0.960 0.040 0.000
#> SRR2443257     4  0.0880    0.87046 0.000 0.000 0.032 0.968 0.000
#> SRR2443256     3  0.1270    0.84873 0.052 0.000 0.948 0.000 0.000
#> SRR2443255     3  0.1043    0.88932 0.000 0.000 0.960 0.040 0.000
#> SRR2443254     3  0.1270    0.88533 0.000 0.000 0.948 0.052 0.000
#> SRR2443253     4  0.0963    0.86984 0.000 0.000 0.036 0.964 0.000
#> SRR2443251     4  0.1965    0.82122 0.000 0.000 0.096 0.904 0.000
#> SRR2443250     4  0.0963    0.86984 0.000 0.000 0.036 0.964 0.000
#> SRR2443249     4  0.0963    0.86984 0.000 0.000 0.036 0.964 0.000
#> SRR2443252     3  0.2648    0.81206 0.000 0.000 0.848 0.152 0.000
#> SRR2443247     1  0.2890    0.68891 0.836 0.000 0.160 0.000 0.004
#> SRR2443246     1  0.3804    0.67617 0.796 0.000 0.160 0.000 0.044
#> SRR2443248     4  0.2891    0.72850 0.000 0.000 0.176 0.824 0.000
#> SRR2443244     2  0.4232    0.49288 0.000 0.676 0.000 0.312 0.012
#> SRR2443245     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443243     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443242     2  0.1877    0.76643 0.000 0.924 0.000 0.064 0.012
#> SRR2443241     1  0.3039    0.66311 0.808 0.000 0.000 0.000 0.192
#> SRR2443240     2  0.4608    0.65336 0.000 0.640 0.024 0.000 0.336
#> SRR2443239     2  0.1357    0.77512 0.000 0.948 0.000 0.048 0.004
#> SRR2443238     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443237     2  0.4090    0.55691 0.000 0.716 0.000 0.268 0.016
#> SRR2443236     1  0.3876    0.47088 0.684 0.000 0.000 0.000 0.316
#> SRR2443235     1  0.1792    0.65259 0.916 0.000 0.000 0.000 0.084
#> SRR2443233     1  0.3003    0.52335 0.812 0.000 0.000 0.000 0.188
#> SRR2443234     1  0.2966    0.53059 0.816 0.000 0.000 0.000 0.184
#> SRR2443232     1  0.1364    0.68555 0.952 0.000 0.012 0.000 0.036
#> SRR2443231     1  0.2074    0.63662 0.896 0.000 0.000 0.000 0.104
#> SRR2443230     1  0.0693    0.69387 0.980 0.000 0.012 0.000 0.008
#> SRR2443229     5  0.4291    0.66002 0.464 0.000 0.000 0.000 0.536
#> SRR2443228     2  0.1041    0.78209 0.000 0.964 0.004 0.032 0.000
#> SRR2443227     1  0.3707    0.28132 0.716 0.000 0.000 0.000 0.284
#> SRR2443226     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443225     5  0.6113    0.55179 0.124 0.012 0.008 0.232 0.624
#> SRR2443223     4  0.0880    0.87046 0.000 0.000 0.032 0.968 0.000
#> SRR2443224     2  0.4843    0.64960 0.008 0.640 0.024 0.000 0.328
#> SRR2443222     2  0.0703    0.78288 0.000 0.976 0.000 0.024 0.000
#> SRR2443221     2  0.0510    0.78425 0.000 0.984 0.000 0.016 0.000
#> SRR2443219     2  0.4448    0.00798 0.000 0.516 0.000 0.480 0.004
#> SRR2443220     4  0.0510    0.86804 0.000 0.000 0.016 0.984 0.000
#> SRR2443218     2  0.4166    0.41352 0.000 0.648 0.000 0.348 0.004
#> SRR2443217     1  0.6376    0.33427 0.488 0.000 0.356 0.004 0.152
#> SRR2443216     3  0.2891    0.78737 0.000 0.000 0.824 0.176 0.000
#> SRR2443215     2  0.1942    0.76463 0.000 0.920 0.000 0.068 0.012
#> SRR2443214     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443213     1  0.2732    0.56932 0.840 0.000 0.000 0.000 0.160
#> SRR2443212     2  0.0451    0.78639 0.000 0.988 0.004 0.000 0.008
#> SRR2443211     2  0.4503    0.66790 0.000 0.664 0.024 0.000 0.312
#> SRR2443210     2  0.0609    0.78382 0.000 0.980 0.000 0.020 0.000
#> SRR2443209     1  0.3878    0.65136 0.748 0.000 0.016 0.000 0.236
#> SRR2443208     2  0.1768    0.78522 0.000 0.924 0.004 0.000 0.072
#> SRR2443207     2  0.2818    0.77202 0.000 0.856 0.012 0.000 0.132
#> SRR2443206     2  0.1892    0.78404 0.000 0.916 0.004 0.000 0.080
#> SRR2443205     2  0.3970    0.73235 0.000 0.752 0.024 0.000 0.224
#> SRR2443204     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443203     4  0.5044    0.52506 0.000 0.036 0.016 0.668 0.280
#> SRR2443202     4  0.3720    0.65509 0.000 0.228 0.000 0.760 0.012
#> SRR2443201     4  0.0510    0.86804 0.000 0.000 0.016 0.984 0.000
#> SRR2443200     2  0.1282    0.77568 0.000 0.952 0.000 0.044 0.004
#> SRR2443199     2  0.4387    0.41719 0.000 0.640 0.000 0.348 0.012
#> SRR2443197     4  0.0579    0.86227 0.000 0.000 0.008 0.984 0.008
#> SRR2443196     4  0.3807    0.63822 0.000 0.240 0.000 0.748 0.012
#> SRR2443198     4  0.0162    0.85985 0.000 0.000 0.000 0.996 0.004
#> SRR2443195     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443194     3  0.4452    0.24727 0.000 0.000 0.500 0.496 0.004
#> SRR2443193     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443191     1  0.4577    0.65547 0.748 0.000 0.108 0.000 0.144
#> SRR2443192     2  0.1670    0.77246 0.000 0.936 0.000 0.052 0.012
#> SRR2443190     1  0.3684    0.29462 0.720 0.000 0.000 0.000 0.280
#> SRR2443189     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443188     1  0.3752    0.25281 0.708 0.000 0.000 0.000 0.292
#> SRR2443186     2  0.3141    0.76513 0.000 0.832 0.016 0.000 0.152
#> SRR2443187     2  0.1732    0.78477 0.000 0.920 0.000 0.000 0.080
#> SRR2443185     4  0.0703    0.86970 0.000 0.000 0.024 0.976 0.000
#> SRR2443184     3  0.3684    0.65994 0.000 0.000 0.720 0.280 0.000
#> SRR2443183     1  0.2377    0.61176 0.872 0.000 0.000 0.000 0.128
#> SRR2443182     1  0.2648    0.69096 0.848 0.000 0.152 0.000 0.000
#> SRR2443181     2  0.3909    0.73654 0.000 0.760 0.024 0.000 0.216
#> SRR2443180     2  0.4211    0.37965 0.000 0.636 0.000 0.360 0.004
#> SRR2443179     4  0.3807    0.63822 0.000 0.240 0.000 0.748 0.012
#> SRR2443178     5  0.7612    0.40175 0.124 0.256 0.000 0.132 0.488
#> SRR2443177     5  0.4060    0.88164 0.360 0.000 0.000 0.000 0.640
#> SRR2443176     1  0.1357    0.67629 0.948 0.000 0.004 0.000 0.048
#> SRR2443175     1  0.2890    0.68891 0.836 0.000 0.160 0.000 0.004
#> SRR2443174     1  0.0912    0.69386 0.972 0.000 0.016 0.000 0.012
#> SRR2443173     2  0.3812    0.74246 0.000 0.772 0.024 0.000 0.204
#> SRR2443172     2  0.3812    0.74246 0.000 0.772 0.024 0.000 0.204
#> SRR2443171     1  0.2890    0.68891 0.836 0.000 0.160 0.000 0.004
#> SRR2443170     1  0.4849    0.60926 0.712 0.032 0.024 0.000 0.232
#> SRR2443169     1  0.2890    0.68891 0.836 0.000 0.160 0.000 0.004
#> SRR2443168     3  0.5379    0.55761 0.008 0.056 0.612 0.000 0.324
#> SRR2443167     4  0.0880    0.87046 0.000 0.000 0.032 0.968 0.000
#> SRR2443166     3  0.1671    0.83104 0.076 0.000 0.924 0.000 0.000
#> SRR2443165     4  0.1043    0.86687 0.000 0.000 0.040 0.960 0.000
#> SRR2443164     2  0.4182    0.28107 0.000 0.600 0.000 0.400 0.000
#> SRR2443163     4  0.0963    0.86984 0.000 0.000 0.036 0.964 0.000
#> SRR2443162     3  0.1310    0.87261 0.024 0.000 0.956 0.020 0.000
#> SRR2443161     3  0.1121    0.88840 0.000 0.000 0.956 0.044 0.000
#> SRR2443160     4  0.0703    0.86970 0.000 0.000 0.024 0.976 0.000
#> SRR2443159     4  0.0880    0.87046 0.000 0.000 0.032 0.968 0.000
#> SRR2443158     3  0.1043    0.88932 0.000 0.000 0.960 0.040 0.000
#> SRR2443157     1  0.2890    0.68891 0.836 0.000 0.160 0.000 0.004
#> SRR2443156     1  0.5641    0.57775 0.652 0.008 0.044 0.028 0.268
#> SRR2443155     1  0.4612    0.62225 0.712 0.000 0.056 0.000 0.232
#> SRR2443154     1  0.4737    0.62149 0.712 0.004 0.056 0.000 0.228
#> SRR2443153     1  0.2127    0.63262 0.892 0.000 0.000 0.000 0.108
#> SRR2443152     2  0.3877    0.73852 0.000 0.764 0.024 0.000 0.212
#> SRR2443151     4  0.4307    0.02499 0.000 0.496 0.000 0.504 0.000
#> SRR2443150     2  0.3877    0.73852 0.000 0.764 0.024 0.000 0.212
#> SRR2443148     4  0.4641    0.10626 0.000 0.456 0.000 0.532 0.012
#> SRR2443147     4  0.1851    0.81331 0.000 0.088 0.000 0.912 0.000
#> SRR2443149     3  0.0898    0.88267 0.008 0.000 0.972 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.1666     0.9153 0.036 0.000 0.936 0.020 0.008 0.000
#> SRR2443262     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443261     4  0.1349     0.8957 0.000 0.004 0.056 0.940 0.000 0.000
#> SRR2443260     3  0.0713     0.9289 0.000 0.000 0.972 0.028 0.000 0.000
#> SRR2443259     3  0.0622     0.9264 0.012 0.000 0.980 0.008 0.000 0.000
#> SRR2443258     3  0.0632     0.9294 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR2443257     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443256     3  0.1152     0.9084 0.044 0.000 0.952 0.000 0.004 0.000
#> SRR2443255     3  0.0713     0.9289 0.000 0.000 0.972 0.028 0.000 0.000
#> SRR2443254     3  0.0937     0.9228 0.000 0.000 0.960 0.040 0.000 0.000
#> SRR2443253     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443251     4  0.1471     0.8897 0.000 0.004 0.064 0.932 0.000 0.000
#> SRR2443250     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443249     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443252     3  0.1610     0.8865 0.000 0.000 0.916 0.084 0.000 0.000
#> SRR2443247     1  0.1910     0.6887 0.892 0.000 0.108 0.000 0.000 0.000
#> SRR2443246     1  0.3690     0.6616 0.804 0.000 0.116 0.000 0.012 0.068
#> SRR2443248     4  0.2288     0.8381 0.004 0.004 0.116 0.876 0.000 0.000
#> SRR2443244     2  0.2070     0.7629 0.000 0.892 0.000 0.100 0.008 0.000
#> SRR2443245     6  0.2664     0.9169 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR2443243     6  0.2664     0.9169 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR2443242     2  0.1409     0.7404 0.000 0.948 0.008 0.000 0.012 0.032
#> SRR2443241     1  0.4638     0.6237 0.704 0.000 0.004 0.000 0.148 0.144
#> SRR2443240     5  0.1542     0.7812 0.008 0.052 0.000 0.000 0.936 0.004
#> SRR2443239     2  0.1769     0.7402 0.000 0.924 0.000 0.012 0.060 0.004
#> SRR2443238     6  0.2597     0.9173 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR2443237     2  0.2510     0.7573 0.004 0.896 0.012 0.064 0.004 0.020
#> SRR2443236     1  0.5016     0.4589 0.532 0.000 0.000 0.000 0.076 0.392
#> SRR2443235     1  0.2562     0.6567 0.828 0.000 0.000 0.000 0.000 0.172
#> SRR2443233     1  0.3390     0.5348 0.704 0.000 0.000 0.000 0.000 0.296
#> SRR2443234     1  0.3390     0.5348 0.704 0.000 0.000 0.000 0.000 0.296
#> SRR2443232     1  0.2178     0.6738 0.868 0.000 0.000 0.000 0.000 0.132
#> SRR2443231     1  0.2793     0.6374 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR2443230     1  0.1500     0.6980 0.936 0.000 0.012 0.000 0.000 0.052
#> SRR2443229     6  0.4010     0.6280 0.284 0.000 0.012 0.000 0.012 0.692
#> SRR2443228     2  0.1411     0.7390 0.000 0.936 0.000 0.004 0.060 0.000
#> SRR2443227     1  0.3765     0.3098 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR2443226     6  0.2362     0.8914 0.136 0.000 0.004 0.000 0.000 0.860
#> SRR2443225     6  0.4350     0.6158 0.004 0.056 0.024 0.108 0.020 0.788
#> SRR2443223     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443224     5  0.1204     0.7894 0.000 0.056 0.000 0.000 0.944 0.000
#> SRR2443222     2  0.1411     0.7390 0.000 0.936 0.000 0.004 0.060 0.000
#> SRR2443221     2  0.1555     0.7379 0.000 0.932 0.004 0.004 0.060 0.000
#> SRR2443219     2  0.2877     0.7375 0.000 0.820 0.000 0.168 0.012 0.000
#> SRR2443220     4  0.0458     0.9083 0.000 0.016 0.000 0.984 0.000 0.000
#> SRR2443218     2  0.2573     0.7605 0.000 0.864 0.000 0.112 0.024 0.000
#> SRR2443217     1  0.7223     0.2532 0.428 0.004 0.264 0.004 0.080 0.220
#> SRR2443216     3  0.1714     0.8790 0.000 0.000 0.908 0.092 0.000 0.000
#> SRR2443215     2  0.1892     0.7496 0.008 0.936 0.012 0.012 0.016 0.016
#> SRR2443214     6  0.2884     0.9100 0.164 0.008 0.000 0.000 0.004 0.824
#> SRR2443213     1  0.3390     0.5348 0.704 0.000 0.000 0.000 0.000 0.296
#> SRR2443212     2  0.2355     0.6989 0.000 0.876 0.008 0.000 0.112 0.004
#> SRR2443211     5  0.1644     0.7990 0.004 0.076 0.000 0.000 0.920 0.000
#> SRR2443210     2  0.1411     0.7390 0.000 0.936 0.000 0.004 0.060 0.000
#> SRR2443209     1  0.4892     0.5954 0.660 0.000 0.000 0.000 0.176 0.164
#> SRR2443208     2  0.4387     0.0459 0.000 0.584 0.008 0.000 0.392 0.016
#> SRR2443207     5  0.4098     0.4278 0.000 0.444 0.004 0.000 0.548 0.004
#> SRR2443206     2  0.4088    -0.1613 0.000 0.556 0.004 0.000 0.436 0.004
#> SRR2443205     5  0.2416     0.8248 0.000 0.156 0.000 0.000 0.844 0.000
#> SRR2443204     6  0.2664     0.9169 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR2443203     4  0.5689     0.4709 0.000 0.072 0.032 0.576 0.008 0.312
#> SRR2443202     2  0.4602     0.2653 0.004 0.528 0.008 0.444 0.000 0.016
#> SRR2443201     4  0.0260     0.9131 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR2443200     2  0.1429     0.7418 0.000 0.940 0.004 0.004 0.052 0.000
#> SRR2443199     2  0.2326     0.7611 0.000 0.888 0.008 0.092 0.000 0.012
#> SRR2443197     4  0.1173     0.9093 0.000 0.016 0.016 0.960 0.000 0.008
#> SRR2443196     2  0.4765     0.5277 0.000 0.624 0.016 0.320 0.000 0.040
#> SRR2443198     4  0.0665     0.9071 0.000 0.000 0.008 0.980 0.004 0.008
#> SRR2443195     6  0.2664     0.9169 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR2443194     4  0.5178     0.0889 0.004 0.008 0.424 0.520 0.012 0.032
#> SRR2443193     6  0.2697     0.9133 0.188 0.000 0.000 0.000 0.000 0.812
#> SRR2443191     1  0.4425     0.6275 0.756 0.000 0.032 0.000 0.128 0.084
#> SRR2443192     2  0.1078     0.7447 0.000 0.964 0.008 0.000 0.012 0.016
#> SRR2443190     1  0.3695     0.3799 0.624 0.000 0.000 0.000 0.000 0.376
#> SRR2443189     6  0.2416     0.9116 0.156 0.000 0.000 0.000 0.000 0.844
#> SRR2443188     1  0.3810     0.2316 0.572 0.000 0.000 0.000 0.000 0.428
#> SRR2443186     5  0.4024     0.5511 0.000 0.400 0.004 0.000 0.592 0.004
#> SRR2443187     2  0.4041    -0.0507 0.000 0.584 0.004 0.000 0.408 0.004
#> SRR2443185     4  0.0291     0.9168 0.000 0.004 0.004 0.992 0.000 0.000
#> SRR2443184     3  0.4141     0.2139 0.000 0.000 0.556 0.432 0.000 0.012
#> SRR2443183     1  0.3198     0.5816 0.740 0.000 0.000 0.000 0.000 0.260
#> SRR2443182     1  0.1700     0.6951 0.916 0.000 0.080 0.000 0.000 0.004
#> SRR2443181     5  0.2700     0.8239 0.004 0.156 0.000 0.000 0.836 0.004
#> SRR2443180     2  0.2536     0.7580 0.000 0.864 0.000 0.116 0.020 0.000
#> SRR2443179     2  0.4179     0.5441 0.000 0.652 0.008 0.324 0.000 0.016
#> SRR2443178     2  0.5218     0.2023 0.016 0.528 0.000 0.028 0.016 0.412
#> SRR2443177     6  0.2454     0.9138 0.160 0.000 0.000 0.000 0.000 0.840
#> SRR2443176     1  0.2555     0.6895 0.876 0.000 0.008 0.000 0.020 0.096
#> SRR2443175     1  0.1910     0.6887 0.892 0.000 0.108 0.000 0.000 0.000
#> SRR2443174     1  0.1411     0.6963 0.936 0.000 0.004 0.000 0.000 0.060
#> SRR2443173     5  0.3126     0.7820 0.000 0.248 0.000 0.000 0.752 0.000
#> SRR2443172     5  0.3050     0.7937 0.000 0.236 0.000 0.000 0.764 0.000
#> SRR2443171     1  0.1765     0.6914 0.904 0.000 0.096 0.000 0.000 0.000
#> SRR2443170     1  0.4669     0.5780 0.648 0.000 0.004 0.000 0.284 0.064
#> SRR2443169     1  0.1714     0.6923 0.908 0.000 0.092 0.000 0.000 0.000
#> SRR2443168     5  0.5555     0.4168 0.036 0.000 0.248 0.016 0.636 0.064
#> SRR2443167     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443166     3  0.1471     0.8901 0.064 0.000 0.932 0.000 0.004 0.000
#> SRR2443165     4  0.1690     0.9030 0.004 0.016 0.020 0.940 0.020 0.000
#> SRR2443164     2  0.3102     0.7439 0.000 0.816 0.000 0.156 0.028 0.000
#> SRR2443163     4  0.0692     0.9188 0.000 0.004 0.020 0.976 0.000 0.000
#> SRR2443162     3  0.1003     0.9190 0.028 0.000 0.964 0.004 0.004 0.000
#> SRR2443161     3  0.0858     0.9293 0.000 0.000 0.968 0.028 0.004 0.000
#> SRR2443160     4  0.0405     0.9183 0.000 0.004 0.008 0.988 0.000 0.000
#> SRR2443159     4  0.0603     0.9204 0.000 0.004 0.016 0.980 0.000 0.000
#> SRR2443158     3  0.0837     0.9289 0.004 0.000 0.972 0.020 0.004 0.000
#> SRR2443157     1  0.2389     0.6805 0.864 0.000 0.128 0.000 0.008 0.000
#> SRR2443156     1  0.5481     0.4448 0.544 0.004 0.000 0.012 0.356 0.084
#> SRR2443155     1  0.4325     0.5982 0.692 0.000 0.000 0.000 0.244 0.064
#> SRR2443154     1  0.4830     0.5750 0.648 0.000 0.012 0.000 0.276 0.064
#> SRR2443153     1  0.2730     0.6437 0.808 0.000 0.000 0.000 0.000 0.192
#> SRR2443152     5  0.2597     0.8240 0.000 0.176 0.000 0.000 0.824 0.000
#> SRR2443151     2  0.2980     0.7229 0.000 0.800 0.000 0.192 0.008 0.000
#> SRR2443150     5  0.2697     0.8203 0.000 0.188 0.000 0.000 0.812 0.000
#> SRR2443148     2  0.2810     0.7360 0.000 0.832 0.004 0.156 0.000 0.008
#> SRR2443147     4  0.3528     0.4737 0.000 0.296 0.004 0.700 0.000 0.000
#> SRR2443149     3  0.0603     0.9245 0.016 0.000 0.980 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.913           0.929       0.968         0.3995 0.599   0.599
#> 3 3 0.512           0.656       0.746         0.5305 0.721   0.555
#> 4 4 0.672           0.665       0.843         0.2045 0.844   0.610
#> 5 5 0.682           0.650       0.810         0.0706 0.856   0.536
#> 6 6 0.732           0.685       0.827         0.0373 0.959   0.808

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.3431     0.9221 0.064 0.936
#> SRR2443262     2  0.0000     0.9750 0.000 1.000
#> SRR2443261     2  0.0000     0.9750 0.000 1.000
#> SRR2443260     2  0.0000     0.9750 0.000 1.000
#> SRR2443259     2  0.0000     0.9750 0.000 1.000
#> SRR2443258     2  0.0672     0.9701 0.008 0.992
#> SRR2443257     2  0.0000     0.9750 0.000 1.000
#> SRR2443256     2  0.3431     0.9221 0.064 0.936
#> SRR2443255     2  0.0376     0.9730 0.004 0.996
#> SRR2443254     2  0.0000     0.9750 0.000 1.000
#> SRR2443253     2  0.0000     0.9750 0.000 1.000
#> SRR2443251     2  0.0000     0.9750 0.000 1.000
#> SRR2443250     2  0.0000     0.9750 0.000 1.000
#> SRR2443249     2  0.0000     0.9750 0.000 1.000
#> SRR2443252     2  0.0000     0.9750 0.000 1.000
#> SRR2443247     1  0.7219     0.7752 0.800 0.200
#> SRR2443246     1  0.9209     0.5505 0.664 0.336
#> SRR2443248     2  0.0000     0.9750 0.000 1.000
#> SRR2443244     2  0.0376     0.9743 0.004 0.996
#> SRR2443245     1  0.0000     0.9395 1.000 0.000
#> SRR2443243     1  0.0000     0.9395 1.000 0.000
#> SRR2443242     2  0.0376     0.9743 0.004 0.996
#> SRR2443241     2  0.3431     0.9221 0.064 0.936
#> SRR2443240     2  0.0376     0.9743 0.004 0.996
#> SRR2443239     2  0.0376     0.9743 0.004 0.996
#> SRR2443238     1  0.0000     0.9395 1.000 0.000
#> SRR2443237     2  0.0376     0.9743 0.004 0.996
#> SRR2443236     1  0.0000     0.9395 1.000 0.000
#> SRR2443235     1  0.0376     0.9385 0.996 0.004
#> SRR2443233     1  0.0376     0.9385 0.996 0.004
#> SRR2443234     1  0.0000     0.9395 1.000 0.000
#> SRR2443232     1  0.0376     0.9385 0.996 0.004
#> SRR2443231     1  0.0376     0.9385 0.996 0.004
#> SRR2443230     1  0.0376     0.9385 0.996 0.004
#> SRR2443229     2  0.3584     0.9214 0.068 0.932
#> SRR2443228     2  0.0376     0.9743 0.004 0.996
#> SRR2443227     1  0.0000     0.9395 1.000 0.000
#> SRR2443226     1  0.0000     0.9395 1.000 0.000
#> SRR2443225     2  0.0376     0.9743 0.004 0.996
#> SRR2443223     2  0.0000     0.9750 0.000 1.000
#> SRR2443224     2  0.0000     0.9750 0.000 1.000
#> SRR2443222     2  0.0376     0.9743 0.004 0.996
#> SRR2443221     2  0.0376     0.9743 0.004 0.996
#> SRR2443219     2  0.0376     0.9743 0.004 0.996
#> SRR2443220     2  0.0000     0.9750 0.000 1.000
#> SRR2443218     2  0.0376     0.9743 0.004 0.996
#> SRR2443217     2  0.0376     0.9730 0.004 0.996
#> SRR2443216     2  0.0000     0.9750 0.000 1.000
#> SRR2443215     2  0.0376     0.9743 0.004 0.996
#> SRR2443214     1  0.0000     0.9395 1.000 0.000
#> SRR2443213     1  0.0000     0.9395 1.000 0.000
#> SRR2443212     2  0.0376     0.9743 0.004 0.996
#> SRR2443211     2  0.0000     0.9750 0.000 1.000
#> SRR2443210     2  0.0376     0.9743 0.004 0.996
#> SRR2443209     2  0.3431     0.9221 0.064 0.936
#> SRR2443208     2  0.0376     0.9743 0.004 0.996
#> SRR2443207     2  0.0376     0.9743 0.004 0.996
#> SRR2443206     2  0.0376     0.9743 0.004 0.996
#> SRR2443205     2  0.0376     0.9743 0.004 0.996
#> SRR2443204     1  0.0000     0.9395 1.000 0.000
#> SRR2443203     2  0.0000     0.9750 0.000 1.000
#> SRR2443202     2  0.0000     0.9750 0.000 1.000
#> SRR2443201     2  0.0000     0.9750 0.000 1.000
#> SRR2443200     2  0.0376     0.9743 0.004 0.996
#> SRR2443199     2  0.0376     0.9743 0.004 0.996
#> SRR2443197     2  0.0000     0.9750 0.000 1.000
#> SRR2443196     2  0.0376     0.9743 0.004 0.996
#> SRR2443198     2  0.0000     0.9750 0.000 1.000
#> SRR2443195     1  0.0000     0.9395 1.000 0.000
#> SRR2443194     2  0.0000     0.9750 0.000 1.000
#> SRR2443193     1  0.0000     0.9395 1.000 0.000
#> SRR2443191     2  0.3431     0.9221 0.064 0.936
#> SRR2443192     2  0.0376     0.9743 0.004 0.996
#> SRR2443190     1  0.0000     0.9395 1.000 0.000
#> SRR2443189     1  0.0000     0.9395 1.000 0.000
#> SRR2443188     1  0.0000     0.9395 1.000 0.000
#> SRR2443186     2  0.0376     0.9743 0.004 0.996
#> SRR2443187     2  0.0376     0.9743 0.004 0.996
#> SRR2443185     2  0.0000     0.9750 0.000 1.000
#> SRR2443184     2  0.0000     0.9750 0.000 1.000
#> SRR2443183     1  0.0000     0.9395 1.000 0.000
#> SRR2443182     1  0.9358     0.5152 0.648 0.352
#> SRR2443181     2  0.0376     0.9743 0.004 0.996
#> SRR2443180     2  0.0376     0.9743 0.004 0.996
#> SRR2443179     2  0.0376     0.9743 0.004 0.996
#> SRR2443178     2  0.7219     0.7349 0.200 0.800
#> SRR2443177     1  0.0000     0.9395 1.000 0.000
#> SRR2443176     2  0.7299     0.7385 0.204 0.796
#> SRR2443175     1  0.7219     0.7752 0.800 0.200
#> SRR2443174     1  0.0376     0.9385 0.996 0.004
#> SRR2443173     2  0.0000     0.9750 0.000 1.000
#> SRR2443172     2  0.0000     0.9750 0.000 1.000
#> SRR2443171     1  0.8144     0.7033 0.748 0.252
#> SRR2443170     2  0.9129     0.4853 0.328 0.672
#> SRR2443169     1  0.0376     0.9385 0.996 0.004
#> SRR2443168     2  0.0000     0.9750 0.000 1.000
#> SRR2443167     2  0.0000     0.9750 0.000 1.000
#> SRR2443166     2  0.9998    -0.0612 0.492 0.508
#> SRR2443165     2  0.0000     0.9750 0.000 1.000
#> SRR2443164     2  0.0000     0.9750 0.000 1.000
#> SRR2443163     2  0.0000     0.9750 0.000 1.000
#> SRR2443162     2  0.3431     0.9221 0.064 0.936
#> SRR2443161     2  0.0000     0.9750 0.000 1.000
#> SRR2443160     2  0.0000     0.9750 0.000 1.000
#> SRR2443159     2  0.0000     0.9750 0.000 1.000
#> SRR2443158     2  0.3431     0.9221 0.064 0.936
#> SRR2443157     1  0.7453     0.7604 0.788 0.212
#> SRR2443156     2  0.0000     0.9750 0.000 1.000
#> SRR2443155     1  0.7299     0.7705 0.796 0.204
#> SRR2443154     2  0.3431     0.9221 0.064 0.936
#> SRR2443153     1  0.0376     0.9385 0.996 0.004
#> SRR2443152     2  0.0000     0.9750 0.000 1.000
#> SRR2443151     2  0.0000     0.9750 0.000 1.000
#> SRR2443150     2  0.0000     0.9750 0.000 1.000
#> SRR2443148     2  0.0376     0.9743 0.004 0.996
#> SRR2443147     2  0.0000     0.9750 0.000 1.000
#> SRR2443149     2  0.0000     0.9750 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443262     2  0.4605      0.604 0.000 0.796 0.204
#> SRR2443261     2  0.6302     -0.347 0.000 0.520 0.480
#> SRR2443260     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443259     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443258     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443257     2  0.6126      0.587 0.000 0.600 0.400
#> SRR2443256     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443255     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443254     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443253     2  0.6154      0.580 0.000 0.592 0.408
#> SRR2443251     2  0.4702      0.594 0.000 0.788 0.212
#> SRR2443250     2  0.4654      0.599 0.000 0.792 0.208
#> SRR2443249     2  0.4605      0.604 0.000 0.796 0.204
#> SRR2443252     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443247     3  0.6225      0.256 0.432 0.000 0.568
#> SRR2443246     3  0.5882      0.435 0.348 0.000 0.652
#> SRR2443248     3  0.6267      0.532 0.000 0.452 0.548
#> SRR2443244     2  0.3619      0.655 0.000 0.864 0.136
#> SRR2443245     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443242     2  0.2165      0.681 0.000 0.936 0.064
#> SRR2443241     3  0.6244      0.619 0.000 0.440 0.560
#> SRR2443240     2  0.2356      0.652 0.000 0.928 0.072
#> SRR2443239     2  0.3267      0.665 0.000 0.884 0.116
#> SRR2443238     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443237     2  0.2261      0.681 0.000 0.932 0.068
#> SRR2443236     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443229     3  0.7013      0.622 0.020 0.432 0.548
#> SRR2443228     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443227     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443225     2  0.5591      0.380 0.000 0.696 0.304
#> SRR2443223     2  0.4555      0.609 0.000 0.800 0.200
#> SRR2443224     3  0.6045      0.693 0.000 0.380 0.620
#> SRR2443222     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443221     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443219     2  0.2796      0.675 0.000 0.908 0.092
#> SRR2443220     2  0.4235      0.631 0.000 0.824 0.176
#> SRR2443218     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443217     2  0.6286     -0.267 0.000 0.536 0.464
#> SRR2443216     3  0.5905      0.711 0.000 0.352 0.648
#> SRR2443215     2  0.1411      0.683 0.000 0.964 0.036
#> SRR2443214     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443212     2  0.0237      0.679 0.000 0.996 0.004
#> SRR2443211     2  0.2261      0.655 0.000 0.932 0.068
#> SRR2443210     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443209     3  0.6299      0.505 0.000 0.476 0.524
#> SRR2443208     2  0.0892      0.674 0.000 0.980 0.020
#> SRR2443207     2  0.0592      0.682 0.000 0.988 0.012
#> SRR2443206     2  0.3752      0.619 0.000 0.856 0.144
#> SRR2443205     2  0.0000      0.680 0.000 1.000 0.000
#> SRR2443204     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443203     2  0.4452      0.601 0.000 0.808 0.192
#> SRR2443202     2  0.3686      0.653 0.000 0.860 0.140
#> SRR2443201     2  0.4399      0.621 0.000 0.812 0.188
#> SRR2443200     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443199     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443197     2  0.4504      0.613 0.000 0.804 0.196
#> SRR2443196     2  0.6235      0.545 0.000 0.564 0.436
#> SRR2443198     2  0.4062      0.640 0.000 0.836 0.164
#> SRR2443195     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443194     2  0.5327      0.457 0.000 0.728 0.272
#> SRR2443193     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443191     3  0.6111      0.673 0.000 0.396 0.604
#> SRR2443192     2  0.0000      0.680 0.000 1.000 0.000
#> SRR2443190     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443189     1  0.0661      0.982 0.988 0.008 0.004
#> SRR2443188     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443186     2  0.0000      0.680 0.000 1.000 0.000
#> SRR2443187     2  0.0000      0.680 0.000 1.000 0.000
#> SRR2443185     2  0.4452      0.617 0.000 0.808 0.192
#> SRR2443184     2  0.5497      0.441 0.000 0.708 0.292
#> SRR2443183     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443182     3  0.5882      0.435 0.348 0.000 0.652
#> SRR2443181     2  0.1411      0.665 0.000 0.964 0.036
#> SRR2443180     2  0.5882      0.528 0.000 0.652 0.348
#> SRR2443179     2  0.6215      0.544 0.000 0.572 0.428
#> SRR2443178     2  0.3112      0.636 0.096 0.900 0.004
#> SRR2443177     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443176     3  0.8604      0.638 0.124 0.312 0.564
#> SRR2443175     3  0.6274      0.194 0.456 0.000 0.544
#> SRR2443174     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443173     2  0.4291      0.635 0.000 0.820 0.180
#> SRR2443172     2  0.4346      0.648 0.000 0.816 0.184
#> SRR2443171     3  0.5948      0.410 0.360 0.000 0.640
#> SRR2443170     3  0.8608      0.597 0.204 0.192 0.604
#> SRR2443169     1  0.3192      0.845 0.888 0.000 0.112
#> SRR2443168     3  0.5988      0.700 0.000 0.368 0.632
#> SRR2443167     2  0.6154      0.580 0.000 0.592 0.408
#> SRR2443166     3  0.6081      0.443 0.344 0.004 0.652
#> SRR2443165     2  0.5431      0.449 0.000 0.716 0.284
#> SRR2443164     2  0.6168      0.539 0.000 0.588 0.412
#> SRR2443163     2  0.4605      0.604 0.000 0.796 0.204
#> SRR2443162     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443161     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443160     2  0.6126      0.587 0.000 0.600 0.400
#> SRR2443159     2  0.6126      0.587 0.000 0.600 0.400
#> SRR2443158     3  0.5882      0.715 0.000 0.348 0.652
#> SRR2443157     3  0.5968      0.401 0.364 0.000 0.636
#> SRR2443156     3  0.6299      0.477 0.000 0.476 0.524
#> SRR2443155     3  0.6359      0.396 0.364 0.008 0.628
#> SRR2443154     3  0.5926      0.711 0.000 0.356 0.644
#> SRR2443153     1  0.0000      0.994 1.000 0.000 0.000
#> SRR2443152     2  0.3116      0.671 0.000 0.892 0.108
#> SRR2443151     2  0.6309      0.533 0.000 0.504 0.496
#> SRR2443150     2  0.0000      0.680 0.000 1.000 0.000
#> SRR2443148     2  0.6008      0.533 0.000 0.628 0.372
#> SRR2443147     3  0.6305     -0.545 0.000 0.484 0.516
#> SRR2443149     3  0.5882      0.715 0.000 0.348 0.652

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.2011      0.816 0.000 0.000 0.920 0.080
#> SRR2443262     4  0.3933      0.520 0.000 0.200 0.008 0.792
#> SRR2443261     3  0.4843      0.281 0.000 0.000 0.604 0.396
#> SRR2443260     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443259     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443257     4  0.4889      0.198 0.000 0.360 0.004 0.636
#> SRR2443256     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443253     4  0.4889      0.198 0.000 0.360 0.004 0.636
#> SRR2443251     4  0.4564      0.463 0.000 0.000 0.328 0.672
#> SRR2443250     4  0.5448      0.530 0.000 0.196 0.080 0.724
#> SRR2443249     4  0.3569      0.523 0.000 0.196 0.000 0.804
#> SRR2443252     3  0.0336      0.847 0.000 0.000 0.992 0.008
#> SRR2443247     3  0.4877      0.288 0.408 0.000 0.592 0.000
#> SRR2443246     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443248     3  0.4972      0.151 0.000 0.000 0.544 0.456
#> SRR2443244     4  0.0469      0.660 0.000 0.012 0.000 0.988
#> SRR2443245     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443242     4  0.2216      0.650 0.000 0.092 0.000 0.908
#> SRR2443241     4  0.5524      0.444 0.000 0.048 0.276 0.676
#> SRR2443240     4  0.3852      0.598 0.000 0.192 0.008 0.800
#> SRR2443239     4  0.0000      0.661 0.000 0.000 0.000 1.000
#> SRR2443238     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443237     4  0.1557      0.660 0.000 0.056 0.000 0.944
#> SRR2443236     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443235     1  0.0188      0.984 0.996 0.004 0.000 0.000
#> SRR2443233     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443229     3  0.5281      0.669 0.004 0.048 0.728 0.220
#> SRR2443228     2  0.0188      0.677 0.000 0.996 0.000 0.004
#> SRR2443227     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443225     4  0.2760      0.613 0.000 0.000 0.128 0.872
#> SRR2443223     4  0.0524      0.662 0.000 0.004 0.008 0.988
#> SRR2443224     3  0.1975      0.822 0.000 0.048 0.936 0.016
#> SRR2443222     2  0.0707      0.688 0.000 0.980 0.000 0.020
#> SRR2443221     2  0.0000      0.673 0.000 1.000 0.000 0.000
#> SRR2443219     4  0.0469      0.660 0.000 0.012 0.000 0.988
#> SRR2443220     4  0.1792      0.637 0.000 0.068 0.000 0.932
#> SRR2443218     2  0.4103      0.607 0.000 0.744 0.000 0.256
#> SRR2443217     3  0.3791      0.667 0.000 0.004 0.796 0.200
#> SRR2443216     3  0.0188      0.848 0.000 0.000 0.996 0.004
#> SRR2443215     4  0.2149      0.646 0.000 0.088 0.000 0.912
#> SRR2443214     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443213     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443212     4  0.4961      0.297 0.000 0.448 0.000 0.552
#> SRR2443211     4  0.3768      0.604 0.000 0.184 0.008 0.808
#> SRR2443210     2  0.1211      0.698 0.000 0.960 0.000 0.040
#> SRR2443209     3  0.5807      0.433 0.000 0.040 0.596 0.364
#> SRR2443208     4  0.4898      0.347 0.000 0.416 0.000 0.584
#> SRR2443207     4  0.3810      0.602 0.000 0.188 0.008 0.804
#> SRR2443206     2  0.4661      0.157 0.000 0.652 0.000 0.348
#> SRR2443205     4  0.3486      0.601 0.000 0.188 0.000 0.812
#> SRR2443204     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443203     4  0.2473      0.647 0.000 0.012 0.080 0.908
#> SRR2443202     4  0.0469      0.660 0.000 0.012 0.000 0.988
#> SRR2443201     4  0.0188      0.662 0.000 0.000 0.004 0.996
#> SRR2443200     2  0.1389      0.700 0.000 0.952 0.000 0.048
#> SRR2443199     2  0.1389      0.700 0.000 0.952 0.000 0.048
#> SRR2443197     4  0.3751      0.523 0.000 0.196 0.004 0.800
#> SRR2443196     2  0.4925      0.442 0.000 0.572 0.000 0.428
#> SRR2443198     4  0.0524      0.661 0.000 0.008 0.004 0.988
#> SRR2443195     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443194     4  0.3942      0.514 0.000 0.000 0.236 0.764
#> SRR2443193     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443191     4  0.6102      0.122 0.000 0.048 0.420 0.532
#> SRR2443192     4  0.4888      0.333 0.000 0.412 0.000 0.588
#> SRR2443190     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.2049      0.930 0.940 0.036 0.012 0.012
#> SRR2443188     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443186     4  0.4933      0.325 0.000 0.432 0.000 0.568
#> SRR2443187     4  0.4933      0.325 0.000 0.432 0.000 0.568
#> SRR2443185     4  0.4549      0.573 0.000 0.096 0.100 0.804
#> SRR2443184     3  0.4985      0.136 0.000 0.000 0.532 0.468
#> SRR2443183     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443182     3  0.2149      0.811 0.000 0.000 0.912 0.088
#> SRR2443181     4  0.4933      0.325 0.000 0.432 0.000 0.568
#> SRR2443180     2  0.1389      0.700 0.000 0.952 0.000 0.048
#> SRR2443179     2  0.4933      0.437 0.000 0.568 0.000 0.432
#> SRR2443178     4  0.6305      0.199 0.060 0.424 0.000 0.516
#> SRR2443177     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443176     3  0.3814      0.790 0.008 0.044 0.856 0.092
#> SRR2443175     3  0.4761      0.376 0.372 0.000 0.628 0.000
#> SRR2443174     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.4679      0.331 0.000 0.648 0.000 0.352
#> SRR2443172     4  0.5298      0.477 0.000 0.244 0.048 0.708
#> SRR2443171     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443170     3  0.3758      0.785 0.000 0.048 0.848 0.104
#> SRR2443169     1  0.3610      0.745 0.800 0.000 0.200 0.000
#> SRR2443168     3  0.5865      0.445 0.000 0.048 0.612 0.340
#> SRR2443167     4  0.5024      0.199 0.000 0.360 0.008 0.632
#> SRR2443166     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443165     4  0.3948      0.599 0.000 0.036 0.136 0.828
#> SRR2443164     2  0.4817      0.483 0.000 0.612 0.000 0.388
#> SRR2443163     4  0.4011      0.550 0.000 0.008 0.208 0.784
#> SRR2443162     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0469      0.846 0.000 0.000 0.988 0.012
#> SRR2443160     4  0.4713      0.197 0.000 0.360 0.000 0.640
#> SRR2443159     4  0.4889      0.198 0.000 0.360 0.004 0.636
#> SRR2443158     3  0.0469      0.846 0.000 0.000 0.988 0.012
#> SRR2443157     3  0.0000      0.848 0.000 0.000 1.000 0.000
#> SRR2443156     3  0.3486      0.711 0.000 0.000 0.812 0.188
#> SRR2443155     3  0.0376      0.846 0.004 0.000 0.992 0.004
#> SRR2443154     3  0.2408      0.824 0.000 0.044 0.920 0.036
#> SRR2443153     1  0.0000      0.988 1.000 0.000 0.000 0.000
#> SRR2443152     4  0.1302      0.662 0.000 0.044 0.000 0.956
#> SRR2443151     2  0.4933      0.437 0.000 0.568 0.000 0.432
#> SRR2443150     4  0.3486      0.601 0.000 0.188 0.000 0.812
#> SRR2443148     2  0.2647      0.682 0.000 0.880 0.000 0.120
#> SRR2443147     2  0.4941      0.429 0.000 0.564 0.000 0.436
#> SRR2443149     3  0.0000      0.848 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.2077     0.8012 0.000 0.000 0.908 0.084 0.008
#> SRR2443262     4  0.2464     0.6819 0.000 0.096 0.016 0.888 0.000
#> SRR2443261     4  0.4273     0.2364 0.000 0.000 0.448 0.552 0.000
#> SRR2443260     3  0.0000     0.8597 0.000 0.000 1.000 0.000 0.000
#> SRR2443259     3  0.0000     0.8597 0.000 0.000 1.000 0.000 0.000
#> SRR2443258     3  0.0000     0.8597 0.000 0.000 1.000 0.000 0.000
#> SRR2443257     2  0.4659     0.4322 0.000 0.496 0.012 0.492 0.000
#> SRR2443256     3  0.0290     0.8587 0.000 0.000 0.992 0.000 0.008
#> SRR2443255     3  0.0000     0.8597 0.000 0.000 1.000 0.000 0.000
#> SRR2443254     3  0.0404     0.8562 0.000 0.000 0.988 0.012 0.000
#> SRR2443253     2  0.4659     0.4322 0.000 0.496 0.012 0.492 0.000
#> SRR2443251     4  0.2377     0.7120 0.000 0.000 0.128 0.872 0.000
#> SRR2443250     4  0.2011     0.7329 0.000 0.004 0.088 0.908 0.000
#> SRR2443249     4  0.0671     0.7531 0.000 0.004 0.016 0.980 0.000
#> SRR2443252     3  0.0609     0.8520 0.000 0.000 0.980 0.020 0.000
#> SRR2443247     3  0.4866     0.3110 0.392 0.000 0.580 0.000 0.028
#> SRR2443246     3  0.0963     0.8515 0.000 0.000 0.964 0.000 0.036
#> SRR2443248     4  0.4297     0.1391 0.000 0.000 0.472 0.528 0.000
#> SRR2443244     4  0.0566     0.7525 0.000 0.004 0.000 0.984 0.012
#> SRR2443245     1  0.2624     0.8844 0.872 0.012 0.000 0.000 0.116
#> SRR2443243     1  0.1195     0.9095 0.960 0.012 0.000 0.000 0.028
#> SRR2443242     5  0.5077     0.2983 0.000 0.036 0.000 0.428 0.536
#> SRR2443241     4  0.6027    -0.0451 0.000 0.008 0.088 0.464 0.440
#> SRR2443240     5  0.3340     0.6254 0.000 0.032 0.004 0.124 0.840
#> SRR2443239     4  0.0290     0.7545 0.000 0.000 0.000 0.992 0.008
#> SRR2443238     1  0.2020     0.8925 0.900 0.000 0.000 0.000 0.100
#> SRR2443237     4  0.2554     0.7278 0.000 0.036 0.000 0.892 0.072
#> SRR2443236     1  0.3177     0.7459 0.792 0.000 0.000 0.000 0.208
#> SRR2443235     1  0.3274     0.7450 0.780 0.000 0.000 0.000 0.220
#> SRR2443233     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0404     0.9115 0.988 0.000 0.000 0.000 0.012
#> SRR2443231     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0609     0.9091 0.980 0.000 0.000 0.000 0.020
#> SRR2443229     5  0.4089     0.6123 0.000 0.008 0.088 0.100 0.804
#> SRR2443228     2  0.0609     0.5922 0.000 0.980 0.000 0.000 0.020
#> SRR2443227     1  0.0693     0.9122 0.980 0.012 0.000 0.000 0.008
#> SRR2443226     1  0.2574     0.8857 0.876 0.012 0.000 0.000 0.112
#> SRR2443225     4  0.5423     0.4578 0.000 0.020 0.052 0.644 0.284
#> SRR2443223     4  0.0404     0.7533 0.000 0.000 0.012 0.988 0.000
#> SRR2443224     5  0.4713     0.2045 0.000 0.016 0.440 0.000 0.544
#> SRR2443222     2  0.0912     0.6120 0.000 0.972 0.000 0.016 0.012
#> SRR2443221     2  0.1117     0.6143 0.000 0.964 0.000 0.020 0.016
#> SRR2443219     4  0.0162     0.7539 0.000 0.004 0.000 0.996 0.000
#> SRR2443220     4  0.0000     0.7539 0.000 0.000 0.000 1.000 0.000
#> SRR2443218     2  0.4384     0.6660 0.000 0.728 0.000 0.228 0.044
#> SRR2443217     3  0.3391     0.6462 0.000 0.000 0.800 0.188 0.012
#> SRR2443216     3  0.0290     0.8590 0.000 0.000 0.992 0.008 0.000
#> SRR2443215     4  0.3019     0.7031 0.000 0.088 0.000 0.864 0.048
#> SRR2443214     1  0.5075     0.6155 0.604 0.020 0.016 0.000 0.360
#> SRR2443213     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.5432     0.5589 0.000 0.392 0.000 0.064 0.544
#> SRR2443211     5  0.3238     0.6204 0.000 0.028 0.000 0.136 0.836
#> SRR2443210     2  0.1408     0.6238 0.000 0.948 0.000 0.044 0.008
#> SRR2443209     5  0.4793     0.5350 0.000 0.000 0.216 0.076 0.708
#> SRR2443208     5  0.5301     0.6122 0.000 0.272 0.004 0.076 0.648
#> SRR2443207     5  0.6422     0.4480 0.000 0.148 0.008 0.340 0.504
#> SRR2443206     5  0.4978     0.4711 0.000 0.476 0.000 0.028 0.496
#> SRR2443205     5  0.4812     0.3290 0.000 0.028 0.000 0.372 0.600
#> SRR2443204     1  0.2522     0.8867 0.880 0.012 0.000 0.000 0.108
#> SRR2443203     4  0.2726     0.7358 0.000 0.000 0.052 0.884 0.064
#> SRR2443202     4  0.1408     0.7386 0.000 0.008 0.000 0.948 0.044
#> SRR2443201     4  0.0000     0.7539 0.000 0.000 0.000 1.000 0.000
#> SRR2443200     2  0.0963     0.6281 0.000 0.964 0.000 0.036 0.000
#> SRR2443199     2  0.1018     0.6108 0.000 0.968 0.000 0.016 0.016
#> SRR2443197     4  0.0451     0.7521 0.000 0.008 0.004 0.988 0.000
#> SRR2443196     2  0.5168     0.5973 0.000 0.592 0.000 0.356 0.052
#> SRR2443198     4  0.0000     0.7539 0.000 0.000 0.000 1.000 0.000
#> SRR2443195     1  0.2522     0.8867 0.880 0.012 0.000 0.000 0.108
#> SRR2443194     4  0.2951     0.6939 0.000 0.000 0.112 0.860 0.028
#> SRR2443193     1  0.2777     0.8789 0.864 0.016 0.000 0.000 0.120
#> SRR2443191     5  0.4748     0.6126 0.000 0.000 0.100 0.172 0.728
#> SRR2443192     4  0.6517    -0.1721 0.000 0.392 0.000 0.416 0.192
#> SRR2443190     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     5  0.4726     0.2600 0.280 0.020 0.016 0.000 0.684
#> SRR2443188     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     5  0.5928     0.5482 0.000 0.392 0.000 0.108 0.500
#> SRR2443187     5  0.5928     0.5451 0.000 0.392 0.000 0.108 0.500
#> SRR2443185     4  0.0162     0.7528 0.000 0.004 0.000 0.996 0.000
#> SRR2443184     4  0.4305     0.0884 0.000 0.000 0.488 0.512 0.000
#> SRR2443183     1  0.0000     0.9135 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.5167     0.5784 0.000 0.000 0.668 0.092 0.240
#> SRR2443181     5  0.5415     0.5647 0.000 0.384 0.000 0.064 0.552
#> SRR2443180     2  0.0963     0.6281 0.000 0.964 0.000 0.036 0.000
#> SRR2443179     2  0.5091     0.5938 0.000 0.584 0.000 0.372 0.044
#> SRR2443178     5  0.6640     0.1780 0.012 0.136 0.004 0.376 0.472
#> SRR2443177     1  0.3787     0.8395 0.800 0.020 0.012 0.000 0.168
#> SRR2443176     3  0.6215     0.3924 0.008 0.008 0.532 0.092 0.360
#> SRR2443175     3  0.4819     0.4120 0.352 0.000 0.620 0.004 0.024
#> SRR2443174     1  0.0162     0.9128 0.996 0.000 0.000 0.000 0.004
#> SRR2443173     4  0.5365     0.4908 0.000 0.228 0.000 0.656 0.116
#> SRR2443172     4  0.3561     0.7081 0.000 0.032 0.024 0.844 0.100
#> SRR2443171     3  0.0794     0.8544 0.000 0.000 0.972 0.000 0.028
#> SRR2443170     5  0.3866     0.5854 0.000 0.012 0.136 0.040 0.812
#> SRR2443169     1  0.3710     0.7087 0.784 0.000 0.192 0.000 0.024
#> SRR2443168     5  0.6247     0.3813 0.000 0.000 0.364 0.152 0.484
#> SRR2443167     4  0.4746    -0.1241 0.000 0.376 0.024 0.600 0.000
#> SRR2443166     3  0.0510     0.8571 0.000 0.000 0.984 0.000 0.016
#> SRR2443165     4  0.1267     0.7540 0.000 0.004 0.024 0.960 0.012
#> SRR2443164     2  0.5569     0.6072 0.000 0.588 0.000 0.320 0.092
#> SRR2443163     4  0.1121     0.7514 0.000 0.000 0.044 0.956 0.000
#> SRR2443162     3  0.0162     0.8595 0.000 0.000 0.996 0.000 0.004
#> SRR2443161     3  0.0609     0.8548 0.000 0.000 0.980 0.020 0.000
#> SRR2443160     4  0.4473    -0.2471 0.000 0.412 0.008 0.580 0.000
#> SRR2443159     2  0.4659     0.4322 0.000 0.496 0.012 0.492 0.000
#> SRR2443158     3  0.0404     0.8580 0.000 0.000 0.988 0.012 0.000
#> SRR2443157     3  0.0963     0.8525 0.000 0.000 0.964 0.000 0.036
#> SRR2443156     3  0.5470     0.5185 0.000 0.000 0.636 0.112 0.252
#> SRR2443155     3  0.4553     0.5587 0.000 0.016 0.652 0.004 0.328
#> SRR2443154     3  0.2562     0.8145 0.000 0.008 0.900 0.032 0.060
#> SRR2443153     1  0.0290     0.9126 0.992 0.000 0.000 0.000 0.008
#> SRR2443152     4  0.2625     0.7128 0.000 0.016 0.000 0.876 0.108
#> SRR2443151     2  0.4726     0.5827 0.000 0.580 0.000 0.400 0.020
#> SRR2443150     4  0.4502     0.5913 0.000 0.076 0.000 0.744 0.180
#> SRR2443148     2  0.3058     0.6439 0.000 0.860 0.000 0.096 0.044
#> SRR2443147     2  0.4235     0.5621 0.000 0.576 0.000 0.424 0.000
#> SRR2443149     3  0.0000     0.8597 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.2162     0.8165 0.000 0.000 0.896 0.088 0.012 0.004
#> SRR2443262     4  0.2988     0.6278 0.000 0.144 0.028 0.828 0.000 0.000
#> SRR2443261     4  0.3838     0.2526 0.000 0.000 0.448 0.552 0.000 0.000
#> SRR2443260     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443259     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443258     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443257     2  0.4093     0.6007 0.000 0.584 0.012 0.404 0.000 0.000
#> SRR2443256     3  0.0363     0.8765 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR2443255     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443254     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443253     2  0.4362     0.5924 0.000 0.584 0.028 0.388 0.000 0.000
#> SRR2443251     4  0.2178     0.7132 0.000 0.000 0.132 0.868 0.000 0.000
#> SRR2443250     4  0.1765     0.7292 0.000 0.000 0.096 0.904 0.000 0.000
#> SRR2443249     4  0.0790     0.7486 0.000 0.000 0.032 0.968 0.000 0.000
#> SRR2443252     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443247     3  0.5391     0.2434 0.384 0.008 0.540 0.000 0.044 0.024
#> SRR2443246     3  0.1138     0.8699 0.000 0.004 0.960 0.000 0.024 0.012
#> SRR2443248     4  0.3862     0.1453 0.000 0.000 0.476 0.524 0.000 0.000
#> SRR2443244     4  0.0603     0.7479 0.000 0.004 0.000 0.980 0.016 0.000
#> SRR2443245     6  0.1663     0.8874 0.088 0.000 0.000 0.000 0.000 0.912
#> SRR2443243     1  0.3607     0.4516 0.652 0.000 0.000 0.000 0.000 0.348
#> SRR2443242     5  0.5070     0.5338 0.000 0.024 0.000 0.300 0.620 0.056
#> SRR2443241     4  0.5660     0.1816 0.000 0.004 0.036 0.508 0.396 0.056
#> SRR2443240     5  0.1371     0.6927 0.000 0.004 0.004 0.040 0.948 0.004
#> SRR2443239     4  0.0547     0.7489 0.000 0.000 0.000 0.980 0.020 0.000
#> SRR2443238     6  0.3151     0.7184 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR2443237     4  0.2271     0.7347 0.000 0.032 0.000 0.908 0.036 0.024
#> SRR2443236     1  0.2520     0.7887 0.844 0.000 0.000 0.000 0.152 0.004
#> SRR2443235     1  0.4255     0.7154 0.732 0.008 0.000 0.000 0.196 0.064
#> SRR2443233     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.1409     0.8815 0.948 0.008 0.000 0.000 0.032 0.012
#> SRR2443231     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.1692     0.8753 0.932 0.008 0.000 0.000 0.012 0.048
#> SRR2443229     5  0.4032     0.6809 0.000 0.000 0.072 0.088 0.796 0.044
#> SRR2443228     2  0.0692     0.6587 0.000 0.976 0.000 0.000 0.020 0.004
#> SRR2443227     1  0.2178     0.7968 0.868 0.000 0.000 0.000 0.000 0.132
#> SRR2443226     6  0.1610     0.8882 0.084 0.000 0.000 0.000 0.000 0.916
#> SRR2443225     6  0.3419     0.6808 0.000 0.000 0.012 0.180 0.016 0.792
#> SRR2443223     4  0.0632     0.7480 0.000 0.000 0.024 0.976 0.000 0.000
#> SRR2443224     5  0.3468     0.5635 0.000 0.008 0.264 0.000 0.728 0.000
#> SRR2443222     2  0.0748     0.6637 0.000 0.976 0.000 0.004 0.016 0.004
#> SRR2443221     2  0.0748     0.6622 0.000 0.976 0.000 0.004 0.016 0.004
#> SRR2443219     4  0.0405     0.7482 0.000 0.004 0.000 0.988 0.008 0.000
#> SRR2443220     4  0.0508     0.7499 0.000 0.000 0.012 0.984 0.004 0.000
#> SRR2443218     2  0.3661     0.7199 0.000 0.768 0.000 0.200 0.020 0.012
#> SRR2443217     3  0.3402     0.7005 0.000 0.004 0.800 0.172 0.012 0.012
#> SRR2443216     3  0.0260     0.8767 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR2443215     4  0.2872     0.7069 0.000 0.080 0.000 0.868 0.024 0.028
#> SRR2443214     6  0.1010     0.8765 0.036 0.000 0.000 0.000 0.004 0.960
#> SRR2443213     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.3967     0.6714 0.000 0.356 0.000 0.000 0.632 0.012
#> SRR2443211     5  0.1621     0.6863 0.000 0.008 0.004 0.048 0.936 0.004
#> SRR2443210     2  0.0964     0.6682 0.000 0.968 0.000 0.016 0.012 0.004
#> SRR2443209     5  0.4153     0.6666 0.000 0.004 0.128 0.076 0.776 0.016
#> SRR2443208     5  0.3809     0.7055 0.000 0.264 0.000 0.008 0.716 0.012
#> SRR2443207     5  0.5702     0.6279 0.000 0.156 0.008 0.208 0.612 0.016
#> SRR2443206     5  0.4264     0.6572 0.000 0.376 0.000 0.008 0.604 0.012
#> SRR2443205     5  0.4130     0.4174 0.000 0.016 0.000 0.312 0.664 0.008
#> SRR2443204     6  0.1663     0.8874 0.088 0.000 0.000 0.000 0.000 0.912
#> SRR2443203     4  0.2007     0.7473 0.000 0.000 0.032 0.920 0.036 0.012
#> SRR2443202     4  0.1251     0.7423 0.000 0.008 0.000 0.956 0.024 0.012
#> SRR2443201     4  0.0520     0.7501 0.000 0.000 0.008 0.984 0.008 0.000
#> SRR2443200     2  0.0748     0.6728 0.000 0.976 0.000 0.016 0.004 0.004
#> SRR2443199     2  0.1053     0.6723 0.000 0.964 0.000 0.012 0.004 0.020
#> SRR2443197     4  0.0790     0.7350 0.000 0.032 0.000 0.968 0.000 0.000
#> SRR2443196     2  0.4636     0.6535 0.000 0.620 0.000 0.336 0.020 0.024
#> SRR2443198     4  0.0146     0.7476 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR2443195     6  0.1663     0.8874 0.088 0.000 0.000 0.000 0.000 0.912
#> SRR2443194     4  0.2703     0.6941 0.000 0.000 0.116 0.860 0.016 0.008
#> SRR2443193     6  0.1444     0.8879 0.072 0.000 0.000 0.000 0.000 0.928
#> SRR2443191     5  0.4165     0.6744 0.000 0.004 0.052 0.112 0.788 0.044
#> SRR2443192     4  0.6405    -0.1075 0.000 0.356 0.000 0.400 0.224 0.020
#> SRR2443190     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     6  0.0870     0.8626 0.012 0.000 0.004 0.000 0.012 0.972
#> SRR2443188     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     5  0.4266     0.6709 0.000 0.356 0.000 0.020 0.620 0.004
#> SRR2443187     5  0.4462     0.6696 0.000 0.356 0.000 0.020 0.612 0.012
#> SRR2443185     4  0.0291     0.7485 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR2443184     4  0.3996     0.0913 0.000 0.000 0.484 0.512 0.004 0.000
#> SRR2443183     1  0.0000     0.9010 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.5481     0.6210 0.000 0.008 0.668 0.096 0.184 0.044
#> SRR2443181     5  0.3668     0.6834 0.000 0.328 0.000 0.000 0.668 0.004
#> SRR2443180     2  0.0458     0.6758 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR2443179     2  0.4411     0.6578 0.000 0.628 0.000 0.340 0.020 0.012
#> SRR2443178     4  0.6396    -0.0347 0.000 0.016 0.000 0.372 0.244 0.368
#> SRR2443177     6  0.1387     0.8876 0.068 0.000 0.000 0.000 0.000 0.932
#> SRR2443176     6  0.5921     0.4749 0.000 0.004 0.068 0.104 0.204 0.620
#> SRR2443175     3  0.5294     0.3548 0.344 0.008 0.580 0.000 0.044 0.024
#> SRR2443174     1  0.0405     0.8986 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR2443173     4  0.4634     0.5953 0.000 0.116 0.000 0.700 0.180 0.004
#> SRR2443172     4  0.3442     0.6758 0.000 0.016 0.016 0.796 0.172 0.000
#> SRR2443171     3  0.1890     0.8549 0.000 0.008 0.924 0.000 0.044 0.024
#> SRR2443170     5  0.1930     0.6849 0.000 0.000 0.012 0.028 0.924 0.036
#> SRR2443169     1  0.4464     0.6751 0.740 0.008 0.184 0.000 0.044 0.024
#> SRR2443168     5  0.5120     0.5652 0.000 0.000 0.280 0.120 0.600 0.000
#> SRR2443167     4  0.4500    -0.1367 0.000 0.392 0.036 0.572 0.000 0.000
#> SRR2443166     3  0.1078     0.8700 0.000 0.008 0.964 0.000 0.016 0.012
#> SRR2443165     4  0.2351     0.7359 0.000 0.032 0.036 0.904 0.000 0.028
#> SRR2443164     2  0.5145     0.6635 0.000 0.628 0.000 0.264 0.096 0.012
#> SRR2443163     4  0.1141     0.7471 0.000 0.000 0.052 0.948 0.000 0.000
#> SRR2443162     3  0.0363     0.8765 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR2443161     3  0.0632     0.8702 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR2443160     4  0.3986    -0.3597 0.000 0.464 0.004 0.532 0.000 0.000
#> SRR2443159     2  0.4093     0.6007 0.000 0.584 0.012 0.404 0.000 0.000
#> SRR2443158     3  0.0363     0.8755 0.000 0.000 0.988 0.012 0.000 0.000
#> SRR2443157     3  0.2390     0.8439 0.000 0.008 0.896 0.000 0.044 0.052
#> SRR2443156     3  0.4853     0.6283 0.000 0.000 0.692 0.124 0.172 0.012
#> SRR2443155     3  0.4450     0.5633 0.000 0.012 0.616 0.000 0.352 0.020
#> SRR2443154     3  0.2333     0.8284 0.000 0.000 0.884 0.024 0.092 0.000
#> SRR2443153     1  0.0790     0.8908 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR2443152     4  0.3197     0.6801 0.000 0.008 0.012 0.804 0.176 0.000
#> SRR2443151     2  0.4126     0.6514 0.000 0.624 0.000 0.360 0.008 0.008
#> SRR2443150     4  0.3886     0.5923 0.000 0.028 0.000 0.708 0.264 0.000
#> SRR2443148     2  0.2712     0.7033 0.000 0.864 0.000 0.108 0.016 0.012
#> SRR2443147     2  0.3706     0.6410 0.000 0.620 0.000 0.380 0.000 0.000
#> SRR2443149     3  0.0000     0.8786 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.989         0.4264 0.577   0.577
#> 3 3 0.693           0.882       0.928         0.4947 0.613   0.414
#> 4 4 0.650           0.709       0.788         0.1082 0.916   0.770
#> 5 5 0.612           0.716       0.795         0.0691 0.875   0.620
#> 6 6 0.818           0.835       0.888         0.0462 0.957   0.826

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2   0.000      0.987 0.000 1.000
#> SRR2443262     2   0.000      0.987 0.000 1.000
#> SRR2443261     2   0.000      0.987 0.000 1.000
#> SRR2443260     2   0.000      0.987 0.000 1.000
#> SRR2443259     2   0.000      0.987 0.000 1.000
#> SRR2443258     2   0.000      0.987 0.000 1.000
#> SRR2443257     2   0.000      0.987 0.000 1.000
#> SRR2443256     2   0.000      0.987 0.000 1.000
#> SRR2443255     2   0.000      0.987 0.000 1.000
#> SRR2443254     2   0.000      0.987 0.000 1.000
#> SRR2443253     2   0.000      0.987 0.000 1.000
#> SRR2443251     2   0.000      0.987 0.000 1.000
#> SRR2443250     2   0.000      0.987 0.000 1.000
#> SRR2443249     2   0.000      0.987 0.000 1.000
#> SRR2443252     2   0.000      0.987 0.000 1.000
#> SRR2443247     1   0.000      0.989 1.000 0.000
#> SRR2443246     1   0.000      0.989 1.000 0.000
#> SRR2443248     2   0.000      0.987 0.000 1.000
#> SRR2443244     1   0.000      0.989 1.000 0.000
#> SRR2443245     1   0.000      0.989 1.000 0.000
#> SRR2443243     1   0.000      0.989 1.000 0.000
#> SRR2443242     1   0.000      0.989 1.000 0.000
#> SRR2443241     1   0.000      0.989 1.000 0.000
#> SRR2443240     1   0.000      0.989 1.000 0.000
#> SRR2443239     1   0.000      0.989 1.000 0.000
#> SRR2443238     1   0.000      0.989 1.000 0.000
#> SRR2443237     1   0.000      0.989 1.000 0.000
#> SRR2443236     1   0.000      0.989 1.000 0.000
#> SRR2443235     1   0.000      0.989 1.000 0.000
#> SRR2443233     1   0.000      0.989 1.000 0.000
#> SRR2443234     1   0.000      0.989 1.000 0.000
#> SRR2443232     1   0.000      0.989 1.000 0.000
#> SRR2443231     1   0.000      0.989 1.000 0.000
#> SRR2443230     1   0.000      0.989 1.000 0.000
#> SRR2443229     1   0.000      0.989 1.000 0.000
#> SRR2443228     1   0.000      0.989 1.000 0.000
#> SRR2443227     1   0.000      0.989 1.000 0.000
#> SRR2443226     1   0.000      0.989 1.000 0.000
#> SRR2443225     1   0.000      0.989 1.000 0.000
#> SRR2443223     2   0.000      0.987 0.000 1.000
#> SRR2443224     1   0.000      0.989 1.000 0.000
#> SRR2443222     1   0.000      0.989 1.000 0.000
#> SRR2443221     1   0.000      0.989 1.000 0.000
#> SRR2443219     1   0.000      0.989 1.000 0.000
#> SRR2443220     2   0.644      0.807 0.164 0.836
#> SRR2443218     1   0.000      0.989 1.000 0.000
#> SRR2443217     1   0.000      0.989 1.000 0.000
#> SRR2443216     2   0.000      0.987 0.000 1.000
#> SRR2443215     1   0.000      0.989 1.000 0.000
#> SRR2443214     1   0.000      0.989 1.000 0.000
#> SRR2443213     1   0.000      0.989 1.000 0.000
#> SRR2443212     1   0.000      0.989 1.000 0.000
#> SRR2443211     1   0.000      0.989 1.000 0.000
#> SRR2443210     1   0.000      0.989 1.000 0.000
#> SRR2443209     1   0.000      0.989 1.000 0.000
#> SRR2443208     1   0.000      0.989 1.000 0.000
#> SRR2443207     1   0.000      0.989 1.000 0.000
#> SRR2443206     1   0.000      0.989 1.000 0.000
#> SRR2443205     1   0.000      0.989 1.000 0.000
#> SRR2443204     1   0.000      0.989 1.000 0.000
#> SRR2443203     1   0.000      0.989 1.000 0.000
#> SRR2443202     1   0.000      0.989 1.000 0.000
#> SRR2443201     2   0.343      0.927 0.064 0.936
#> SRR2443200     1   0.000      0.989 1.000 0.000
#> SRR2443199     1   0.000      0.989 1.000 0.000
#> SRR2443197     1   0.994      0.162 0.544 0.456
#> SRR2443196     1   0.000      0.989 1.000 0.000
#> SRR2443198     2   0.000      0.987 0.000 1.000
#> SRR2443195     1   0.000      0.989 1.000 0.000
#> SRR2443194     2   0.722      0.755 0.200 0.800
#> SRR2443193     1   0.000      0.989 1.000 0.000
#> SRR2443191     1   0.000      0.989 1.000 0.000
#> SRR2443192     1   0.000      0.989 1.000 0.000
#> SRR2443190     1   0.000      0.989 1.000 0.000
#> SRR2443189     1   0.000      0.989 1.000 0.000
#> SRR2443188     1   0.000      0.989 1.000 0.000
#> SRR2443186     1   0.000      0.989 1.000 0.000
#> SRR2443187     1   0.000      0.989 1.000 0.000
#> SRR2443185     2   0.000      0.987 0.000 1.000
#> SRR2443184     2   0.000      0.987 0.000 1.000
#> SRR2443183     1   0.000      0.989 1.000 0.000
#> SRR2443182     1   0.000      0.989 1.000 0.000
#> SRR2443181     1   0.000      0.989 1.000 0.000
#> SRR2443180     1   0.000      0.989 1.000 0.000
#> SRR2443179     1   0.000      0.989 1.000 0.000
#> SRR2443178     1   0.000      0.989 1.000 0.000
#> SRR2443177     1   0.000      0.989 1.000 0.000
#> SRR2443176     1   0.000      0.989 1.000 0.000
#> SRR2443175     1   0.000      0.989 1.000 0.000
#> SRR2443174     1   0.000      0.989 1.000 0.000
#> SRR2443173     1   0.000      0.989 1.000 0.000
#> SRR2443172     1   0.000      0.989 1.000 0.000
#> SRR2443171     1   0.000      0.989 1.000 0.000
#> SRR2443170     1   0.000      0.989 1.000 0.000
#> SRR2443169     1   0.000      0.989 1.000 0.000
#> SRR2443168     1   0.000      0.989 1.000 0.000
#> SRR2443167     2   0.000      0.987 0.000 1.000
#> SRR2443166     2   0.000      0.987 0.000 1.000
#> SRR2443165     2   0.000      0.987 0.000 1.000
#> SRR2443164     1   0.000      0.989 1.000 0.000
#> SRR2443163     2   0.000      0.987 0.000 1.000
#> SRR2443162     2   0.000      0.987 0.000 1.000
#> SRR2443161     2   0.000      0.987 0.000 1.000
#> SRR2443160     2   0.000      0.987 0.000 1.000
#> SRR2443159     2   0.000      0.987 0.000 1.000
#> SRR2443158     2   0.000      0.987 0.000 1.000
#> SRR2443157     2   0.000      0.987 0.000 1.000
#> SRR2443156     1   0.000      0.989 1.000 0.000
#> SRR2443155     1   0.000      0.989 1.000 0.000
#> SRR2443154     1   0.000      0.989 1.000 0.000
#> SRR2443153     1   0.000      0.989 1.000 0.000
#> SRR2443152     1   0.000      0.989 1.000 0.000
#> SRR2443151     1   0.000      0.989 1.000 0.000
#> SRR2443150     1   0.000      0.989 1.000 0.000
#> SRR2443148     1   0.000      0.989 1.000 0.000
#> SRR2443147     1   0.973      0.322 0.596 0.404
#> SRR2443149     2   0.000      0.987 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443262     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443261     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443260     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443259     3  0.0424      0.913 0.008 0.000 0.992
#> SRR2443258     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443257     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443256     3  0.0747      0.910 0.016 0.000 0.984
#> SRR2443255     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443254     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443253     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443251     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443250     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443249     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443252     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443247     3  0.5677      0.791 0.048 0.160 0.792
#> SRR2443246     3  0.5677      0.791 0.048 0.160 0.792
#> SRR2443248     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443244     2  0.2383      0.911 0.016 0.940 0.044
#> SRR2443245     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443243     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443242     2  0.5897      0.787 0.132 0.792 0.076
#> SRR2443241     2  0.2313      0.919 0.032 0.944 0.024
#> SRR2443240     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443239     2  0.0592      0.943 0.012 0.988 0.000
#> SRR2443238     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443237     2  0.4953      0.790 0.176 0.808 0.016
#> SRR2443236     2  0.5497      0.564 0.292 0.708 0.000
#> SRR2443235     1  0.5008      0.856 0.804 0.180 0.016
#> SRR2443233     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443234     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443232     1  0.4531      0.876 0.824 0.168 0.008
#> SRR2443231     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443230     1  0.4802      0.878 0.824 0.156 0.020
#> SRR2443229     2  0.4056      0.850 0.032 0.876 0.092
#> SRR2443228     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443227     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443226     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443225     3  0.6405      0.776 0.172 0.072 0.756
#> SRR2443223     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443224     2  0.0424      0.944 0.008 0.992 0.000
#> SRR2443222     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443219     2  0.1774      0.929 0.024 0.960 0.016
#> SRR2443220     3  0.2152      0.897 0.016 0.036 0.948
#> SRR2443218     2  0.0237      0.945 0.004 0.996 0.000
#> SRR2443217     3  0.5689      0.774 0.036 0.184 0.780
#> SRR2443216     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443215     2  0.1491      0.933 0.016 0.968 0.016
#> SRR2443214     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443213     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443212     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443211     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443210     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443209     2  0.2031      0.924 0.032 0.952 0.016
#> SRR2443208     2  0.0592      0.942 0.012 0.988 0.000
#> SRR2443207     2  0.0237      0.945 0.004 0.996 0.000
#> SRR2443206     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443205     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443204     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443203     3  0.6181      0.790 0.156 0.072 0.772
#> SRR2443202     3  0.6482      0.635 0.024 0.296 0.680
#> SRR2443201     3  0.0983      0.908 0.004 0.016 0.980
#> SRR2443200     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443199     2  0.4802      0.806 0.156 0.824 0.020
#> SRR2443197     3  0.5507      0.817 0.136 0.056 0.808
#> SRR2443196     3  0.6644      0.770 0.160 0.092 0.748
#> SRR2443198     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443195     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443194     3  0.2269      0.894 0.016 0.040 0.944
#> SRR2443193     1  0.3412      0.908 0.876 0.124 0.000
#> SRR2443191     2  0.4865      0.795 0.032 0.832 0.136
#> SRR2443192     2  0.4539      0.816 0.148 0.836 0.016
#> SRR2443190     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443189     1  0.0892      0.901 0.980 0.020 0.000
#> SRR2443188     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443186     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443187     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443185     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443184     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443183     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443182     3  0.5454      0.802 0.044 0.152 0.804
#> SRR2443181     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443180     2  0.0983      0.939 0.016 0.980 0.004
#> SRR2443179     3  0.7617      0.702 0.152 0.160 0.688
#> SRR2443178     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443177     1  0.0424      0.904 0.992 0.008 0.000
#> SRR2443176     3  0.5835      0.782 0.052 0.164 0.784
#> SRR2443175     3  0.5677      0.791 0.048 0.160 0.792
#> SRR2443174     1  0.4782      0.873 0.820 0.164 0.016
#> SRR2443173     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443171     3  0.5677      0.791 0.048 0.160 0.792
#> SRR2443170     2  0.0747      0.940 0.016 0.984 0.000
#> SRR2443169     3  0.5677      0.791 0.048 0.160 0.792
#> SRR2443168     3  0.7187      0.126 0.024 0.480 0.496
#> SRR2443167     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443166     3  0.1170      0.909 0.016 0.008 0.976
#> SRR2443165     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443164     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443163     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443162     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443161     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443160     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443159     3  0.0000      0.914 0.000 0.000 1.000
#> SRR2443158     3  0.0237      0.914 0.004 0.000 0.996
#> SRR2443157     3  0.1905      0.901 0.016 0.028 0.956
#> SRR2443156     2  0.0592      0.943 0.012 0.988 0.000
#> SRR2443155     2  0.0747      0.940 0.016 0.984 0.000
#> SRR2443154     2  0.6062      0.555 0.016 0.708 0.276
#> SRR2443153     1  0.3619      0.906 0.864 0.136 0.000
#> SRR2443152     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443151     2  0.0424      0.944 0.008 0.992 0.000
#> SRR2443150     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443148     2  0.1636      0.933 0.020 0.964 0.016
#> SRR2443147     3  0.4033      0.831 0.008 0.136 0.856
#> SRR2443149     3  0.0661      0.912 0.008 0.004 0.988

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443262     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443261     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443260     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443259     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443257     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443256     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443253     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443251     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443250     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443249     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443252     3  0.0707     0.8698 0.000 0.000 0.980 0.020
#> SRR2443247     3  0.6347     0.7040 0.076 0.028 0.688 0.208
#> SRR2443246     3  0.6340     0.7006 0.060 0.040 0.692 0.208
#> SRR2443248     3  0.2363     0.8637 0.000 0.056 0.920 0.024
#> SRR2443244     4  0.6140     0.8275 0.028 0.424 0.012 0.536
#> SRR2443245     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443243     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443242     4  0.6640     0.8343 0.036 0.400 0.028 0.536
#> SRR2443241     2  0.5943    -0.2205 0.048 0.592 0.000 0.360
#> SRR2443240     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443239     2  0.1867     0.6858 0.000 0.928 0.000 0.072
#> SRR2443238     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443237     4  0.6474     0.8154 0.044 0.384 0.016 0.556
#> SRR2443236     1  0.7808    -0.1695 0.416 0.312 0.000 0.272
#> SRR2443235     1  0.4193     0.7149 0.796 0.016 0.004 0.184
#> SRR2443233     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443234     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443232     1  0.3969     0.7595 0.804 0.016 0.000 0.180
#> SRR2443231     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443230     1  0.4644     0.7420 0.784 0.016 0.020 0.180
#> SRR2443229     4  0.6491     0.7314 0.076 0.396 0.000 0.528
#> SRR2443228     2  0.1059     0.7160 0.000 0.972 0.012 0.016
#> SRR2443227     1  0.2814     0.8584 0.868 0.000 0.000 0.132
#> SRR2443226     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443225     3  0.5645     0.7588 0.044 0.108 0.768 0.080
#> SRR2443223     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443224     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443222     2  0.0592     0.7257 0.000 0.984 0.000 0.016
#> SRR2443221     2  0.0592     0.7257 0.000 0.984 0.000 0.016
#> SRR2443219     4  0.6365     0.8026 0.028 0.440 0.020 0.512
#> SRR2443220     3  0.4782     0.8179 0.000 0.068 0.780 0.152
#> SRR2443218     2  0.1975     0.6875 0.028 0.944 0.012 0.016
#> SRR2443217     3  0.5051     0.7813 0.028 0.092 0.800 0.080
#> SRR2443216     3  0.0188     0.8692 0.000 0.000 0.996 0.004
#> SRR2443215     4  0.6126     0.8337 0.028 0.416 0.012 0.544
#> SRR2443214     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443213     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443212     2  0.4891     0.0909 0.012 0.680 0.000 0.308
#> SRR2443211     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443210     2  0.0592     0.7257 0.000 0.984 0.000 0.016
#> SRR2443209     2  0.7281    -0.1624 0.048 0.552 0.060 0.340
#> SRR2443208     2  0.5657    -0.5628 0.024 0.540 0.000 0.436
#> SRR2443207     2  0.4164     0.2672 0.000 0.736 0.000 0.264
#> SRR2443206     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443204     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443203     3  0.6869     0.6820 0.088 0.144 0.688 0.080
#> SRR2443202     4  0.7906     0.5960 0.032 0.252 0.176 0.540
#> SRR2443201     3  0.3919     0.8555 0.000 0.056 0.840 0.104
#> SRR2443200     2  0.2587     0.6745 0.028 0.920 0.012 0.040
#> SRR2443199     4  0.6638     0.8366 0.040 0.404 0.024 0.532
#> SRR2443197     3  0.6062     0.7270 0.044 0.140 0.736 0.080
#> SRR2443196     3  0.8714    -0.1958 0.044 0.228 0.392 0.336
#> SRR2443198     3  0.3278     0.8654 0.000 0.020 0.864 0.116
#> SRR2443195     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443194     3  0.4444     0.7921 0.000 0.120 0.808 0.072
#> SRR2443193     1  0.0336     0.8604 0.992 0.008 0.000 0.000
#> SRR2443191     2  0.7464    -0.2021 0.048 0.540 0.072 0.340
#> SRR2443192     4  0.6194     0.8268 0.044 0.416 0.004 0.536
#> SRR2443190     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443189     1  0.3726     0.8439 0.788 0.000 0.000 0.212
#> SRR2443188     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443186     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0921     0.7231 0.000 0.972 0.000 0.028
#> SRR2443185     3  0.2868     0.8652 0.000 0.000 0.864 0.136
#> SRR2443184     3  0.2466     0.8681 0.000 0.004 0.900 0.096
#> SRR2443183     1  0.0592     0.8608 0.984 0.016 0.000 0.000
#> SRR2443182     3  0.4492     0.8017 0.084 0.012 0.824 0.080
#> SRR2443181     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443180     4  0.6179     0.7596 0.028 0.456 0.012 0.504
#> SRR2443179     4  0.8283     0.5618 0.044 0.252 0.196 0.508
#> SRR2443178     1  0.6267     0.6933 0.664 0.148 0.000 0.188
#> SRR2443177     1  0.3486     0.8520 0.812 0.000 0.000 0.188
#> SRR2443176     3  0.5145     0.7809 0.112 0.020 0.788 0.080
#> SRR2443175     3  0.6216     0.7079 0.068 0.028 0.696 0.208
#> SRR2443174     1  0.4151     0.7565 0.800 0.016 0.004 0.180
#> SRR2443173     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443172     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443171     3  0.6347     0.7040 0.076 0.028 0.688 0.208
#> SRR2443170     2  0.5022     0.4270 0.048 0.756 0.004 0.192
#> SRR2443169     3  0.6471     0.6996 0.084 0.028 0.680 0.208
#> SRR2443168     2  0.7304    -0.0891 0.000 0.448 0.400 0.152
#> SRR2443167     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443166     3  0.3370     0.8309 0.048 0.000 0.872 0.080
#> SRR2443165     3  0.2882     0.8682 0.000 0.024 0.892 0.084
#> SRR2443164     2  0.1247     0.7140 0.004 0.968 0.012 0.016
#> SRR2443163     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443162     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443160     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443159     3  0.2921     0.8646 0.000 0.000 0.860 0.140
#> SRR2443158     3  0.0000     0.8688 0.000 0.000 1.000 0.000
#> SRR2443157     3  0.3439     0.8296 0.048 0.000 0.868 0.084
#> SRR2443156     2  0.4194     0.3743 0.000 0.764 0.008 0.228
#> SRR2443155     2  0.5638     0.4466 0.068 0.772 0.060 0.100
#> SRR2443154     2  0.9075    -0.1784 0.060 0.332 0.320 0.288
#> SRR2443153     1  0.0927     0.8587 0.976 0.016 0.000 0.008
#> SRR2443152     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443151     2  0.3702     0.6030 0.028 0.860 0.012 0.100
#> SRR2443150     2  0.0000     0.7338 0.000 1.000 0.000 0.000
#> SRR2443148     4  0.6133     0.8310 0.028 0.420 0.012 0.540
#> SRR2443147     3  0.4889     0.7632 0.028 0.148 0.792 0.032
#> SRR2443149     3  0.1211     0.8597 0.000 0.000 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3   0.470     0.8320 0.060 0.000 0.768 0.032 0.140
#> SRR2443262     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443261     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443260     3   0.413     0.8384 0.028 0.000 0.800 0.032 0.140
#> SRR2443259     3   0.497     0.8273 0.056 0.000 0.752 0.048 0.144
#> SRR2443258     3   0.497     0.8273 0.056 0.000 0.752 0.048 0.144
#> SRR2443257     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443256     3   0.508     0.8222 0.124 0.000 0.752 0.056 0.068
#> SRR2443255     3   0.497     0.8273 0.056 0.000 0.752 0.048 0.144
#> SRR2443254     3   0.365     0.8401 0.008 0.000 0.820 0.032 0.140
#> SRR2443253     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443251     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443250     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443249     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443252     3   0.352     0.8403 0.004 0.000 0.824 0.032 0.140
#> SRR2443247     1   0.400     0.5936 0.804 0.004 0.040 0.008 0.144
#> SRR2443246     5   0.607     0.3960 0.332 0.020 0.064 0.008 0.576
#> SRR2443248     3   0.299     0.8126 0.004 0.080 0.872 0.000 0.044
#> SRR2443244     2   0.112     0.6942 0.000 0.956 0.000 0.000 0.044
#> SRR2443245     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443243     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443242     2   0.157     0.6961 0.000 0.948 0.008 0.012 0.032
#> SRR2443241     5   0.443     0.7122 0.008 0.320 0.000 0.008 0.664
#> SRR2443240     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443239     2   0.307     0.6149 0.000 0.804 0.000 0.000 0.196
#> SRR2443238     4   0.127     0.9734 0.052 0.000 0.000 0.948 0.000
#> SRR2443237     2   0.139     0.6935 0.000 0.952 0.000 0.016 0.032
#> SRR2443236     5   0.672     0.2001 0.204 0.024 0.000 0.228 0.544
#> SRR2443235     1   0.328     0.7205 0.836 0.032 0.000 0.132 0.000
#> SRR2443233     1   0.373     0.7182 0.712 0.000 0.000 0.288 0.000
#> SRR2443234     1   0.373     0.7182 0.712 0.000 0.000 0.288 0.000
#> SRR2443232     1   0.192     0.7086 0.924 0.004 0.000 0.064 0.008
#> SRR2443231     1   0.342     0.7288 0.760 0.000 0.000 0.240 0.000
#> SRR2443230     1   0.190     0.7088 0.928 0.004 0.000 0.056 0.012
#> SRR2443229     2   0.833     0.1304 0.220 0.412 0.228 0.008 0.132
#> SRR2443228     2   0.233     0.6687 0.000 0.876 0.000 0.000 0.124
#> SRR2443227     1   0.428     0.4424 0.548 0.000 0.000 0.452 0.000
#> SRR2443226     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443225     3   0.600     0.7003 0.084 0.172 0.688 0.020 0.036
#> SRR2443223     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443224     5   0.289     0.8080 0.000 0.148 0.000 0.008 0.844
#> SRR2443222     2   0.415     0.2949 0.000 0.612 0.000 0.000 0.388
#> SRR2443221     2   0.314     0.6175 0.000 0.796 0.000 0.000 0.204
#> SRR2443219     2   0.391     0.6745 0.000 0.800 0.132 0.000 0.068
#> SRR2443220     3   0.277     0.7743 0.000 0.164 0.836 0.000 0.000
#> SRR2443218     2   0.305     0.6828 0.000 0.852 0.028 0.000 0.120
#> SRR2443217     3   0.590     0.5946 0.048 0.276 0.632 0.008 0.036
#> SRR2443216     3   0.460     0.8344 0.056 0.000 0.776 0.032 0.136
#> SRR2443215     2   0.088     0.6941 0.000 0.968 0.000 0.000 0.032
#> SRR2443214     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443213     1   0.373     0.7182 0.712 0.000 0.000 0.288 0.000
#> SRR2443212     2   0.368     0.4438 0.000 0.720 0.000 0.000 0.280
#> SRR2443211     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443210     2   0.414     0.2566 0.000 0.616 0.000 0.000 0.384
#> SRR2443209     5   0.498     0.7210 0.052 0.256 0.000 0.008 0.684
#> SRR2443208     2   0.359     0.4235 0.000 0.736 0.000 0.000 0.264
#> SRR2443207     5   0.409     0.6370 0.000 0.368 0.000 0.000 0.632
#> SRR2443206     5   0.361     0.6840 0.000 0.268 0.000 0.000 0.732
#> SRR2443205     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443204     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443203     3   0.587     0.7038 0.072 0.176 0.696 0.020 0.036
#> SRR2443202     2   0.501     0.1437 0.000 0.540 0.428 0.000 0.032
#> SRR2443201     3   0.313     0.7907 0.000 0.120 0.848 0.000 0.032
#> SRR2443200     2   0.228     0.6712 0.000 0.880 0.000 0.000 0.120
#> SRR2443199     2   0.306     0.6655 0.000 0.844 0.136 0.020 0.000
#> SRR2443197     3   0.397     0.7758 0.064 0.144 0.792 0.000 0.000
#> SRR2443196     3   0.769    -0.0841 0.016 0.360 0.384 0.208 0.032
#> SRR2443198     3   0.029     0.8458 0.000 0.008 0.992 0.000 0.000
#> SRR2443195     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443194     3   0.416     0.7625 0.004 0.172 0.780 0.040 0.004
#> SRR2443193     1   0.431     0.3351 0.508 0.000 0.000 0.492 0.000
#> SRR2443191     5   0.463     0.7226 0.008 0.304 0.008 0.008 0.672
#> SRR2443192     2   0.128     0.6937 0.000 0.956 0.000 0.012 0.032
#> SRR2443190     1   0.373     0.7182 0.712 0.000 0.000 0.288 0.000
#> SRR2443189     4   0.154     0.9584 0.068 0.000 0.000 0.932 0.000
#> SRR2443188     1   0.375     0.7152 0.708 0.000 0.000 0.292 0.000
#> SRR2443186     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443187     5   0.418     0.3894 0.000 0.400 0.000 0.000 0.600
#> SRR2443185     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443184     3   0.117     0.8488 0.000 0.000 0.960 0.032 0.008
#> SRR2443183     1   0.373     0.7182 0.712 0.000 0.000 0.288 0.000
#> SRR2443182     3   0.469     0.7650 0.248 0.024 0.712 0.008 0.008
#> SRR2443181     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443180     2   0.273     0.6874 0.000 0.868 0.116 0.000 0.016
#> SRR2443179     2   0.506     0.2605 0.012 0.580 0.388 0.020 0.000
#> SRR2443178     4   0.291     0.8251 0.016 0.068 0.000 0.884 0.032
#> SRR2443177     4   0.120     0.9769 0.048 0.000 0.000 0.952 0.000
#> SRR2443176     3   0.459     0.7496 0.280 0.016 0.692 0.008 0.004
#> SRR2443175     1   0.436     0.5787 0.780 0.004 0.056 0.008 0.152
#> SRR2443174     1   0.190     0.7088 0.928 0.004 0.000 0.056 0.012
#> SRR2443173     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443172     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443171     1   0.421     0.5893 0.792 0.004 0.052 0.008 0.144
#> SRR2443170     5   0.427     0.7828 0.040 0.188 0.000 0.008 0.764
#> SRR2443169     1   0.376     0.5957 0.816 0.004 0.028 0.008 0.144
#> SRR2443168     5   0.546     0.6915 0.004 0.244 0.080 0.008 0.664
#> SRR2443167     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443166     3   0.422     0.7913 0.220 0.000 0.748 0.024 0.008
#> SRR2443165     3   0.208     0.8483 0.040 0.000 0.920 0.000 0.040
#> SRR2443164     2   0.455     0.6613 0.000 0.752 0.124 0.000 0.124
#> SRR2443163     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443162     3   0.497     0.8273 0.056 0.000 0.752 0.048 0.144
#> SRR2443161     3   0.429     0.8372 0.036 0.000 0.792 0.032 0.140
#> SRR2443160     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443159     3   0.000     0.8463 0.000 0.000 1.000 0.000 0.000
#> SRR2443158     3   0.457     0.8340 0.052 0.000 0.776 0.032 0.140
#> SRR2443157     3   0.439     0.7762 0.244 0.000 0.724 0.024 0.008
#> SRR2443156     5   0.406     0.7508 0.004 0.272 0.000 0.008 0.716
#> SRR2443155     5   0.363     0.6186 0.196 0.008 0.000 0.008 0.788
#> SRR2443154     5   0.541     0.7263 0.036 0.252 0.028 0.008 0.676
#> SRR2443153     1   0.355     0.7295 0.760 0.004 0.000 0.236 0.000
#> SRR2443152     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443151     2   0.445     0.6644 0.000 0.760 0.132 0.000 0.108
#> SRR2443150     5   0.269     0.8113 0.000 0.156 0.000 0.000 0.844
#> SRR2443148     2   0.254     0.6789 0.000 0.868 0.128 0.000 0.004
#> SRR2443147     3   0.423     0.2639 0.000 0.420 0.580 0.000 0.000
#> SRR2443149     3   0.450     0.8350 0.048 0.000 0.780 0.032 0.140

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.3123     0.8863 0.000 0.000 0.832 0.000 0.056 0.112
#> SRR2443262     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443261     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443260     3  0.2651     0.8928 0.000 0.000 0.860 0.000 0.028 0.112
#> SRR2443259     3  0.3240     0.8777 0.000 0.000 0.812 0.000 0.040 0.148
#> SRR2443258     3  0.3240     0.8777 0.000 0.000 0.812 0.000 0.040 0.148
#> SRR2443257     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443256     3  0.3701     0.8604 0.000 0.000 0.788 0.000 0.100 0.112
#> SRR2443255     3  0.3240     0.8777 0.000 0.000 0.812 0.000 0.040 0.148
#> SRR2443254     3  0.2605     0.8940 0.000 0.000 0.864 0.000 0.028 0.108
#> SRR2443253     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443251     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443250     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443249     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443252     3  0.2145     0.9023 0.000 0.000 0.900 0.000 0.028 0.072
#> SRR2443247     5  0.1010     0.9347 0.036 0.000 0.004 0.000 0.960 0.000
#> SRR2443246     5  0.1124     0.9321 0.036 0.000 0.008 0.000 0.956 0.000
#> SRR2443248     3  0.1053     0.9085 0.004 0.020 0.964 0.000 0.000 0.012
#> SRR2443244     4  0.0713     0.8767 0.000 0.028 0.000 0.972 0.000 0.000
#> SRR2443245     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443243     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443242     4  0.1148     0.8754 0.000 0.020 0.000 0.960 0.004 0.016
#> SRR2443241     2  0.3635     0.8022 0.016 0.800 0.008 0.156 0.020 0.000
#> SRR2443240     2  0.0820     0.8803 0.000 0.972 0.000 0.012 0.000 0.016
#> SRR2443239     4  0.3221     0.6275 0.000 0.264 0.000 0.736 0.000 0.000
#> SRR2443238     6  0.2730     0.9145 0.192 0.000 0.000 0.000 0.000 0.808
#> SRR2443237     4  0.1148     0.8751 0.000 0.020 0.000 0.960 0.004 0.016
#> SRR2443236     1  0.3915     0.5267 0.704 0.272 0.000 0.004 0.000 0.020
#> SRR2443235     1  0.2266     0.8100 0.880 0.000 0.000 0.012 0.108 0.000
#> SRR2443233     1  0.0000     0.9144 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9144 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.3405     0.5598 0.724 0.000 0.000 0.000 0.272 0.004
#> SRR2443231     1  0.0363     0.9085 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR2443230     5  0.3652     0.5542 0.324 0.000 0.000 0.000 0.672 0.004
#> SRR2443229     4  0.5757     0.0241 0.088 0.404 0.020 0.484 0.004 0.000
#> SRR2443228     4  0.1204     0.8698 0.000 0.056 0.000 0.944 0.000 0.000
#> SRR2443227     1  0.1204     0.8721 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR2443226     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443225     3  0.4500     0.8290 0.028 0.020 0.792 0.096 0.040 0.024
#> SRR2443223     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443224     2  0.0508     0.8805 0.000 0.984 0.000 0.012 0.000 0.004
#> SRR2443222     4  0.1951     0.8556 0.000 0.076 0.000 0.908 0.000 0.016
#> SRR2443221     4  0.1779     0.8622 0.000 0.064 0.000 0.920 0.000 0.016
#> SRR2443219     4  0.0891     0.8778 0.000 0.024 0.008 0.968 0.000 0.000
#> SRR2443220     3  0.1204     0.8955 0.000 0.000 0.944 0.056 0.000 0.000
#> SRR2443218     4  0.1204     0.8698 0.000 0.056 0.000 0.944 0.000 0.000
#> SRR2443217     3  0.3946     0.8537 0.020 0.040 0.820 0.064 0.056 0.000
#> SRR2443216     3  0.2600     0.9013 0.000 0.004 0.876 0.000 0.036 0.084
#> SRR2443215     4  0.0951     0.8766 0.000 0.020 0.000 0.968 0.004 0.008
#> SRR2443214     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443213     1  0.0000     0.9144 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     4  0.1895     0.8731 0.000 0.072 0.000 0.912 0.000 0.016
#> SRR2443211     2  0.0820     0.8803 0.000 0.972 0.000 0.012 0.000 0.016
#> SRR2443210     4  0.3348     0.7120 0.000 0.216 0.000 0.768 0.000 0.016
#> SRR2443209     2  0.3059     0.8383 0.012 0.860 0.000 0.072 0.052 0.004
#> SRR2443208     4  0.2358     0.8252 0.000 0.108 0.000 0.876 0.000 0.016
#> SRR2443207     2  0.3938     0.5380 0.000 0.660 0.000 0.324 0.000 0.016
#> SRR2443206     2  0.4229     0.1065 0.000 0.548 0.000 0.436 0.000 0.016
#> SRR2443205     2  0.1245     0.8761 0.000 0.952 0.000 0.032 0.000 0.016
#> SRR2443204     6  0.2664     0.9203 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR2443203     3  0.6613     0.4698 0.012 0.020 0.552 0.112 0.040 0.264
#> SRR2443202     4  0.0951     0.8771 0.000 0.020 0.004 0.968 0.000 0.008
#> SRR2443201     3  0.1334     0.8998 0.000 0.020 0.948 0.032 0.000 0.000
#> SRR2443200     4  0.1204     0.8698 0.000 0.056 0.000 0.944 0.000 0.000
#> SRR2443199     4  0.0951     0.8727 0.000 0.008 0.000 0.968 0.004 0.020
#> SRR2443197     3  0.3028     0.8737 0.000 0.012 0.864 0.076 0.040 0.008
#> SRR2443196     6  0.5463     0.1912 0.024 0.020 0.016 0.416 0.008 0.516
#> SRR2443198     3  0.0405     0.9070 0.000 0.008 0.988 0.004 0.000 0.000
#> SRR2443195     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443194     3  0.2679     0.8715 0.000 0.012 0.872 0.100 0.008 0.008
#> SRR2443193     1  0.0260     0.9106 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2443191     2  0.4625     0.7689 0.016 0.776 0.080 0.076 0.048 0.004
#> SRR2443192     4  0.1148     0.8751 0.000 0.020 0.000 0.960 0.004 0.016
#> SRR2443190     1  0.0000     0.9144 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443188     1  0.0146     0.9129 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2443186     2  0.1003     0.8793 0.000 0.964 0.000 0.020 0.000 0.016
#> SRR2443187     4  0.4246     0.1898 0.000 0.452 0.000 0.532 0.000 0.016
#> SRR2443185     3  0.0146     0.9075 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2443184     3  0.0984     0.9096 0.000 0.008 0.968 0.000 0.012 0.012
#> SRR2443183     1  0.0000     0.9144 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.3911     0.8027 0.044 0.000 0.772 0.008 0.172 0.004
#> SRR2443181     2  0.0820     0.8803 0.000 0.972 0.000 0.012 0.000 0.016
#> SRR2443180     4  0.0260     0.8762 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR2443179     4  0.1406     0.8652 0.000 0.008 0.016 0.952 0.004 0.020
#> SRR2443178     6  0.3357     0.8756 0.144 0.020 0.000 0.020 0.000 0.816
#> SRR2443177     6  0.2631     0.9243 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR2443176     3  0.3894     0.8173 0.088 0.000 0.784 0.008 0.120 0.000
#> SRR2443175     5  0.1413     0.9288 0.036 0.000 0.004 0.008 0.948 0.004
#> SRR2443174     5  0.1531     0.9095 0.068 0.000 0.000 0.000 0.928 0.004
#> SRR2443173     2  0.0458     0.8817 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR2443172     2  0.0363     0.8811 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR2443171     5  0.1010     0.9347 0.036 0.000 0.004 0.000 0.960 0.000
#> SRR2443170     2  0.1893     0.8657 0.024 0.928 0.000 0.036 0.008 0.004
#> SRR2443169     5  0.1010     0.9347 0.036 0.000 0.004 0.000 0.960 0.000
#> SRR2443168     2  0.3547     0.8115 0.012 0.832 0.076 0.072 0.004 0.004
#> SRR2443167     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443166     3  0.3962     0.8463 0.020 0.000 0.788 0.000 0.120 0.072
#> SRR2443165     3  0.1173     0.9093 0.000 0.016 0.960 0.000 0.016 0.008
#> SRR2443164     4  0.1267     0.8690 0.000 0.060 0.000 0.940 0.000 0.000
#> SRR2443163     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443162     3  0.3240     0.8777 0.000 0.000 0.812 0.000 0.040 0.148
#> SRR2443161     3  0.2651     0.8928 0.000 0.000 0.860 0.000 0.028 0.112
#> SRR2443160     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443159     3  0.0000     0.9075 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443158     3  0.2867     0.8899 0.000 0.000 0.848 0.000 0.040 0.112
#> SRR2443157     3  0.4842     0.6288 0.028 0.000 0.648 0.000 0.284 0.040
#> SRR2443156     2  0.2101     0.8608 0.008 0.908 0.000 0.072 0.008 0.004
#> SRR2443155     2  0.3114     0.7609 0.036 0.832 0.000 0.000 0.128 0.004
#> SRR2443154     2  0.2840     0.8522 0.016 0.880 0.004 0.064 0.032 0.004
#> SRR2443153     1  0.0858     0.8997 0.968 0.000 0.000 0.000 0.028 0.004
#> SRR2443152     2  0.0260     0.8795 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR2443151     4  0.0790     0.8754 0.000 0.032 0.000 0.968 0.000 0.000
#> SRR2443150     2  0.0260     0.8795 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR2443148     4  0.0000     0.8749 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443147     4  0.3615     0.5064 0.000 0.008 0.292 0.700 0.000 0.000
#> SRR2443149     3  0.2733     0.8977 0.000 0.000 0.864 0.000 0.056 0.080

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.791           0.901       0.957         0.4451 0.564   0.564
#> 3 3 0.763           0.826       0.928         0.4885 0.728   0.535
#> 4 4 0.869           0.866       0.942         0.1248 0.829   0.551
#> 5 5 0.750           0.741       0.857         0.0545 0.944   0.790
#> 6 6 0.739           0.621       0.794         0.0430 0.904   0.612

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000     0.9510 1.000 0.000
#> SRR2443262     1  0.0000     0.9510 1.000 0.000
#> SRR2443261     1  0.0000     0.9510 1.000 0.000
#> SRR2443260     1  0.0000     0.9510 1.000 0.000
#> SRR2443259     1  0.0000     0.9510 1.000 0.000
#> SRR2443258     1  0.0000     0.9510 1.000 0.000
#> SRR2443257     1  0.0000     0.9510 1.000 0.000
#> SRR2443256     1  0.0000     0.9510 1.000 0.000
#> SRR2443255     1  0.0000     0.9510 1.000 0.000
#> SRR2443254     1  0.0000     0.9510 1.000 0.000
#> SRR2443253     1  0.0000     0.9510 1.000 0.000
#> SRR2443251     1  0.0000     0.9510 1.000 0.000
#> SRR2443250     1  0.0000     0.9510 1.000 0.000
#> SRR2443249     1  0.0000     0.9510 1.000 0.000
#> SRR2443252     1  0.0000     0.9510 1.000 0.000
#> SRR2443247     1  0.0000     0.9510 1.000 0.000
#> SRR2443246     1  0.0000     0.9510 1.000 0.000
#> SRR2443248     1  0.0000     0.9510 1.000 0.000
#> SRR2443244     2  0.9998    -0.0735 0.492 0.508
#> SRR2443245     1  0.7219     0.7755 0.800 0.200
#> SRR2443243     1  0.7219     0.7755 0.800 0.200
#> SRR2443242     2  0.0000     0.9583 0.000 1.000
#> SRR2443241     1  0.3431     0.9076 0.936 0.064
#> SRR2443240     2  0.5059     0.8457 0.112 0.888
#> SRR2443239     2  0.0000     0.9583 0.000 1.000
#> SRR2443238     1  0.9988     0.1456 0.520 0.480
#> SRR2443237     2  0.0000     0.9583 0.000 1.000
#> SRR2443236     1  0.9358     0.5103 0.648 0.352
#> SRR2443235     1  0.0000     0.9510 1.000 0.000
#> SRR2443233     1  0.5629     0.8486 0.868 0.132
#> SRR2443234     1  0.0938     0.9441 0.988 0.012
#> SRR2443232     1  0.0000     0.9510 1.000 0.000
#> SRR2443231     1  0.0000     0.9510 1.000 0.000
#> SRR2443230     1  0.0000     0.9510 1.000 0.000
#> SRR2443229     1  0.6801     0.7984 0.820 0.180
#> SRR2443228     2  0.0000     0.9583 0.000 1.000
#> SRR2443227     1  0.0000     0.9510 1.000 0.000
#> SRR2443226     1  0.7219     0.7755 0.800 0.200
#> SRR2443225     1  0.0672     0.9465 0.992 0.008
#> SRR2443223     1  0.0000     0.9510 1.000 0.000
#> SRR2443224     1  0.0000     0.9510 1.000 0.000
#> SRR2443222     2  0.0000     0.9583 0.000 1.000
#> SRR2443221     2  0.0000     0.9583 0.000 1.000
#> SRR2443219     2  0.0000     0.9583 0.000 1.000
#> SRR2443220     1  0.0376     0.9485 0.996 0.004
#> SRR2443218     2  0.0000     0.9583 0.000 1.000
#> SRR2443217     1  0.0000     0.9510 1.000 0.000
#> SRR2443216     1  0.0000     0.9510 1.000 0.000
#> SRR2443215     2  0.1843     0.9357 0.028 0.972
#> SRR2443214     1  0.7219     0.7755 0.800 0.200
#> SRR2443213     1  0.5059     0.8671 0.888 0.112
#> SRR2443212     2  0.0000     0.9583 0.000 1.000
#> SRR2443211     2  0.0000     0.9583 0.000 1.000
#> SRR2443210     2  0.0000     0.9583 0.000 1.000
#> SRR2443209     1  0.0000     0.9510 1.000 0.000
#> SRR2443208     2  0.0672     0.9524 0.008 0.992
#> SRR2443207     2  0.0000     0.9583 0.000 1.000
#> SRR2443206     2  0.0000     0.9583 0.000 1.000
#> SRR2443205     2  0.0000     0.9583 0.000 1.000
#> SRR2443204     1  0.1184     0.9415 0.984 0.016
#> SRR2443203     1  0.3431     0.9077 0.936 0.064
#> SRR2443202     1  0.9933     0.2416 0.548 0.452
#> SRR2443201     1  0.0000     0.9510 1.000 0.000
#> SRR2443200     2  0.0000     0.9583 0.000 1.000
#> SRR2443199     2  0.0000     0.9583 0.000 1.000
#> SRR2443197     1  0.0000     0.9510 1.000 0.000
#> SRR2443196     2  0.0000     0.9583 0.000 1.000
#> SRR2443198     1  0.0000     0.9510 1.000 0.000
#> SRR2443195     1  0.7219     0.7755 0.800 0.200
#> SRR2443194     1  0.0000     0.9510 1.000 0.000
#> SRR2443193     1  0.7219     0.7755 0.800 0.200
#> SRR2443191     1  0.0000     0.9510 1.000 0.000
#> SRR2443192     2  0.0000     0.9583 0.000 1.000
#> SRR2443190     1  0.5629     0.8486 0.868 0.132
#> SRR2443189     1  0.0000     0.9510 1.000 0.000
#> SRR2443188     1  0.7219     0.7755 0.800 0.200
#> SRR2443186     2  0.0000     0.9583 0.000 1.000
#> SRR2443187     2  0.0000     0.9583 0.000 1.000
#> SRR2443185     1  0.0000     0.9510 1.000 0.000
#> SRR2443184     1  0.0000     0.9510 1.000 0.000
#> SRR2443183     1  0.2603     0.9222 0.956 0.044
#> SRR2443182     1  0.0000     0.9510 1.000 0.000
#> SRR2443181     2  0.0000     0.9583 0.000 1.000
#> SRR2443180     2  0.0000     0.9583 0.000 1.000
#> SRR2443179     2  0.0000     0.9583 0.000 1.000
#> SRR2443178     2  0.9522     0.3521 0.372 0.628
#> SRR2443177     1  0.7219     0.7755 0.800 0.200
#> SRR2443176     1  0.0000     0.9510 1.000 0.000
#> SRR2443175     1  0.0000     0.9510 1.000 0.000
#> SRR2443174     1  0.0000     0.9510 1.000 0.000
#> SRR2443173     2  0.0000     0.9583 0.000 1.000
#> SRR2443172     2  0.3879     0.8902 0.076 0.924
#> SRR2443171     1  0.0000     0.9510 1.000 0.000
#> SRR2443170     1  0.0672     0.9465 0.992 0.008
#> SRR2443169     1  0.0000     0.9510 1.000 0.000
#> SRR2443168     1  0.0000     0.9510 1.000 0.000
#> SRR2443167     2  0.8207     0.6590 0.256 0.744
#> SRR2443166     1  0.0000     0.9510 1.000 0.000
#> SRR2443165     1  0.0000     0.9510 1.000 0.000
#> SRR2443164     2  0.0000     0.9583 0.000 1.000
#> SRR2443163     1  0.0000     0.9510 1.000 0.000
#> SRR2443162     1  0.0000     0.9510 1.000 0.000
#> SRR2443161     1  0.0000     0.9510 1.000 0.000
#> SRR2443160     1  0.0000     0.9510 1.000 0.000
#> SRR2443159     1  0.0000     0.9510 1.000 0.000
#> SRR2443158     1  0.0000     0.9510 1.000 0.000
#> SRR2443157     1  0.0000     0.9510 1.000 0.000
#> SRR2443156     1  0.0000     0.9510 1.000 0.000
#> SRR2443155     1  0.0000     0.9510 1.000 0.000
#> SRR2443154     1  0.0000     0.9510 1.000 0.000
#> SRR2443153     1  0.0000     0.9510 1.000 0.000
#> SRR2443152     2  0.0000     0.9583 0.000 1.000
#> SRR2443151     2  0.0000     0.9583 0.000 1.000
#> SRR2443150     2  0.0000     0.9583 0.000 1.000
#> SRR2443148     2  0.0000     0.9583 0.000 1.000
#> SRR2443147     2  0.2043     0.9327 0.032 0.968
#> SRR2443149     1  0.0000     0.9510 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443262     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443261     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443260     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443259     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443258     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443257     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443256     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443255     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443254     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443253     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443251     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443250     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443249     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443252     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443247     3  0.1964     0.8801 0.056 0.000 0.944
#> SRR2443246     3  0.3038     0.8357 0.104 0.000 0.896
#> SRR2443248     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443244     2  0.4654     0.7102 0.208 0.792 0.000
#> SRR2443245     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443243     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443242     2  0.5465     0.6254 0.288 0.712 0.000
#> SRR2443241     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443240     2  0.6026     0.3703 0.376 0.624 0.000
#> SRR2443239     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443238     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443237     2  0.6244     0.2875 0.440 0.560 0.000
#> SRR2443236     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443235     1  0.0237     0.8888 0.996 0.000 0.004
#> SRR2443233     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443234     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443232     1  0.4504     0.7173 0.804 0.000 0.196
#> SRR2443231     1  0.0237     0.8888 0.996 0.000 0.004
#> SRR2443230     1  0.5678     0.5331 0.684 0.000 0.316
#> SRR2443229     1  0.0424     0.8870 0.992 0.000 0.008
#> SRR2443228     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443227     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443226     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443225     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443223     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443224     3  0.8378     0.4849 0.120 0.284 0.596
#> SRR2443222     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443221     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443219     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443220     3  0.4346     0.7385 0.000 0.184 0.816
#> SRR2443218     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443217     3  0.6168     0.2855 0.412 0.000 0.588
#> SRR2443216     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443215     2  0.3192     0.8538 0.112 0.888 0.000
#> SRR2443214     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443213     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443212     2  0.2261     0.8968 0.068 0.932 0.000
#> SRR2443211     2  0.1411     0.9145 0.036 0.964 0.000
#> SRR2443210     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443209     1  0.5988     0.4211 0.632 0.000 0.368
#> SRR2443208     2  0.1289     0.9210 0.032 0.968 0.000
#> SRR2443207     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443206     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443205     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443204     1  0.0237     0.8886 0.996 0.000 0.004
#> SRR2443203     1  0.2066     0.8531 0.940 0.000 0.060
#> SRR2443202     1  0.3412     0.7831 0.876 0.124 0.000
#> SRR2443201     3  0.0237     0.9184 0.000 0.004 0.996
#> SRR2443200     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443199     2  0.0592     0.9311 0.012 0.988 0.000
#> SRR2443197     3  0.6235     0.1760 0.436 0.000 0.564
#> SRR2443196     1  0.6286    -0.0193 0.536 0.464 0.000
#> SRR2443198     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443195     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443194     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443193     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443191     1  0.6235     0.2286 0.564 0.000 0.436
#> SRR2443192     1  0.4235     0.7026 0.824 0.176 0.000
#> SRR2443190     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443189     1  0.2711     0.8314 0.912 0.000 0.088
#> SRR2443188     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443186     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443187     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443185     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443184     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443183     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443182     1  0.6095     0.3617 0.608 0.000 0.392
#> SRR2443181     2  0.1860     0.9036 0.052 0.948 0.000
#> SRR2443180     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443179     2  0.5058     0.6918 0.244 0.756 0.000
#> SRR2443178     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443177     1  0.0000     0.8899 1.000 0.000 0.000
#> SRR2443176     1  0.1031     0.8787 0.976 0.000 0.024
#> SRR2443175     3  0.5216     0.6298 0.260 0.000 0.740
#> SRR2443174     1  0.5835     0.4853 0.660 0.000 0.340
#> SRR2443173     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443172     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443171     3  0.1411     0.8963 0.036 0.000 0.964
#> SRR2443170     1  0.7259     0.5907 0.680 0.072 0.248
#> SRR2443169     3  0.4931     0.6753 0.232 0.000 0.768
#> SRR2443168     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443167     3  0.3482     0.8076 0.000 0.128 0.872
#> SRR2443166     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443165     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443164     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443163     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443162     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443161     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443160     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443159     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443158     3  0.0000     0.9211 0.000 0.000 1.000
#> SRR2443157     3  0.0747     0.9109 0.016 0.000 0.984
#> SRR2443156     3  0.8020     0.4160 0.320 0.084 0.596
#> SRR2443155     3  0.6140     0.3121 0.404 0.000 0.596
#> SRR2443154     3  0.4346     0.7442 0.184 0.000 0.816
#> SRR2443153     1  0.0237     0.8888 0.996 0.000 0.004
#> SRR2443152     2  0.0424     0.9315 0.000 0.992 0.008
#> SRR2443151     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443150     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443148     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443147     2  0.0000     0.9369 0.000 1.000 0.000
#> SRR2443149     3  0.0000     0.9211 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.0469      0.942 0.012 0.000 0.988 0.000
#> SRR2443262     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443261     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443260     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443259     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443257     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443256     3  0.0469      0.942 0.012 0.000 0.988 0.000
#> SRR2443255     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443253     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443251     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443250     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443249     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443252     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443247     1  0.0336      0.913 0.992 0.000 0.008 0.000
#> SRR2443246     1  0.1211      0.898 0.960 0.000 0.040 0.000
#> SRR2443248     3  0.0592      0.939 0.016 0.000 0.984 0.000
#> SRR2443244     2  0.3024      0.786 0.148 0.852 0.000 0.000
#> SRR2443245     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443243     4  0.0817      0.926 0.024 0.000 0.000 0.976
#> SRR2443242     4  0.0188      0.939 0.000 0.004 0.000 0.996
#> SRR2443241     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> SRR2443240     2  0.3726      0.702 0.212 0.788 0.000 0.000
#> SRR2443239     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443238     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443237     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443236     1  0.3649      0.760 0.796 0.000 0.000 0.204
#> SRR2443235     1  0.0707      0.915 0.980 0.000 0.000 0.020
#> SRR2443233     1  0.1557      0.903 0.944 0.000 0.000 0.056
#> SRR2443234     1  0.1389      0.907 0.952 0.000 0.000 0.048
#> SRR2443232     1  0.0336      0.915 0.992 0.000 0.000 0.008
#> SRR2443231     1  0.0707      0.915 0.980 0.000 0.000 0.020
#> SRR2443230     1  0.0921      0.914 0.972 0.000 0.000 0.028
#> SRR2443229     1  0.3801      0.750 0.780 0.000 0.000 0.220
#> SRR2443228     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443227     1  0.1302      0.909 0.956 0.000 0.000 0.044
#> SRR2443226     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443225     4  0.2408      0.842 0.104 0.000 0.000 0.896
#> SRR2443223     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443224     1  0.4916      0.287 0.576 0.424 0.000 0.000
#> SRR2443222     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443221     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443219     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443220     3  0.0188      0.947 0.000 0.004 0.996 0.000
#> SRR2443218     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443217     1  0.2530      0.850 0.896 0.000 0.100 0.004
#> SRR2443216     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443215     2  0.5498      0.309 0.020 0.576 0.000 0.404
#> SRR2443214     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443213     1  0.0921      0.914 0.972 0.000 0.000 0.028
#> SRR2443212     2  0.2216      0.856 0.000 0.908 0.000 0.092
#> SRR2443211     2  0.0921      0.916 0.028 0.972 0.000 0.000
#> SRR2443210     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443209     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> SRR2443208     2  0.4855      0.356 0.000 0.600 0.000 0.400
#> SRR2443207     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443206     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.0188      0.930 0.004 0.996 0.000 0.000
#> SRR2443204     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443203     4  0.0336      0.937 0.000 0.000 0.008 0.992
#> SRR2443202     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443201     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443200     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443199     4  0.4250      0.567 0.000 0.276 0.000 0.724
#> SRR2443197     3  0.4304      0.603 0.000 0.000 0.716 0.284
#> SRR2443196     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443198     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443195     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443194     3  0.4456      0.595 0.280 0.004 0.716 0.000
#> SRR2443193     4  0.5000     -0.115 0.496 0.000 0.000 0.504
#> SRR2443191     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> SRR2443192     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443190     1  0.3024      0.836 0.852 0.000 0.000 0.148
#> SRR2443189     4  0.1302      0.906 0.000 0.000 0.044 0.956
#> SRR2443188     1  0.4406      0.629 0.700 0.000 0.000 0.300
#> SRR2443186     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443185     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443184     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443183     1  0.1211      0.910 0.960 0.000 0.000 0.040
#> SRR2443182     1  0.0469      0.915 0.988 0.000 0.000 0.012
#> SRR2443181     2  0.0707      0.921 0.020 0.980 0.000 0.000
#> SRR2443180     2  0.0336      0.927 0.000 0.992 0.000 0.008
#> SRR2443179     4  0.0817      0.921 0.000 0.024 0.000 0.976
#> SRR2443178     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> SRR2443177     4  0.0336      0.937 0.008 0.000 0.000 0.992
#> SRR2443176     1  0.2647      0.861 0.880 0.000 0.000 0.120
#> SRR2443175     1  0.1716      0.881 0.936 0.000 0.064 0.000
#> SRR2443174     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443172     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443171     1  0.0336      0.913 0.992 0.000 0.008 0.000
#> SRR2443170     1  0.1302      0.897 0.956 0.044 0.000 0.000
#> SRR2443169     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> SRR2443168     3  0.3486      0.751 0.188 0.000 0.812 0.000
#> SRR2443167     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443166     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443165     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443164     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443163     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443162     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.1118      0.922 0.036 0.000 0.964 0.000
#> SRR2443160     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443159     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443158     3  0.0000      0.950 0.000 0.000 1.000 0.000
#> SRR2443157     3  0.4961      0.150 0.448 0.000 0.552 0.000
#> SRR2443156     1  0.3610      0.757 0.800 0.200 0.000 0.000
#> SRR2443155     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> SRR2443154     1  0.4238      0.757 0.796 0.028 0.176 0.000
#> SRR2443153     1  0.0921      0.914 0.972 0.000 0.000 0.028
#> SRR2443152     2  0.0921      0.916 0.028 0.972 0.000 0.000
#> SRR2443151     2  0.0000      0.931 0.000 1.000 0.000 0.000
#> SRR2443150     2  0.0336      0.928 0.008 0.992 0.000 0.000
#> SRR2443148     2  0.4585      0.509 0.000 0.668 0.000 0.332
#> SRR2443147     3  0.4925      0.249 0.000 0.428 0.572 0.000
#> SRR2443149     3  0.0000      0.950 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     5  0.5674      0.508 0.100 0.000 0.324 0.000 0.576
#> SRR2443262     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443261     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443260     3  0.0693      0.892 0.012 0.000 0.980 0.000 0.008
#> SRR2443259     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443258     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443257     5  0.4211      0.469 0.000 0.000 0.360 0.004 0.636
#> SRR2443256     3  0.2920      0.788 0.132 0.000 0.852 0.000 0.016
#> SRR2443255     3  0.1195      0.882 0.028 0.000 0.960 0.000 0.012
#> SRR2443254     3  0.0162      0.897 0.004 0.000 0.996 0.000 0.000
#> SRR2443253     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443251     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443250     3  0.0324      0.896 0.004 0.000 0.992 0.000 0.004
#> SRR2443249     3  0.0324      0.896 0.004 0.000 0.992 0.000 0.004
#> SRR2443252     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443247     1  0.1205      0.784 0.956 0.000 0.004 0.000 0.040
#> SRR2443246     1  0.1544      0.782 0.932 0.000 0.000 0.000 0.068
#> SRR2443248     3  0.1907      0.855 0.044 0.000 0.928 0.000 0.028
#> SRR2443244     2  0.7142      0.286 0.292 0.496 0.000 0.048 0.164
#> SRR2443245     4  0.2362      0.794 0.024 0.000 0.000 0.900 0.076
#> SRR2443243     4  0.2592      0.791 0.052 0.000 0.000 0.892 0.056
#> SRR2443242     4  0.2122      0.807 0.032 0.008 0.000 0.924 0.036
#> SRR2443241     1  0.2624      0.780 0.872 0.000 0.000 0.012 0.116
#> SRR2443240     2  0.5599      0.483 0.260 0.620 0.000 0.000 0.120
#> SRR2443239     2  0.4321      0.756 0.040 0.784 0.000 0.024 0.152
#> SRR2443238     4  0.2270      0.810 0.020 0.000 0.000 0.904 0.076
#> SRR2443237     4  0.2806      0.772 0.000 0.004 0.000 0.844 0.152
#> SRR2443236     1  0.5462      0.623 0.652 0.000 0.000 0.136 0.212
#> SRR2443235     1  0.2172      0.789 0.908 0.000 0.000 0.016 0.076
#> SRR2443233     1  0.2729      0.780 0.884 0.000 0.000 0.060 0.056
#> SRR2443234     1  0.2054      0.788 0.920 0.000 0.000 0.052 0.028
#> SRR2443232     1  0.1195      0.790 0.960 0.000 0.000 0.028 0.012
#> SRR2443231     1  0.1892      0.781 0.916 0.000 0.000 0.004 0.080
#> SRR2443230     1  0.4294      0.230 0.532 0.000 0.000 0.000 0.468
#> SRR2443229     1  0.5698      0.555 0.640 0.000 0.004 0.208 0.148
#> SRR2443228     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443227     1  0.3366      0.735 0.828 0.000 0.000 0.140 0.032
#> SRR2443226     4  0.2054      0.803 0.028 0.000 0.000 0.920 0.052
#> SRR2443225     4  0.4335      0.656 0.220 0.000 0.004 0.740 0.036
#> SRR2443223     3  0.0798      0.889 0.008 0.000 0.976 0.000 0.016
#> SRR2443224     1  0.4583      0.486 0.672 0.296 0.000 0.000 0.032
#> SRR2443222     2  0.0404      0.917 0.000 0.988 0.000 0.000 0.012
#> SRR2443221     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443219     2  0.3474      0.802 0.000 0.832 0.028 0.008 0.132
#> SRR2443220     3  0.0451      0.895 0.004 0.000 0.988 0.000 0.008
#> SRR2443218     2  0.1740      0.889 0.000 0.932 0.000 0.012 0.056
#> SRR2443217     1  0.5522      0.598 0.704 0.000 0.152 0.032 0.112
#> SRR2443216     3  0.0609      0.891 0.000 0.000 0.980 0.000 0.020
#> SRR2443215     4  0.5067      0.728 0.052 0.048 0.000 0.740 0.160
#> SRR2443214     5  0.4029      0.328 0.004 0.000 0.000 0.316 0.680
#> SRR2443213     1  0.2104      0.790 0.916 0.000 0.000 0.024 0.060
#> SRR2443212     5  0.4610      0.488 0.008 0.296 0.000 0.020 0.676
#> SRR2443211     2  0.1485      0.902 0.032 0.948 0.000 0.000 0.020
#> SRR2443210     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443209     1  0.1822      0.785 0.936 0.004 0.000 0.024 0.036
#> SRR2443208     5  0.4252      0.590 0.008 0.144 0.000 0.064 0.784
#> SRR2443207     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR2443206     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443205     2  0.1444      0.898 0.040 0.948 0.000 0.000 0.012
#> SRR2443204     4  0.2806      0.746 0.004 0.000 0.000 0.844 0.152
#> SRR2443203     4  0.5140      0.720 0.028 0.000 0.100 0.736 0.136
#> SRR2443202     4  0.3925      0.756 0.032 0.000 0.004 0.784 0.180
#> SRR2443201     3  0.0162      0.897 0.004 0.000 0.996 0.000 0.000
#> SRR2443200     2  0.0703      0.912 0.000 0.976 0.000 0.000 0.024
#> SRR2443199     4  0.2450      0.769 0.000 0.076 0.000 0.896 0.028
#> SRR2443197     3  0.6337      0.111 0.004 0.000 0.524 0.164 0.308
#> SRR2443196     4  0.0794      0.797 0.000 0.000 0.000 0.972 0.028
#> SRR2443198     3  0.3267      0.775 0.044 0.000 0.844 0.000 0.112
#> SRR2443195     4  0.2179      0.777 0.000 0.000 0.000 0.888 0.112
#> SRR2443194     3  0.5920      0.443 0.208 0.004 0.628 0.004 0.156
#> SRR2443193     4  0.4404      0.532 0.292 0.000 0.000 0.684 0.024
#> SRR2443191     1  0.4294      0.213 0.532 0.000 0.000 0.000 0.468
#> SRR2443192     4  0.4791      0.447 0.012 0.008 0.000 0.588 0.392
#> SRR2443190     1  0.4072      0.747 0.792 0.000 0.000 0.100 0.108
#> SRR2443189     4  0.4686      0.664 0.008 0.000 0.112 0.756 0.124
#> SRR2443188     1  0.5423      0.354 0.548 0.000 0.000 0.388 0.064
#> SRR2443186     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR2443187     2  0.1582      0.895 0.000 0.944 0.000 0.028 0.028
#> SRR2443185     3  0.0609      0.891 0.000 0.000 0.980 0.000 0.020
#> SRR2443184     3  0.0162      0.897 0.004 0.000 0.996 0.000 0.000
#> SRR2443183     1  0.3238      0.773 0.836 0.000 0.000 0.028 0.136
#> SRR2443182     1  0.1357      0.784 0.948 0.000 0.000 0.004 0.048
#> SRR2443181     2  0.2124      0.846 0.096 0.900 0.000 0.004 0.000
#> SRR2443180     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443179     4  0.2763      0.774 0.000 0.004 0.000 0.848 0.148
#> SRR2443178     4  0.1410      0.794 0.000 0.000 0.000 0.940 0.060
#> SRR2443177     4  0.2504      0.802 0.040 0.000 0.000 0.896 0.064
#> SRR2443176     5  0.3803      0.610 0.140 0.000 0.000 0.056 0.804
#> SRR2443175     1  0.3838      0.718 0.820 0.000 0.108 0.008 0.064
#> SRR2443174     1  0.0290      0.792 0.992 0.000 0.000 0.008 0.000
#> SRR2443173     2  0.0162      0.918 0.004 0.996 0.000 0.000 0.000
#> SRR2443172     2  0.0162      0.918 0.004 0.996 0.000 0.000 0.000
#> SRR2443171     1  0.1043      0.783 0.960 0.000 0.000 0.000 0.040
#> SRR2443170     5  0.4577      0.569 0.176 0.084 0.000 0.000 0.740
#> SRR2443169     1  0.1043      0.783 0.960 0.000 0.000 0.000 0.040
#> SRR2443168     3  0.5989      0.305 0.312 0.056 0.592 0.000 0.040
#> SRR2443167     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443166     3  0.1281      0.880 0.032 0.000 0.956 0.000 0.012
#> SRR2443165     5  0.4143      0.647 0.016 0.000 0.160 0.036 0.788
#> SRR2443164     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443163     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443162     3  0.2504      0.836 0.064 0.000 0.896 0.000 0.040
#> SRR2443161     3  0.3847      0.705 0.180 0.000 0.784 0.000 0.036
#> SRR2443160     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> SRR2443159     3  0.1792      0.838 0.000 0.000 0.916 0.000 0.084
#> SRR2443158     3  0.2139      0.844 0.052 0.000 0.916 0.000 0.032
#> SRR2443157     5  0.6439      0.265 0.356 0.000 0.184 0.000 0.460
#> SRR2443156     1  0.4974      0.667 0.696 0.092 0.000 0.000 0.212
#> SRR2443155     1  0.1197      0.783 0.952 0.000 0.000 0.000 0.048
#> SRR2443154     1  0.6483      0.256 0.508 0.192 0.004 0.000 0.296
#> SRR2443153     1  0.3916      0.612 0.732 0.000 0.000 0.012 0.256
#> SRR2443152     2  0.0609      0.912 0.020 0.980 0.000 0.000 0.000
#> SRR2443151     2  0.0162      0.919 0.000 0.996 0.000 0.000 0.004
#> SRR2443150     2  0.0162      0.918 0.004 0.996 0.000 0.000 0.000
#> SRR2443148     4  0.5989      0.390 0.000 0.336 0.000 0.536 0.128
#> SRR2443147     3  0.5174      0.128 0.000 0.444 0.520 0.004 0.032
#> SRR2443149     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     5  0.4798    0.42611 0.080 0.000 0.300 0.000 0.620 0.000
#> SRR2443262     3  0.0436    0.87442 0.004 0.000 0.988 0.004 0.004 0.000
#> SRR2443261     3  0.0291    0.87382 0.000 0.000 0.992 0.004 0.004 0.000
#> SRR2443260     3  0.1663    0.84228 0.088 0.000 0.912 0.000 0.000 0.000
#> SRR2443259     3  0.0508    0.87529 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR2443258     3  0.0000    0.87386 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443257     5  0.1556    0.70225 0.000 0.000 0.080 0.000 0.920 0.000
#> SRR2443256     3  0.3955    0.37399 0.436 0.000 0.560 0.000 0.004 0.000
#> SRR2443255     3  0.3141    0.73924 0.200 0.000 0.788 0.012 0.000 0.000
#> SRR2443254     3  0.0748    0.87392 0.016 0.000 0.976 0.004 0.004 0.000
#> SRR2443253     3  0.0291    0.87382 0.000 0.000 0.992 0.004 0.004 0.000
#> SRR2443251     3  0.0146    0.87390 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2443250     3  0.0653    0.87456 0.012 0.000 0.980 0.004 0.004 0.000
#> SRR2443249     3  0.0692    0.87356 0.020 0.000 0.976 0.000 0.004 0.000
#> SRR2443252     3  0.0146    0.87390 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2443247     1  0.1719    0.67966 0.924 0.000 0.000 0.060 0.016 0.000
#> SRR2443246     1  0.4349    0.54976 0.684 0.004 0.000 0.264 0.048 0.000
#> SRR2443248     3  0.1649    0.84884 0.008 0.000 0.936 0.040 0.016 0.000
#> SRR2443244     4  0.1620    0.53596 0.024 0.024 0.000 0.940 0.000 0.012
#> SRR2443245     6  0.2877    0.67734 0.168 0.000 0.000 0.012 0.000 0.820
#> SRR2443243     6  0.3744    0.60332 0.256 0.000 0.000 0.016 0.004 0.724
#> SRR2443242     6  0.3152    0.59607 0.000 0.008 0.000 0.196 0.004 0.792
#> SRR2443241     1  0.4948    0.27560 0.476 0.000 0.000 0.460 0.064 0.000
#> SRR2443240     4  0.5008    0.29360 0.220 0.072 0.000 0.676 0.032 0.000
#> SRR2443239     4  0.2785    0.51734 0.008 0.128 0.008 0.852 0.004 0.000
#> SRR2443238     6  0.4052    0.25488 0.000 0.000 0.000 0.356 0.016 0.628
#> SRR2443237     4  0.4062    0.11348 0.000 0.000 0.000 0.552 0.008 0.440
#> SRR2443236     4  0.3794    0.33098 0.216 0.000 0.000 0.744 0.040 0.000
#> SRR2443235     1  0.4461    0.40205 0.564 0.000 0.000 0.404 0.032 0.000
#> SRR2443233     1  0.2593    0.63875 0.884 0.000 0.000 0.036 0.012 0.068
#> SRR2443234     1  0.3237    0.66311 0.828 0.000 0.000 0.132 0.020 0.020
#> SRR2443232     1  0.0547    0.66234 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR2443231     1  0.3041    0.67168 0.856 0.000 0.000 0.088 0.036 0.020
#> SRR2443230     5  0.5982    0.00672 0.228 0.000 0.000 0.380 0.392 0.000
#> SRR2443229     4  0.4640    0.28934 0.296 0.000 0.004 0.648 0.004 0.048
#> SRR2443228     2  0.0632    0.91999 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR2443227     1  0.4117    0.35847 0.672 0.000 0.000 0.032 0.000 0.296
#> SRR2443226     6  0.1387    0.70207 0.000 0.000 0.000 0.068 0.000 0.932
#> SRR2443225     6  0.3390    0.66578 0.196 0.000 0.004 0.012 0.004 0.784
#> SRR2443223     3  0.0603    0.87493 0.016 0.000 0.980 0.004 0.000 0.000
#> SRR2443224     2  0.3934    0.37751 0.376 0.616 0.000 0.008 0.000 0.000
#> SRR2443222     2  0.1663    0.89038 0.000 0.912 0.000 0.088 0.000 0.000
#> SRR2443221     2  0.1204    0.91027 0.000 0.944 0.000 0.056 0.000 0.000
#> SRR2443219     4  0.4712    0.44529 0.000 0.212 0.092 0.688 0.008 0.000
#> SRR2443220     3  0.0935    0.86988 0.032 0.000 0.964 0.004 0.000 0.000
#> SRR2443218     2  0.3134    0.76003 0.000 0.784 0.000 0.208 0.004 0.004
#> SRR2443217     4  0.6347    0.07928 0.300 0.000 0.264 0.424 0.008 0.004
#> SRR2443216     3  0.1610    0.83861 0.000 0.000 0.916 0.000 0.084 0.000
#> SRR2443215     4  0.4184    0.36242 0.000 0.028 0.000 0.672 0.004 0.296
#> SRR2443214     5  0.1511    0.72447 0.004 0.000 0.000 0.012 0.940 0.044
#> SRR2443213     1  0.4550    0.54290 0.668 0.000 0.000 0.276 0.044 0.012
#> SRR2443212     5  0.2740    0.69504 0.000 0.060 0.000 0.076 0.864 0.000
#> SRR2443211     2  0.3725    0.73369 0.140 0.792 0.000 0.060 0.008 0.000
#> SRR2443210     2  0.0713    0.92009 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR2443209     1  0.1511    0.67504 0.940 0.000 0.000 0.044 0.004 0.012
#> SRR2443208     5  0.1518    0.72943 0.000 0.024 0.000 0.024 0.944 0.008
#> SRR2443207     2  0.0937    0.91802 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR2443206     2  0.0146    0.91773 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR2443205     2  0.1864    0.88067 0.040 0.924 0.000 0.032 0.004 0.000
#> SRR2443204     6  0.3352    0.66888 0.172 0.000 0.000 0.016 0.012 0.800
#> SRR2443203     4  0.5799    0.32353 0.000 0.000 0.236 0.528 0.004 0.232
#> SRR2443202     4  0.3543    0.52394 0.008 0.000 0.064 0.820 0.004 0.104
#> SRR2443201     3  0.1531    0.84233 0.004 0.000 0.928 0.068 0.000 0.000
#> SRR2443200     2  0.2482    0.83332 0.000 0.848 0.000 0.148 0.004 0.000
#> SRR2443199     6  0.1970    0.68885 0.000 0.028 0.000 0.060 0.000 0.912
#> SRR2443197     6  0.7162    0.10324 0.048 0.000 0.252 0.016 0.284 0.400
#> SRR2443196     6  0.0790    0.70699 0.000 0.000 0.000 0.032 0.000 0.968
#> SRR2443198     3  0.5268    0.37235 0.128 0.000 0.572 0.300 0.000 0.000
#> SRR2443195     6  0.0777    0.71551 0.000 0.000 0.000 0.004 0.024 0.972
#> SRR2443194     4  0.5841    0.23870 0.300 0.000 0.220 0.480 0.000 0.000
#> SRR2443193     6  0.3529    0.66754 0.152 0.000 0.000 0.040 0.008 0.800
#> SRR2443191     5  0.5822    0.19267 0.232 0.000 0.000 0.276 0.492 0.000
#> SRR2443192     4  0.5613    0.33424 0.000 0.016 0.000 0.584 0.140 0.260
#> SRR2443190     1  0.4968    0.42308 0.560 0.000 0.000 0.384 0.036 0.020
#> SRR2443189     6  0.2456    0.68915 0.000 0.000 0.076 0.008 0.028 0.888
#> SRR2443188     6  0.6250    0.08774 0.232 0.000 0.000 0.288 0.016 0.464
#> SRR2443186     2  0.0713    0.92016 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR2443187     2  0.1007    0.91791 0.000 0.956 0.000 0.044 0.000 0.000
#> SRR2443185     3  0.2871    0.80042 0.024 0.000 0.852 0.008 0.116 0.000
#> SRR2443184     3  0.1049    0.86727 0.032 0.000 0.960 0.008 0.000 0.000
#> SRR2443183     1  0.4757    0.27554 0.484 0.000 0.000 0.468 0.048 0.000
#> SRR2443182     1  0.1075    0.66609 0.952 0.000 0.000 0.048 0.000 0.000
#> SRR2443181     2  0.1728    0.87617 0.064 0.924 0.000 0.008 0.000 0.004
#> SRR2443180     2  0.0777    0.92055 0.000 0.972 0.000 0.024 0.000 0.004
#> SRR2443179     6  0.4093   -0.02085 0.000 0.000 0.000 0.476 0.008 0.516
#> SRR2443178     6  0.0622    0.71292 0.000 0.000 0.000 0.012 0.008 0.980
#> SRR2443177     6  0.0767    0.71804 0.012 0.000 0.000 0.004 0.008 0.976
#> SRR2443176     5  0.0603    0.73363 0.016 0.000 0.000 0.000 0.980 0.004
#> SRR2443175     1  0.5355    0.22367 0.456 0.000 0.092 0.448 0.004 0.000
#> SRR2443174     1  0.2742    0.66548 0.852 0.000 0.000 0.128 0.012 0.008
#> SRR2443173     2  0.0260    0.91432 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR2443172     2  0.0260    0.91432 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR2443171     1  0.0622    0.65876 0.980 0.000 0.008 0.012 0.000 0.000
#> SRR2443170     5  0.3150    0.69815 0.036 0.068 0.000 0.040 0.856 0.000
#> SRR2443169     1  0.0935    0.67699 0.964 0.000 0.000 0.032 0.004 0.000
#> SRR2443168     3  0.6450    0.37522 0.048 0.224 0.568 0.140 0.020 0.000
#> SRR2443167     3  0.0000    0.87386 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443166     3  0.3470    0.68853 0.248 0.000 0.740 0.012 0.000 0.000
#> SRR2443165     5  0.0972    0.72772 0.000 0.000 0.028 0.000 0.964 0.008
#> SRR2443164     2  0.0713    0.92063 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR2443163     3  0.0146    0.87390 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2443162     3  0.4084    0.44458 0.400 0.000 0.588 0.012 0.000 0.000
#> SRR2443161     1  0.4185   -0.26338 0.496 0.000 0.492 0.012 0.000 0.000
#> SRR2443160     3  0.0146    0.87421 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR2443159     3  0.2631    0.75150 0.000 0.000 0.820 0.000 0.180 0.000
#> SRR2443158     3  0.0725    0.87104 0.012 0.000 0.976 0.000 0.012 0.000
#> SRR2443157     1  0.5301    0.14597 0.548 0.000 0.088 0.008 0.356 0.000
#> SRR2443156     4  0.4361    0.11946 0.308 0.000 0.000 0.648 0.044 0.000
#> SRR2443155     1  0.2490    0.67323 0.896 0.032 0.000 0.044 0.028 0.000
#> SRR2443154     1  0.5604    0.29571 0.580 0.256 0.000 0.012 0.152 0.000
#> SRR2443153     1  0.3778    0.61549 0.784 0.000 0.000 0.028 0.164 0.024
#> SRR2443152     2  0.0717    0.90809 0.016 0.976 0.000 0.008 0.000 0.000
#> SRR2443151     2  0.0713    0.92063 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR2443150     2  0.0260    0.91432 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR2443148     4  0.5524    0.11069 0.000 0.104 0.000 0.492 0.008 0.396
#> SRR2443147     3  0.6005    0.21857 0.000 0.236 0.516 0.236 0.012 0.000
#> SRR2443149     3  0.0436    0.87376 0.000 0.000 0.988 0.004 0.004 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.402           0.674       0.856         0.4715 0.497   0.497
#> 3 3 0.348           0.462       0.665         0.3308 0.723   0.497
#> 4 4 0.419           0.438       0.671         0.1161 0.775   0.442
#> 5 5 0.521           0.475       0.672         0.1013 0.813   0.421
#> 6 6 0.644           0.512       0.709         0.0617 0.840   0.406

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.2423     0.7905 0.960 0.040
#> SRR2443262     2  0.0000     0.8373 0.000 1.000
#> SRR2443261     2  0.0000     0.8373 0.000 1.000
#> SRR2443260     2  0.9909     0.1983 0.444 0.556
#> SRR2443259     1  0.6048     0.7445 0.852 0.148
#> SRR2443258     1  0.6712     0.7259 0.824 0.176
#> SRR2443257     2  0.0000     0.8373 0.000 1.000
#> SRR2443256     1  0.9209     0.5390 0.664 0.336
#> SRR2443255     1  0.9170     0.5461 0.668 0.332
#> SRR2443254     1  0.9209     0.5390 0.664 0.336
#> SRR2443253     2  0.0000     0.8373 0.000 1.000
#> SRR2443251     2  0.8327     0.6235 0.264 0.736
#> SRR2443250     2  0.0000     0.8373 0.000 1.000
#> SRR2443249     2  0.0000     0.8373 0.000 1.000
#> SRR2443252     2  0.9909     0.1983 0.444 0.556
#> SRR2443247     1  0.0000     0.7989 1.000 0.000
#> SRR2443246     1  0.6148     0.7415 0.848 0.152
#> SRR2443248     2  0.9580     0.4142 0.380 0.620
#> SRR2443244     2  0.8386     0.6157 0.268 0.732
#> SRR2443245     1  0.0000     0.7989 1.000 0.000
#> SRR2443243     1  0.0000     0.7989 1.000 0.000
#> SRR2443242     2  0.9170     0.4951 0.332 0.668
#> SRR2443241     1  0.9983     0.2030 0.524 0.476
#> SRR2443240     1  0.9909     0.2981 0.556 0.444
#> SRR2443239     2  0.3584     0.8106 0.068 0.932
#> SRR2443238     1  0.0000     0.7989 1.000 0.000
#> SRR2443237     2  0.9358     0.4571 0.352 0.648
#> SRR2443236     1  0.9909     0.2981 0.556 0.444
#> SRR2443235     1  0.0000     0.7989 1.000 0.000
#> SRR2443233     1  0.0000     0.7989 1.000 0.000
#> SRR2443234     1  0.0000     0.7989 1.000 0.000
#> SRR2443232     1  0.0000     0.7989 1.000 0.000
#> SRR2443231     1  0.0000     0.7989 1.000 0.000
#> SRR2443230     1  0.0000     0.7989 1.000 0.000
#> SRR2443229     1  0.9686     0.4229 0.604 0.396
#> SRR2443228     2  0.0000     0.8373 0.000 1.000
#> SRR2443227     1  0.0000     0.7989 1.000 0.000
#> SRR2443226     1  0.0000     0.7989 1.000 0.000
#> SRR2443225     1  0.9998     0.0812 0.508 0.492
#> SRR2443223     2  0.9635     0.3991 0.388 0.612
#> SRR2443224     2  0.1843     0.8282 0.028 0.972
#> SRR2443222     2  0.0000     0.8373 0.000 1.000
#> SRR2443221     2  0.0000     0.8373 0.000 1.000
#> SRR2443219     2  0.0672     0.8355 0.008 0.992
#> SRR2443220     2  0.7219     0.6933 0.200 0.800
#> SRR2443218     2  0.0000     0.8373 0.000 1.000
#> SRR2443217     1  0.9686     0.4220 0.604 0.396
#> SRR2443216     1  0.4431     0.7744 0.908 0.092
#> SRR2443215     2  0.3584     0.8106 0.068 0.932
#> SRR2443214     1  0.0000     0.7989 1.000 0.000
#> SRR2443213     1  0.0000     0.7989 1.000 0.000
#> SRR2443212     2  0.9970     0.0144 0.468 0.532
#> SRR2443211     2  0.6247     0.7464 0.156 0.844
#> SRR2443210     2  0.0000     0.8373 0.000 1.000
#> SRR2443209     1  0.9983     0.2030 0.524 0.476
#> SRR2443208     1  0.9963     0.2460 0.536 0.464
#> SRR2443207     1  0.9963     0.2460 0.536 0.464
#> SRR2443206     2  0.0000     0.8373 0.000 1.000
#> SRR2443205     2  0.6247     0.7464 0.156 0.844
#> SRR2443204     1  0.0000     0.7989 1.000 0.000
#> SRR2443203     1  0.0000     0.7989 1.000 0.000
#> SRR2443202     2  0.8909     0.5499 0.308 0.692
#> SRR2443201     2  0.9323     0.4822 0.348 0.652
#> SRR2443200     2  0.0000     0.8373 0.000 1.000
#> SRR2443199     2  0.0000     0.8373 0.000 1.000
#> SRR2443197     2  0.3733     0.8114 0.072 0.928
#> SRR2443196     2  0.1843     0.8290 0.028 0.972
#> SRR2443198     2  0.7376     0.6957 0.208 0.792
#> SRR2443195     1  0.0000     0.7989 1.000 0.000
#> SRR2443194     1  1.0000     0.0634 0.504 0.496
#> SRR2443193     1  0.7602     0.6944 0.780 0.220
#> SRR2443191     1  0.9983     0.2030 0.524 0.476
#> SRR2443192     2  0.9358     0.4571 0.352 0.648
#> SRR2443190     1  0.0000     0.7989 1.000 0.000
#> SRR2443189     1  0.3114     0.7873 0.944 0.056
#> SRR2443188     1  0.0000     0.7989 1.000 0.000
#> SRR2443186     2  0.0000     0.8373 0.000 1.000
#> SRR2443187     2  0.0000     0.8373 0.000 1.000
#> SRR2443185     2  0.9170     0.5111 0.332 0.668
#> SRR2443184     1  0.4298     0.7764 0.912 0.088
#> SRR2443183     1  0.0000     0.7989 1.000 0.000
#> SRR2443182     1  0.0376     0.7986 0.996 0.004
#> SRR2443181     2  0.1843     0.8282 0.028 0.972
#> SRR2443180     2  0.0000     0.8373 0.000 1.000
#> SRR2443179     2  0.1414     0.8303 0.020 0.980
#> SRR2443178     2  0.8443     0.6217 0.272 0.728
#> SRR2443177     1  0.0938     0.7970 0.988 0.012
#> SRR2443176     1  0.1184     0.7971 0.984 0.016
#> SRR2443175     1  0.0000     0.7989 1.000 0.000
#> SRR2443174     1  0.0000     0.7989 1.000 0.000
#> SRR2443173     2  0.0000     0.8373 0.000 1.000
#> SRR2443172     2  0.0000     0.8373 0.000 1.000
#> SRR2443171     1  0.0376     0.7983 0.996 0.004
#> SRR2443170     1  0.8608     0.6093 0.716 0.284
#> SRR2443169     1  0.0000     0.7989 1.000 0.000
#> SRR2443168     1  0.8608     0.6092 0.716 0.284
#> SRR2443167     2  0.3274     0.8147 0.060 0.940
#> SRR2443166     1  0.4431     0.7744 0.908 0.092
#> SRR2443165     2  1.0000    -0.0722 0.496 0.504
#> SRR2443164     2  0.0000     0.8373 0.000 1.000
#> SRR2443163     2  0.9635     0.3991 0.388 0.612
#> SRR2443162     1  0.9129     0.5520 0.672 0.328
#> SRR2443161     1  0.9129     0.5520 0.672 0.328
#> SRR2443160     2  0.3274     0.8147 0.060 0.940
#> SRR2443159     2  0.0000     0.8373 0.000 1.000
#> SRR2443158     1  0.9129     0.5520 0.672 0.328
#> SRR2443157     1  0.1843     0.7945 0.972 0.028
#> SRR2443156     1  0.8608     0.6099 0.716 0.284
#> SRR2443155     1  0.8608     0.6093 0.716 0.284
#> SRR2443154     1  0.8608     0.6093 0.716 0.284
#> SRR2443153     1  0.0000     0.7989 1.000 0.000
#> SRR2443152     2  0.0000     0.8373 0.000 1.000
#> SRR2443151     2  0.0000     0.8373 0.000 1.000
#> SRR2443150     2  0.0000     0.8373 0.000 1.000
#> SRR2443148     2  0.0000     0.8373 0.000 1.000
#> SRR2443147     2  0.0000     0.8373 0.000 1.000
#> SRR2443149     1  0.8386     0.6411 0.732 0.268

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.5810     0.6138 0.664 0.000 0.336
#> SRR2443262     2  0.6154     0.4979 0.000 0.592 0.408
#> SRR2443261     2  0.6154     0.4979 0.000 0.592 0.408
#> SRR2443260     3  0.9217     0.4167 0.208 0.260 0.532
#> SRR2443259     1  0.6398     0.4449 0.580 0.004 0.416
#> SRR2443258     1  0.6460     0.3896 0.556 0.004 0.440
#> SRR2443257     2  0.6225     0.4792 0.000 0.568 0.432
#> SRR2443256     3  0.7190     0.2011 0.356 0.036 0.608
#> SRR2443255     3  0.7209     0.1924 0.360 0.036 0.604
#> SRR2443254     3  0.7190     0.2011 0.356 0.036 0.608
#> SRR2443253     2  0.6140     0.4983 0.000 0.596 0.404
#> SRR2443251     3  0.7962     0.0989 0.072 0.352 0.576
#> SRR2443250     2  0.6154     0.4979 0.000 0.592 0.408
#> SRR2443249     2  0.6154     0.4979 0.000 0.592 0.408
#> SRR2443252     3  0.9217     0.4167 0.208 0.260 0.532
#> SRR2443247     1  0.0592     0.7122 0.988 0.000 0.012
#> SRR2443246     1  0.6917     0.4611 0.608 0.024 0.368
#> SRR2443248     3  0.9189     0.3131 0.164 0.336 0.500
#> SRR2443244     2  0.8157     0.0340 0.072 0.516 0.412
#> SRR2443245     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443243     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443242     3  0.8521     0.1600 0.092 0.440 0.468
#> SRR2443241     3  0.9433     0.3461 0.236 0.260 0.504
#> SRR2443240     3  0.9446     0.3083 0.272 0.228 0.500
#> SRR2443239     2  0.6096     0.5102 0.016 0.704 0.280
#> SRR2443238     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443237     3  0.8793     0.1948 0.112 0.436 0.452
#> SRR2443236     3  0.9446     0.3083 0.272 0.228 0.500
#> SRR2443235     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443233     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443234     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443232     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443231     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443230     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443229     3  0.9425     0.2606 0.312 0.200 0.488
#> SRR2443228     2  0.0892     0.6399 0.000 0.980 0.020
#> SRR2443227     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443226     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443225     3  0.7664     0.4003 0.228 0.104 0.668
#> SRR2443223     3  0.8869     0.3531 0.160 0.280 0.560
#> SRR2443224     2  0.6287     0.5172 0.024 0.704 0.272
#> SRR2443222     2  0.0237     0.6374 0.000 0.996 0.004
#> SRR2443221     2  0.0237     0.6374 0.000 0.996 0.004
#> SRR2443219     2  0.4555     0.6145 0.000 0.800 0.200
#> SRR2443220     2  0.6941     0.1707 0.016 0.520 0.464
#> SRR2443218     2  0.1031     0.6402 0.000 0.976 0.024
#> SRR2443217     3  0.9561     0.2730 0.316 0.216 0.468
#> SRR2443216     1  0.5948     0.5726 0.640 0.000 0.360
#> SRR2443215     2  0.6096     0.5102 0.016 0.704 0.280
#> SRR2443214     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443213     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443212     3  0.9472     0.3730 0.204 0.316 0.480
#> SRR2443211     2  0.8054     0.3343 0.080 0.580 0.340
#> SRR2443210     2  0.0237     0.6374 0.000 0.996 0.004
#> SRR2443209     3  0.9433     0.3461 0.236 0.260 0.504
#> SRR2443208     3  0.9412     0.3305 0.244 0.248 0.508
#> SRR2443207     3  0.9412     0.3305 0.244 0.248 0.508
#> SRR2443206     2  0.5254     0.5356 0.000 0.736 0.264
#> SRR2443205     2  0.8054     0.3343 0.080 0.580 0.340
#> SRR2443204     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443203     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443202     3  0.7653     0.2397 0.080 0.276 0.644
#> SRR2443201     3  0.8378     0.3010 0.120 0.284 0.596
#> SRR2443200     2  0.0592     0.6392 0.000 0.988 0.012
#> SRR2443199     2  0.1031     0.6402 0.000 0.976 0.024
#> SRR2443197     2  0.7169     0.3904 0.024 0.520 0.456
#> SRR2443196     2  0.6745     0.4579 0.012 0.560 0.428
#> SRR2443198     3  0.7945    -0.0714 0.064 0.388 0.548
#> SRR2443195     1  0.5098     0.7050 0.752 0.000 0.248
#> SRR2443194     3  0.7664     0.4006 0.228 0.104 0.668
#> SRR2443193     1  0.9151     0.2083 0.528 0.180 0.292
#> SRR2443191     3  0.9433     0.3461 0.236 0.260 0.504
#> SRR2443192     3  0.8793     0.1948 0.112 0.436 0.452
#> SRR2443190     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443189     1  0.5678     0.6388 0.684 0.000 0.316
#> SRR2443188     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443186     2  0.5254     0.5356 0.000 0.736 0.264
#> SRR2443187     2  0.5254     0.5356 0.000 0.736 0.264
#> SRR2443185     3  0.8445     0.2572 0.116 0.304 0.580
#> SRR2443184     1  0.5926     0.5809 0.644 0.000 0.356
#> SRR2443183     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443182     1  0.5431     0.6699 0.716 0.000 0.284
#> SRR2443181     2  0.6252     0.5167 0.024 0.708 0.268
#> SRR2443180     2  0.1163     0.6400 0.000 0.972 0.028
#> SRR2443179     2  0.6724     0.4677 0.012 0.568 0.420
#> SRR2443178     3  0.8503     0.0894 0.104 0.352 0.544
#> SRR2443177     1  0.5216     0.6985 0.740 0.000 0.260
#> SRR2443176     1  0.5529     0.6637 0.704 0.000 0.296
#> SRR2443175     1  0.2796     0.7186 0.908 0.000 0.092
#> SRR2443174     1  0.0000     0.7089 1.000 0.000 0.000
#> SRR2443173     2  0.5327     0.5424 0.000 0.728 0.272
#> SRR2443172     2  0.5327     0.5424 0.000 0.728 0.272
#> SRR2443171     1  0.3412     0.7172 0.876 0.000 0.124
#> SRR2443170     3  0.7138    -0.0234 0.436 0.024 0.540
#> SRR2443169     1  0.0592     0.7122 0.988 0.000 0.012
#> SRR2443168     3  0.7121    -0.0137 0.428 0.024 0.548
#> SRR2443167     2  0.7498     0.4190 0.040 0.548 0.412
#> SRR2443166     1  0.5905     0.5852 0.648 0.000 0.352
#> SRR2443165     3  0.8167     0.4318 0.188 0.168 0.644
#> SRR2443164     2  0.3551     0.6204 0.000 0.868 0.132
#> SRR2443163     3  0.8894     0.3506 0.160 0.284 0.556
#> SRR2443162     3  0.7013     0.1817 0.364 0.028 0.608
#> SRR2443161     3  0.7013     0.1817 0.364 0.028 0.608
#> SRR2443160     2  0.7498     0.4190 0.040 0.548 0.412
#> SRR2443159     2  0.6225     0.4792 0.000 0.568 0.432
#> SRR2443158     3  0.7013     0.1817 0.364 0.028 0.608
#> SRR2443157     1  0.5621     0.6531 0.692 0.000 0.308
#> SRR2443156     3  0.7248    -0.0243 0.436 0.028 0.536
#> SRR2443155     3  0.7138    -0.0234 0.436 0.024 0.540
#> SRR2443154     3  0.7138    -0.0234 0.436 0.024 0.540
#> SRR2443153     1  0.0592     0.7122 0.988 0.000 0.012
#> SRR2443152     2  0.5327     0.5424 0.000 0.728 0.272
#> SRR2443151     2  0.1643     0.6382 0.000 0.956 0.044
#> SRR2443150     2  0.5327     0.5424 0.000 0.728 0.272
#> SRR2443148     2  0.5291     0.5724 0.000 0.732 0.268
#> SRR2443147     2  0.5291     0.5724 0.000 0.732 0.268
#> SRR2443149     3  0.7152    -0.1029 0.444 0.024 0.532

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     1  0.5776     0.2366 0.504 0.000 0.468 0.028
#> SRR2443262     4  0.2589     0.5237 0.000 0.116 0.000 0.884
#> SRR2443261     4  0.2589     0.5237 0.000 0.116 0.000 0.884
#> SRR2443260     4  0.7242     0.2991 0.076 0.024 0.444 0.456
#> SRR2443259     3  0.6600     0.0364 0.396 0.000 0.520 0.084
#> SRR2443258     3  0.6840     0.0817 0.372 0.000 0.520 0.108
#> SRR2443257     4  0.0336     0.5820 0.000 0.008 0.000 0.992
#> SRR2443256     3  0.6934     0.2738 0.164 0.000 0.580 0.256
#> SRR2443255     3  0.6946     0.2802 0.168 0.000 0.580 0.252
#> SRR2443254     3  0.6934     0.2738 0.164 0.000 0.580 0.256
#> SRR2443253     4  0.3311     0.4692 0.000 0.172 0.000 0.828
#> SRR2443251     4  0.5252     0.5545 0.000 0.020 0.336 0.644
#> SRR2443250     4  0.2589     0.5237 0.000 0.116 0.000 0.884
#> SRR2443249     4  0.2589     0.5237 0.000 0.116 0.000 0.884
#> SRR2443252     4  0.7242     0.2991 0.076 0.024 0.444 0.456
#> SRR2443247     1  0.1637     0.6929 0.940 0.000 0.060 0.000
#> SRR2443246     3  0.5827     0.0633 0.436 0.032 0.532 0.000
#> SRR2443248     4  0.7293     0.3773 0.072 0.032 0.388 0.508
#> SRR2443244     3  0.8327    -0.1243 0.024 0.216 0.404 0.356
#> SRR2443245     1  0.4872     0.5119 0.640 0.000 0.356 0.004
#> SRR2443243     1  0.4855     0.5151 0.644 0.000 0.352 0.004
#> SRR2443242     3  0.7985     0.0475 0.024 0.176 0.492 0.308
#> SRR2443241     3  0.5678     0.4877 0.112 0.172 0.716 0.000
#> SRR2443240     3  0.5816     0.4997 0.148 0.144 0.708 0.000
#> SRR2443239     2  0.7225     0.5544 0.000 0.496 0.352 0.152
#> SRR2443238     1  0.4855     0.5151 0.644 0.000 0.352 0.004
#> SRR2443237     3  0.8117     0.0708 0.036 0.160 0.492 0.312
#> SRR2443236     3  0.5816     0.4997 0.148 0.144 0.708 0.000
#> SRR2443235     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443229     3  0.6407     0.4897 0.184 0.148 0.664 0.004
#> SRR2443228     2  0.3583     0.6161 0.000 0.816 0.004 0.180
#> SRR2443227     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.4855     0.5151 0.644 0.000 0.352 0.004
#> SRR2443225     4  0.7569     0.1467 0.148 0.008 0.412 0.432
#> SRR2443223     4  0.7386     0.3634 0.060 0.044 0.420 0.476
#> SRR2443224     2  0.5256     0.5932 0.012 0.596 0.392 0.000
#> SRR2443222     2  0.4290     0.6353 0.000 0.800 0.036 0.164
#> SRR2443221     2  0.4290     0.6353 0.000 0.800 0.036 0.164
#> SRR2443219     2  0.7021     0.3414 0.000 0.480 0.120 0.400
#> SRR2443220     4  0.6987     0.4345 0.000 0.160 0.272 0.568
#> SRR2443218     2  0.3400     0.6145 0.000 0.820 0.000 0.180
#> SRR2443217     3  0.6768     0.4921 0.188 0.144 0.652 0.016
#> SRR2443216     3  0.5768    -0.1271 0.456 0.000 0.516 0.028
#> SRR2443215     2  0.7225     0.5544 0.000 0.496 0.352 0.152
#> SRR2443214     1  0.4889     0.5099 0.636 0.000 0.360 0.004
#> SRR2443213     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443212     3  0.6491     0.4172 0.080 0.188 0.692 0.040
#> SRR2443211     3  0.5399    -0.3936 0.012 0.468 0.520 0.000
#> SRR2443210     2  0.4290     0.6353 0.000 0.800 0.036 0.164
#> SRR2443209     3  0.5678     0.4877 0.112 0.172 0.716 0.000
#> SRR2443208     3  0.5657     0.5016 0.120 0.160 0.720 0.000
#> SRR2443207     3  0.5657     0.5016 0.120 0.160 0.720 0.000
#> SRR2443206     2  0.4679     0.6382 0.000 0.648 0.352 0.000
#> SRR2443205     3  0.5399    -0.3936 0.012 0.468 0.520 0.000
#> SRR2443204     1  0.4872     0.5119 0.640 0.000 0.356 0.004
#> SRR2443203     1  0.4855     0.5151 0.644 0.000 0.352 0.004
#> SRR2443202     4  0.6347     0.4905 0.020 0.036 0.360 0.584
#> SRR2443201     4  0.7002     0.4348 0.044 0.040 0.388 0.528
#> SRR2443200     2  0.4238     0.6267 0.000 0.796 0.028 0.176
#> SRR2443199     2  0.3400     0.6145 0.000 0.820 0.000 0.180
#> SRR2443197     4  0.3216     0.6336 0.004 0.008 0.124 0.864
#> SRR2443196     4  0.2593     0.6171 0.000 0.016 0.080 0.904
#> SRR2443198     4  0.4978     0.5993 0.016 0.008 0.256 0.720
#> SRR2443195     1  0.4872     0.5136 0.640 0.000 0.356 0.004
#> SRR2443194     4  0.7446     0.1523 0.148 0.004 0.416 0.432
#> SRR2443193     3  0.6868     0.2306 0.372 0.096 0.528 0.004
#> SRR2443191     3  0.5678     0.4877 0.112 0.172 0.716 0.000
#> SRR2443192     3  0.8117     0.0708 0.036 0.160 0.492 0.312
#> SRR2443190     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443189     3  0.5168    -0.2391 0.496 0.000 0.500 0.004
#> SRR2443188     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.4679     0.6382 0.000 0.648 0.352 0.000
#> SRR2443187     2  0.4679     0.6382 0.000 0.648 0.352 0.000
#> SRR2443185     4  0.6313     0.4939 0.028 0.024 0.372 0.576
#> SRR2443184     3  0.5853    -0.1360 0.460 0.000 0.508 0.032
#> SRR2443183     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.5203     0.3998 0.576 0.000 0.416 0.008
#> SRR2443181     2  0.5204     0.6072 0.012 0.612 0.376 0.000
#> SRR2443180     2  0.3444     0.6119 0.000 0.816 0.000 0.184
#> SRR2443179     4  0.2450     0.6123 0.000 0.016 0.072 0.912
#> SRR2443178     4  0.5597     0.5694 0.036 0.008 0.276 0.680
#> SRR2443177     1  0.4936     0.4946 0.624 0.000 0.372 0.004
#> SRR2443176     1  0.5220     0.3881 0.568 0.000 0.424 0.008
#> SRR2443175     1  0.3123     0.6576 0.844 0.000 0.156 0.000
#> SRR2443174     1  0.0000     0.6970 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.4655     0.6523 0.000 0.684 0.312 0.004
#> SRR2443172     2  0.4655     0.6523 0.000 0.684 0.312 0.004
#> SRR2443171     1  0.3751     0.6280 0.800 0.004 0.196 0.000
#> SRR2443170     3  0.5972     0.3993 0.292 0.068 0.640 0.000
#> SRR2443169     1  0.1637     0.6929 0.940 0.000 0.060 0.000
#> SRR2443168     3  0.5966     0.4075 0.280 0.072 0.648 0.000
#> SRR2443167     4  0.3105     0.6289 0.000 0.004 0.140 0.856
#> SRR2443166     3  0.5774    -0.1519 0.464 0.000 0.508 0.028
#> SRR2443165     3  0.5220    -0.1621 0.008 0.000 0.568 0.424
#> SRR2443164     2  0.4941     0.2270 0.000 0.564 0.000 0.436
#> SRR2443163     4  0.7382     0.3690 0.060 0.044 0.416 0.480
#> SRR2443162     3  0.6957     0.2861 0.172 0.000 0.580 0.248
#> SRR2443161     3  0.6957     0.2861 0.172 0.000 0.580 0.248
#> SRR2443160     4  0.3105     0.6289 0.000 0.004 0.140 0.856
#> SRR2443159     4  0.0336     0.5820 0.000 0.008 0.000 0.992
#> SRR2443158     3  0.6957     0.2861 0.172 0.000 0.580 0.248
#> SRR2443157     1  0.5581     0.3194 0.532 0.000 0.448 0.020
#> SRR2443156     3  0.5949     0.4017 0.288 0.068 0.644 0.000
#> SRR2443155     3  0.5972     0.3993 0.292 0.068 0.640 0.000
#> SRR2443154     3  0.5972     0.3993 0.292 0.068 0.640 0.000
#> SRR2443153     1  0.1637     0.6929 0.940 0.000 0.060 0.000
#> SRR2443152     2  0.4655     0.6523 0.000 0.684 0.312 0.004
#> SRR2443151     2  0.3688     0.5932 0.000 0.792 0.000 0.208
#> SRR2443150     2  0.4655     0.6523 0.000 0.684 0.312 0.004
#> SRR2443148     4  0.4697     0.1762 0.000 0.356 0.000 0.644
#> SRR2443147     4  0.4697     0.1762 0.000 0.356 0.000 0.644
#> SRR2443149     3  0.6962     0.3552 0.284 0.056 0.612 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4125     0.6032 0.184 0.000 0.776 0.016 0.024
#> SRR2443262     4  0.2976     0.4714 0.004 0.132 0.000 0.852 0.012
#> SRR2443261     4  0.2976     0.4714 0.004 0.132 0.000 0.852 0.012
#> SRR2443260     4  0.8398     0.4497 0.292 0.020 0.192 0.396 0.100
#> SRR2443259     3  0.5357     0.5908 0.280 0.000 0.652 0.044 0.024
#> SRR2443258     3  0.5562     0.5755 0.276 0.000 0.640 0.064 0.020
#> SRR2443257     4  0.0854     0.5720 0.004 0.008 0.000 0.976 0.012
#> SRR2443256     3  0.6785     0.3385 0.268 0.000 0.516 0.196 0.020
#> SRR2443255     3  0.6776     0.3434 0.272 0.000 0.516 0.192 0.020
#> SRR2443254     3  0.6785     0.3385 0.268 0.000 0.516 0.196 0.020
#> SRR2443253     4  0.4588     0.1829 0.012 0.308 0.000 0.668 0.012
#> SRR2443251     4  0.7137     0.6080 0.232 0.028 0.120 0.576 0.044
#> SRR2443250     4  0.2976     0.4714 0.004 0.132 0.000 0.852 0.012
#> SRR2443249     4  0.2976     0.4714 0.004 0.132 0.000 0.852 0.012
#> SRR2443252     4  0.8398     0.4497 0.292 0.020 0.192 0.396 0.100
#> SRR2443247     1  0.4622     0.7698 0.548 0.000 0.440 0.000 0.012
#> SRR2443246     5  0.6732     0.1181 0.256 0.000 0.352 0.000 0.392
#> SRR2443248     4  0.8423     0.5410 0.192 0.028 0.148 0.464 0.168
#> SRR2443244     4  0.9068     0.1615 0.088 0.128 0.116 0.336 0.332
#> SRR2443245     3  0.0324     0.4833 0.004 0.000 0.992 0.000 0.004
#> SRR2443243     3  0.0451     0.4784 0.008 0.000 0.988 0.000 0.004
#> SRR2443242     5  0.8753    -0.0674 0.076 0.076 0.156 0.296 0.396
#> SRR2443241     5  0.3399     0.6087 0.004 0.012 0.172 0.000 0.812
#> SRR2443240     5  0.3596     0.6041 0.016 0.000 0.200 0.000 0.784
#> SRR2443239     5  0.6665    -0.0187 0.020 0.392 0.004 0.116 0.468
#> SRR2443238     3  0.0451     0.4784 0.008 0.000 0.988 0.000 0.004
#> SRR2443237     5  0.8318    -0.0258 0.068 0.048 0.152 0.300 0.432
#> SRR2443236     5  0.3596     0.6041 0.016 0.000 0.200 0.000 0.784
#> SRR2443235     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443233     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443234     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443232     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443231     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443230     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443229     5  0.4743     0.5744 0.064 0.004 0.212 0.000 0.720
#> SRR2443228     2  0.0613     0.7021 0.004 0.984 0.000 0.008 0.004
#> SRR2443227     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443226     3  0.0451     0.4784 0.008 0.000 0.988 0.000 0.004
#> SRR2443225     3  0.7386    -0.1598 0.216 0.004 0.380 0.372 0.028
#> SRR2443223     4  0.8443     0.5135 0.220 0.020 0.164 0.440 0.156
#> SRR2443224     5  0.5069     0.0711 0.052 0.328 0.000 0.000 0.620
#> SRR2443222     2  0.1469     0.6924 0.016 0.948 0.000 0.000 0.036
#> SRR2443221     2  0.1469     0.6924 0.016 0.948 0.000 0.000 0.036
#> SRR2443219     2  0.6954     0.2912 0.024 0.460 0.000 0.340 0.176
#> SRR2443220     4  0.8205     0.5291 0.084 0.128 0.112 0.540 0.136
#> SRR2443218     2  0.0451     0.7022 0.004 0.988 0.000 0.008 0.000
#> SRR2443217     5  0.5492     0.5623 0.072 0.012 0.216 0.012 0.688
#> SRR2443216     3  0.4587     0.6240 0.276 0.000 0.692 0.008 0.024
#> SRR2443215     5  0.6660    -0.0103 0.020 0.388 0.004 0.116 0.472
#> SRR2443214     3  0.0162     0.4874 0.000 0.000 0.996 0.000 0.004
#> SRR2443213     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443212     5  0.4205     0.5819 0.008 0.020 0.124 0.040 0.808
#> SRR2443211     5  0.4646     0.2828 0.044 0.212 0.012 0.000 0.732
#> SRR2443210     2  0.1469     0.6924 0.016 0.948 0.000 0.000 0.036
#> SRR2443209     5  0.3399     0.6087 0.004 0.012 0.172 0.000 0.812
#> SRR2443208     5  0.3402     0.6096 0.008 0.004 0.184 0.000 0.804
#> SRR2443207     5  0.3402     0.6096 0.008 0.004 0.184 0.000 0.804
#> SRR2443206     5  0.5302    -0.0962 0.052 0.412 0.000 0.000 0.536
#> SRR2443205     5  0.4646     0.2828 0.044 0.212 0.012 0.000 0.732
#> SRR2443204     3  0.0324     0.4833 0.004 0.000 0.992 0.000 0.004
#> SRR2443203     3  0.0451     0.4784 0.008 0.000 0.988 0.000 0.004
#> SRR2443202     4  0.7755     0.5688 0.216 0.020 0.152 0.524 0.088
#> SRR2443201     4  0.8132     0.5487 0.224 0.020 0.160 0.480 0.116
#> SRR2443200     2  0.0865     0.6979 0.000 0.972 0.000 0.004 0.024
#> SRR2443199     2  0.0451     0.7022 0.004 0.988 0.000 0.008 0.000
#> SRR2443197     4  0.3474     0.6624 0.132 0.000 0.028 0.832 0.008
#> SRR2443196     4  0.2574     0.6441 0.112 0.000 0.000 0.876 0.012
#> SRR2443198     4  0.5633     0.6205 0.200 0.004 0.120 0.668 0.008
#> SRR2443195     3  0.0324     0.4829 0.004 0.000 0.992 0.000 0.004
#> SRR2443194     3  0.7347    -0.1636 0.224 0.004 0.376 0.372 0.024
#> SRR2443193     5  0.6697     0.2429 0.220 0.004 0.320 0.000 0.456
#> SRR2443191     5  0.3399     0.6087 0.004 0.012 0.172 0.000 0.812
#> SRR2443192     5  0.8318    -0.0258 0.068 0.048 0.152 0.300 0.432
#> SRR2443190     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443189     3  0.4269     0.6145 0.232 0.000 0.732 0.000 0.036
#> SRR2443188     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443186     5  0.5302    -0.0962 0.052 0.412 0.000 0.000 0.536
#> SRR2443187     5  0.5302    -0.0962 0.052 0.412 0.000 0.000 0.536
#> SRR2443185     4  0.7610     0.5694 0.244 0.020 0.152 0.520 0.064
#> SRR2443184     3  0.4564     0.6261 0.272 0.000 0.696 0.008 0.024
#> SRR2443183     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443182     3  0.3106     0.5638 0.132 0.000 0.844 0.000 0.024
#> SRR2443181     5  0.5128     0.0460 0.052 0.344 0.000 0.000 0.604
#> SRR2443180     2  0.0566     0.7015 0.004 0.984 0.000 0.012 0.000
#> SRR2443179     4  0.2338     0.6425 0.112 0.000 0.000 0.884 0.004
#> SRR2443178     4  0.6314     0.6034 0.200 0.004 0.152 0.620 0.024
#> SRR2443177     3  0.0566     0.5005 0.012 0.000 0.984 0.000 0.004
#> SRR2443176     3  0.1872     0.5411 0.052 0.000 0.928 0.000 0.020
#> SRR2443175     3  0.4989    -0.5581 0.416 0.000 0.552 0.000 0.032
#> SRR2443174     1  0.4302     0.9498 0.520 0.000 0.480 0.000 0.000
#> SRR2443173     2  0.5486     0.2297 0.052 0.500 0.000 0.004 0.444
#> SRR2443172     2  0.5486     0.2297 0.052 0.500 0.000 0.004 0.444
#> SRR2443171     3  0.5983    -0.4535 0.380 0.000 0.504 0.000 0.116
#> SRR2443170     5  0.5993     0.4530 0.172 0.000 0.248 0.000 0.580
#> SRR2443169     1  0.4622     0.7698 0.548 0.000 0.440 0.000 0.012
#> SRR2443168     5  0.5899     0.4572 0.160 0.000 0.248 0.000 0.592
#> SRR2443167     4  0.3333     0.6596 0.164 0.000 0.008 0.820 0.008
#> SRR2443166     3  0.4410     0.6241 0.276 0.000 0.700 0.008 0.016
#> SRR2443165     4  0.7240     0.1169 0.264 0.000 0.352 0.364 0.020
#> SRR2443164     2  0.4347     0.4954 0.024 0.716 0.000 0.256 0.004
#> SRR2443163     4  0.8417     0.5163 0.220 0.020 0.164 0.444 0.152
#> SRR2443162     3  0.6735     0.3566 0.268 0.000 0.524 0.188 0.020
#> SRR2443161     3  0.6735     0.3566 0.268 0.000 0.524 0.188 0.020
#> SRR2443160     4  0.3333     0.6596 0.164 0.000 0.008 0.820 0.008
#> SRR2443159     4  0.0854     0.5720 0.004 0.008 0.000 0.976 0.012
#> SRR2443158     3  0.6735     0.3566 0.268 0.000 0.524 0.188 0.020
#> SRR2443157     3  0.3728     0.5922 0.164 0.000 0.804 0.008 0.024
#> SRR2443156     5  0.5952     0.4546 0.164 0.000 0.252 0.000 0.584
#> SRR2443155     5  0.5993     0.4530 0.172 0.000 0.248 0.000 0.580
#> SRR2443154     5  0.5993     0.4530 0.172 0.000 0.248 0.000 0.580
#> SRR2443153     1  0.4622     0.7698 0.548 0.000 0.440 0.000 0.012
#> SRR2443152     2  0.5486     0.2297 0.052 0.500 0.000 0.004 0.444
#> SRR2443151     2  0.1469     0.6914 0.016 0.948 0.000 0.036 0.000
#> SRR2443150     2  0.5486     0.2297 0.052 0.500 0.000 0.004 0.444
#> SRR2443148     2  0.5392     0.2219 0.032 0.500 0.000 0.456 0.012
#> SRR2443147     2  0.5392     0.2219 0.032 0.500 0.000 0.456 0.012
#> SRR2443149     3  0.7736     0.1987 0.272 0.012 0.412 0.036 0.268

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     6  0.5358      0.586 0.152 0.000 0.220 0.004 0.004 0.620
#> SRR2443262     4  0.4563      0.409 0.048 0.000 0.348 0.604 0.000 0.000
#> SRR2443261     4  0.4563      0.409 0.048 0.000 0.348 0.604 0.000 0.000
#> SRR2443260     3  0.4435      0.573 0.064 0.012 0.788 0.004 0.052 0.080
#> SRR2443259     6  0.5348      0.524 0.192 0.000 0.216 0.000 0.000 0.592
#> SRR2443258     6  0.5383      0.494 0.156 0.000 0.244 0.004 0.000 0.596
#> SRR2443257     4  0.4948      0.171 0.064 0.000 0.460 0.476 0.000 0.000
#> SRR2443256     3  0.4582      0.176 0.024 0.000 0.552 0.008 0.000 0.416
#> SRR2443255     3  0.4650      0.170 0.028 0.000 0.548 0.008 0.000 0.416
#> SRR2443254     3  0.4582      0.176 0.024 0.000 0.552 0.008 0.000 0.416
#> SRR2443253     4  0.3456      0.475 0.040 0.000 0.172 0.788 0.000 0.000
#> SRR2443251     3  0.2949      0.530 0.028 0.004 0.880 0.056 0.016 0.016
#> SRR2443250     4  0.4563      0.409 0.048 0.000 0.348 0.604 0.000 0.000
#> SRR2443249     4  0.4563      0.409 0.048 0.000 0.348 0.604 0.000 0.000
#> SRR2443252     3  0.4435      0.573 0.064 0.012 0.788 0.004 0.052 0.080
#> SRR2443247     1  0.3899      0.617 0.628 0.000 0.000 0.000 0.008 0.364
#> SRR2443246     5  0.5733      0.505 0.328 0.000 0.000 0.000 0.488 0.184
#> SRR2443248     3  0.5917      0.490 0.152 0.016 0.672 0.032 0.100 0.028
#> SRR2443244     3  0.6493      0.340 0.004 0.200 0.540 0.016 0.216 0.024
#> SRR2443245     6  0.0508      0.668 0.012 0.000 0.004 0.000 0.000 0.984
#> SRR2443243     6  0.0260      0.667 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR2443242     3  0.6753      0.258 0.008 0.136 0.488 0.016 0.316 0.036
#> SRR2443241     5  0.1976      0.754 0.008 0.032 0.032 0.000 0.924 0.004
#> SRR2443240     5  0.1353      0.771 0.012 0.012 0.000 0.000 0.952 0.024
#> SRR2443239     2  0.6457      0.392 0.004 0.512 0.156 0.048 0.280 0.000
#> SRR2443238     6  0.0260      0.667 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR2443237     3  0.6408      0.226 0.004 0.112 0.488 0.012 0.352 0.032
#> SRR2443236     5  0.1353      0.771 0.012 0.012 0.000 0.000 0.952 0.024
#> SRR2443235     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443233     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443234     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443232     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443231     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443230     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443229     5  0.2978      0.775 0.068 0.020 0.012 0.000 0.872 0.028
#> SRR2443228     2  0.3868      0.257 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR2443227     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443226     6  0.0260      0.667 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR2443225     3  0.5044      0.460 0.020 0.000 0.640 0.056 0.004 0.280
#> SRR2443223     3  0.4832      0.554 0.096 0.020 0.752 0.000 0.092 0.040
#> SRR2443224     2  0.3284      0.595 0.020 0.784 0.000 0.000 0.196 0.000
#> SRR2443222     2  0.3823      0.318 0.000 0.564 0.000 0.436 0.000 0.000
#> SRR2443221     2  0.3823      0.318 0.000 0.564 0.000 0.436 0.000 0.000
#> SRR2443219     2  0.7141      0.035 0.016 0.384 0.192 0.352 0.056 0.000
#> SRR2443220     3  0.6522      0.330 0.032 0.128 0.624 0.144 0.060 0.012
#> SRR2443218     2  0.3869      0.255 0.000 0.500 0.000 0.500 0.000 0.000
#> SRR2443217     5  0.4038      0.753 0.072 0.016 0.056 0.000 0.812 0.044
#> SRR2443216     6  0.5069      0.610 0.264 0.000 0.108 0.000 0.004 0.624
#> SRR2443215     2  0.6470      0.386 0.004 0.508 0.156 0.048 0.284 0.000
#> SRR2443214     6  0.0405      0.674 0.008 0.000 0.004 0.000 0.000 0.988
#> SRR2443213     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443212     5  0.2575      0.711 0.004 0.044 0.072 0.000 0.880 0.000
#> SRR2443211     2  0.4064      0.382 0.016 0.624 0.000 0.000 0.360 0.000
#> SRR2443210     2  0.3823      0.318 0.000 0.564 0.000 0.436 0.000 0.000
#> SRR2443209     5  0.1863      0.754 0.004 0.032 0.032 0.000 0.928 0.004
#> SRR2443208     5  0.1053      0.768 0.000 0.020 0.004 0.000 0.964 0.012
#> SRR2443207     5  0.1053      0.768 0.000 0.020 0.004 0.000 0.964 0.012
#> SRR2443206     2  0.1958      0.624 0.004 0.896 0.000 0.000 0.100 0.000
#> SRR2443205     2  0.4064      0.382 0.016 0.624 0.000 0.000 0.360 0.000
#> SRR2443204     6  0.0508      0.668 0.012 0.000 0.004 0.000 0.000 0.984
#> SRR2443203     6  0.0260      0.667 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR2443202     3  0.3782      0.569 0.012 0.008 0.836 0.052 0.052 0.040
#> SRR2443201     3  0.4550      0.571 0.048 0.016 0.796 0.032 0.068 0.040
#> SRR2443200     2  0.3857      0.283 0.000 0.532 0.000 0.468 0.000 0.000
#> SRR2443199     4  0.3869     -0.346 0.000 0.500 0.000 0.500 0.000 0.000
#> SRR2443197     3  0.4544      0.310 0.056 0.000 0.708 0.220 0.004 0.012
#> SRR2443196     3  0.4603      0.221 0.060 0.000 0.672 0.260 0.008 0.000
#> SRR2443198     3  0.3883      0.504 0.040 0.000 0.804 0.116 0.004 0.036
#> SRR2443195     6  0.0146      0.670 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR2443194     3  0.4754      0.463 0.016 0.000 0.656 0.052 0.000 0.276
#> SRR2443193     5  0.5823      0.604 0.212 0.008 0.028 0.000 0.612 0.140
#> SRR2443191     5  0.1976      0.754 0.008 0.032 0.032 0.000 0.924 0.004
#> SRR2443192     3  0.6408      0.226 0.004 0.112 0.488 0.012 0.352 0.032
#> SRR2443190     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443189     6  0.4933      0.642 0.236 0.000 0.064 0.000 0.028 0.672
#> SRR2443188     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443186     2  0.1958      0.624 0.004 0.896 0.000 0.000 0.100 0.000
#> SRR2443187     2  0.1958      0.624 0.004 0.896 0.000 0.000 0.100 0.000
#> SRR2443185     3  0.2978      0.573 0.020 0.008 0.884 0.024 0.024 0.040
#> SRR2443184     6  0.5227      0.610 0.256 0.000 0.108 0.000 0.012 0.624
#> SRR2443183     1  0.3804      0.860 0.576 0.000 0.000 0.000 0.000 0.424
#> SRR2443182     6  0.4876      0.639 0.160 0.000 0.144 0.004 0.004 0.688
#> SRR2443181     2  0.2902      0.599 0.004 0.800 0.000 0.000 0.196 0.000
#> SRR2443180     4  0.3868     -0.340 0.000 0.496 0.000 0.504 0.000 0.000
#> SRR2443179     3  0.4684      0.198 0.060 0.000 0.656 0.276 0.008 0.000
#> SRR2443178     3  0.3950      0.532 0.012 0.000 0.800 0.108 0.012 0.068
#> SRR2443177     6  0.0909      0.678 0.020 0.000 0.012 0.000 0.000 0.968
#> SRR2443176     6  0.3129      0.621 0.024 0.000 0.152 0.004 0.000 0.820
#> SRR2443175     1  0.5108      0.443 0.484 0.000 0.000 0.000 0.080 0.436
#> SRR2443174     1  0.3797      0.863 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR2443173     2  0.2068      0.613 0.048 0.916 0.000 0.020 0.016 0.000
#> SRR2443172     2  0.2068      0.613 0.048 0.916 0.000 0.020 0.016 0.000
#> SRR2443171     1  0.5753      0.378 0.460 0.000 0.000 0.000 0.176 0.364
#> SRR2443170     5  0.4014      0.741 0.240 0.000 0.000 0.000 0.716 0.044
#> SRR2443169     1  0.3899      0.617 0.628 0.000 0.000 0.000 0.008 0.364
#> SRR2443168     5  0.4039      0.743 0.232 0.000 0.004 0.000 0.724 0.040
#> SRR2443167     3  0.4062      0.301 0.060 0.000 0.744 0.192 0.004 0.000
#> SRR2443166     6  0.4989      0.618 0.264 0.000 0.100 0.000 0.004 0.632
#> SRR2443165     3  0.3941      0.482 0.024 0.000 0.724 0.008 0.000 0.244
#> SRR2443164     4  0.3682      0.150 0.032 0.200 0.004 0.764 0.000 0.000
#> SRR2443163     3  0.4785      0.555 0.096 0.020 0.756 0.000 0.088 0.040
#> SRR2443162     3  0.4594      0.154 0.024 0.000 0.544 0.008 0.000 0.424
#> SRR2443161     3  0.4594      0.154 0.024 0.000 0.544 0.008 0.000 0.424
#> SRR2443160     3  0.4062      0.301 0.060 0.000 0.744 0.192 0.004 0.000
#> SRR2443159     4  0.4948      0.171 0.064 0.000 0.460 0.476 0.000 0.000
#> SRR2443158     3  0.4594      0.154 0.024 0.000 0.544 0.008 0.000 0.424
#> SRR2443157     6  0.5182      0.624 0.152 0.000 0.192 0.004 0.004 0.648
#> SRR2443156     5  0.4431      0.725 0.228 0.000 0.000 0.000 0.692 0.080
#> SRR2443155     5  0.4014      0.741 0.240 0.000 0.000 0.000 0.716 0.044
#> SRR2443154     5  0.4014      0.741 0.240 0.000 0.000 0.000 0.716 0.044
#> SRR2443153     1  0.3899      0.617 0.628 0.000 0.000 0.000 0.008 0.364
#> SRR2443152     2  0.2068      0.613 0.048 0.916 0.000 0.020 0.016 0.000
#> SRR2443151     4  0.4439     -0.293 0.028 0.432 0.000 0.540 0.000 0.000
#> SRR2443150     2  0.2068      0.613 0.048 0.916 0.000 0.020 0.016 0.000
#> SRR2443148     4  0.0717      0.399 0.000 0.016 0.008 0.976 0.000 0.000
#> SRR2443147     4  0.0717      0.399 0.000 0.016 0.008 0.976 0.000 0.000
#> SRR2443149     5  0.7849      0.100 0.228 0.008 0.244 0.000 0.320 0.200

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.846           0.920       0.965         0.5027 0.497   0.497
#> 3 3 0.625           0.775       0.888         0.3186 0.704   0.476
#> 4 4 0.654           0.644       0.827         0.1228 0.784   0.465
#> 5 5 0.671           0.543       0.745         0.0657 0.861   0.533
#> 6 6 0.691           0.566       0.731         0.0437 0.904   0.588

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000     0.9566 1.000 0.000
#> SRR2443262     2  0.0000     0.9690 0.000 1.000
#> SRR2443261     2  0.0000     0.9690 0.000 1.000
#> SRR2443260     1  0.8081     0.6908 0.752 0.248
#> SRR2443259     1  0.0000     0.9566 1.000 0.000
#> SRR2443258     1  0.0000     0.9566 1.000 0.000
#> SRR2443257     2  0.0000     0.9690 0.000 1.000
#> SRR2443256     1  0.0000     0.9566 1.000 0.000
#> SRR2443255     1  0.0000     0.9566 1.000 0.000
#> SRR2443254     1  0.9580     0.3945 0.620 0.380
#> SRR2443253     2  0.0000     0.9690 0.000 1.000
#> SRR2443251     2  0.1184     0.9587 0.016 0.984
#> SRR2443250     2  0.0000     0.9690 0.000 1.000
#> SRR2443249     2  0.0000     0.9690 0.000 1.000
#> SRR2443252     1  0.6531     0.8043 0.832 0.168
#> SRR2443247     1  0.0000     0.9566 1.000 0.000
#> SRR2443246     1  0.0000     0.9566 1.000 0.000
#> SRR2443248     2  0.0000     0.9690 0.000 1.000
#> SRR2443244     2  0.0000     0.9690 0.000 1.000
#> SRR2443245     1  0.0000     0.9566 1.000 0.000
#> SRR2443243     1  0.0000     0.9566 1.000 0.000
#> SRR2443242     2  0.0000     0.9690 0.000 1.000
#> SRR2443241     1  0.0000     0.9566 1.000 0.000
#> SRR2443240     1  0.0938     0.9478 0.988 0.012
#> SRR2443239     2  0.0000     0.9690 0.000 1.000
#> SRR2443238     1  0.0000     0.9566 1.000 0.000
#> SRR2443237     2  0.0000     0.9690 0.000 1.000
#> SRR2443236     1  0.0000     0.9566 1.000 0.000
#> SRR2443235     1  0.0000     0.9566 1.000 0.000
#> SRR2443233     1  0.0000     0.9566 1.000 0.000
#> SRR2443234     1  0.0000     0.9566 1.000 0.000
#> SRR2443232     1  0.0000     0.9566 1.000 0.000
#> SRR2443231     1  0.0000     0.9566 1.000 0.000
#> SRR2443230     1  0.0000     0.9566 1.000 0.000
#> SRR2443229     1  0.7139     0.7680 0.804 0.196
#> SRR2443228     2  0.0000     0.9690 0.000 1.000
#> SRR2443227     1  0.0000     0.9566 1.000 0.000
#> SRR2443226     1  0.0000     0.9566 1.000 0.000
#> SRR2443225     1  0.9635     0.3729 0.612 0.388
#> SRR2443223     2  0.0000     0.9690 0.000 1.000
#> SRR2443224     2  0.0000     0.9690 0.000 1.000
#> SRR2443222     2  0.0000     0.9690 0.000 1.000
#> SRR2443221     2  0.0000     0.9690 0.000 1.000
#> SRR2443219     2  0.0000     0.9690 0.000 1.000
#> SRR2443220     2  0.0000     0.9690 0.000 1.000
#> SRR2443218     2  0.0000     0.9690 0.000 1.000
#> SRR2443217     1  0.0000     0.9566 1.000 0.000
#> SRR2443216     1  0.0000     0.9566 1.000 0.000
#> SRR2443215     2  0.0000     0.9690 0.000 1.000
#> SRR2443214     1  0.0000     0.9566 1.000 0.000
#> SRR2443213     1  0.0000     0.9566 1.000 0.000
#> SRR2443212     2  0.0000     0.9690 0.000 1.000
#> SRR2443211     2  0.0000     0.9690 0.000 1.000
#> SRR2443210     2  0.0000     0.9690 0.000 1.000
#> SRR2443209     1  0.3114     0.9153 0.944 0.056
#> SRR2443208     1  0.7139     0.7680 0.804 0.196
#> SRR2443207     2  0.8327     0.6166 0.264 0.736
#> SRR2443206     2  0.0000     0.9690 0.000 1.000
#> SRR2443205     2  0.0000     0.9690 0.000 1.000
#> SRR2443204     1  0.0000     0.9566 1.000 0.000
#> SRR2443203     1  0.0000     0.9566 1.000 0.000
#> SRR2443202     2  0.1414     0.9561 0.020 0.980
#> SRR2443201     2  0.1414     0.9561 0.020 0.980
#> SRR2443200     2  0.0000     0.9690 0.000 1.000
#> SRR2443199     2  0.0000     0.9690 0.000 1.000
#> SRR2443197     2  0.7219     0.7488 0.200 0.800
#> SRR2443196     2  0.0000     0.9690 0.000 1.000
#> SRR2443198     2  0.5178     0.8581 0.116 0.884
#> SRR2443195     1  0.0000     0.9566 1.000 0.000
#> SRR2443194     1  0.7745     0.7089 0.772 0.228
#> SRR2443193     1  0.0000     0.9566 1.000 0.000
#> SRR2443191     1  0.8327     0.6749 0.736 0.264
#> SRR2443192     2  0.0000     0.9690 0.000 1.000
#> SRR2443190     1  0.0000     0.9566 1.000 0.000
#> SRR2443189     1  0.0000     0.9566 1.000 0.000
#> SRR2443188     1  0.0000     0.9566 1.000 0.000
#> SRR2443186     2  0.0000     0.9690 0.000 1.000
#> SRR2443187     2  0.0000     0.9690 0.000 1.000
#> SRR2443185     2  0.1414     0.9561 0.020 0.980
#> SRR2443184     1  0.0000     0.9566 1.000 0.000
#> SRR2443183     1  0.0000     0.9566 1.000 0.000
#> SRR2443182     1  0.0000     0.9566 1.000 0.000
#> SRR2443181     2  0.0000     0.9690 0.000 1.000
#> SRR2443180     2  0.0000     0.9690 0.000 1.000
#> SRR2443179     2  0.0000     0.9690 0.000 1.000
#> SRR2443178     2  0.8763     0.5860 0.296 0.704
#> SRR2443177     1  0.0000     0.9566 1.000 0.000
#> SRR2443176     1  0.0000     0.9566 1.000 0.000
#> SRR2443175     1  0.0000     0.9566 1.000 0.000
#> SRR2443174     1  0.0000     0.9566 1.000 0.000
#> SRR2443173     2  0.0000     0.9690 0.000 1.000
#> SRR2443172     2  0.0000     0.9690 0.000 1.000
#> SRR2443171     1  0.0000     0.9566 1.000 0.000
#> SRR2443170     1  0.0000     0.9566 1.000 0.000
#> SRR2443169     1  0.0000     0.9566 1.000 0.000
#> SRR2443168     1  0.7219     0.7627 0.800 0.200
#> SRR2443167     2  0.2948     0.9277 0.052 0.948
#> SRR2443166     1  0.0000     0.9566 1.000 0.000
#> SRR2443165     2  0.9988     0.0644 0.480 0.520
#> SRR2443164     2  0.0000     0.9690 0.000 1.000
#> SRR2443163     2  0.1414     0.9561 0.020 0.980
#> SRR2443162     1  0.0000     0.9566 1.000 0.000
#> SRR2443161     1  0.4939     0.8629 0.892 0.108
#> SRR2443160     2  0.2948     0.9277 0.052 0.948
#> SRR2443159     2  0.1414     0.9561 0.020 0.980
#> SRR2443158     1  0.0000     0.9566 1.000 0.000
#> SRR2443157     1  0.0000     0.9566 1.000 0.000
#> SRR2443156     1  0.0000     0.9566 1.000 0.000
#> SRR2443155     1  0.0000     0.9566 1.000 0.000
#> SRR2443154     1  0.0000     0.9566 1.000 0.000
#> SRR2443153     1  0.0000     0.9566 1.000 0.000
#> SRR2443152     2  0.0000     0.9690 0.000 1.000
#> SRR2443151     2  0.0000     0.9690 0.000 1.000
#> SRR2443150     2  0.0000     0.9690 0.000 1.000
#> SRR2443148     2  0.0000     0.9690 0.000 1.000
#> SRR2443147     2  0.0000     0.9690 0.000 1.000
#> SRR2443149     1  0.4022     0.8919 0.920 0.080

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.5465    0.62850 0.712 0.000 0.288
#> SRR2443262     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443261     3  0.5254    0.66923 0.000 0.264 0.736
#> SRR2443260     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443259     3  0.3482    0.79275 0.128 0.000 0.872
#> SRR2443258     3  0.4555    0.71194 0.200 0.000 0.800
#> SRR2443257     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443256     3  0.3267    0.80073 0.116 0.000 0.884
#> SRR2443255     3  0.1964    0.83017 0.056 0.000 0.944
#> SRR2443254     3  0.0000    0.84040 0.000 0.000 1.000
#> SRR2443253     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443251     3  0.1860    0.83671 0.000 0.052 0.948
#> SRR2443250     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443249     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443252     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443247     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443246     1  0.1964    0.85936 0.944 0.000 0.056
#> SRR2443248     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443244     3  0.6140    0.20273 0.000 0.404 0.596
#> SRR2443245     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443243     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443242     3  0.4974    0.59067 0.000 0.236 0.764
#> SRR2443241     1  0.6796    0.68189 0.708 0.056 0.236
#> SRR2443240     1  0.8494    0.56041 0.608 0.156 0.236
#> SRR2443239     2  0.1860    0.86858 0.000 0.948 0.052
#> SRR2443238     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443237     3  0.5016    0.58372 0.000 0.240 0.760
#> SRR2443236     1  0.1643    0.86764 0.956 0.000 0.044
#> SRR2443235     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443233     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443234     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443232     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443231     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443230     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443229     1  0.9272    0.39100 0.528 0.240 0.232
#> SRR2443228     2  0.0237    0.86909 0.000 0.996 0.004
#> SRR2443227     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443226     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443225     3  0.0000    0.84040 0.000 0.000 1.000
#> SRR2443223     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443224     2  0.3412    0.82196 0.000 0.876 0.124
#> SRR2443222     2  0.0000    0.87046 0.000 1.000 0.000
#> SRR2443221     2  0.0000    0.87046 0.000 1.000 0.000
#> SRR2443219     2  0.2165    0.84546 0.000 0.936 0.064
#> SRR2443220     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443218     2  0.2165    0.84546 0.000 0.936 0.064
#> SRR2443217     1  0.6521    0.16828 0.504 0.004 0.492
#> SRR2443216     3  0.3686    0.78392 0.140 0.000 0.860
#> SRR2443215     2  0.3412    0.82196 0.000 0.876 0.124
#> SRR2443214     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443213     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443212     2  0.4702    0.71315 0.000 0.788 0.212
#> SRR2443211     2  0.3412    0.82196 0.000 0.876 0.124
#> SRR2443210     2  0.0000    0.87046 0.000 1.000 0.000
#> SRR2443209     1  0.9549    0.30873 0.484 0.276 0.240
#> SRR2443208     2  0.9792    0.00358 0.372 0.392 0.236
#> SRR2443207     2  0.6108    0.64744 0.028 0.732 0.240
#> SRR2443206     2  0.1860    0.86858 0.000 0.948 0.052
#> SRR2443205     2  0.2165    0.86346 0.000 0.936 0.064
#> SRR2443204     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443203     1  0.4702    0.73365 0.788 0.000 0.212
#> SRR2443202     3  0.0000    0.84040 0.000 0.000 1.000
#> SRR2443201     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443200     2  0.0237    0.86909 0.000 0.996 0.004
#> SRR2443199     2  0.2165    0.84546 0.000 0.936 0.064
#> SRR2443197     3  0.1860    0.83671 0.000 0.052 0.948
#> SRR2443196     3  0.2537    0.82552 0.000 0.080 0.920
#> SRR2443198     3  0.1753    0.83753 0.000 0.048 0.952
#> SRR2443195     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443194     3  0.0000    0.84040 0.000 0.000 1.000
#> SRR2443193     1  0.0237    0.89330 0.996 0.000 0.004
#> SRR2443191     2  0.9641    0.23850 0.296 0.464 0.240
#> SRR2443192     3  0.5968    0.30222 0.000 0.364 0.636
#> SRR2443190     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443189     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443188     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443186     2  0.1860    0.86858 0.000 0.948 0.052
#> SRR2443187     2  0.1860    0.86858 0.000 0.948 0.052
#> SRR2443185     3  0.0237    0.84060 0.000 0.004 0.996
#> SRR2443184     3  0.3816    0.77635 0.148 0.000 0.852
#> SRR2443183     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443182     1  0.0892    0.88559 0.980 0.000 0.020
#> SRR2443181     2  0.1860    0.86858 0.000 0.948 0.052
#> SRR2443180     2  0.2165    0.84546 0.000 0.936 0.064
#> SRR2443179     3  0.5397    0.65158 0.000 0.280 0.720
#> SRR2443178     3  0.4280    0.77116 0.124 0.020 0.856
#> SRR2443177     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443176     1  0.4605    0.73990 0.796 0.000 0.204
#> SRR2443175     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443174     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443173     2  0.0892    0.87370 0.000 0.980 0.020
#> SRR2443172     2  0.0424    0.87232 0.000 0.992 0.008
#> SRR2443171     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443170     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443169     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443168     1  0.9588    0.32137 0.476 0.240 0.284
#> SRR2443167     3  0.1860    0.83671 0.000 0.052 0.948
#> SRR2443166     1  0.4555    0.70292 0.800 0.000 0.200
#> SRR2443165     3  0.1989    0.83746 0.004 0.048 0.948
#> SRR2443164     2  0.2165    0.84546 0.000 0.936 0.064
#> SRR2443163     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443162     3  0.3267    0.80073 0.116 0.000 0.884
#> SRR2443161     3  0.0237    0.83973 0.000 0.004 0.996
#> SRR2443160     3  0.1860    0.83671 0.000 0.052 0.948
#> SRR2443159     3  0.2537    0.82552 0.000 0.080 0.920
#> SRR2443158     3  0.4931    0.66377 0.232 0.000 0.768
#> SRR2443157     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443156     1  0.5785    0.64371 0.696 0.004 0.300
#> SRR2443155     1  0.4293    0.78813 0.832 0.004 0.164
#> SRR2443154     1  0.5158    0.72006 0.764 0.004 0.232
#> SRR2443153     1  0.0000    0.89548 1.000 0.000 0.000
#> SRR2443152     2  0.0892    0.87370 0.000 0.980 0.020
#> SRR2443151     2  0.0747    0.86691 0.000 0.984 0.016
#> SRR2443150     2  0.0892    0.87370 0.000 0.980 0.020
#> SRR2443148     2  0.3412    0.78503 0.000 0.876 0.124
#> SRR2443147     2  0.5905    0.33195 0.000 0.648 0.352
#> SRR2443149     3  0.3851    0.76024 0.136 0.004 0.860

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.4660     0.6437 0.192 0.016 0.776 0.016
#> SRR2443262     4  0.4277     0.5414 0.000 0.000 0.280 0.720
#> SRR2443261     4  0.4889     0.3701 0.000 0.004 0.360 0.636
#> SRR2443260     3  0.0707     0.8173 0.000 0.020 0.980 0.000
#> SRR2443259     3  0.0592     0.8168 0.000 0.016 0.984 0.000
#> SRR2443258     3  0.0592     0.8168 0.000 0.016 0.984 0.000
#> SRR2443257     4  0.4277     0.5414 0.000 0.000 0.280 0.720
#> SRR2443256     3  0.0592     0.8168 0.000 0.016 0.984 0.000
#> SRR2443255     3  0.0188     0.8182 0.000 0.000 0.996 0.004
#> SRR2443254     3  0.1398     0.8179 0.000 0.004 0.956 0.040
#> SRR2443253     4  0.4277     0.5414 0.000 0.000 0.280 0.720
#> SRR2443251     3  0.3908     0.7124 0.000 0.004 0.784 0.212
#> SRR2443250     4  0.4277     0.5414 0.000 0.000 0.280 0.720
#> SRR2443249     4  0.4277     0.5414 0.000 0.000 0.280 0.720
#> SRR2443252     3  0.0707     0.8173 0.000 0.020 0.980 0.000
#> SRR2443247     1  0.1576     0.8990 0.948 0.000 0.048 0.004
#> SRR2443246     1  0.7239     0.4116 0.564 0.244 0.188 0.004
#> SRR2443248     3  0.2654     0.8010 0.000 0.004 0.888 0.108
#> SRR2443244     2  0.6306     0.1948 0.000 0.544 0.392 0.064
#> SRR2443245     1  0.1677     0.9023 0.948 0.000 0.040 0.012
#> SRR2443243     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443242     3  0.5608     0.5854 0.000 0.256 0.684 0.060
#> SRR2443241     2  0.5066     0.6009 0.112 0.768 0.120 0.000
#> SRR2443240     2  0.3601     0.6410 0.084 0.860 0.056 0.000
#> SRR2443239     2  0.3837     0.5366 0.000 0.776 0.000 0.224
#> SRR2443238     1  0.0188     0.9209 0.996 0.004 0.000 0.000
#> SRR2443237     3  0.5869     0.3819 0.000 0.360 0.596 0.044
#> SRR2443236     2  0.5165    -0.0436 0.484 0.512 0.004 0.000
#> SRR2443235     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443229     2  0.4850     0.6273 0.060 0.800 0.124 0.016
#> SRR2443228     4  0.4134     0.4784 0.000 0.260 0.000 0.740
#> SRR2443227     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0336     0.9200 0.992 0.000 0.000 0.008
#> SRR2443225     3  0.2542     0.8140 0.000 0.012 0.904 0.084
#> SRR2443223     3  0.2466     0.8053 0.000 0.004 0.900 0.096
#> SRR2443224     2  0.0817     0.6546 0.000 0.976 0.000 0.024
#> SRR2443222     4  0.4941     0.1653 0.000 0.436 0.000 0.564
#> SRR2443221     4  0.4941     0.1653 0.000 0.436 0.000 0.564
#> SRR2443219     4  0.2473     0.6215 0.000 0.080 0.012 0.908
#> SRR2443220     4  0.4800     0.4106 0.000 0.004 0.340 0.656
#> SRR2443218     4  0.3123     0.5884 0.000 0.156 0.000 0.844
#> SRR2443217     3  0.6937     0.1160 0.068 0.424 0.492 0.016
#> SRR2443216     3  0.0779     0.8165 0.000 0.016 0.980 0.004
#> SRR2443215     2  0.1209     0.6550 0.000 0.964 0.004 0.032
#> SRR2443214     1  0.1721     0.9063 0.952 0.008 0.028 0.012
#> SRR2443213     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.1209     0.6550 0.000 0.964 0.004 0.032
#> SRR2443211     2  0.0817     0.6546 0.000 0.976 0.000 0.024
#> SRR2443210     4  0.4941     0.1653 0.000 0.436 0.000 0.564
#> SRR2443209     2  0.3581     0.6367 0.032 0.852 0.116 0.000
#> SRR2443208     2  0.3758     0.6467 0.028 0.860 0.096 0.016
#> SRR2443207     2  0.1706     0.6587 0.000 0.948 0.036 0.016
#> SRR2443206     2  0.3907     0.5271 0.000 0.768 0.000 0.232
#> SRR2443205     2  0.0817     0.6546 0.000 0.976 0.000 0.024
#> SRR2443204     1  0.1854     0.8981 0.940 0.000 0.048 0.012
#> SRR2443203     3  0.5320     0.2606 0.416 0.000 0.572 0.012
#> SRR2443202     3  0.2741     0.8105 0.000 0.012 0.892 0.096
#> SRR2443201     3  0.2266     0.8124 0.000 0.004 0.912 0.084
#> SRR2443200     4  0.4697     0.3312 0.000 0.356 0.000 0.644
#> SRR2443199     4  0.3123     0.5884 0.000 0.156 0.000 0.844
#> SRR2443197     3  0.3791     0.7359 0.000 0.004 0.796 0.200
#> SRR2443196     3  0.4957     0.5682 0.000 0.012 0.668 0.320
#> SRR2443198     3  0.3791     0.7372 0.000 0.004 0.796 0.200
#> SRR2443195     1  0.1151     0.9111 0.968 0.000 0.024 0.008
#> SRR2443194     3  0.1824     0.8179 0.000 0.004 0.936 0.060
#> SRR2443193     1  0.5276     0.6465 0.728 0.228 0.032 0.012
#> SRR2443191     2  0.2363     0.6562 0.024 0.920 0.056 0.000
#> SRR2443192     2  0.6434     0.0280 0.000 0.500 0.432 0.068
#> SRR2443190     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.2271     0.8944 0.928 0.008 0.052 0.012
#> SRR2443188     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.3726     0.5489 0.000 0.788 0.000 0.212
#> SRR2443187     2  0.3726     0.5489 0.000 0.788 0.000 0.212
#> SRR2443185     3  0.2334     0.8108 0.000 0.004 0.908 0.088
#> SRR2443184     3  0.1059     0.8148 0.000 0.016 0.972 0.012
#> SRR2443183     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.3304     0.8242 0.864 0.008 0.120 0.008
#> SRR2443181     2  0.3688     0.5523 0.000 0.792 0.000 0.208
#> SRR2443180     4  0.3024     0.5930 0.000 0.148 0.000 0.852
#> SRR2443179     4  0.4422     0.5429 0.000 0.008 0.256 0.736
#> SRR2443178     3  0.4626     0.7858 0.008 0.064 0.808 0.120
#> SRR2443177     1  0.2353     0.8916 0.924 0.008 0.056 0.012
#> SRR2443176     3  0.5308     0.5648 0.256 0.024 0.708 0.012
#> SRR2443175     1  0.0188     0.9214 0.996 0.000 0.004 0.000
#> SRR2443174     1  0.0188     0.9211 0.996 0.000 0.000 0.004
#> SRR2443173     2  0.4992     0.0387 0.000 0.524 0.000 0.476
#> SRR2443172     2  0.4998    -0.0332 0.000 0.512 0.000 0.488
#> SRR2443171     1  0.2189     0.8884 0.932 0.020 0.044 0.004
#> SRR2443170     1  0.5658     0.1482 0.528 0.452 0.016 0.004
#> SRR2443169     1  0.0376     0.9200 0.992 0.000 0.004 0.004
#> SRR2443168     2  0.4704     0.5865 0.028 0.764 0.204 0.004
#> SRR2443167     3  0.3831     0.7197 0.000 0.004 0.792 0.204
#> SRR2443166     1  0.4936     0.5314 0.652 0.000 0.340 0.008
#> SRR2443165     3  0.2647     0.7991 0.000 0.000 0.880 0.120
#> SRR2443164     4  0.2149     0.6199 0.000 0.088 0.000 0.912
#> SRR2443163     3  0.2466     0.8053 0.000 0.004 0.900 0.096
#> SRR2443162     3  0.0592     0.8168 0.000 0.016 0.984 0.000
#> SRR2443161     3  0.0707     0.8173 0.000 0.020 0.980 0.000
#> SRR2443160     3  0.3831     0.7197 0.000 0.004 0.792 0.204
#> SRR2443159     3  0.4677     0.5545 0.000 0.004 0.680 0.316
#> SRR2443158     3  0.0779     0.8157 0.000 0.016 0.980 0.004
#> SRR2443157     1  0.3224     0.8451 0.864 0.000 0.120 0.016
#> SRR2443156     3  0.6171     0.0417 0.040 0.456 0.500 0.004
#> SRR2443155     2  0.7304     0.3192 0.312 0.528 0.156 0.004
#> SRR2443154     2  0.7373     0.3429 0.288 0.532 0.176 0.004
#> SRR2443153     1  0.0000     0.9222 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.4977     0.0568 0.000 0.540 0.000 0.460
#> SRR2443151     4  0.2973     0.5950 0.000 0.144 0.000 0.856
#> SRR2443150     2  0.4972     0.0667 0.000 0.544 0.000 0.456
#> SRR2443148     4  0.1182     0.6326 0.000 0.016 0.016 0.968
#> SRR2443147     4  0.1584     0.6346 0.000 0.012 0.036 0.952
#> SRR2443149     3  0.2081     0.7783 0.000 0.084 0.916 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.3530    0.56763 0.084 0.020 0.856 0.032 0.008
#> SRR2443262     4  0.4221    0.61870 0.000 0.112 0.108 0.780 0.000
#> SRR2443261     4  0.3309    0.59465 0.000 0.036 0.128 0.836 0.000
#> SRR2443260     3  0.1357    0.65595 0.000 0.000 0.948 0.048 0.004
#> SRR2443259     3  0.0162    0.65554 0.000 0.000 0.996 0.004 0.000
#> SRR2443258     3  0.0000    0.65485 0.000 0.000 1.000 0.000 0.000
#> SRR2443257     4  0.3800    0.61819 0.000 0.080 0.108 0.812 0.000
#> SRR2443256     3  0.0000    0.65485 0.000 0.000 1.000 0.000 0.000
#> SRR2443255     3  0.0703    0.65806 0.000 0.000 0.976 0.024 0.000
#> SRR2443254     3  0.3461    0.57073 0.000 0.000 0.772 0.224 0.004
#> SRR2443253     4  0.4269    0.61715 0.000 0.116 0.108 0.776 0.000
#> SRR2443251     4  0.4306   -0.20927 0.000 0.000 0.492 0.508 0.000
#> SRR2443250     4  0.4221    0.61870 0.000 0.112 0.108 0.780 0.000
#> SRR2443249     4  0.3912    0.61922 0.000 0.088 0.108 0.804 0.000
#> SRR2443252     3  0.1041    0.65839 0.000 0.000 0.964 0.032 0.004
#> SRR2443247     1  0.2673    0.83917 0.892 0.000 0.072 0.028 0.008
#> SRR2443246     5  0.7611    0.35237 0.156 0.008 0.336 0.060 0.440
#> SRR2443248     3  0.5071    0.26648 0.000 0.016 0.532 0.440 0.012
#> SRR2443244     5  0.7311   -0.00268 0.000 0.028 0.248 0.320 0.404
#> SRR2443245     1  0.4642    0.77553 0.748 0.032 0.196 0.020 0.004
#> SRR2443243     1  0.0693    0.88862 0.980 0.012 0.000 0.008 0.000
#> SRR2443242     4  0.7543   -0.14717 0.000 0.036 0.320 0.328 0.316
#> SRR2443241     5  0.1106    0.66333 0.024 0.000 0.000 0.012 0.964
#> SRR2443240     5  0.1686    0.66086 0.028 0.008 0.000 0.020 0.944
#> SRR2443239     2  0.4448    0.19828 0.000 0.516 0.000 0.004 0.480
#> SRR2443238     1  0.1195    0.88388 0.960 0.028 0.000 0.012 0.000
#> SRR2443237     5  0.7227    0.02105 0.000 0.028 0.312 0.228 0.432
#> SRR2443236     5  0.3203    0.61492 0.168 0.000 0.000 0.012 0.820
#> SRR2443235     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.2459    0.66068 0.000 0.040 0.052 0.004 0.904
#> SRR2443228     2  0.1281    0.68584 0.000 0.956 0.000 0.032 0.012
#> SRR2443227     1  0.0798    0.88801 0.976 0.016 0.000 0.008 0.000
#> SRR2443226     1  0.2082    0.87383 0.928 0.032 0.024 0.016 0.000
#> SRR2443225     3  0.4949    0.48233 0.000 0.004 0.600 0.368 0.028
#> SRR2443223     3  0.4505    0.40657 0.000 0.000 0.604 0.384 0.012
#> SRR2443224     5  0.3616    0.55199 0.000 0.164 0.000 0.032 0.804
#> SRR2443222     2  0.1671    0.70601 0.000 0.924 0.000 0.000 0.076
#> SRR2443221     2  0.1671    0.70601 0.000 0.924 0.000 0.000 0.076
#> SRR2443219     4  0.4452   -0.12872 0.000 0.496 0.000 0.500 0.004
#> SRR2443220     4  0.3075    0.60840 0.000 0.048 0.092 0.860 0.000
#> SRR2443218     2  0.3838    0.49089 0.000 0.716 0.000 0.280 0.004
#> SRR2443217     5  0.5382    0.49600 0.000 0.020 0.276 0.052 0.652
#> SRR2443216     3  0.0290    0.65589 0.000 0.000 0.992 0.008 0.000
#> SRR2443215     5  0.3769    0.54411 0.000 0.180 0.000 0.032 0.788
#> SRR2443214     1  0.5124    0.77706 0.744 0.032 0.168 0.040 0.016
#> SRR2443213     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.2329    0.60557 0.000 0.124 0.000 0.000 0.876
#> SRR2443211     5  0.2824    0.60664 0.000 0.116 0.000 0.020 0.864
#> SRR2443210     2  0.1732    0.70514 0.000 0.920 0.000 0.000 0.080
#> SRR2443209     5  0.0609    0.65910 0.000 0.020 0.000 0.000 0.980
#> SRR2443208     5  0.1043    0.65478 0.000 0.040 0.000 0.000 0.960
#> SRR2443207     5  0.1121    0.65350 0.000 0.044 0.000 0.000 0.956
#> SRR2443206     2  0.4440    0.22488 0.000 0.528 0.000 0.004 0.468
#> SRR2443205     5  0.3333    0.50585 0.000 0.208 0.000 0.004 0.788
#> SRR2443204     1  0.4675    0.77274 0.744 0.032 0.200 0.020 0.004
#> SRR2443203     3  0.6024    0.31344 0.276 0.032 0.628 0.048 0.016
#> SRR2443202     3  0.4953    0.38307 0.000 0.000 0.532 0.440 0.028
#> SRR2443201     3  0.4949    0.43567 0.000 0.000 0.572 0.396 0.032
#> SRR2443200     2  0.1800    0.70465 0.000 0.932 0.000 0.020 0.048
#> SRR2443199     2  0.3838    0.49089 0.000 0.716 0.000 0.280 0.004
#> SRR2443197     4  0.4827   -0.30192 0.000 0.000 0.476 0.504 0.020
#> SRR2443196     4  0.4772    0.11887 0.000 0.004 0.320 0.648 0.028
#> SRR2443198     4  0.4826   -0.29823 0.000 0.000 0.472 0.508 0.020
#> SRR2443195     1  0.3900    0.81325 0.808 0.032 0.144 0.016 0.000
#> SRR2443194     3  0.4360    0.55896 0.000 0.000 0.692 0.284 0.024
#> SRR2443193     5  0.7878    0.14461 0.284 0.032 0.212 0.032 0.440
#> SRR2443191     5  0.0703    0.65770 0.000 0.024 0.000 0.000 0.976
#> SRR2443192     5  0.7022    0.13621 0.000 0.020 0.272 0.240 0.468
#> SRR2443190     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.5460    0.74374 0.704 0.032 0.208 0.040 0.016
#> SRR2443188     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.4450    0.17800 0.000 0.508 0.000 0.004 0.488
#> SRR2443187     2  0.4450    0.17800 0.000 0.508 0.000 0.004 0.488
#> SRR2443185     3  0.4848    0.40443 0.000 0.000 0.556 0.420 0.024
#> SRR2443184     3  0.1774    0.64015 0.000 0.000 0.932 0.052 0.016
#> SRR2443183     1  0.0000    0.89141 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.4957    0.67351 0.660 0.032 0.296 0.012 0.000
#> SRR2443181     5  0.4437   -0.12958 0.000 0.464 0.000 0.004 0.532
#> SRR2443180     2  0.3969    0.46150 0.000 0.692 0.000 0.304 0.004
#> SRR2443179     4  0.3644    0.56844 0.000 0.048 0.084 0.844 0.024
#> SRR2443178     3  0.5688    0.34883 0.004 0.008 0.488 0.452 0.048
#> SRR2443177     1  0.5460    0.74374 0.704 0.032 0.208 0.040 0.016
#> SRR2443176     3  0.4163    0.56756 0.068 0.032 0.832 0.048 0.020
#> SRR2443175     1  0.1497    0.88506 0.956 0.012 0.012 0.012 0.008
#> SRR2443174     1  0.0162    0.89088 0.996 0.000 0.000 0.000 0.004
#> SRR2443173     2  0.2873    0.68992 0.000 0.856 0.000 0.016 0.128
#> SRR2443172     2  0.3432    0.68459 0.000 0.828 0.000 0.040 0.132
#> SRR2443171     1  0.4452    0.73134 0.796 0.000 0.048 0.052 0.104
#> SRR2443170     5  0.5067    0.56264 0.208 0.000 0.020 0.060 0.712
#> SRR2443169     1  0.1059    0.87940 0.968 0.000 0.004 0.020 0.008
#> SRR2443168     5  0.3504    0.64143 0.000 0.004 0.092 0.064 0.840
#> SRR2443167     3  0.4446    0.21955 0.000 0.000 0.520 0.476 0.004
#> SRR2443166     3  0.5390    0.13952 0.308 0.028 0.636 0.020 0.008
#> SRR2443165     3  0.4283    0.47541 0.000 0.000 0.644 0.348 0.008
#> SRR2443164     2  0.4150    0.33924 0.000 0.612 0.000 0.388 0.000
#> SRR2443163     3  0.4430    0.44166 0.000 0.000 0.628 0.360 0.012
#> SRR2443162     3  0.0000    0.65485 0.000 0.000 1.000 0.000 0.000
#> SRR2443161     3  0.2011    0.64373 0.000 0.000 0.908 0.088 0.004
#> SRR2443160     3  0.4451    0.17702 0.000 0.000 0.504 0.492 0.004
#> SRR2443159     4  0.3561    0.42211 0.000 0.000 0.260 0.740 0.000
#> SRR2443158     3  0.0992    0.64035 0.000 0.000 0.968 0.024 0.008
#> SRR2443157     1  0.5949    0.44043 0.504 0.032 0.428 0.028 0.008
#> SRR2443156     5  0.5462    0.51006 0.000 0.008 0.316 0.064 0.612
#> SRR2443155     5  0.5015    0.60964 0.108 0.000 0.072 0.060 0.760
#> SRR2443154     5  0.5802    0.58896 0.072 0.008 0.156 0.060 0.704
#> SRR2443153     1  0.0162    0.89088 0.996 0.000 0.000 0.000 0.004
#> SRR2443152     2  0.3521    0.67988 0.000 0.820 0.000 0.040 0.140
#> SRR2443151     2  0.3895    0.44987 0.000 0.680 0.000 0.320 0.000
#> SRR2443150     2  0.3452    0.67520 0.000 0.820 0.000 0.032 0.148
#> SRR2443148     4  0.4268    0.00677 0.000 0.444 0.000 0.556 0.000
#> SRR2443147     4  0.4446    0.12611 0.000 0.400 0.008 0.592 0.000
#> SRR2443149     3  0.2249    0.57970 0.000 0.000 0.896 0.008 0.096

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.3934     0.6516 0.020 0.000 0.728 0.000 0.012 0.240
#> SRR2443262     4  0.3410     0.6845 0.000 0.008 0.008 0.768 0.000 0.216
#> SRR2443261     4  0.3802     0.5439 0.000 0.000 0.012 0.676 0.000 0.312
#> SRR2443260     3  0.4828     0.4348 0.000 0.000 0.500 0.044 0.004 0.452
#> SRR2443259     3  0.4513     0.6699 0.000 0.000 0.640 0.044 0.004 0.312
#> SRR2443258     3  0.4330     0.6802 0.000 0.000 0.680 0.044 0.004 0.272
#> SRR2443257     4  0.3217     0.6784 0.000 0.000 0.008 0.768 0.000 0.224
#> SRR2443256     3  0.4528     0.6698 0.000 0.000 0.636 0.044 0.004 0.316
#> SRR2443255     3  0.4615     0.6438 0.000 0.000 0.612 0.044 0.004 0.340
#> SRR2443254     6  0.4900    -0.2457 0.000 0.000 0.416 0.052 0.004 0.528
#> SRR2443253     4  0.3323     0.6859 0.000 0.008 0.008 0.780 0.000 0.204
#> SRR2443251     6  0.4223     0.5989 0.000 0.000 0.060 0.236 0.000 0.704
#> SRR2443250     4  0.3410     0.6845 0.000 0.008 0.008 0.768 0.000 0.216
#> SRR2443249     4  0.3217     0.6784 0.000 0.000 0.008 0.768 0.000 0.224
#> SRR2443252     3  0.4825     0.4446 0.000 0.000 0.504 0.044 0.004 0.448
#> SRR2443247     1  0.2944     0.7251 0.832 0.000 0.148 0.012 0.008 0.000
#> SRR2443246     5  0.5907     0.4458 0.032 0.000 0.364 0.052 0.528 0.024
#> SRR2443248     6  0.4003     0.6226 0.000 0.000 0.048 0.208 0.004 0.740
#> SRR2443244     6  0.4127     0.4911 0.000 0.004 0.016 0.004 0.304 0.672
#> SRR2443245     1  0.5312     0.5522 0.556 0.004 0.348 0.088 0.000 0.004
#> SRR2443243     1  0.3703     0.7469 0.792 0.004 0.132 0.072 0.000 0.000
#> SRR2443242     6  0.4206     0.5761 0.000 0.008 0.040 0.004 0.220 0.728
#> SRR2443241     5  0.1819     0.7247 0.000 0.004 0.024 0.032 0.932 0.008
#> SRR2443240     5  0.2089     0.7226 0.008 0.008 0.032 0.032 0.920 0.000
#> SRR2443239     2  0.4237     0.3440 0.000 0.624 0.012 0.004 0.356 0.004
#> SRR2443238     1  0.4759     0.7127 0.712 0.004 0.180 0.088 0.016 0.000
#> SRR2443237     6  0.4511     0.5168 0.000 0.000 0.036 0.016 0.276 0.672
#> SRR2443236     5  0.2758     0.7136 0.056 0.000 0.032 0.032 0.880 0.000
#> SRR2443235     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443233     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443234     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443232     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443231     1  0.0363     0.8127 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR2443230     1  0.0260     0.8130 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR2443229     5  0.1882     0.7186 0.000 0.028 0.024 0.000 0.928 0.020
#> SRR2443228     2  0.2860     0.6220 0.000 0.852 0.048 0.100 0.000 0.000
#> SRR2443227     1  0.1151     0.8079 0.956 0.000 0.032 0.012 0.000 0.000
#> SRR2443226     1  0.4616     0.7004 0.704 0.004 0.200 0.088 0.004 0.000
#> SRR2443225     6  0.2019     0.6538 0.000 0.000 0.088 0.012 0.000 0.900
#> SRR2443223     6  0.2776     0.6796 0.000 0.000 0.052 0.088 0.000 0.860
#> SRR2443224     5  0.4595     0.4750 0.000 0.264 0.040 0.020 0.676 0.000
#> SRR2443222     2  0.2058     0.6543 0.000 0.908 0.036 0.056 0.000 0.000
#> SRR2443221     2  0.2058     0.6543 0.000 0.908 0.036 0.056 0.000 0.000
#> SRR2443219     4  0.4246     0.4778 0.000 0.252 0.016 0.704 0.000 0.028
#> SRR2443220     4  0.3851     0.2595 0.000 0.000 0.000 0.540 0.000 0.460
#> SRR2443218     2  0.4721     0.0973 0.000 0.532 0.048 0.420 0.000 0.000
#> SRR2443217     5  0.5177     0.4934 0.000 0.000 0.116 0.012 0.640 0.232
#> SRR2443216     3  0.4351     0.6801 0.000 0.000 0.676 0.044 0.004 0.276
#> SRR2443215     5  0.5376     0.2366 0.000 0.360 0.020 0.004 0.556 0.060
#> SRR2443214     1  0.6574     0.5000 0.496 0.004 0.332 0.088 0.008 0.072
#> SRR2443213     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443212     5  0.3343     0.5965 0.000 0.176 0.024 0.004 0.796 0.000
#> SRR2443211     5  0.3986     0.5638 0.000 0.204 0.036 0.012 0.748 0.000
#> SRR2443210     2  0.1867     0.6603 0.000 0.924 0.036 0.036 0.004 0.000
#> SRR2443209     5  0.0692     0.7201 0.000 0.020 0.000 0.000 0.976 0.004
#> SRR2443208     5  0.1408     0.7179 0.000 0.036 0.020 0.000 0.944 0.000
#> SRR2443207     5  0.1552     0.7088 0.000 0.036 0.020 0.004 0.940 0.000
#> SRR2443206     2  0.4019     0.3864 0.000 0.652 0.012 0.004 0.332 0.000
#> SRR2443205     5  0.4588     0.1203 0.000 0.420 0.024 0.008 0.548 0.000
#> SRR2443204     1  0.5350     0.5309 0.540 0.004 0.364 0.088 0.000 0.004
#> SRR2443203     3  0.6650     0.2858 0.188 0.004 0.540 0.088 0.000 0.180
#> SRR2443202     6  0.0291     0.7085 0.000 0.000 0.004 0.004 0.000 0.992
#> SRR2443201     6  0.0865     0.6982 0.000 0.000 0.036 0.000 0.000 0.964
#> SRR2443200     2  0.2747     0.6242 0.000 0.860 0.044 0.096 0.000 0.000
#> SRR2443199     2  0.4715     0.0929 0.000 0.536 0.048 0.416 0.000 0.000
#> SRR2443197     6  0.2006     0.7077 0.000 0.000 0.016 0.080 0.000 0.904
#> SRR2443196     6  0.3043     0.6222 0.000 0.000 0.012 0.148 0.012 0.828
#> SRR2443198     6  0.1531     0.7095 0.000 0.000 0.004 0.068 0.000 0.928
#> SRR2443195     1  0.5081     0.5933 0.592 0.004 0.316 0.088 0.000 0.000
#> SRR2443194     6  0.2491     0.5341 0.000 0.000 0.164 0.000 0.000 0.836
#> SRR2443193     5  0.7545     0.3659 0.112 0.004 0.232 0.080 0.496 0.076
#> SRR2443191     5  0.0777     0.7190 0.000 0.024 0.000 0.000 0.972 0.004
#> SRR2443192     6  0.4360     0.4725 0.000 0.004 0.016 0.012 0.312 0.656
#> SRR2443190     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443189     1  0.6344     0.4354 0.460 0.004 0.384 0.088 0.000 0.064
#> SRR2443188     1  0.0458     0.8128 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR2443186     2  0.4102     0.3453 0.000 0.628 0.012 0.004 0.356 0.000
#> SRR2443187     2  0.4102     0.3453 0.000 0.628 0.012 0.004 0.356 0.000
#> SRR2443185     6  0.1074     0.7077 0.000 0.000 0.028 0.012 0.000 0.960
#> SRR2443184     3  0.3850     0.6526 0.000 0.000 0.652 0.004 0.004 0.340
#> SRR2443183     1  0.0405     0.8131 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR2443182     3  0.5647    -0.2805 0.408 0.000 0.488 0.076 0.000 0.028
#> SRR2443181     2  0.4337     0.3120 0.000 0.604 0.016 0.008 0.372 0.000
#> SRR2443180     2  0.4748     0.0195 0.000 0.504 0.048 0.448 0.000 0.000
#> SRR2443179     4  0.4083     0.3986 0.000 0.000 0.008 0.532 0.000 0.460
#> SRR2443178     6  0.2271     0.6826 0.000 0.000 0.024 0.032 0.036 0.908
#> SRR2443177     1  0.6420     0.4377 0.460 0.004 0.376 0.088 0.000 0.072
#> SRR2443176     3  0.4797     0.5395 0.032 0.000 0.692 0.056 0.000 0.220
#> SRR2443175     1  0.2600     0.7834 0.860 0.000 0.124 0.008 0.008 0.000
#> SRR2443174     1  0.0260     0.8130 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR2443173     2  0.1458     0.6661 0.000 0.948 0.016 0.020 0.016 0.000
#> SRR2443172     2  0.2713     0.6584 0.000 0.884 0.036 0.040 0.040 0.000
#> SRR2443171     1  0.6266     0.2106 0.532 0.000 0.144 0.052 0.272 0.000
#> SRR2443170     5  0.5007     0.6476 0.100 0.000 0.136 0.052 0.712 0.000
#> SRR2443169     1  0.1841     0.7848 0.920 0.000 0.064 0.008 0.008 0.000
#> SRR2443168     5  0.3718     0.6925 0.000 0.000 0.164 0.052 0.780 0.004
#> SRR2443167     6  0.3566     0.6686 0.000 0.000 0.056 0.156 0.000 0.788
#> SRR2443166     3  0.4644     0.5152 0.108 0.004 0.756 0.060 0.000 0.072
#> SRR2443165     6  0.3432     0.5853 0.000 0.000 0.148 0.052 0.000 0.800
#> SRR2443164     4  0.4900     0.0997 0.000 0.416 0.052 0.528 0.000 0.004
#> SRR2443163     6  0.3159     0.6533 0.000 0.000 0.084 0.072 0.004 0.840
#> SRR2443162     3  0.4528     0.6698 0.000 0.000 0.636 0.044 0.004 0.316
#> SRR2443161     3  0.4832     0.4163 0.000 0.000 0.492 0.044 0.004 0.460
#> SRR2443160     6  0.3776     0.6338 0.000 0.000 0.048 0.196 0.000 0.756
#> SRR2443159     6  0.4591    -0.0286 0.000 0.000 0.036 0.464 0.000 0.500
#> SRR2443158     3  0.3859     0.6697 0.000 0.000 0.692 0.008 0.008 0.292
#> SRR2443157     3  0.4683     0.3857 0.160 0.004 0.740 0.060 0.004 0.032
#> SRR2443156     5  0.5497     0.5586 0.000 0.000 0.284 0.056 0.604 0.056
#> SRR2443155     5  0.4764     0.6714 0.048 0.000 0.156 0.052 0.736 0.008
#> SRR2443154     5  0.5009     0.6450 0.032 0.000 0.224 0.052 0.684 0.008
#> SRR2443153     1  0.0260     0.8130 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR2443152     2  0.2781     0.6585 0.000 0.880 0.036 0.040 0.044 0.000
#> SRR2443151     4  0.4806    -0.0318 0.000 0.460 0.052 0.488 0.000 0.000
#> SRR2443150     2  0.2563     0.6614 0.000 0.892 0.036 0.028 0.044 0.000
#> SRR2443148     4  0.3859     0.5609 0.000 0.176 0.016 0.772 0.000 0.036
#> SRR2443147     4  0.4007     0.5989 0.000 0.144 0.016 0.776 0.000 0.064
#> SRR2443149     3  0.5875     0.5821 0.000 0.000 0.588 0.044 0.124 0.244

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.848           0.928       0.967         0.5044 0.496   0.496
#> 3 3 0.815           0.871       0.945         0.3176 0.748   0.535
#> 4 4 0.814           0.861       0.894         0.1138 0.819   0.535
#> 5 5 0.795           0.869       0.906         0.0638 0.860   0.543
#> 6 6 0.836           0.792       0.876         0.0442 0.907   0.613

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000      0.970 1.000 0.000
#> SRR2443262     2  0.0000      0.959 0.000 1.000
#> SRR2443261     2  0.0000      0.959 0.000 1.000
#> SRR2443260     1  0.8081      0.661 0.752 0.248
#> SRR2443259     1  0.0000      0.970 1.000 0.000
#> SRR2443258     1  0.0000      0.970 1.000 0.000
#> SRR2443257     2  0.0000      0.959 0.000 1.000
#> SRR2443256     1  0.0000      0.970 1.000 0.000
#> SRR2443255     1  0.0000      0.970 1.000 0.000
#> SRR2443254     2  0.8267      0.681 0.260 0.740
#> SRR2443253     2  0.0000      0.959 0.000 1.000
#> SRR2443251     2  0.0000      0.959 0.000 1.000
#> SRR2443250     2  0.0000      0.959 0.000 1.000
#> SRR2443249     2  0.0000      0.959 0.000 1.000
#> SRR2443252     1  0.4022      0.902 0.920 0.080
#> SRR2443247     1  0.0000      0.970 1.000 0.000
#> SRR2443246     1  0.0000      0.970 1.000 0.000
#> SRR2443248     2  0.0000      0.959 0.000 1.000
#> SRR2443244     2  0.0000      0.959 0.000 1.000
#> SRR2443245     1  0.0000      0.970 1.000 0.000
#> SRR2443243     1  0.0000      0.970 1.000 0.000
#> SRR2443242     2  0.0000      0.959 0.000 1.000
#> SRR2443241     1  0.2778      0.932 0.952 0.048
#> SRR2443240     1  0.4161      0.900 0.916 0.084
#> SRR2443239     2  0.0000      0.959 0.000 1.000
#> SRR2443238     1  0.0000      0.970 1.000 0.000
#> SRR2443237     2  0.0000      0.959 0.000 1.000
#> SRR2443236     1  0.2236      0.942 0.964 0.036
#> SRR2443235     1  0.0000      0.970 1.000 0.000
#> SRR2443233     1  0.0000      0.970 1.000 0.000
#> SRR2443234     1  0.0000      0.970 1.000 0.000
#> SRR2443232     1  0.0000      0.970 1.000 0.000
#> SRR2443231     1  0.0000      0.970 1.000 0.000
#> SRR2443230     1  0.0000      0.970 1.000 0.000
#> SRR2443229     1  0.7219      0.767 0.800 0.200
#> SRR2443228     2  0.0000      0.959 0.000 1.000
#> SRR2443227     1  0.0000      0.970 1.000 0.000
#> SRR2443226     1  0.0000      0.970 1.000 0.000
#> SRR2443225     2  0.8207      0.687 0.256 0.744
#> SRR2443223     2  0.0000      0.959 0.000 1.000
#> SRR2443224     2  0.0000      0.959 0.000 1.000
#> SRR2443222     2  0.0000      0.959 0.000 1.000
#> SRR2443221     2  0.0000      0.959 0.000 1.000
#> SRR2443219     2  0.0000      0.959 0.000 1.000
#> SRR2443220     2  0.0000      0.959 0.000 1.000
#> SRR2443218     2  0.0000      0.959 0.000 1.000
#> SRR2443217     1  0.0000      0.970 1.000 0.000
#> SRR2443216     1  0.0000      0.970 1.000 0.000
#> SRR2443215     2  0.0000      0.959 0.000 1.000
#> SRR2443214     1  0.0000      0.970 1.000 0.000
#> SRR2443213     1  0.0000      0.970 1.000 0.000
#> SRR2443212     2  0.0000      0.959 0.000 1.000
#> SRR2443211     2  0.0000      0.959 0.000 1.000
#> SRR2443210     2  0.0000      0.959 0.000 1.000
#> SRR2443209     1  0.6712      0.798 0.824 0.176
#> SRR2443208     1  0.7299      0.762 0.796 0.204
#> SRR2443207     2  0.9129      0.487 0.328 0.672
#> SRR2443206     2  0.0000      0.959 0.000 1.000
#> SRR2443205     2  0.0000      0.959 0.000 1.000
#> SRR2443204     1  0.0000      0.970 1.000 0.000
#> SRR2443203     1  0.0000      0.970 1.000 0.000
#> SRR2443202     2  0.0000      0.959 0.000 1.000
#> SRR2443201     2  0.0000      0.959 0.000 1.000
#> SRR2443200     2  0.0000      0.959 0.000 1.000
#> SRR2443199     2  0.0000      0.959 0.000 1.000
#> SRR2443197     2  0.7219      0.765 0.200 0.800
#> SRR2443196     2  0.0000      0.959 0.000 1.000
#> SRR2443198     2  0.5178      0.860 0.116 0.884
#> SRR2443195     1  0.0000      0.970 1.000 0.000
#> SRR2443194     2  0.9909      0.266 0.444 0.556
#> SRR2443193     1  0.0000      0.970 1.000 0.000
#> SRR2443191     1  0.8661      0.626 0.712 0.288
#> SRR2443192     2  0.0000      0.959 0.000 1.000
#> SRR2443190     1  0.0000      0.970 1.000 0.000
#> SRR2443189     1  0.0000      0.970 1.000 0.000
#> SRR2443188     1  0.0000      0.970 1.000 0.000
#> SRR2443186     2  0.0000      0.959 0.000 1.000
#> SRR2443187     2  0.0000      0.959 0.000 1.000
#> SRR2443185     2  0.0000      0.959 0.000 1.000
#> SRR2443184     1  0.0000      0.970 1.000 0.000
#> SRR2443183     1  0.0000      0.970 1.000 0.000
#> SRR2443182     1  0.0000      0.970 1.000 0.000
#> SRR2443181     2  0.0000      0.959 0.000 1.000
#> SRR2443180     2  0.0000      0.959 0.000 1.000
#> SRR2443179     2  0.0000      0.959 0.000 1.000
#> SRR2443178     2  0.7219      0.765 0.200 0.800
#> SRR2443177     1  0.0000      0.970 1.000 0.000
#> SRR2443176     1  0.0000      0.970 1.000 0.000
#> SRR2443175     1  0.0000      0.970 1.000 0.000
#> SRR2443174     1  0.0000      0.970 1.000 0.000
#> SRR2443173     2  0.0000      0.959 0.000 1.000
#> SRR2443172     2  0.0000      0.959 0.000 1.000
#> SRR2443171     1  0.0000      0.970 1.000 0.000
#> SRR2443170     1  0.0000      0.970 1.000 0.000
#> SRR2443169     1  0.0000      0.970 1.000 0.000
#> SRR2443168     1  0.7219      0.767 0.800 0.200
#> SRR2443167     2  0.2948      0.919 0.052 0.948
#> SRR2443166     1  0.0000      0.970 1.000 0.000
#> SRR2443165     2  0.8267      0.681 0.260 0.740
#> SRR2443164     2  0.0000      0.959 0.000 1.000
#> SRR2443163     2  0.0000      0.959 0.000 1.000
#> SRR2443162     1  0.0000      0.970 1.000 0.000
#> SRR2443161     1  0.0376      0.967 0.996 0.004
#> SRR2443160     2  0.3584      0.906 0.068 0.932
#> SRR2443159     2  0.2236      0.932 0.036 0.964
#> SRR2443158     1  0.0000      0.970 1.000 0.000
#> SRR2443157     1  0.0000      0.970 1.000 0.000
#> SRR2443156     1  0.0000      0.970 1.000 0.000
#> SRR2443155     1  0.0000      0.970 1.000 0.000
#> SRR2443154     1  0.0000      0.970 1.000 0.000
#> SRR2443153     1  0.0000      0.970 1.000 0.000
#> SRR2443152     2  0.0000      0.959 0.000 1.000
#> SRR2443151     2  0.0000      0.959 0.000 1.000
#> SRR2443150     2  0.0000      0.959 0.000 1.000
#> SRR2443148     2  0.0000      0.959 0.000 1.000
#> SRR2443147     2  0.0000      0.959 0.000 1.000
#> SRR2443149     1  0.4690      0.883 0.900 0.100

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443262     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443261     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443260     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443259     3  0.6126      0.275 0.400 0.000 0.600
#> SRR2443258     1  0.6126      0.362 0.600 0.000 0.400
#> SRR2443257     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443256     3  0.5650      0.504 0.312 0.000 0.688
#> SRR2443255     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443254     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443253     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443251     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443250     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443249     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443252     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443247     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443246     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443248     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443244     2  0.4346      0.825 0.000 0.816 0.184
#> SRR2443245     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443242     2  0.4504      0.814 0.000 0.804 0.196
#> SRR2443241     1  0.6295      0.111 0.528 0.472 0.000
#> SRR2443240     2  0.1411      0.915 0.036 0.964 0.000
#> SRR2443239     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443238     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443237     2  0.4002      0.845 0.000 0.840 0.160
#> SRR2443236     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443229     1  0.6126      0.351 0.600 0.400 0.000
#> SRR2443228     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443225     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443223     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443224     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443222     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443219     2  0.4504      0.814 0.000 0.804 0.196
#> SRR2443220     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443218     2  0.4504      0.814 0.000 0.804 0.196
#> SRR2443217     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443216     1  0.6299      0.133 0.524 0.000 0.476
#> SRR2443215     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443214     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443212     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443211     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443210     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443209     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443208     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443207     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443206     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443205     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443204     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443203     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443202     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443201     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443200     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443199     2  0.4504      0.814 0.000 0.804 0.196
#> SRR2443197     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443196     3  0.1643      0.911 0.000 0.044 0.956
#> SRR2443198     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443195     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443194     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443193     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443191     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443192     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443190     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443189     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443188     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443186     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443187     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443185     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443184     1  0.6111      0.372 0.604 0.000 0.396
#> SRR2443183     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443182     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443181     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443180     2  0.4504      0.814 0.000 0.804 0.196
#> SRR2443179     3  0.0237      0.948 0.000 0.004 0.996
#> SRR2443178     3  0.4555      0.729 0.200 0.000 0.800
#> SRR2443177     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443176     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443175     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443171     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443170     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443169     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443168     1  0.6168      0.321 0.588 0.412 0.000
#> SRR2443167     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443166     1  0.4452      0.733 0.808 0.000 0.192
#> SRR2443165     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443164     2  0.4504      0.814 0.000 0.804 0.196
#> SRR2443163     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443162     3  0.4504      0.715 0.196 0.000 0.804
#> SRR2443161     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443160     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443159     3  0.0000      0.951 0.000 0.000 1.000
#> SRR2443158     1  0.4452      0.733 0.808 0.000 0.192
#> SRR2443157     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443156     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443155     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443154     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443153     1  0.0000      0.924 1.000 0.000 0.000
#> SRR2443152     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443151     2  0.4178      0.835 0.000 0.828 0.172
#> SRR2443150     2  0.0000      0.945 0.000 1.000 0.000
#> SRR2443148     3  0.4555      0.695 0.000 0.200 0.800
#> SRR2443147     3  0.1289      0.923 0.000 0.032 0.968
#> SRR2443149     1  0.6126      0.362 0.600 0.000 0.400

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.3400      0.741 0.180 0.000 0.820 0.000
#> SRR2443262     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443261     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443260     3  0.0592      0.919 0.000 0.000 0.984 0.016
#> SRR2443259     3  0.0657      0.923 0.012 0.000 0.984 0.004
#> SRR2443258     3  0.0657      0.923 0.012 0.000 0.984 0.004
#> SRR2443257     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443256     3  0.0657      0.923 0.012 0.000 0.984 0.004
#> SRR2443255     3  0.0592      0.919 0.000 0.000 0.984 0.016
#> SRR2443254     3  0.1211      0.901 0.000 0.000 0.960 0.040
#> SRR2443253     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443251     4  0.2973      0.873 0.000 0.000 0.144 0.856
#> SRR2443250     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443249     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443252     3  0.0592      0.919 0.000 0.000 0.984 0.016
#> SRR2443247     1  0.1940      0.897 0.924 0.000 0.076 0.000
#> SRR2443246     1  0.4144      0.835 0.828 0.068 0.104 0.000
#> SRR2443248     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443244     4  0.4250      0.523 0.000 0.276 0.000 0.724
#> SRR2443245     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443242     4  0.2149      0.813 0.000 0.088 0.000 0.912
#> SRR2443241     2  0.2179      0.848 0.064 0.924 0.012 0.000
#> SRR2443240     2  0.0469      0.900 0.000 0.988 0.012 0.000
#> SRR2443239     2  0.2081      0.912 0.000 0.916 0.000 0.084
#> SRR2443238     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443237     4  0.4564      0.462 0.000 0.328 0.000 0.672
#> SRR2443236     1  0.3217      0.852 0.860 0.128 0.012 0.000
#> SRR2443235     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443229     1  0.6626      0.334 0.580 0.340 0.012 0.068
#> SRR2443228     2  0.2760      0.898 0.000 0.872 0.000 0.128
#> SRR2443227     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443225     4  0.3975      0.764 0.000 0.000 0.240 0.760
#> SRR2443223     4  0.2647      0.884 0.000 0.000 0.120 0.880
#> SRR2443224     2  0.0469      0.900 0.000 0.988 0.012 0.000
#> SRR2443222     2  0.2704      0.900 0.000 0.876 0.000 0.124
#> SRR2443221     2  0.2704      0.900 0.000 0.876 0.000 0.124
#> SRR2443219     4  0.2149      0.813 0.000 0.088 0.000 0.912
#> SRR2443220     4  0.1637      0.876 0.000 0.000 0.060 0.940
#> SRR2443218     4  0.2149      0.813 0.000 0.088 0.000 0.912
#> SRR2443217     1  0.1584      0.918 0.952 0.036 0.012 0.000
#> SRR2443216     3  0.0657      0.923 0.012 0.000 0.984 0.004
#> SRR2443215     2  0.2149      0.910 0.000 0.912 0.000 0.088
#> SRR2443214     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443213     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.1792      0.916 0.000 0.932 0.000 0.068
#> SRR2443211     2  0.0000      0.905 0.000 1.000 0.000 0.000
#> SRR2443210     2  0.2704      0.900 0.000 0.876 0.000 0.124
#> SRR2443209     2  0.0469      0.900 0.000 0.988 0.012 0.000
#> SRR2443208     2  0.2255      0.915 0.000 0.920 0.012 0.068
#> SRR2443207     2  0.2255      0.915 0.000 0.920 0.012 0.068
#> SRR2443206     2  0.1792      0.916 0.000 0.932 0.000 0.068
#> SRR2443205     2  0.0188      0.906 0.000 0.996 0.000 0.004
#> SRR2443204     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443203     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443202     4  0.2011      0.880 0.000 0.000 0.080 0.920
#> SRR2443201     4  0.2760      0.881 0.000 0.000 0.128 0.872
#> SRR2443200     2  0.2760      0.898 0.000 0.872 0.000 0.128
#> SRR2443199     4  0.2149      0.813 0.000 0.088 0.000 0.912
#> SRR2443197     4  0.3024      0.871 0.000 0.000 0.148 0.852
#> SRR2443196     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> SRR2443198     4  0.2760      0.881 0.000 0.000 0.128 0.872
#> SRR2443195     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443194     3  0.2149      0.853 0.000 0.000 0.912 0.088
#> SRR2443193     1  0.1022      0.926 0.968 0.032 0.000 0.000
#> SRR2443191     2  0.0469      0.900 0.000 0.988 0.012 0.000
#> SRR2443192     2  0.4989      0.177 0.000 0.528 0.000 0.472
#> SRR2443190     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443188     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.1792      0.916 0.000 0.932 0.000 0.068
#> SRR2443187     2  0.1867      0.915 0.000 0.928 0.000 0.072
#> SRR2443185     4  0.2973      0.873 0.000 0.000 0.144 0.856
#> SRR2443184     3  0.0657      0.923 0.012 0.000 0.984 0.004
#> SRR2443183     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443181     2  0.1792      0.916 0.000 0.932 0.000 0.068
#> SRR2443180     4  0.2149      0.813 0.000 0.088 0.000 0.912
#> SRR2443179     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> SRR2443178     4  0.3710      0.732 0.192 0.000 0.004 0.804
#> SRR2443177     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443176     1  0.4746      0.358 0.632 0.000 0.368 0.000
#> SRR2443175     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443174     1  0.0188      0.944 0.996 0.000 0.004 0.000
#> SRR2443173     2  0.1302      0.908 0.000 0.956 0.000 0.044
#> SRR2443172     2  0.1118      0.905 0.000 0.964 0.000 0.036
#> SRR2443171     1  0.1661      0.914 0.944 0.004 0.052 0.000
#> SRR2443170     1  0.2775      0.883 0.896 0.084 0.020 0.000
#> SRR2443169     1  0.1302      0.921 0.956 0.000 0.044 0.000
#> SRR2443168     2  0.6274      0.405 0.292 0.620 0.088 0.000
#> SRR2443167     4  0.2973      0.873 0.000 0.000 0.144 0.856
#> SRR2443166     3  0.0469      0.921 0.012 0.000 0.988 0.000
#> SRR2443165     3  0.4522      0.445 0.000 0.000 0.680 0.320
#> SRR2443164     4  0.0592      0.854 0.000 0.016 0.000 0.984
#> SRR2443163     4  0.2868      0.878 0.000 0.000 0.136 0.864
#> SRR2443162     3  0.0672      0.922 0.008 0.000 0.984 0.008
#> SRR2443161     3  0.0592      0.919 0.000 0.000 0.984 0.016
#> SRR2443160     4  0.2973      0.873 0.000 0.000 0.144 0.856
#> SRR2443159     4  0.2814      0.879 0.000 0.000 0.132 0.868
#> SRR2443158     3  0.0469      0.921 0.012 0.000 0.988 0.000
#> SRR2443157     3  0.4933      0.203 0.432 0.000 0.568 0.000
#> SRR2443156     1  0.4104      0.841 0.832 0.080 0.088 0.000
#> SRR2443155     1  0.4104      0.841 0.832 0.080 0.088 0.000
#> SRR2443154     1  0.4104      0.841 0.832 0.080 0.088 0.000
#> SRR2443153     1  0.0000      0.946 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.1118      0.905 0.000 0.964 0.000 0.036
#> SRR2443151     4  0.1389      0.838 0.000 0.048 0.000 0.952
#> SRR2443150     2  0.1118      0.905 0.000 0.964 0.000 0.036
#> SRR2443148     4  0.0188      0.859 0.000 0.004 0.000 0.996
#> SRR2443147     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> SRR2443149     3  0.0657      0.923 0.012 0.000 0.984 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4659    -0.0424 0.488 0.000 0.500 0.000 0.012
#> SRR2443262     4  0.3192     0.8917 0.000 0.112 0.040 0.848 0.000
#> SRR2443261     4  0.3267     0.8904 0.000 0.112 0.044 0.844 0.000
#> SRR2443260     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443259     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443258     3  0.1282     0.9385 0.000 0.000 0.952 0.044 0.004
#> SRR2443257     4  0.3192     0.8917 0.000 0.112 0.040 0.848 0.000
#> SRR2443256     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443255     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443254     3  0.2329     0.8515 0.000 0.000 0.876 0.124 0.000
#> SRR2443253     4  0.3192     0.8917 0.000 0.112 0.040 0.848 0.000
#> SRR2443251     4  0.2920     0.8625 0.000 0.016 0.132 0.852 0.000
#> SRR2443250     4  0.3192     0.8917 0.000 0.112 0.040 0.848 0.000
#> SRR2443249     4  0.3192     0.8917 0.000 0.112 0.040 0.848 0.000
#> SRR2443252     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443247     1  0.2470     0.8775 0.884 0.000 0.104 0.000 0.012
#> SRR2443246     5  0.4624     0.7601 0.112 0.000 0.144 0.000 0.744
#> SRR2443248     4  0.3267     0.8904 0.000 0.112 0.044 0.844 0.000
#> SRR2443244     2  0.2172     0.8178 0.000 0.908 0.000 0.076 0.016
#> SRR2443245     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443243     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443242     2  0.2020     0.8009 0.000 0.900 0.000 0.100 0.000
#> SRR2443241     5  0.0566     0.8597 0.004 0.012 0.000 0.000 0.984
#> SRR2443240     5  0.0510     0.8584 0.000 0.016 0.000 0.000 0.984
#> SRR2443239     2  0.2648     0.8214 0.000 0.848 0.000 0.000 0.152
#> SRR2443238     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443237     2  0.4725     0.7532 0.000 0.720 0.000 0.200 0.080
#> SRR2443236     5  0.1809     0.8604 0.060 0.012 0.000 0.000 0.928
#> SRR2443235     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.2771     0.8056 0.012 0.128 0.000 0.000 0.860
#> SRR2443228     2  0.0162     0.8328 0.000 0.996 0.000 0.004 0.000
#> SRR2443227     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443225     4  0.0671     0.8881 0.004 0.000 0.016 0.980 0.000
#> SRR2443223     4  0.3192     0.8917 0.000 0.112 0.040 0.848 0.000
#> SRR2443224     5  0.2773     0.7973 0.000 0.112 0.020 0.000 0.868
#> SRR2443222     2  0.1544     0.8421 0.000 0.932 0.000 0.000 0.068
#> SRR2443221     2  0.1544     0.8421 0.000 0.932 0.000 0.000 0.068
#> SRR2443219     2  0.2179     0.7929 0.000 0.888 0.000 0.112 0.000
#> SRR2443220     4  0.3488     0.8642 0.000 0.168 0.024 0.808 0.000
#> SRR2443218     2  0.2127     0.7961 0.000 0.892 0.000 0.108 0.000
#> SRR2443217     1  0.2377     0.8484 0.872 0.000 0.000 0.000 0.128
#> SRR2443216     3  0.1282     0.9385 0.000 0.000 0.952 0.044 0.004
#> SRR2443215     2  0.2732     0.8191 0.000 0.840 0.000 0.000 0.160
#> SRR2443214     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443213     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     2  0.3816     0.6709 0.000 0.696 0.000 0.000 0.304
#> SRR2443211     2  0.4726     0.5144 0.000 0.580 0.020 0.000 0.400
#> SRR2443210     2  0.1544     0.8421 0.000 0.932 0.000 0.000 0.068
#> SRR2443209     5  0.0703     0.8571 0.000 0.024 0.000 0.000 0.976
#> SRR2443208     5  0.2424     0.7978 0.000 0.132 0.000 0.000 0.868
#> SRR2443207     5  0.2516     0.7899 0.000 0.140 0.000 0.000 0.860
#> SRR2443206     2  0.2929     0.8063 0.000 0.820 0.000 0.000 0.180
#> SRR2443205     2  0.3480     0.7745 0.000 0.752 0.000 0.000 0.248
#> SRR2443204     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443203     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443202     4  0.1043     0.8814 0.000 0.040 0.000 0.960 0.000
#> SRR2443201     4  0.0703     0.8945 0.000 0.000 0.024 0.976 0.000
#> SRR2443200     2  0.1043     0.8419 0.000 0.960 0.000 0.000 0.040
#> SRR2443199     2  0.2127     0.7961 0.000 0.892 0.000 0.108 0.000
#> SRR2443197     4  0.0703     0.8865 0.000 0.000 0.024 0.976 0.000
#> SRR2443196     4  0.1197     0.8784 0.000 0.048 0.000 0.952 0.000
#> SRR2443198     4  0.0510     0.8886 0.000 0.000 0.016 0.984 0.000
#> SRR2443195     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443194     4  0.3210     0.6754 0.000 0.000 0.212 0.788 0.000
#> SRR2443193     1  0.0880     0.9505 0.968 0.000 0.000 0.000 0.032
#> SRR2443191     5  0.1608     0.8412 0.000 0.072 0.000 0.000 0.928
#> SRR2443192     2  0.4364     0.8099 0.000 0.768 0.000 0.112 0.120
#> SRR2443190     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443188     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.2929     0.8063 0.000 0.820 0.000 0.000 0.180
#> SRR2443187     2  0.2929     0.8063 0.000 0.820 0.000 0.000 0.180
#> SRR2443185     4  0.1121     0.8893 0.000 0.000 0.044 0.956 0.000
#> SRR2443184     3  0.1357     0.9361 0.000 0.000 0.948 0.048 0.004
#> SRR2443183     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443181     2  0.2891     0.8091 0.000 0.824 0.000 0.000 0.176
#> SRR2443180     2  0.2127     0.7961 0.000 0.892 0.000 0.108 0.000
#> SRR2443179     4  0.1121     0.8796 0.000 0.044 0.000 0.956 0.000
#> SRR2443178     4  0.2516     0.7747 0.140 0.000 0.000 0.860 0.000
#> SRR2443177     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443176     1  0.0162     0.9765 0.996 0.000 0.000 0.000 0.004
#> SRR2443175     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443174     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.2824     0.8247 0.000 0.864 0.020 0.000 0.116
#> SRR2443172     2  0.3031     0.8045 0.000 0.856 0.020 0.004 0.120
#> SRR2443171     1  0.3366     0.8027 0.828 0.000 0.032 0.000 0.140
#> SRR2443170     5  0.3485     0.8166 0.124 0.000 0.048 0.000 0.828
#> SRR2443169     1  0.1281     0.9444 0.956 0.000 0.032 0.000 0.012
#> SRR2443168     5  0.2054     0.8491 0.004 0.008 0.072 0.000 0.916
#> SRR2443167     4  0.1544     0.8879 0.000 0.000 0.068 0.932 0.000
#> SRR2443166     3  0.1282     0.9385 0.000 0.000 0.952 0.044 0.004
#> SRR2443165     4  0.1732     0.8610 0.000 0.000 0.080 0.920 0.000
#> SRR2443164     2  0.3143     0.6975 0.000 0.796 0.000 0.204 0.000
#> SRR2443163     4  0.3201     0.8828 0.000 0.052 0.096 0.852 0.000
#> SRR2443162     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443161     3  0.1121     0.9391 0.000 0.000 0.956 0.044 0.000
#> SRR2443160     4  0.1341     0.8912 0.000 0.000 0.056 0.944 0.000
#> SRR2443159     4  0.1341     0.8912 0.000 0.000 0.056 0.944 0.000
#> SRR2443158     3  0.1012     0.9035 0.000 0.000 0.968 0.020 0.012
#> SRR2443157     1  0.2920     0.8450 0.852 0.000 0.132 0.000 0.016
#> SRR2443156     5  0.3752     0.8076 0.124 0.000 0.064 0.000 0.812
#> SRR2443155     5  0.3477     0.8222 0.112 0.000 0.056 0.000 0.832
#> SRR2443154     5  0.3543     0.8201 0.112 0.000 0.060 0.000 0.828
#> SRR2443153     1  0.0000     0.9775 1.000 0.000 0.000 0.000 0.000
#> SRR2443152     2  0.3351     0.8056 0.000 0.828 0.020 0.004 0.148
#> SRR2443151     2  0.1908     0.8016 0.000 0.908 0.000 0.092 0.000
#> SRR2443150     2  0.3194     0.8055 0.000 0.832 0.020 0.000 0.148
#> SRR2443148     4  0.2891     0.8534 0.000 0.176 0.000 0.824 0.000
#> SRR2443147     4  0.2813     0.8593 0.000 0.168 0.000 0.832 0.000
#> SRR2443149     3  0.1282     0.9385 0.000 0.000 0.952 0.044 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     1  0.5582     0.0601 0.480 0.000 0.424 0.004 0.076 0.016
#> SRR2443262     4  0.3172     0.7980 0.000 0.000 0.048 0.824 0.000 0.128
#> SRR2443261     4  0.3254     0.7954 0.000 0.000 0.056 0.820 0.000 0.124
#> SRR2443260     3  0.0146     0.9815 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2443259     3  0.0000     0.9824 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443258     3  0.0000     0.9824 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443257     4  0.3172     0.7980 0.000 0.000 0.048 0.824 0.000 0.128
#> SRR2443256     3  0.0363     0.9818 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR2443255     3  0.0363     0.9818 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR2443254     3  0.0909     0.9700 0.000 0.000 0.968 0.012 0.000 0.020
#> SRR2443253     4  0.3172     0.7980 0.000 0.000 0.048 0.824 0.000 0.128
#> SRR2443251     4  0.4952     0.6158 0.000 0.000 0.168 0.652 0.000 0.180
#> SRR2443250     4  0.3172     0.7980 0.000 0.000 0.048 0.824 0.000 0.128
#> SRR2443249     4  0.3172     0.7980 0.000 0.000 0.048 0.824 0.000 0.128
#> SRR2443252     3  0.0146     0.9815 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2443247     1  0.3806     0.7725 0.776 0.000 0.088 0.000 0.136 0.000
#> SRR2443246     5  0.2747     0.7108 0.044 0.000 0.096 0.000 0.860 0.000
#> SRR2443248     4  0.3168     0.7985 0.000 0.000 0.056 0.828 0.000 0.116
#> SRR2443244     4  0.4084     0.1401 0.000 0.400 0.000 0.588 0.000 0.012
#> SRR2443245     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443243     1  0.0291     0.9361 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR2443242     4  0.3201     0.6270 0.000 0.208 0.000 0.780 0.000 0.012
#> SRR2443241     5  0.2872     0.7519 0.000 0.152 0.000 0.012 0.832 0.004
#> SRR2443240     5  0.2909     0.7494 0.000 0.156 0.000 0.012 0.828 0.004
#> SRR2443239     2  0.0937     0.7571 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR2443238     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443237     6  0.4537     0.5680 0.000 0.248 0.000 0.068 0.004 0.680
#> SRR2443236     5  0.2597     0.7649 0.004 0.112 0.000 0.012 0.868 0.004
#> SRR2443235     1  0.0790     0.9348 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR2443233     1  0.0937     0.9326 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR2443234     1  0.0790     0.9348 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR2443232     1  0.0937     0.9326 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR2443231     1  0.0937     0.9326 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR2443230     1  0.0713     0.9355 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR2443229     5  0.4141     0.5468 0.000 0.388 0.000 0.016 0.596 0.000
#> SRR2443228     2  0.3421     0.7070 0.000 0.736 0.000 0.256 0.000 0.008
#> SRR2443227     1  0.0291     0.9361 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR2443226     1  0.0291     0.9360 0.992 0.000 0.000 0.004 0.004 0.000
#> SRR2443225     6  0.0665     0.9000 0.004 0.000 0.008 0.008 0.000 0.980
#> SRR2443223     4  0.3130     0.7994 0.000 0.000 0.048 0.828 0.000 0.124
#> SRR2443224     2  0.2994     0.5844 0.000 0.788 0.000 0.000 0.208 0.004
#> SRR2443222     2  0.3081     0.7426 0.000 0.776 0.000 0.220 0.000 0.004
#> SRR2443221     2  0.3081     0.7426 0.000 0.776 0.000 0.220 0.000 0.004
#> SRR2443219     4  0.2841     0.6699 0.000 0.164 0.000 0.824 0.000 0.012
#> SRR2443220     4  0.2092     0.7969 0.000 0.000 0.000 0.876 0.000 0.124
#> SRR2443218     4  0.3046     0.6427 0.000 0.188 0.000 0.800 0.000 0.012
#> SRR2443217     1  0.4539     0.6464 0.728 0.164 0.000 0.016 0.092 0.000
#> SRR2443216     3  0.0000     0.9824 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443215     2  0.1152     0.7543 0.000 0.952 0.000 0.044 0.004 0.000
#> SRR2443214     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443213     1  0.0937     0.9326 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR2443212     2  0.1367     0.7102 0.000 0.944 0.000 0.012 0.044 0.000
#> SRR2443211     2  0.3121     0.6198 0.000 0.804 0.000 0.012 0.180 0.004
#> SRR2443210     2  0.3081     0.7426 0.000 0.776 0.000 0.220 0.000 0.004
#> SRR2443209     5  0.3867     0.6431 0.000 0.296 0.000 0.012 0.688 0.004
#> SRR2443208     5  0.4199     0.5066 0.000 0.416 0.000 0.016 0.568 0.000
#> SRR2443207     2  0.4238    -0.2820 0.000 0.540 0.000 0.016 0.444 0.000
#> SRR2443206     2  0.0260     0.7476 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR2443205     2  0.2056     0.7198 0.000 0.904 0.000 0.012 0.080 0.004
#> SRR2443204     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443203     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443202     6  0.0632     0.9030 0.000 0.000 0.000 0.024 0.000 0.976
#> SRR2443201     6  0.2752     0.8572 0.000 0.000 0.036 0.108 0.000 0.856
#> SRR2443200     2  0.3298     0.7265 0.000 0.756 0.000 0.236 0.000 0.008
#> SRR2443199     4  0.2980     0.6528 0.000 0.180 0.000 0.808 0.000 0.012
#> SRR2443197     6  0.1092     0.9046 0.000 0.000 0.020 0.020 0.000 0.960
#> SRR2443196     6  0.0692     0.9023 0.000 0.004 0.000 0.020 0.000 0.976
#> SRR2443198     6  0.0891     0.9043 0.000 0.000 0.008 0.024 0.000 0.968
#> SRR2443195     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443194     6  0.1219     0.8846 0.000 0.000 0.048 0.004 0.000 0.948
#> SRR2443193     1  0.1977     0.9104 0.920 0.032 0.000 0.008 0.040 0.000
#> SRR2443191     5  0.4181     0.5632 0.000 0.384 0.000 0.012 0.600 0.004
#> SRR2443192     2  0.5248     0.2205 0.000 0.512 0.000 0.100 0.000 0.388
#> SRR2443190     1  0.0713     0.9355 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR2443189     1  0.0291     0.9361 0.992 0.000 0.000 0.004 0.004 0.000
#> SRR2443188     1  0.0937     0.9326 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR2443186     2  0.0363     0.7454 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR2443187     2  0.0260     0.7476 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR2443185     6  0.2325     0.8835 0.000 0.000 0.048 0.060 0.000 0.892
#> SRR2443184     3  0.0603     0.9711 0.004 0.000 0.980 0.000 0.000 0.016
#> SRR2443183     1  0.0260     0.9368 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR2443182     1  0.0291     0.9361 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR2443181     2  0.0665     0.7506 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR2443180     4  0.2841     0.6696 0.000 0.164 0.000 0.824 0.000 0.012
#> SRR2443179     6  0.0713     0.9027 0.000 0.000 0.000 0.028 0.000 0.972
#> SRR2443178     6  0.1088     0.8921 0.024 0.000 0.000 0.016 0.000 0.960
#> SRR2443177     1  0.0436     0.9354 0.988 0.000 0.000 0.004 0.004 0.004
#> SRR2443176     1  0.0551     0.9341 0.984 0.000 0.000 0.004 0.004 0.008
#> SRR2443175     1  0.0713     0.9355 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR2443174     1  0.0865     0.9345 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR2443173     2  0.4702     0.7198 0.000 0.680 0.000 0.220 0.096 0.004
#> SRR2443172     2  0.4886     0.6977 0.000 0.648 0.000 0.252 0.096 0.004
#> SRR2443171     5  0.3756     0.1905 0.400 0.000 0.000 0.000 0.600 0.000
#> SRR2443170     5  0.0458     0.7734 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR2443169     1  0.2178     0.8635 0.868 0.000 0.000 0.000 0.132 0.000
#> SRR2443168     5  0.0458     0.7723 0.000 0.016 0.000 0.000 0.984 0.000
#> SRR2443167     6  0.3566     0.8298 0.000 0.000 0.104 0.096 0.000 0.800
#> SRR2443166     3  0.0458     0.9739 0.016 0.000 0.984 0.000 0.000 0.000
#> SRR2443165     6  0.1584     0.8896 0.000 0.000 0.064 0.008 0.000 0.928
#> SRR2443164     4  0.1007     0.7578 0.000 0.044 0.000 0.956 0.000 0.000
#> SRR2443163     4  0.4094     0.7243 0.000 0.000 0.088 0.744 0.000 0.168
#> SRR2443162     3  0.0363     0.9818 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR2443161     3  0.0363     0.9818 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR2443160     6  0.3225     0.8476 0.000 0.000 0.080 0.092 0.000 0.828
#> SRR2443159     6  0.3784     0.8002 0.000 0.000 0.080 0.144 0.000 0.776
#> SRR2443158     3  0.1757     0.9052 0.000 0.000 0.916 0.000 0.076 0.008
#> SRR2443157     1  0.3872     0.7636 0.792 0.000 0.124 0.004 0.072 0.008
#> SRR2443156     5  0.0632     0.7699 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR2443155     5  0.0458     0.7734 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR2443154     5  0.0458     0.7734 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR2443153     1  0.0937     0.9326 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR2443152     2  0.4798     0.7111 0.000 0.664 0.000 0.236 0.096 0.004
#> SRR2443151     4  0.1610     0.7323 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR2443150     2  0.4775     0.7137 0.000 0.668 0.000 0.232 0.096 0.004
#> SRR2443148     4  0.2302     0.7917 0.000 0.008 0.000 0.872 0.000 0.120
#> SRR2443147     4  0.2219     0.7957 0.000 0.000 0.000 0.864 0.000 0.136
#> SRR2443149     3  0.0748     0.9723 0.000 0.000 0.976 0.004 0.016 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.878           0.924       0.967         0.4502 0.552   0.552
#> 3 3 0.618           0.800       0.889         0.4337 0.726   0.538
#> 4 4 0.612           0.735       0.841         0.1539 0.785   0.479
#> 5 5 0.682           0.690       0.849         0.0525 0.885   0.598
#> 6 6 0.664           0.471       0.700         0.0488 0.882   0.526

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.9983      0.102 0.476 0.524
#> SRR2443262     2  0.0000      0.970 0.000 1.000
#> SRR2443261     2  0.0000      0.970 0.000 1.000
#> SRR2443260     2  0.0000      0.970 0.000 1.000
#> SRR2443259     2  0.0000      0.970 0.000 1.000
#> SRR2443258     2  0.9170      0.473 0.332 0.668
#> SRR2443257     2  0.0000      0.970 0.000 1.000
#> SRR2443256     2  0.6973      0.777 0.188 0.812
#> SRR2443255     2  0.0000      0.970 0.000 1.000
#> SRR2443254     2  0.0000      0.970 0.000 1.000
#> SRR2443253     2  0.0000      0.970 0.000 1.000
#> SRR2443251     2  0.0000      0.970 0.000 1.000
#> SRR2443250     2  0.0000      0.970 0.000 1.000
#> SRR2443249     2  0.0000      0.970 0.000 1.000
#> SRR2443252     2  0.0000      0.970 0.000 1.000
#> SRR2443247     1  0.0000      0.953 1.000 0.000
#> SRR2443246     1  0.9427      0.472 0.640 0.360
#> SRR2443248     2  0.0000      0.970 0.000 1.000
#> SRR2443244     2  0.0000      0.970 0.000 1.000
#> SRR2443245     1  0.0000      0.953 1.000 0.000
#> SRR2443243     1  0.0000      0.953 1.000 0.000
#> SRR2443242     2  0.0000      0.970 0.000 1.000
#> SRR2443241     2  0.7056      0.771 0.192 0.808
#> SRR2443240     1  0.7674      0.704 0.776 0.224
#> SRR2443239     2  0.0000      0.970 0.000 1.000
#> SRR2443238     1  0.0000      0.953 1.000 0.000
#> SRR2443237     2  0.0000      0.970 0.000 1.000
#> SRR2443236     1  0.0000      0.953 1.000 0.000
#> SRR2443235     1  0.0000      0.953 1.000 0.000
#> SRR2443233     1  0.0000      0.953 1.000 0.000
#> SRR2443234     1  0.0000      0.953 1.000 0.000
#> SRR2443232     1  0.0000      0.953 1.000 0.000
#> SRR2443231     1  0.0000      0.953 1.000 0.000
#> SRR2443230     1  0.0000      0.953 1.000 0.000
#> SRR2443229     1  0.9710      0.384 0.600 0.400
#> SRR2443228     2  0.0000      0.970 0.000 1.000
#> SRR2443227     1  0.0000      0.953 1.000 0.000
#> SRR2443226     1  0.0000      0.953 1.000 0.000
#> SRR2443225     2  0.6531      0.801 0.168 0.832
#> SRR2443223     2  0.0000      0.970 0.000 1.000
#> SRR2443224     2  0.0000      0.970 0.000 1.000
#> SRR2443222     2  0.0000      0.970 0.000 1.000
#> SRR2443221     2  0.0000      0.970 0.000 1.000
#> SRR2443219     2  0.0000      0.970 0.000 1.000
#> SRR2443220     2  0.0000      0.970 0.000 1.000
#> SRR2443218     2  0.0000      0.970 0.000 1.000
#> SRR2443217     2  0.6973      0.777 0.188 0.812
#> SRR2443216     2  0.0000      0.970 0.000 1.000
#> SRR2443215     2  0.0000      0.970 0.000 1.000
#> SRR2443214     1  0.0000      0.953 1.000 0.000
#> SRR2443213     1  0.0000      0.953 1.000 0.000
#> SRR2443212     2  0.1414      0.956 0.020 0.980
#> SRR2443211     2  0.0000      0.970 0.000 1.000
#> SRR2443210     2  0.0000      0.970 0.000 1.000
#> SRR2443209     2  0.7056      0.771 0.192 0.808
#> SRR2443208     1  0.8327      0.667 0.736 0.264
#> SRR2443207     2  0.0000      0.970 0.000 1.000
#> SRR2443206     2  0.0000      0.970 0.000 1.000
#> SRR2443205     2  0.0000      0.970 0.000 1.000
#> SRR2443204     1  0.0000      0.953 1.000 0.000
#> SRR2443203     1  0.0000      0.953 1.000 0.000
#> SRR2443202     2  0.0000      0.970 0.000 1.000
#> SRR2443201     2  0.0000      0.970 0.000 1.000
#> SRR2443200     2  0.0000      0.970 0.000 1.000
#> SRR2443199     2  0.0000      0.970 0.000 1.000
#> SRR2443197     2  0.2948      0.930 0.052 0.948
#> SRR2443196     2  0.0000      0.970 0.000 1.000
#> SRR2443198     2  0.0376      0.967 0.004 0.996
#> SRR2443195     1  0.0000      0.953 1.000 0.000
#> SRR2443194     2  0.1414      0.956 0.020 0.980
#> SRR2443193     1  0.0376      0.951 0.996 0.004
#> SRR2443191     2  0.1843      0.951 0.028 0.972
#> SRR2443192     2  0.0000      0.970 0.000 1.000
#> SRR2443190     1  0.0000      0.953 1.000 0.000
#> SRR2443189     1  0.0000      0.953 1.000 0.000
#> SRR2443188     1  0.0000      0.953 1.000 0.000
#> SRR2443186     2  0.0000      0.970 0.000 1.000
#> SRR2443187     2  0.0000      0.970 0.000 1.000
#> SRR2443185     2  0.0000      0.970 0.000 1.000
#> SRR2443184     2  0.1414      0.956 0.020 0.980
#> SRR2443183     1  0.0000      0.953 1.000 0.000
#> SRR2443182     1  0.0000      0.953 1.000 0.000
#> SRR2443181     2  0.0000      0.970 0.000 1.000
#> SRR2443180     2  0.0000      0.970 0.000 1.000
#> SRR2443179     2  0.0000      0.970 0.000 1.000
#> SRR2443178     2  0.6531      0.801 0.168 0.832
#> SRR2443177     1  0.0000      0.953 1.000 0.000
#> SRR2443176     1  0.8207      0.659 0.744 0.256
#> SRR2443175     1  0.0000      0.953 1.000 0.000
#> SRR2443174     1  0.0000      0.953 1.000 0.000
#> SRR2443173     2  0.0000      0.970 0.000 1.000
#> SRR2443172     2  0.0000      0.970 0.000 1.000
#> SRR2443171     1  0.0000      0.953 1.000 0.000
#> SRR2443170     1  0.2423      0.924 0.960 0.040
#> SRR2443169     1  0.0000      0.953 1.000 0.000
#> SRR2443168     2  0.0000      0.970 0.000 1.000
#> SRR2443167     2  0.0000      0.970 0.000 1.000
#> SRR2443166     1  0.2043      0.931 0.968 0.032
#> SRR2443165     2  0.2423      0.941 0.040 0.960
#> SRR2443164     2  0.0000      0.970 0.000 1.000
#> SRR2443163     2  0.0000      0.970 0.000 1.000
#> SRR2443162     2  0.1414      0.956 0.020 0.980
#> SRR2443161     2  0.0000      0.970 0.000 1.000
#> SRR2443160     2  0.0000      0.970 0.000 1.000
#> SRR2443159     2  0.0000      0.970 0.000 1.000
#> SRR2443158     2  0.2423      0.941 0.040 0.960
#> SRR2443157     1  0.2043      0.931 0.968 0.032
#> SRR2443156     2  0.2423      0.941 0.040 0.960
#> SRR2443155     1  0.4431      0.874 0.908 0.092
#> SRR2443154     2  0.1414      0.956 0.020 0.980
#> SRR2443153     1  0.0000      0.953 1.000 0.000
#> SRR2443152     2  0.0000      0.970 0.000 1.000
#> SRR2443151     2  0.0000      0.970 0.000 1.000
#> SRR2443150     2  0.0000      0.970 0.000 1.000
#> SRR2443148     2  0.0000      0.970 0.000 1.000
#> SRR2443147     2  0.0000      0.970 0.000 1.000
#> SRR2443149     2  0.0000      0.970 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.4887      0.660 0.228 0.000 0.772
#> SRR2443262     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443261     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443260     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443259     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443258     3  0.0747      0.787 0.016 0.000 0.984
#> SRR2443257     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443256     3  0.2165      0.769 0.064 0.000 0.936
#> SRR2443255     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443254     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443253     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443251     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443250     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443249     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443252     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443247     1  0.3619      0.815 0.864 0.000 0.136
#> SRR2443246     3  0.0747      0.787 0.016 0.000 0.984
#> SRR2443248     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443244     3  0.7876      0.630 0.080 0.308 0.612
#> SRR2443245     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443242     3  0.2959      0.774 0.000 0.100 0.900
#> SRR2443241     1  0.6244      0.229 0.560 0.000 0.440
#> SRR2443240     1  0.0424      0.944 0.992 0.008 0.000
#> SRR2443239     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443238     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443237     3  0.3896      0.748 0.128 0.008 0.864
#> SRR2443236     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443229     3  0.2879      0.779 0.052 0.024 0.924
#> SRR2443228     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443225     3  0.4346      0.712 0.184 0.000 0.816
#> SRR2443223     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443224     3  0.2796      0.755 0.000 0.092 0.908
#> SRR2443222     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443219     2  0.2711      0.873 0.000 0.912 0.088
#> SRR2443220     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443218     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443217     3  0.4555      0.695 0.200 0.000 0.800
#> SRR2443216     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443215     2  0.4702      0.667 0.000 0.788 0.212
#> SRR2443214     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443212     2  0.6235      0.327 0.000 0.564 0.436
#> SRR2443211     2  0.5706      0.563 0.000 0.680 0.320
#> SRR2443210     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443209     3  0.6773      0.436 0.340 0.024 0.636
#> SRR2443208     3  0.6098      0.661 0.056 0.176 0.768
#> SRR2443207     3  0.5706      0.481 0.000 0.320 0.680
#> SRR2443206     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443205     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443204     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443203     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443202     3  0.7308      0.661 0.060 0.284 0.656
#> SRR2443201     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443200     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443199     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443197     3  0.7860      0.646 0.088 0.284 0.628
#> SRR2443196     3  0.7872      0.640 0.084 0.296 0.620
#> SRR2443198     3  0.8600      0.614 0.136 0.284 0.580
#> SRR2443195     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443194     3  0.3619      0.745 0.136 0.000 0.864
#> SRR2443193     1  0.5016      0.651 0.760 0.000 0.240
#> SRR2443191     3  0.4196      0.751 0.112 0.024 0.864
#> SRR2443192     3  0.8311      0.628 0.112 0.292 0.596
#> SRR2443190     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443189     1  0.1643      0.917 0.956 0.000 0.044
#> SRR2443188     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443186     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443187     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443185     3  0.4750      0.720 0.000 0.216 0.784
#> SRR2443184     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443183     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443182     1  0.1643      0.917 0.956 0.000 0.044
#> SRR2443181     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443180     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443179     3  0.8645      0.597 0.132 0.300 0.568
#> SRR2443178     3  0.9145      0.576 0.184 0.284 0.532
#> SRR2443177     1  0.0237      0.948 0.996 0.000 0.004
#> SRR2443176     3  0.4555      0.695 0.200 0.000 0.800
#> SRR2443175     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443172     2  0.2165      0.890 0.000 0.936 0.064
#> SRR2443171     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443170     1  0.1643      0.915 0.956 0.000 0.044
#> SRR2443169     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443168     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443167     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443166     3  0.5397      0.604 0.280 0.000 0.720
#> SRR2443165     3  0.7824      0.692 0.124 0.212 0.664
#> SRR2443164     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443163     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443162     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443161     3  0.0000      0.790 0.000 0.000 1.000
#> SRR2443160     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443159     3  0.5431      0.674 0.000 0.284 0.716
#> SRR2443158     3  0.0747      0.787 0.016 0.000 0.984
#> SRR2443157     1  0.4931      0.640 0.768 0.000 0.232
#> SRR2443156     3  0.1964      0.781 0.056 0.000 0.944
#> SRR2443155     1  0.5363      0.620 0.724 0.000 0.276
#> SRR2443154     3  0.0424      0.790 0.008 0.000 0.992
#> SRR2443153     1  0.0000      0.950 1.000 0.000 0.000
#> SRR2443152     2  0.2796      0.869 0.000 0.908 0.092
#> SRR2443151     2  0.0000      0.928 0.000 1.000 0.000
#> SRR2443150     2  0.3340      0.844 0.000 0.880 0.120
#> SRR2443148     2  0.2711      0.873 0.000 0.912 0.088
#> SRR2443147     2  0.2796      0.869 0.000 0.908 0.092
#> SRR2443149     3  0.0000      0.790 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.3172     0.7062 0.160 0.000 0.840 0.000
#> SRR2443262     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443261     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443260     3  0.2868     0.7344 0.000 0.000 0.864 0.136
#> SRR2443259     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443257     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443256     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.2149     0.7633 0.000 0.000 0.912 0.088
#> SRR2443253     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443251     4  0.4040     0.7277 0.000 0.000 0.248 0.752
#> SRR2443250     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443249     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443252     3  0.1716     0.7732 0.000 0.000 0.936 0.064
#> SRR2443247     1  0.4624     0.5507 0.660 0.000 0.340 0.000
#> SRR2443246     3  0.0469     0.7838 0.012 0.000 0.988 0.000
#> SRR2443248     3  0.4222     0.5476 0.000 0.000 0.728 0.272
#> SRR2443244     4  0.2921     0.6780 0.000 0.140 0.000 0.860
#> SRR2443245     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443243     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443242     4  0.4331     0.4707 0.000 0.000 0.288 0.712
#> SRR2443241     2  0.4808     0.7319 0.028 0.736 0.000 0.236
#> SRR2443240     2  0.4808     0.6243 0.236 0.736 0.000 0.028
#> SRR2443239     2  0.2868     0.7758 0.000 0.864 0.000 0.136
#> SRR2443238     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443237     3  0.7052     0.3978 0.000 0.128 0.500 0.372
#> SRR2443236     1  0.3047     0.8178 0.872 0.116 0.000 0.012
#> SRR2443235     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443229     3  0.8988     0.4688 0.128 0.156 0.480 0.236
#> SRR2443228     4  0.4008     0.5936 0.000 0.244 0.000 0.756
#> SRR2443227     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443225     3  0.6134     0.6508 0.104 0.000 0.660 0.236
#> SRR2443223     4  0.4605     0.5947 0.000 0.000 0.336 0.664
#> SRR2443224     2  0.3942     0.7479 0.000 0.764 0.000 0.236
#> SRR2443222     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443221     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443219     4  0.0000     0.7257 0.000 0.000 0.000 1.000
#> SRR2443220     4  0.3688     0.7551 0.000 0.000 0.208 0.792
#> SRR2443218     4  0.3942     0.6009 0.000 0.236 0.000 0.764
#> SRR2443217     3  0.6893     0.6445 0.120 0.020 0.636 0.224
#> SRR2443216     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443215     2  0.3942     0.7479 0.000 0.764 0.000 0.236
#> SRR2443214     1  0.0188     0.9209 0.996 0.000 0.000 0.004
#> SRR2443213     1  0.2408     0.8386 0.896 0.104 0.000 0.000
#> SRR2443212     2  0.3942     0.7479 0.000 0.764 0.000 0.236
#> SRR2443211     2  0.3942     0.7479 0.000 0.764 0.000 0.236
#> SRR2443210     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443209     2  0.3942     0.7479 0.000 0.764 0.000 0.236
#> SRR2443208     3  0.8747     0.3215 0.116 0.292 0.476 0.116
#> SRR2443207     2  0.1474     0.7886 0.000 0.948 0.000 0.052
#> SRR2443206     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443205     2  0.2216     0.7854 0.000 0.908 0.000 0.092
#> SRR2443204     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443203     1  0.4222     0.6523 0.728 0.000 0.272 0.000
#> SRR2443202     4  0.3435     0.7090 0.000 0.100 0.036 0.864
#> SRR2443201     3  0.3801     0.6967 0.000 0.000 0.780 0.220
#> SRR2443200     4  0.4164     0.5728 0.000 0.264 0.000 0.736
#> SRR2443199     4  0.3942     0.6009 0.000 0.236 0.000 0.764
#> SRR2443197     4  0.4804     0.7451 0.072 0.000 0.148 0.780
#> SRR2443196     4  0.3354     0.7370 0.084 0.000 0.044 0.872
#> SRR2443198     4  0.3266     0.7247 0.108 0.000 0.024 0.868
#> SRR2443195     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443194     3  0.6134     0.6508 0.104 0.000 0.660 0.236
#> SRR2443193     1  0.6620     0.6661 0.708 0.124 0.072 0.096
#> SRR2443191     2  0.3942     0.7479 0.000 0.764 0.000 0.236
#> SRR2443192     4  0.4919     0.6378 0.000 0.152 0.076 0.772
#> SRR2443190     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.1302     0.8991 0.956 0.000 0.044 0.000
#> SRR2443188     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443187     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443185     3  0.4948     0.0719 0.000 0.000 0.560 0.440
#> SRR2443184     3  0.0657     0.7854 0.012 0.000 0.984 0.004
#> SRR2443183     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.4356     0.6191 0.708 0.000 0.292 0.000
#> SRR2443181     2  0.2921     0.7927 0.000 0.860 0.000 0.140
#> SRR2443180     4  0.3942     0.6009 0.000 0.236 0.000 0.764
#> SRR2443179     4  0.3205     0.7256 0.104 0.000 0.024 0.872
#> SRR2443178     4  0.6365     0.4985 0.108 0.012 0.204 0.676
#> SRR2443177     1  0.3444     0.7728 0.816 0.000 0.184 0.000
#> SRR2443176     3  0.2760     0.7282 0.128 0.000 0.872 0.000
#> SRR2443175     1  0.0592     0.9158 0.984 0.000 0.016 0.000
#> SRR2443174     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.2760     0.7737 0.000 0.872 0.000 0.128
#> SRR2443172     2  0.3311     0.7813 0.000 0.828 0.000 0.172
#> SRR2443171     1  0.0817     0.9118 0.976 0.000 0.024 0.000
#> SRR2443170     1  0.3108     0.8299 0.872 0.112 0.016 0.000
#> SRR2443169     1  0.0188     0.9215 0.996 0.000 0.004 0.000
#> SRR2443168     3  0.3428     0.7309 0.000 0.012 0.844 0.144
#> SRR2443167     4  0.4454     0.6790 0.000 0.000 0.308 0.692
#> SRR2443166     3  0.2647     0.7187 0.120 0.000 0.880 0.000
#> SRR2443165     3  0.5066     0.6578 0.112 0.000 0.768 0.120
#> SRR2443164     4  0.3942     0.6009 0.000 0.236 0.000 0.764
#> SRR2443163     3  0.2973     0.7280 0.000 0.000 0.856 0.144
#> SRR2443162     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000     0.7854 0.000 0.000 1.000 0.000
#> SRR2443160     4  0.3837     0.7507 0.000 0.000 0.224 0.776
#> SRR2443159     4  0.3801     0.7524 0.000 0.000 0.220 0.780
#> SRR2443158     3  0.0469     0.7838 0.012 0.000 0.988 0.000
#> SRR2443157     1  0.4941     0.3016 0.564 0.000 0.436 0.000
#> SRR2443156     3  0.4668     0.7011 0.008 0.108 0.808 0.076
#> SRR2443155     3  0.7098    -0.0145 0.400 0.128 0.472 0.000
#> SRR2443154     3  0.0657     0.7844 0.012 0.004 0.984 0.000
#> SRR2443153     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.4134     0.7510 0.000 0.740 0.000 0.260
#> SRR2443151     4  0.3942     0.6009 0.000 0.236 0.000 0.764
#> SRR2443150     2  0.4679     0.7269 0.000 0.648 0.000 0.352
#> SRR2443148     4  0.0000     0.7257 0.000 0.000 0.000 1.000
#> SRR2443147     4  0.0469     0.7321 0.000 0.000 0.012 0.988
#> SRR2443149     3  0.2973     0.7280 0.000 0.000 0.856 0.144

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.2953     0.7167 0.144 0.000 0.844 0.012 0.000
#> SRR2443262     4  0.0880     0.7515 0.000 0.000 0.032 0.968 0.000
#> SRR2443261     4  0.3003     0.6866 0.000 0.000 0.188 0.812 0.000
#> SRR2443260     3  0.0290     0.7974 0.000 0.000 0.992 0.008 0.000
#> SRR2443259     3  0.0162     0.7977 0.000 0.000 0.996 0.004 0.000
#> SRR2443258     3  0.0162     0.7977 0.000 0.000 0.996 0.004 0.000
#> SRR2443257     4  0.1341     0.7540 0.000 0.000 0.056 0.944 0.000
#> SRR2443256     3  0.0000     0.7974 0.000 0.000 1.000 0.000 0.000
#> SRR2443255     3  0.0162     0.7977 0.000 0.000 0.996 0.004 0.000
#> SRR2443254     3  0.0162     0.7977 0.000 0.000 0.996 0.004 0.000
#> SRR2443253     4  0.3176     0.7206 0.000 0.080 0.064 0.856 0.000
#> SRR2443251     3  0.4182     0.1858 0.000 0.000 0.600 0.400 0.000
#> SRR2443250     4  0.2605     0.7104 0.000 0.000 0.148 0.852 0.000
#> SRR2443249     4  0.2605     0.7104 0.000 0.000 0.148 0.852 0.000
#> SRR2443252     3  0.0290     0.7974 0.000 0.000 0.992 0.008 0.000
#> SRR2443247     1  0.4151     0.6068 0.652 0.000 0.344 0.004 0.000
#> SRR2443246     3  0.0162     0.7965 0.000 0.000 0.996 0.004 0.000
#> SRR2443248     3  0.3966     0.4351 0.000 0.000 0.664 0.336 0.000
#> SRR2443244     4  0.4235     0.3078 0.000 0.000 0.000 0.576 0.424
#> SRR2443245     1  0.0290     0.8907 0.992 0.000 0.000 0.008 0.000
#> SRR2443243     1  0.0162     0.8911 0.996 0.000 0.000 0.004 0.000
#> SRR2443242     4  0.4949     0.0479 0.000 0.004 0.444 0.532 0.020
#> SRR2443241     5  0.0162     0.8200 0.000 0.000 0.000 0.004 0.996
#> SRR2443240     5  0.0404     0.8158 0.012 0.000 0.000 0.000 0.988
#> SRR2443239     2  0.3707     0.6934 0.000 0.716 0.000 0.000 0.284
#> SRR2443238     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443237     3  0.6433     0.2440 0.000 0.000 0.472 0.188 0.340
#> SRR2443236     1  0.4150     0.3844 0.612 0.000 0.000 0.000 0.388
#> SRR2443235     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.5163     0.6162 0.068 0.004 0.224 0.008 0.696
#> SRR2443228     2  0.0000     0.8022 0.000 1.000 0.000 0.000 0.000
#> SRR2443227     1  0.0290     0.8907 0.992 0.000 0.000 0.008 0.000
#> SRR2443226     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443225     3  0.5336     0.6620 0.136 0.000 0.712 0.132 0.020
#> SRR2443223     3  0.4297     0.1435 0.000 0.000 0.528 0.472 0.000
#> SRR2443224     5  0.0290     0.8169 0.000 0.000 0.000 0.008 0.992
#> SRR2443222     2  0.0000     0.8022 0.000 1.000 0.000 0.000 0.000
#> SRR2443221     2  0.0000     0.8022 0.000 1.000 0.000 0.000 0.000
#> SRR2443219     4  0.1251     0.7348 0.000 0.036 0.000 0.956 0.008
#> SRR2443220     4  0.0880     0.7515 0.000 0.000 0.032 0.968 0.000
#> SRR2443218     2  0.0162     0.8018 0.000 0.996 0.000 0.004 0.000
#> SRR2443217     5  0.5355     0.4763 0.044 0.000 0.316 0.016 0.624
#> SRR2443216     3  0.0162     0.7977 0.000 0.000 0.996 0.004 0.000
#> SRR2443215     5  0.1892     0.7669 0.000 0.004 0.000 0.080 0.916
#> SRR2443214     1  0.0912     0.8814 0.972 0.000 0.000 0.016 0.012
#> SRR2443213     1  0.1043     0.8632 0.960 0.000 0.000 0.000 0.040
#> SRR2443212     5  0.0162     0.8200 0.000 0.000 0.000 0.004 0.996
#> SRR2443211     5  0.0451     0.8145 0.000 0.004 0.000 0.008 0.988
#> SRR2443210     2  0.1732     0.7882 0.000 0.920 0.000 0.000 0.080
#> SRR2443209     5  0.0290     0.8196 0.000 0.000 0.000 0.008 0.992
#> SRR2443208     5  0.3675     0.6614 0.000 0.004 0.216 0.008 0.772
#> SRR2443207     5  0.0579     0.8177 0.000 0.008 0.000 0.008 0.984
#> SRR2443206     2  0.3707     0.6934 0.000 0.716 0.000 0.000 0.284
#> SRR2443205     5  0.0451     0.8145 0.000 0.004 0.000 0.008 0.988
#> SRR2443204     1  0.0404     0.8902 0.988 0.000 0.000 0.012 0.000
#> SRR2443203     1  0.3988     0.7002 0.732 0.000 0.252 0.016 0.000
#> SRR2443202     4  0.4696     0.2796 0.000 0.000 0.360 0.616 0.024
#> SRR2443201     3  0.3236     0.7426 0.000 0.000 0.828 0.152 0.020
#> SRR2443200     2  0.0000     0.8022 0.000 1.000 0.000 0.000 0.000
#> SRR2443199     2  0.0162     0.8018 0.000 0.996 0.000 0.004 0.000
#> SRR2443197     4  0.5137     0.1281 0.040 0.000 0.424 0.536 0.000
#> SRR2443196     4  0.1216     0.7457 0.000 0.000 0.020 0.960 0.020
#> SRR2443198     4  0.3944     0.5624 0.004 0.000 0.224 0.756 0.016
#> SRR2443195     1  0.0290     0.8907 0.992 0.000 0.000 0.008 0.000
#> SRR2443194     3  0.3674     0.7423 0.024 0.000 0.816 0.148 0.012
#> SRR2443193     5  0.4283     0.3886 0.348 0.000 0.000 0.008 0.644
#> SRR2443191     5  0.0290     0.8196 0.000 0.000 0.000 0.008 0.992
#> SRR2443192     4  0.5996     0.2149 0.000 0.000 0.352 0.524 0.124
#> SRR2443190     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.3937     0.7706 0.784 0.000 0.184 0.020 0.012
#> SRR2443188     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.3707     0.6934 0.000 0.716 0.000 0.000 0.284
#> SRR2443187     2  0.3707     0.6934 0.000 0.716 0.000 0.000 0.284
#> SRR2443185     3  0.4305     0.1133 0.000 0.000 0.512 0.488 0.000
#> SRR2443184     3  0.2286     0.7660 0.000 0.000 0.888 0.108 0.004
#> SRR2443183     1  0.0000     0.8914 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.5184     0.6187 0.660 0.000 0.280 0.016 0.044
#> SRR2443181     5  0.1608     0.7585 0.000 0.072 0.000 0.000 0.928
#> SRR2443180     2  0.4060     0.2939 0.000 0.640 0.000 0.360 0.000
#> SRR2443179     4  0.2331     0.7130 0.000 0.080 0.000 0.900 0.020
#> SRR2443178     3  0.6300     0.5620 0.136 0.000 0.620 0.208 0.036
#> SRR2443177     1  0.4096     0.7593 0.772 0.000 0.192 0.024 0.012
#> SRR2443176     3  0.3357     0.7166 0.136 0.000 0.836 0.016 0.012
#> SRR2443175     1  0.3106     0.8199 0.856 0.000 0.116 0.020 0.008
#> SRR2443174     1  0.0290     0.8910 0.992 0.000 0.000 0.008 0.000
#> SRR2443173     2  0.2077     0.7864 0.000 0.908 0.000 0.008 0.084
#> SRR2443172     2  0.5901     0.5737 0.000 0.568 0.000 0.132 0.300
#> SRR2443171     1  0.3798     0.7850 0.804 0.000 0.160 0.012 0.024
#> SRR2443170     1  0.5623     0.6219 0.652 0.000 0.156 0.004 0.188
#> SRR2443169     1  0.0693     0.8882 0.980 0.000 0.008 0.012 0.000
#> SRR2443168     3  0.4503     0.6882 0.000 0.000 0.756 0.120 0.124
#> SRR2443167     3  0.4150     0.2481 0.000 0.000 0.612 0.388 0.000
#> SRR2443166     3  0.2629     0.6817 0.136 0.000 0.860 0.004 0.000
#> SRR2443165     3  0.3921     0.7263 0.044 0.000 0.784 0.172 0.000
#> SRR2443164     2  0.4074     0.3697 0.000 0.636 0.000 0.364 0.000
#> SRR2443163     3  0.2280     0.7592 0.000 0.000 0.880 0.120 0.000
#> SRR2443162     3  0.0000     0.7974 0.000 0.000 1.000 0.000 0.000
#> SRR2443161     3  0.0000     0.7974 0.000 0.000 1.000 0.000 0.000
#> SRR2443160     4  0.2020     0.7449 0.000 0.000 0.100 0.900 0.000
#> SRR2443159     4  0.1671     0.7515 0.000 0.000 0.076 0.924 0.000
#> SRR2443158     3  0.0162     0.7965 0.000 0.000 0.996 0.004 0.000
#> SRR2443157     1  0.4590     0.3787 0.568 0.000 0.420 0.012 0.000
#> SRR2443156     3  0.4509     0.7175 0.012 0.000 0.776 0.108 0.104
#> SRR2443155     5  0.5717     0.4060 0.060 0.000 0.348 0.016 0.576
#> SRR2443154     3  0.4503     0.6933 0.000 0.000 0.756 0.120 0.124
#> SRR2443153     1  0.0404     0.8902 0.988 0.000 0.000 0.012 0.000
#> SRR2443152     2  0.6031     0.5011 0.000 0.520 0.000 0.128 0.352
#> SRR2443151     2  0.0162     0.8018 0.000 0.996 0.000 0.004 0.000
#> SRR2443150     4  0.6721    -0.1116 0.000 0.276 0.000 0.420 0.304
#> SRR2443148     4  0.2411     0.7010 0.000 0.108 0.000 0.884 0.008
#> SRR2443147     4  0.2304     0.7071 0.000 0.100 0.000 0.892 0.008
#> SRR2443149     3  0.0290     0.7974 0.000 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.2562   0.637541 0.000 0.000 0.828 0.000 0.000 0.172
#> SRR2443262     4  0.3930   0.487974 0.000 0.420 0.004 0.576 0.000 0.000
#> SRR2443261     2  0.5784  -0.480112 0.000 0.420 0.176 0.404 0.000 0.000
#> SRR2443260     3  0.2740   0.679804 0.000 0.120 0.852 0.028 0.000 0.000
#> SRR2443259     3  0.0547   0.743859 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR2443258     3  0.0547   0.743859 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR2443257     4  0.4423   0.493652 0.000 0.420 0.028 0.552 0.000 0.000
#> SRR2443256     3  0.0000   0.742119 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443255     3  0.0547   0.743859 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR2443254     3  0.2361   0.704687 0.000 0.088 0.884 0.028 0.000 0.000
#> SRR2443253     2  0.4578  -0.451122 0.000 0.520 0.036 0.444 0.000 0.000
#> SRR2443251     3  0.5206   0.251977 0.000 0.128 0.588 0.284 0.000 0.000
#> SRR2443250     4  0.5533   0.433661 0.000 0.420 0.132 0.448 0.000 0.000
#> SRR2443249     4  0.5560   0.433254 0.000 0.420 0.136 0.444 0.000 0.000
#> SRR2443252     3  0.0713   0.743572 0.000 0.000 0.972 0.028 0.000 0.000
#> SRR2443247     1  0.3795   0.268332 0.632 0.000 0.364 0.000 0.000 0.004
#> SRR2443246     3  0.0146   0.741087 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2443248     3  0.3962   0.648116 0.000 0.120 0.764 0.116 0.000 0.000
#> SRR2443244     4  0.3078   0.529293 0.000 0.000 0.000 0.796 0.192 0.012
#> SRR2443245     6  0.3854   0.365471 0.464 0.000 0.000 0.000 0.000 0.536
#> SRR2443243     1  0.2135   0.712071 0.872 0.000 0.000 0.000 0.000 0.128
#> SRR2443242     3  0.4536   0.254133 0.000 0.004 0.512 0.464 0.008 0.012
#> SRR2443241     5  0.0260   0.714261 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR2443240     5  0.0000   0.714316 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443239     2  0.6090   0.522693 0.000 0.448 0.000 0.004 0.276 0.272
#> SRR2443238     1  0.0260   0.805609 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR2443237     3  0.5495   0.498627 0.000 0.000 0.604 0.228 0.156 0.012
#> SRR2443236     5  0.3797   0.135977 0.420 0.000 0.000 0.000 0.580 0.000
#> SRR2443235     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.3921   0.370059 0.000 0.004 0.308 0.000 0.676 0.012
#> SRR2443228     2  0.3817   0.663494 0.000 0.568 0.000 0.000 0.000 0.432
#> SRR2443227     1  0.3789  -0.043836 0.584 0.000 0.000 0.000 0.000 0.416
#> SRR2443226     1  0.3371   0.292890 0.708 0.000 0.000 0.000 0.000 0.292
#> SRR2443225     6  0.6079   0.001149 0.000 0.000 0.196 0.368 0.008 0.428
#> SRR2443223     3  0.5146   0.241583 0.000 0.088 0.516 0.396 0.000 0.000
#> SRR2443224     5  0.0458   0.711017 0.000 0.000 0.000 0.000 0.984 0.016
#> SRR2443222     2  0.3817   0.663494 0.000 0.568 0.000 0.000 0.000 0.432
#> SRR2443221     2  0.3817   0.663494 0.000 0.568 0.000 0.000 0.000 0.432
#> SRR2443219     4  0.4728   0.451103 0.000 0.392 0.000 0.556 0.000 0.052
#> SRR2443220     4  0.3915   0.492671 0.000 0.412 0.004 0.584 0.000 0.000
#> SRR2443218     2  0.3930   0.661067 0.000 0.576 0.000 0.004 0.000 0.420
#> SRR2443217     3  0.5064   0.130214 0.000 0.000 0.492 0.000 0.432 0.076
#> SRR2443216     3  0.0547   0.743859 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR2443215     5  0.3481   0.461641 0.000 0.004 0.000 0.228 0.756 0.012
#> SRR2443214     6  0.4067   0.394354 0.444 0.000 0.000 0.000 0.008 0.548
#> SRR2443213     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.0000   0.714316 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443211     5  0.0458   0.711017 0.000 0.000 0.000 0.000 0.984 0.016
#> SRR2443210     2  0.5110   0.637003 0.000 0.480 0.000 0.000 0.080 0.440
#> SRR2443209     5  0.0363   0.713732 0.000 0.000 0.000 0.000 0.988 0.012
#> SRR2443208     5  0.3746   0.431139 0.000 0.004 0.272 0.000 0.712 0.012
#> SRR2443207     5  0.0508   0.712789 0.000 0.004 0.000 0.000 0.984 0.012
#> SRR2443206     2  0.5973   0.521565 0.000 0.448 0.000 0.000 0.280 0.272
#> SRR2443205     5  0.0260   0.711893 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR2443204     6  0.3851   0.370405 0.460 0.000 0.000 0.000 0.000 0.540
#> SRR2443203     6  0.6031   0.552920 0.280 0.000 0.156 0.028 0.000 0.536
#> SRR2443202     4  0.2865   0.532236 0.000 0.000 0.140 0.840 0.008 0.012
#> SRR2443201     3  0.4027   0.550332 0.000 0.000 0.672 0.308 0.008 0.012
#> SRR2443200     2  0.3817   0.663494 0.000 0.568 0.000 0.000 0.000 0.432
#> SRR2443199     2  0.3930   0.661067 0.000 0.576 0.000 0.004 0.000 0.420
#> SRR2443197     4  0.2999   0.560031 0.000 0.000 0.112 0.840 0.000 0.048
#> SRR2443196     4  0.0622   0.592426 0.000 0.000 0.000 0.980 0.008 0.012
#> SRR2443198     4  0.1976   0.589870 0.000 0.000 0.060 0.916 0.008 0.016
#> SRR2443195     6  0.3862   0.340546 0.476 0.000 0.000 0.000 0.000 0.524
#> SRR2443194     4  0.4863  -0.144614 0.000 0.000 0.440 0.512 0.008 0.040
#> SRR2443193     5  0.5848  -0.108002 0.192 0.000 0.000 0.000 0.428 0.380
#> SRR2443191     5  0.0363   0.713732 0.000 0.000 0.000 0.000 0.988 0.012
#> SRR2443192     4  0.6116   0.179067 0.000 0.000 0.224 0.484 0.280 0.012
#> SRR2443190     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     6  0.5599   0.546816 0.320 0.000 0.132 0.000 0.008 0.540
#> SRR2443188     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.5973   0.521565 0.000 0.448 0.000 0.000 0.280 0.272
#> SRR2443187     2  0.5973   0.521565 0.000 0.448 0.000 0.000 0.280 0.272
#> SRR2443185     3  0.3838   0.359357 0.000 0.000 0.552 0.448 0.000 0.000
#> SRR2443184     3  0.2340   0.689784 0.000 0.000 0.852 0.148 0.000 0.000
#> SRR2443183     1  0.0000   0.809495 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     6  0.5835   0.555645 0.288 0.000 0.144 0.000 0.020 0.548
#> SRR2443181     5  0.3514   0.442217 0.000 0.228 0.000 0.000 0.752 0.020
#> SRR2443180     6  0.5922  -0.604717 0.000 0.368 0.000 0.212 0.000 0.420
#> SRR2443179     4  0.2425   0.551033 0.000 0.100 0.000 0.880 0.008 0.012
#> SRR2443178     4  0.5481   0.379636 0.000 0.000 0.088 0.632 0.044 0.236
#> SRR2443177     6  0.5675   0.551789 0.312 0.000 0.128 0.004 0.008 0.548
#> SRR2443176     6  0.4067   0.086498 0.000 0.000 0.444 0.000 0.008 0.548
#> SRR2443175     6  0.5665   0.416326 0.408 0.000 0.120 0.000 0.008 0.464
#> SRR2443174     1  0.2219   0.705951 0.864 0.000 0.000 0.000 0.000 0.136
#> SRR2443173     2  0.5113   0.635464 0.000 0.472 0.000 0.000 0.080 0.448
#> SRR2443172     2  0.7499   0.399236 0.000 0.296 0.000 0.132 0.284 0.288
#> SRR2443171     1  0.7172  -0.034960 0.440 0.000 0.140 0.000 0.248 0.172
#> SRR2443170     5  0.5688  -0.093791 0.428 0.000 0.136 0.000 0.432 0.004
#> SRR2443169     1  0.3088   0.640423 0.808 0.000 0.020 0.000 0.000 0.172
#> SRR2443168     3  0.3782   0.671704 0.000 0.000 0.788 0.140 0.064 0.008
#> SRR2443167     4  0.3578   0.323397 0.000 0.000 0.340 0.660 0.000 0.000
#> SRR2443166     3  0.5015   0.000158 0.084 0.000 0.564 0.000 0.000 0.352
#> SRR2443165     4  0.4853  -0.025780 0.000 0.000 0.456 0.488 0.000 0.056
#> SRR2443164     2  0.5478   0.576599 0.000 0.452 0.000 0.124 0.000 0.424
#> SRR2443163     3  0.3175   0.611241 0.000 0.000 0.744 0.256 0.000 0.000
#> SRR2443162     3  0.0000   0.742119 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443161     3  0.0000   0.742119 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443160     4  0.1349   0.605089 0.000 0.004 0.056 0.940 0.000 0.000
#> SRR2443159     4  0.4110   0.563269 0.000 0.236 0.052 0.712 0.000 0.000
#> SRR2443158     3  0.0146   0.741087 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR2443157     6  0.5602   0.536980 0.264 0.000 0.196 0.000 0.000 0.540
#> SRR2443156     3  0.5172   0.457521 0.000 0.000 0.600 0.132 0.268 0.000
#> SRR2443155     5  0.5345   0.294512 0.064 0.000 0.352 0.000 0.560 0.024
#> SRR2443154     3  0.5254   0.462825 0.000 0.000 0.604 0.128 0.264 0.004
#> SRR2443153     1  0.2454   0.675908 0.840 0.000 0.000 0.000 0.000 0.160
#> SRR2443152     5  0.7479  -0.380121 0.000 0.248 0.000 0.136 0.336 0.280
#> SRR2443151     2  0.3950   0.663325 0.000 0.564 0.000 0.004 0.000 0.432
#> SRR2443150     4  0.7496  -0.286345 0.000 0.132 0.000 0.304 0.288 0.276
#> SRR2443148     2  0.3847  -0.442708 0.000 0.544 0.000 0.456 0.000 0.000
#> SRR2443147     2  0.3864  -0.461249 0.000 0.520 0.000 0.480 0.000 0.000
#> SRR2443149     3  0.1267   0.736665 0.000 0.000 0.940 0.060 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.235           0.767       0.751         0.3398 0.512   0.512
#> 3 3 0.431           0.495       0.773         0.9063 0.671   0.439
#> 4 4 0.545           0.619       0.793         0.1153 0.826   0.548
#> 5 5 0.737           0.624       0.798         0.0782 0.817   0.452
#> 6 6 0.675           0.443       0.702         0.0407 0.892   0.572

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.8499      0.771 0.724 0.276
#> SRR2443262     1  0.8267      0.782 0.740 0.260
#> SRR2443261     1  0.6048      0.759 0.852 0.148
#> SRR2443260     1  0.6048      0.759 0.852 0.148
#> SRR2443259     1  0.0000      0.647 1.000 0.000
#> SRR2443258     1  0.0000      0.647 1.000 0.000
#> SRR2443257     1  0.8386      0.778 0.732 0.268
#> SRR2443256     1  0.0000      0.647 1.000 0.000
#> SRR2443255     1  0.1184      0.663 0.984 0.016
#> SRR2443254     1  0.1184      0.663 0.984 0.016
#> SRR2443253     1  0.8386      0.778 0.732 0.268
#> SRR2443251     1  0.6048      0.759 0.852 0.148
#> SRR2443250     1  0.7376      0.782 0.792 0.208
#> SRR2443249     1  0.6343      0.765 0.840 0.160
#> SRR2443252     1  0.2948      0.691 0.948 0.052
#> SRR2443247     1  0.8327      0.781 0.736 0.264
#> SRR2443246     1  0.9427      0.731 0.640 0.360
#> SRR2443248     1  0.6887      0.775 0.816 0.184
#> SRR2443244     2  0.8763      0.837 0.296 0.704
#> SRR2443245     2  0.8861      0.834 0.304 0.696
#> SRR2443243     2  0.8861      0.834 0.304 0.696
#> SRR2443242     2  0.8861      0.834 0.304 0.696
#> SRR2443241     2  0.7299      0.830 0.204 0.796
#> SRR2443240     2  0.7299      0.830 0.204 0.796
#> SRR2443239     2  0.7299      0.830 0.204 0.796
#> SRR2443238     2  0.7815      0.835 0.232 0.768
#> SRR2443237     2  0.8763      0.837 0.296 0.704
#> SRR2443236     2  0.7299      0.830 0.204 0.796
#> SRR2443235     2  0.0376      0.598 0.004 0.996
#> SRR2443233     2  0.0376      0.598 0.004 0.996
#> SRR2443234     2  0.0376      0.598 0.004 0.996
#> SRR2443232     2  0.0376      0.598 0.004 0.996
#> SRR2443231     2  0.5842      0.466 0.140 0.860
#> SRR2443230     2  0.3114      0.613 0.056 0.944
#> SRR2443229     2  0.7376      0.828 0.208 0.792
#> SRR2443228     2  0.7376      0.828 0.208 0.792
#> SRR2443227     2  0.8861      0.834 0.304 0.696
#> SRR2443226     2  0.8813      0.836 0.300 0.700
#> SRR2443225     2  0.8861      0.834 0.304 0.696
#> SRR2443223     1  0.8443      0.774 0.728 0.272
#> SRR2443224     1  0.9460      0.729 0.636 0.364
#> SRR2443222     2  0.7299      0.830 0.204 0.796
#> SRR2443221     2  0.7299      0.830 0.204 0.796
#> SRR2443219     2  0.8813      0.835 0.300 0.700
#> SRR2443220     1  0.8555      0.764 0.720 0.280
#> SRR2443218     2  0.8713      0.838 0.292 0.708
#> SRR2443217     2  0.8661      0.838 0.288 0.712
#> SRR2443216     1  0.2603      0.682 0.956 0.044
#> SRR2443215     2  0.7299      0.830 0.204 0.796
#> SRR2443214     2  0.8861      0.834 0.304 0.696
#> SRR2443213     2  0.0376      0.598 0.004 0.996
#> SRR2443212     2  0.7299      0.830 0.204 0.796
#> SRR2443211     2  0.7299      0.830 0.204 0.796
#> SRR2443210     2  0.7299      0.830 0.204 0.796
#> SRR2443209     2  0.7299      0.830 0.204 0.796
#> SRR2443208     2  0.7376      0.828 0.208 0.792
#> SRR2443207     2  0.7376      0.828 0.208 0.792
#> SRR2443206     2  0.7299      0.830 0.204 0.796
#> SRR2443205     2  0.7299      0.830 0.204 0.796
#> SRR2443204     2  0.8861      0.834 0.304 0.696
#> SRR2443203     2  0.8861      0.834 0.304 0.696
#> SRR2443202     2  0.8861      0.834 0.304 0.696
#> SRR2443201     2  0.9522      0.704 0.372 0.628
#> SRR2443200     2  0.7299      0.830 0.204 0.796
#> SRR2443199     2  0.8763      0.837 0.296 0.704
#> SRR2443197     2  0.8861      0.834 0.304 0.696
#> SRR2443196     2  0.8861      0.834 0.304 0.696
#> SRR2443198     2  0.8861      0.834 0.304 0.696
#> SRR2443195     2  0.8861      0.834 0.304 0.696
#> SRR2443194     2  0.8861      0.834 0.304 0.696
#> SRR2443193     2  0.7453      0.828 0.212 0.788
#> SRR2443191     2  0.7299      0.830 0.204 0.796
#> SRR2443192     2  0.8763      0.837 0.296 0.704
#> SRR2443190     2  0.0672      0.600 0.008 0.992
#> SRR2443189     2  0.8909      0.830 0.308 0.692
#> SRR2443188     2  0.0376      0.598 0.004 0.996
#> SRR2443186     2  0.7376      0.828 0.208 0.792
#> SRR2443187     2  0.7376      0.828 0.208 0.792
#> SRR2443185     2  0.9661      0.649 0.392 0.608
#> SRR2443184     2  0.9248      0.778 0.340 0.660
#> SRR2443183     2  0.4431      0.612 0.092 0.908
#> SRR2443182     2  0.8861      0.834 0.304 0.696
#> SRR2443181     2  0.7299      0.830 0.204 0.796
#> SRR2443180     2  0.8813      0.835 0.300 0.700
#> SRR2443179     2  0.8861      0.834 0.304 0.696
#> SRR2443178     2  0.8861      0.834 0.304 0.696
#> SRR2443177     2  0.8861      0.834 0.304 0.696
#> SRR2443176     2  0.8861      0.834 0.304 0.696
#> SRR2443175     1  0.9209      0.643 0.664 0.336
#> SRR2443174     1  0.8499      0.777 0.724 0.276
#> SRR2443173     1  0.9460      0.729 0.636 0.364
#> SRR2443172     1  0.9460      0.729 0.636 0.364
#> SRR2443171     1  0.9427      0.731 0.640 0.360
#> SRR2443170     1  0.9491      0.724 0.632 0.368
#> SRR2443169     1  0.8555      0.779 0.720 0.280
#> SRR2443168     1  0.9460      0.729 0.636 0.364
#> SRR2443167     1  0.8386      0.778 0.732 0.268
#> SRR2443166     1  0.7056      0.778 0.808 0.192
#> SRR2443165     1  0.9129      0.664 0.672 0.328
#> SRR2443164     1  0.8499      0.775 0.724 0.276
#> SRR2443163     1  0.8207      0.783 0.744 0.256
#> SRR2443162     1  0.0000      0.647 1.000 0.000
#> SRR2443161     1  0.1184      0.663 0.984 0.016
#> SRR2443160     1  0.8443      0.775 0.728 0.272
#> SRR2443159     1  0.8443      0.775 0.728 0.272
#> SRR2443158     1  0.2236      0.678 0.964 0.036
#> SRR2443157     1  0.8386      0.778 0.732 0.268
#> SRR2443156     1  0.9491      0.722 0.632 0.368
#> SRR2443155     1  0.9427      0.731 0.640 0.360
#> SRR2443154     1  0.9427      0.731 0.640 0.360
#> SRR2443153     2  0.8813      0.674 0.300 0.700
#> SRR2443152     1  0.9460      0.729 0.636 0.364
#> SRR2443151     1  0.9427      0.733 0.640 0.360
#> SRR2443150     1  0.9460      0.729 0.636 0.364
#> SRR2443148     2  0.8813      0.835 0.300 0.700
#> SRR2443147     2  0.8861      0.834 0.304 0.696
#> SRR2443149     1  0.8327      0.781 0.736 0.264

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.7175     0.1203 0.376 0.032 0.592
#> SRR2443262     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443261     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443260     3  0.0592     0.6955 0.000 0.012 0.988
#> SRR2443259     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443258     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443257     3  0.3234     0.6775 0.020 0.072 0.908
#> SRR2443256     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443255     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443254     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443253     3  0.2383     0.6907 0.016 0.044 0.940
#> SRR2443251     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443250     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443249     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443252     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443247     3  0.8117     0.2596 0.372 0.076 0.552
#> SRR2443246     3  0.8295     0.2649 0.364 0.088 0.548
#> SRR2443248     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443244     2  0.9256     0.1598 0.168 0.488 0.344
#> SRR2443245     1  0.5905     0.3960 0.648 0.000 0.352
#> SRR2443243     1  0.2165     0.6736 0.936 0.064 0.000
#> SRR2443242     3  0.9804     0.0647 0.248 0.336 0.416
#> SRR2443241     2  0.2959     0.6942 0.100 0.900 0.000
#> SRR2443240     2  0.2959     0.6942 0.100 0.900 0.000
#> SRR2443239     2  0.1315     0.7288 0.020 0.972 0.008
#> SRR2443238     1  0.4121     0.6332 0.832 0.168 0.000
#> SRR2443237     1  0.9113     0.3315 0.528 0.172 0.300
#> SRR2443236     2  0.1860     0.7124 0.052 0.948 0.000
#> SRR2443235     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443233     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443234     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443232     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443231     1  0.6004     0.6274 0.780 0.156 0.064
#> SRR2443230     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443229     2  0.3148     0.7099 0.048 0.916 0.036
#> SRR2443228     2  0.1315     0.7288 0.020 0.972 0.008
#> SRR2443227     1  0.1163     0.6678 0.972 0.028 0.000
#> SRR2443226     1  0.0237     0.6629 0.996 0.004 0.000
#> SRR2443225     1  0.8158     0.3300 0.556 0.080 0.364
#> SRR2443223     3  0.2878     0.6709 0.000 0.096 0.904
#> SRR2443224     2  0.6180     0.2955 0.000 0.584 0.416
#> SRR2443222     2  0.1753     0.7178 0.048 0.952 0.000
#> SRR2443221     2  0.1753     0.7178 0.048 0.952 0.000
#> SRR2443219     2  0.9086     0.1282 0.148 0.496 0.356
#> SRR2443220     3  0.7014     0.4711 0.208 0.080 0.712
#> SRR2443218     2  0.8543     0.3453 0.140 0.592 0.268
#> SRR2443217     1  0.5202     0.5731 0.772 0.220 0.008
#> SRR2443216     3  0.5618     0.3875 0.260 0.008 0.732
#> SRR2443215     2  0.0892     0.7266 0.020 0.980 0.000
#> SRR2443214     1  0.2165     0.6484 0.936 0.064 0.000
#> SRR2443213     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443212     2  0.1753     0.7178 0.048 0.952 0.000
#> SRR2443211     2  0.2625     0.7020 0.084 0.916 0.000
#> SRR2443210     2  0.1129     0.7280 0.020 0.976 0.004
#> SRR2443209     2  0.3213     0.6979 0.092 0.900 0.008
#> SRR2443208     2  0.1315     0.7288 0.020 0.972 0.008
#> SRR2443207     2  0.1585     0.7274 0.028 0.964 0.008
#> SRR2443206     2  0.0892     0.7266 0.020 0.980 0.000
#> SRR2443205     2  0.3043     0.7025 0.084 0.908 0.008
#> SRR2443204     1  0.6975     0.3939 0.616 0.028 0.356
#> SRR2443203     1  0.6318     0.3841 0.636 0.008 0.356
#> SRR2443202     1  0.7937     0.3308 0.568 0.068 0.364
#> SRR2443201     3  0.8209    -0.1041 0.456 0.072 0.472
#> SRR2443200     2  0.1753     0.7178 0.048 0.952 0.000
#> SRR2443199     2  0.9239     0.1896 0.172 0.500 0.328
#> SRR2443197     1  0.7607     0.3291 0.584 0.052 0.364
#> SRR2443196     1  0.8718     0.2876 0.520 0.116 0.364
#> SRR2443198     1  0.7607     0.3291 0.584 0.052 0.364
#> SRR2443195     1  0.3644     0.6079 0.872 0.004 0.124
#> SRR2443194     3  0.8210    -0.1187 0.460 0.072 0.468
#> SRR2443193     1  0.5524     0.6450 0.796 0.164 0.040
#> SRR2443191     2  0.3043     0.7025 0.084 0.908 0.008
#> SRR2443192     2  0.9823    -0.0442 0.364 0.392 0.244
#> SRR2443190     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443189     1  0.2443     0.6643 0.940 0.028 0.032
#> SRR2443188     1  0.3941     0.6586 0.844 0.156 0.000
#> SRR2443186     2  0.1315     0.7288 0.020 0.972 0.008
#> SRR2443187     2  0.1315     0.7288 0.020 0.972 0.008
#> SRR2443185     3  0.8208    -0.0957 0.452 0.072 0.476
#> SRR2443184     3  0.7575    -0.1042 0.456 0.040 0.504
#> SRR2443183     1  0.3482     0.6696 0.872 0.128 0.000
#> SRR2443182     1  0.1399     0.6677 0.968 0.028 0.004
#> SRR2443181     2  0.0892     0.7266 0.020 0.980 0.000
#> SRR2443180     2  0.9328     0.1233 0.172 0.472 0.356
#> SRR2443179     1  0.8718     0.2876 0.520 0.116 0.364
#> SRR2443178     1  0.8606     0.2940 0.528 0.108 0.364
#> SRR2443177     1  0.6867     0.4197 0.636 0.028 0.336
#> SRR2443176     1  0.7353     0.2630 0.532 0.032 0.436
#> SRR2443175     1  0.6151     0.5667 0.772 0.068 0.160
#> SRR2443174     1  0.6372     0.5127 0.756 0.068 0.176
#> SRR2443173     2  0.6180     0.2955 0.000 0.584 0.416
#> SRR2443172     2  0.6180     0.2955 0.000 0.584 0.416
#> SRR2443171     3  0.8188     0.2554 0.372 0.080 0.548
#> SRR2443170     2  0.7471     0.2150 0.036 0.516 0.448
#> SRR2443169     3  0.8131     0.2544 0.376 0.076 0.548
#> SRR2443168     3  0.6308    -0.1489 0.000 0.492 0.508
#> SRR2443167     3  0.6758     0.4731 0.200 0.072 0.728
#> SRR2443166     3  0.0661     0.6944 0.008 0.004 0.988
#> SRR2443165     3  0.8261     0.0425 0.396 0.080 0.524
#> SRR2443164     3  0.4605     0.5501 0.000 0.204 0.796
#> SRR2443163     3  0.1643     0.6953 0.000 0.044 0.956
#> SRR2443162     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443161     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443160     3  0.5165     0.6189 0.096 0.072 0.832
#> SRR2443159     3  0.3742     0.6696 0.036 0.072 0.892
#> SRR2443158     3  0.0000     0.6947 0.000 0.000 1.000
#> SRR2443157     3  0.1765     0.6842 0.040 0.004 0.956
#> SRR2443156     3  0.8264     0.2749 0.356 0.088 0.556
#> SRR2443155     3  0.7487    -0.1186 0.036 0.464 0.500
#> SRR2443154     3  0.8295     0.2649 0.364 0.088 0.548
#> SRR2443153     1  0.5667     0.6387 0.800 0.140 0.060
#> SRR2443152     2  0.6180     0.2955 0.000 0.584 0.416
#> SRR2443151     2  0.6235     0.2785 0.000 0.564 0.436
#> SRR2443150     2  0.6180     0.2955 0.000 0.584 0.416
#> SRR2443148     2  0.9364     0.1221 0.176 0.468 0.356
#> SRR2443147     3  0.9669     0.0193 0.212 0.380 0.408
#> SRR2443149     3  0.6811     0.4677 0.220 0.064 0.716

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.2999     0.7296 0.004 0.000 0.864 0.132
#> SRR2443262     3  0.1109     0.7955 0.000 0.004 0.968 0.028
#> SRR2443261     3  0.1004     0.7979 0.000 0.004 0.972 0.024
#> SRR2443260     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443259     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443257     3  0.3072     0.7614 0.004 0.004 0.868 0.124
#> SRR2443256     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443255     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443253     3  0.3626     0.6560 0.000 0.004 0.812 0.184
#> SRR2443251     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443250     3  0.1109     0.7955 0.000 0.004 0.968 0.028
#> SRR2443249     3  0.1109     0.7955 0.000 0.004 0.968 0.028
#> SRR2443252     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443247     1  0.5206     0.5059 0.668 0.000 0.308 0.024
#> SRR2443246     1  0.5409     0.4785 0.644 0.004 0.332 0.020
#> SRR2443248     3  0.0188     0.8087 0.000 0.004 0.996 0.000
#> SRR2443244     4  0.6201     0.6120 0.036 0.180 0.072 0.712
#> SRR2443245     1  0.7740    -0.0237 0.432 0.000 0.320 0.248
#> SRR2443243     1  0.3591     0.6701 0.824 0.008 0.000 0.168
#> SRR2443242     3  0.8197     0.0531 0.080 0.116 0.540 0.264
#> SRR2443241     2  0.1209     0.8065 0.032 0.964 0.004 0.000
#> SRR2443240     2  0.1004     0.8089 0.024 0.972 0.004 0.000
#> SRR2443239     2  0.0336     0.8086 0.008 0.992 0.000 0.000
#> SRR2443238     1  0.4332     0.6679 0.800 0.040 0.000 0.160
#> SRR2443237     1  0.6853     0.5420 0.656 0.096 0.036 0.212
#> SRR2443236     2  0.4153     0.7232 0.084 0.836 0.004 0.076
#> SRR2443235     1  0.2281     0.6950 0.904 0.096 0.000 0.000
#> SRR2443233     1  0.2281     0.6950 0.904 0.096 0.000 0.000
#> SRR2443234     1  0.2281     0.6950 0.904 0.096 0.000 0.000
#> SRR2443232     1  0.2466     0.6951 0.900 0.096 0.000 0.004
#> SRR2443231     1  0.3036     0.6848 0.892 0.020 0.008 0.080
#> SRR2443230     1  0.2882     0.6989 0.892 0.024 0.000 0.084
#> SRR2443229     2  0.1004     0.8097 0.024 0.972 0.004 0.000
#> SRR2443228     2  0.2741     0.7629 0.012 0.892 0.000 0.096
#> SRR2443227     1  0.4053     0.6610 0.768 0.000 0.004 0.228
#> SRR2443226     1  0.3725     0.6631 0.812 0.008 0.000 0.180
#> SRR2443225     3  0.6755    -0.1550 0.092 0.000 0.456 0.452
#> SRR2443223     3  0.1637     0.7872 0.000 0.000 0.940 0.060
#> SRR2443224     2  0.7647     0.6222 0.096 0.612 0.208 0.084
#> SRR2443222     2  0.2125     0.7723 0.004 0.920 0.000 0.076
#> SRR2443221     2  0.2125     0.7723 0.004 0.920 0.000 0.076
#> SRR2443219     4  0.4318     0.5839 0.012 0.208 0.004 0.776
#> SRR2443220     3  0.3684     0.7394 0.020 0.004 0.844 0.132
#> SRR2443218     4  0.4049     0.5800 0.008 0.212 0.000 0.780
#> SRR2443217     1  0.6435     0.5942 0.672 0.064 0.032 0.232
#> SRR2443216     3  0.2266     0.7712 0.004 0.000 0.912 0.084
#> SRR2443215     2  0.3441     0.6889 0.004 0.840 0.004 0.152
#> SRR2443214     1  0.4986     0.6131 0.724 0.024 0.004 0.248
#> SRR2443213     1  0.2281     0.6950 0.904 0.096 0.000 0.000
#> SRR2443212     2  0.2311     0.7715 0.004 0.916 0.004 0.076
#> SRR2443211     2  0.1114     0.8085 0.016 0.972 0.004 0.008
#> SRR2443210     2  0.1174     0.8042 0.012 0.968 0.000 0.020
#> SRR2443209     2  0.1004     0.8089 0.024 0.972 0.004 0.000
#> SRR2443208     2  0.0188     0.8077 0.000 0.996 0.004 0.000
#> SRR2443207     2  0.1004     0.8089 0.024 0.972 0.004 0.000
#> SRR2443206     2  0.0188     0.8082 0.004 0.996 0.000 0.000
#> SRR2443205     2  0.0817     0.8083 0.024 0.976 0.000 0.000
#> SRR2443204     1  0.7812    -0.0352 0.408 0.000 0.328 0.264
#> SRR2443203     1  0.7822    -0.1441 0.380 0.000 0.364 0.256
#> SRR2443202     4  0.6709     0.2512 0.092 0.000 0.400 0.508
#> SRR2443201     3  0.5308     0.4811 0.036 0.000 0.684 0.280
#> SRR2443200     2  0.3052     0.7140 0.004 0.860 0.000 0.136
#> SRR2443199     4  0.3945     0.5788 0.004 0.216 0.000 0.780
#> SRR2443197     4  0.6727     0.2195 0.092 0.000 0.412 0.496
#> SRR2443196     4  0.7365     0.4842 0.120 0.024 0.284 0.572
#> SRR2443198     4  0.6709     0.2512 0.092 0.000 0.400 0.508
#> SRR2443195     1  0.4395     0.6456 0.776 0.016 0.004 0.204
#> SRR2443194     3  0.6280     0.3186 0.084 0.000 0.612 0.304
#> SRR2443193     1  0.4912     0.6604 0.776 0.160 0.004 0.060
#> SRR2443191     2  0.1004     0.8089 0.024 0.972 0.004 0.000
#> SRR2443192     4  0.7351     0.3371 0.288 0.096 0.036 0.580
#> SRR2443190     1  0.2281     0.6950 0.904 0.096 0.000 0.000
#> SRR2443189     1  0.3486     0.6728 0.812 0.000 0.000 0.188
#> SRR2443188     1  0.2408     0.6936 0.896 0.104 0.000 0.000
#> SRR2443186     2  0.0188     0.8082 0.004 0.996 0.000 0.000
#> SRR2443187     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> SRR2443185     3  0.5535     0.4192 0.040 0.000 0.656 0.304
#> SRR2443184     3  0.6141     0.3487 0.076 0.000 0.624 0.300
#> SRR2443183     1  0.2670     0.6978 0.904 0.024 0.000 0.072
#> SRR2443182     1  0.4188     0.6520 0.752 0.000 0.004 0.244
#> SRR2443181     2  0.0336     0.8086 0.008 0.992 0.000 0.000
#> SRR2443180     4  0.4137     0.5805 0.012 0.208 0.000 0.780
#> SRR2443179     4  0.6897     0.5460 0.120 0.024 0.212 0.644
#> SRR2443178     4  0.7590     0.4008 0.120 0.024 0.340 0.516
#> SRR2443177     1  0.7105     0.3215 0.560 0.000 0.184 0.256
#> SRR2443176     3  0.6404     0.3101 0.096 0.000 0.608 0.296
#> SRR2443175     1  0.5994     0.6365 0.712 0.012 0.176 0.100
#> SRR2443174     1  0.5007     0.6149 0.760 0.000 0.172 0.068
#> SRR2443173     2  0.7647     0.6222 0.096 0.612 0.208 0.084
#> SRR2443172     2  0.7647     0.6222 0.096 0.612 0.208 0.084
#> SRR2443171     1  0.4910     0.5380 0.704 0.000 0.276 0.020
#> SRR2443170     2  0.8019     0.5994 0.124 0.580 0.212 0.084
#> SRR2443169     1  0.4983     0.5388 0.704 0.000 0.272 0.024
#> SRR2443168     2  0.7678     0.6206 0.096 0.608 0.212 0.084
#> SRR2443167     3  0.2266     0.7534 0.004 0.000 0.912 0.084
#> SRR2443166     3  0.0188     0.8091 0.000 0.000 0.996 0.004
#> SRR2443165     3  0.5024     0.3974 0.008 0.000 0.632 0.360
#> SRR2443164     4  0.5334    -0.0426 0.004 0.004 0.484 0.508
#> SRR2443163     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443162     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443160     3  0.3626     0.6620 0.004 0.000 0.812 0.184
#> SRR2443159     3  0.4053     0.5976 0.004 0.000 0.768 0.228
#> SRR2443158     3  0.0000     0.8104 0.000 0.000 1.000 0.000
#> SRR2443157     3  0.1388     0.7943 0.028 0.000 0.960 0.012
#> SRR2443156     1  0.5085     0.5177 0.676 0.000 0.304 0.020
#> SRR2443155     2  0.8573     0.5345 0.184 0.520 0.212 0.084
#> SRR2443154     1  0.8026     0.2994 0.512 0.192 0.268 0.028
#> SRR2443153     1  0.4282     0.6876 0.844 0.040 0.036 0.080
#> SRR2443152     2  0.7647     0.6222 0.096 0.612 0.208 0.084
#> SRR2443151     2  0.8072     0.2238 0.004 0.356 0.320 0.320
#> SRR2443150     2  0.7647     0.6222 0.096 0.612 0.208 0.084
#> SRR2443148     4  0.3662     0.6095 0.012 0.148 0.004 0.836
#> SRR2443147     4  0.4250     0.6036 0.036 0.064 0.052 0.848
#> SRR2443149     3  0.3972     0.5403 0.204 0.000 0.788 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443262     4  0.0162      0.615 0.000 0.000 0.004 0.996 0.000
#> SRR2443261     4  0.2732      0.391 0.000 0.000 0.160 0.840 0.000
#> SRR2443260     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443259     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443258     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443257     4  0.0162      0.615 0.000 0.000 0.004 0.996 0.000
#> SRR2443256     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443255     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443254     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443253     4  0.0290      0.616 0.000 0.000 0.008 0.992 0.000
#> SRR2443251     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443250     4  0.0162      0.615 0.000 0.000 0.004 0.996 0.000
#> SRR2443249     4  0.0162      0.615 0.000 0.000 0.004 0.996 0.000
#> SRR2443252     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443247     1  0.4425      0.536 0.600 0.392 0.008 0.000 0.000
#> SRR2443246     5  0.4321      0.642 0.000 0.396 0.000 0.004 0.600
#> SRR2443248     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443244     3  0.0162      0.564 0.000 0.000 0.996 0.000 0.004
#> SRR2443245     1  0.4161      0.619 0.608 0.000 0.392 0.000 0.000
#> SRR2443243     1  0.2127      0.755 0.892 0.000 0.108 0.000 0.000
#> SRR2443242     3  0.0324      0.566 0.000 0.000 0.992 0.004 0.004
#> SRR2443241     5  0.1965      0.636 0.096 0.000 0.000 0.000 0.904
#> SRR2443240     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2443239     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443238     1  0.4150      0.622 0.612 0.000 0.388 0.000 0.000
#> SRR2443237     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443236     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2443235     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.0162      0.669 0.000 0.004 0.000 0.000 0.996
#> SRR2443228     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443227     1  0.3143      0.721 0.796 0.000 0.204 0.000 0.000
#> SRR2443226     1  0.4150      0.622 0.612 0.000 0.388 0.000 0.000
#> SRR2443225     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443223     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443224     5  0.4161      0.640 0.000 0.392 0.000 0.000 0.608
#> SRR2443222     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443221     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443219     4  0.4321      0.572 0.000 0.000 0.396 0.600 0.004
#> SRR2443220     4  0.4074     -0.214 0.000 0.000 0.364 0.636 0.000
#> SRR2443218     4  0.4460      0.569 0.000 0.004 0.392 0.600 0.004
#> SRR2443217     3  0.3456      0.496 0.184 0.000 0.800 0.000 0.016
#> SRR2443216     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443215     2  0.6267      0.495 0.000 0.540 0.224 0.000 0.236
#> SRR2443214     1  0.4161      0.619 0.608 0.000 0.392 0.000 0.000
#> SRR2443213     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.1544      0.573 0.000 0.068 0.000 0.000 0.932
#> SRR2443211     5  0.3210      0.281 0.000 0.212 0.000 0.000 0.788
#> SRR2443210     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443209     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2443208     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2443207     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2443206     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443205     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443204     1  0.4161      0.619 0.608 0.000 0.392 0.000 0.000
#> SRR2443203     3  0.4088     -0.214 0.368 0.000 0.632 0.000 0.000
#> SRR2443202     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443201     3  0.3816      0.666 0.000 0.000 0.696 0.304 0.000
#> SRR2443200     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443199     4  0.4310      0.570 0.000 0.000 0.392 0.604 0.004
#> SRR2443197     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443196     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443198     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443195     1  0.4161      0.619 0.608 0.000 0.392 0.000 0.000
#> SRR2443194     3  0.0162      0.568 0.000 0.000 0.996 0.004 0.000
#> SRR2443193     1  0.1282      0.747 0.952 0.004 0.000 0.000 0.044
#> SRR2443191     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> SRR2443192     3  0.0451      0.558 0.004 0.000 0.988 0.000 0.008
#> SRR2443190     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.4074      0.638 0.636 0.000 0.364 0.000 0.000
#> SRR2443188     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443187     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443185     3  0.2230      0.607 0.000 0.000 0.884 0.116 0.000
#> SRR2443184     3  0.3074      0.633 0.000 0.000 0.804 0.196 0.000
#> SRR2443183     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.3210      0.717 0.788 0.000 0.212 0.000 0.000
#> SRR2443181     2  0.4182      0.805 0.000 0.600 0.000 0.000 0.400
#> SRR2443180     4  0.4310      0.570 0.000 0.000 0.392 0.604 0.004
#> SRR2443179     4  0.4321      0.569 0.004 0.000 0.396 0.600 0.000
#> SRR2443178     3  0.0162      0.565 0.004 0.000 0.996 0.000 0.000
#> SRR2443177     1  0.4161      0.619 0.608 0.000 0.392 0.000 0.000
#> SRR2443176     3  0.0324      0.567 0.004 0.000 0.992 0.004 0.000
#> SRR2443175     1  0.0162      0.776 0.996 0.000 0.004 0.000 0.000
#> SRR2443174     1  0.2032      0.753 0.924 0.020 0.004 0.052 0.000
#> SRR2443173     2  0.0290      0.482 0.000 0.992 0.000 0.000 0.008
#> SRR2443172     2  0.0290      0.482 0.000 0.992 0.000 0.000 0.008
#> SRR2443171     1  0.4321      0.532 0.600 0.396 0.000 0.004 0.000
#> SRR2443170     5  0.4310      0.642 0.000 0.392 0.000 0.004 0.604
#> SRR2443169     1  0.4310      0.537 0.604 0.392 0.004 0.000 0.000
#> SRR2443168     5  0.4321      0.642 0.000 0.396 0.000 0.004 0.600
#> SRR2443167     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443166     1  0.4620      0.356 0.592 0.000 0.016 0.392 0.000
#> SRR2443165     3  0.3480      0.646 0.000 0.000 0.752 0.248 0.000
#> SRR2443164     4  0.0324      0.615 0.000 0.004 0.004 0.992 0.000
#> SRR2443163     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443162     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443161     3  0.4171      0.681 0.000 0.000 0.604 0.396 0.000
#> SRR2443160     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443159     4  0.4088     -0.220 0.000 0.000 0.368 0.632 0.000
#> SRR2443158     3  0.4161      0.682 0.000 0.000 0.608 0.392 0.000
#> SRR2443157     1  0.4425      0.369 0.600 0.000 0.008 0.392 0.000
#> SRR2443156     5  0.4460      0.640 0.000 0.392 0.004 0.004 0.600
#> SRR2443155     5  0.4321      0.642 0.000 0.396 0.000 0.004 0.600
#> SRR2443154     5  0.4321      0.642 0.000 0.396 0.000 0.004 0.600
#> SRR2443153     1  0.0000      0.778 1.000 0.000 0.000 0.000 0.000
#> SRR2443152     2  0.0290      0.482 0.000 0.992 0.000 0.000 0.008
#> SRR2443151     4  0.0486      0.615 0.000 0.004 0.004 0.988 0.004
#> SRR2443150     2  0.0290      0.482 0.000 0.992 0.000 0.000 0.008
#> SRR2443148     4  0.4321      0.572 0.000 0.000 0.396 0.600 0.004
#> SRR2443147     4  0.4321      0.572 0.000 0.000 0.396 0.600 0.004
#> SRR2443149     3  0.5912      0.569 0.000 0.004 0.512 0.392 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.3915    0.42110 0.000 0.004 0.584 0.412 0.000 0.000
#> SRR2443262     4  0.3330    0.27366 0.000 0.000 0.000 0.716 0.000 0.284
#> SRR2443261     4  0.0937    0.44046 0.000 0.000 0.000 0.960 0.000 0.040
#> SRR2443260     3  0.3838    0.42998 0.000 0.000 0.552 0.448 0.000 0.000
#> SRR2443259     3  0.3833    0.43107 0.000 0.000 0.556 0.444 0.000 0.000
#> SRR2443258     3  0.3915    0.42750 0.000 0.000 0.584 0.412 0.000 0.004
#> SRR2443257     4  0.2622    0.43777 0.000 0.004 0.024 0.868 0.000 0.104
#> SRR2443256     3  0.3923    0.42889 0.000 0.000 0.580 0.416 0.000 0.004
#> SRR2443255     3  0.3838    0.42998 0.000 0.000 0.552 0.448 0.000 0.000
#> SRR2443254     3  0.3847    0.42339 0.000 0.000 0.544 0.456 0.000 0.000
#> SRR2443253     4  0.3578    0.17578 0.000 0.000 0.000 0.660 0.000 0.340
#> SRR2443251     4  0.0458    0.42611 0.000 0.000 0.016 0.984 0.000 0.000
#> SRR2443250     4  0.3330    0.27366 0.000 0.000 0.000 0.716 0.000 0.284
#> SRR2443249     4  0.2854    0.37507 0.000 0.000 0.000 0.792 0.000 0.208
#> SRR2443252     3  0.3838    0.42998 0.000 0.000 0.552 0.448 0.000 0.000
#> SRR2443247     1  0.4993    0.54395 0.580 0.000 0.072 0.004 0.344 0.000
#> SRR2443246     5  0.1531    0.61295 0.000 0.000 0.068 0.004 0.928 0.000
#> SRR2443248     4  0.3487    0.16288 0.000 0.000 0.224 0.756 0.000 0.020
#> SRR2443244     4  0.6702    0.00307 0.000 0.004 0.304 0.376 0.024 0.292
#> SRR2443245     1  0.5488    0.58945 0.568 0.000 0.216 0.000 0.000 0.216
#> SRR2443243     1  0.3493    0.70022 0.800 0.000 0.064 0.000 0.000 0.136
#> SRR2443242     3  0.6571   -0.01332 0.000 0.004 0.364 0.344 0.016 0.272
#> SRR2443241     5  0.4368    0.63626 0.016 0.384 0.008 0.000 0.592 0.000
#> SRR2443240     5  0.3993    0.63783 0.000 0.400 0.008 0.000 0.592 0.000
#> SRR2443239     2  0.0000    0.66904 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443238     1  0.5327    0.61159 0.596 0.000 0.208 0.000 0.000 0.196
#> SRR2443237     3  0.6310    0.07430 0.004 0.000 0.452 0.312 0.012 0.220
#> SRR2443236     5  0.4550    0.62458 0.008 0.372 0.004 0.000 0.596 0.020
#> SRR2443235     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0363    0.74493 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR2443230     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.3756    0.63815 0.000 0.400 0.000 0.000 0.600 0.000
#> SRR2443228     2  0.3838    0.26094 0.000 0.552 0.000 0.000 0.000 0.448
#> SRR2443227     1  0.5010    0.62841 0.644 0.000 0.184 0.000 0.000 0.172
#> SRR2443226     1  0.5488    0.59007 0.568 0.000 0.212 0.000 0.000 0.220
#> SRR2443225     3  0.5755    0.10053 0.000 0.000 0.500 0.296 0.000 0.204
#> SRR2443223     4  0.3320    0.17480 0.000 0.000 0.212 0.772 0.016 0.000
#> SRR2443224     5  0.4663    0.31338 0.000 0.192 0.124 0.000 0.684 0.000
#> SRR2443222     2  0.2730    0.58594 0.000 0.808 0.000 0.000 0.000 0.192
#> SRR2443221     2  0.3101    0.56313 0.000 0.756 0.000 0.000 0.000 0.244
#> SRR2443219     6  0.2881    0.66950 0.000 0.012 0.040 0.084 0.000 0.864
#> SRR2443220     4  0.1232    0.44261 0.000 0.004 0.024 0.956 0.000 0.016
#> SRR2443218     6  0.0632    0.73860 0.000 0.024 0.000 0.000 0.000 0.976
#> SRR2443217     3  0.7034    0.07916 0.044 0.004 0.416 0.012 0.332 0.192
#> SRR2443216     3  0.3828    0.43148 0.000 0.000 0.560 0.440 0.000 0.000
#> SRR2443215     2  0.5012    0.29306 0.000 0.580 0.012 0.000 0.056 0.352
#> SRR2443214     1  0.5488    0.59007 0.568 0.000 0.212 0.000 0.000 0.220
#> SRR2443213     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     2  0.4765   -0.38365 0.000 0.524 0.012 0.000 0.436 0.028
#> SRR2443211     2  0.3595    0.10335 0.000 0.704 0.008 0.000 0.288 0.000
#> SRR2443210     2  0.0000    0.66904 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443209     5  0.3993    0.63783 0.000 0.400 0.008 0.000 0.592 0.000
#> SRR2443208     5  0.3993    0.63783 0.000 0.400 0.008 0.000 0.592 0.000
#> SRR2443207     5  0.3993    0.63783 0.000 0.400 0.008 0.000 0.592 0.000
#> SRR2443206     2  0.0000    0.66904 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443205     2  0.0520    0.65786 0.000 0.984 0.008 0.000 0.008 0.000
#> SRR2443204     1  0.5478    0.58964 0.568 0.000 0.236 0.000 0.000 0.196
#> SRR2443203     3  0.3755    0.27567 0.036 0.000 0.744 0.000 0.000 0.220
#> SRR2443202     3  0.5958   -0.02665 0.000 0.000 0.396 0.384 0.000 0.220
#> SRR2443201     4  0.5764   -0.04972 0.000 0.004 0.336 0.496 0.000 0.164
#> SRR2443200     6  0.3515    0.28297 0.000 0.324 0.000 0.000 0.000 0.676
#> SRR2443199     6  0.0632    0.73860 0.000 0.024 0.000 0.000 0.000 0.976
#> SRR2443197     4  0.5715    0.15029 0.000 0.000 0.256 0.520 0.000 0.224
#> SRR2443196     4  0.5437    0.20905 0.004 0.000 0.172 0.592 0.000 0.232
#> SRR2443198     4  0.5858    0.09755 0.000 0.000 0.300 0.476 0.000 0.224
#> SRR2443195     1  0.5488    0.59007 0.568 0.000 0.212 0.000 0.000 0.220
#> SRR2443194     3  0.5067    0.24799 0.000 0.004 0.648 0.148 0.000 0.200
#> SRR2443193     1  0.3376    0.57216 0.792 0.004 0.024 0.000 0.180 0.000
#> SRR2443191     5  0.3993    0.63783 0.000 0.400 0.008 0.000 0.592 0.000
#> SRR2443192     3  0.6669   -0.01424 0.004 0.000 0.376 0.364 0.028 0.228
#> SRR2443190     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.5300    0.61267 0.600 0.000 0.212 0.000 0.000 0.188
#> SRR2443188     1  0.0000    0.74679 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.0000    0.66904 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443187     2  0.0146    0.66707 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR2443185     3  0.6011   -0.01796 0.000 0.004 0.408 0.388 0.000 0.200
#> SRR2443184     3  0.4957    0.33697 0.000 0.004 0.664 0.184 0.000 0.148
#> SRR2443183     1  0.0146    0.74677 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR2443182     3  0.5586   -0.07183 0.292 0.000 0.532 0.000 0.000 0.176
#> SRR2443181     2  0.0000    0.66904 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR2443180     6  0.0777    0.73883 0.000 0.024 0.004 0.000 0.000 0.972
#> SRR2443179     4  0.5814    0.02404 0.004 0.000 0.164 0.468 0.000 0.364
#> SRR2443178     4  0.6105   -0.03243 0.004 0.000 0.372 0.396 0.000 0.228
#> SRR2443177     1  0.5478    0.58964 0.568 0.000 0.236 0.000 0.000 0.196
#> SRR2443176     3  0.3152    0.29255 0.000 0.004 0.792 0.008 0.000 0.196
#> SRR2443175     1  0.2979    0.68343 0.840 0.000 0.044 0.116 0.000 0.000
#> SRR2443174     1  0.3801    0.64872 0.784 0.000 0.060 0.148 0.008 0.000
#> SRR2443173     2  0.5100    0.48343 0.000 0.600 0.116 0.000 0.284 0.000
#> SRR2443172     2  0.5100    0.48343 0.000 0.600 0.116 0.000 0.284 0.000
#> SRR2443171     1  0.5015    0.53374 0.572 0.000 0.072 0.004 0.352 0.000
#> SRR2443170     5  0.0405    0.62156 0.000 0.000 0.008 0.004 0.988 0.000
#> SRR2443169     1  0.4794    0.55646 0.596 0.000 0.056 0.004 0.344 0.000
#> SRR2443168     5  0.0405    0.62156 0.000 0.000 0.008 0.004 0.988 0.000
#> SRR2443167     4  0.1552    0.44127 0.000 0.004 0.036 0.940 0.000 0.020
#> SRR2443166     4  0.5969   -0.00891 0.376 0.000 0.224 0.400 0.000 0.000
#> SRR2443165     4  0.5391    0.06253 0.000 0.000 0.308 0.552 0.000 0.140
#> SRR2443164     6  0.4353    0.22084 0.000 0.020 0.000 0.388 0.004 0.588
#> SRR2443163     4  0.3582    0.09350 0.000 0.000 0.252 0.732 0.016 0.000
#> SRR2443162     3  0.3923    0.42889 0.000 0.000 0.580 0.416 0.000 0.004
#> SRR2443161     3  0.3838    0.42998 0.000 0.000 0.552 0.448 0.000 0.000
#> SRR2443160     4  0.1232    0.44564 0.000 0.004 0.024 0.956 0.000 0.016
#> SRR2443159     4  0.1485    0.44656 0.000 0.004 0.024 0.944 0.000 0.028
#> SRR2443158     3  0.3833    0.43085 0.000 0.000 0.556 0.444 0.000 0.000
#> SRR2443157     4  0.6019   -0.02180 0.356 0.000 0.244 0.400 0.000 0.000
#> SRR2443156     5  0.2511    0.60465 0.000 0.000 0.056 0.064 0.880 0.000
#> SRR2443155     5  0.0291    0.62204 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR2443154     5  0.1010    0.62162 0.000 0.000 0.036 0.004 0.960 0.000
#> SRR2443153     1  0.0458    0.74546 0.984 0.000 0.016 0.000 0.000 0.000
#> SRR2443152     2  0.5100    0.48343 0.000 0.600 0.116 0.000 0.284 0.000
#> SRR2443151     6  0.4362    0.21414 0.000 0.020 0.000 0.392 0.004 0.584
#> SRR2443150     2  0.5100    0.48343 0.000 0.600 0.116 0.000 0.284 0.000
#> SRR2443148     6  0.1493    0.71372 0.000 0.004 0.056 0.004 0.000 0.936
#> SRR2443147     6  0.1956    0.70680 0.000 0.004 0.080 0.008 0.000 0.908
#> SRR2443149     3  0.3961    0.42950 0.000 0.000 0.556 0.440 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.895           0.925       0.968         0.4206 0.599   0.599
#> 3 3 0.620           0.762       0.868         0.5483 0.702   0.518
#> 4 4 0.769           0.720       0.881         0.1106 0.903   0.729
#> 5 5 0.612           0.555       0.742         0.0580 0.916   0.730
#> 6 6 0.549           0.429       0.662         0.0525 0.806   0.397

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000      0.959 1.000 0.000
#> SRR2443262     1  0.8327      0.647 0.736 0.264
#> SRR2443261     1  0.0000      0.959 1.000 0.000
#> SRR2443260     1  0.0000      0.959 1.000 0.000
#> SRR2443259     1  0.0000      0.959 1.000 0.000
#> SRR2443258     1  0.0000      0.959 1.000 0.000
#> SRR2443257     1  0.0000      0.959 1.000 0.000
#> SRR2443256     1  0.0000      0.959 1.000 0.000
#> SRR2443255     1  0.0000      0.959 1.000 0.000
#> SRR2443254     1  0.0000      0.959 1.000 0.000
#> SRR2443253     1  0.0000      0.959 1.000 0.000
#> SRR2443251     1  0.0000      0.959 1.000 0.000
#> SRR2443250     1  0.0000      0.959 1.000 0.000
#> SRR2443249     1  0.0000      0.959 1.000 0.000
#> SRR2443252     1  0.0000      0.959 1.000 0.000
#> SRR2443247     1  0.0000      0.959 1.000 0.000
#> SRR2443246     1  0.0000      0.959 1.000 0.000
#> SRR2443248     1  0.0000      0.959 1.000 0.000
#> SRR2443244     1  0.9552      0.447 0.624 0.376
#> SRR2443245     1  0.0000      0.959 1.000 0.000
#> SRR2443243     1  0.0000      0.959 1.000 0.000
#> SRR2443242     1  0.9661      0.408 0.608 0.392
#> SRR2443241     1  0.8081      0.686 0.752 0.248
#> SRR2443240     2  0.0000      0.987 0.000 1.000
#> SRR2443239     2  0.0000      0.987 0.000 1.000
#> SRR2443238     1  0.0672      0.953 0.992 0.008
#> SRR2443237     1  0.7602      0.726 0.780 0.220
#> SRR2443236     1  0.9850      0.313 0.572 0.428
#> SRR2443235     1  0.0000      0.959 1.000 0.000
#> SRR2443233     1  0.0000      0.959 1.000 0.000
#> SRR2443234     1  0.0000      0.959 1.000 0.000
#> SRR2443232     1  0.0000      0.959 1.000 0.000
#> SRR2443231     1  0.0000      0.959 1.000 0.000
#> SRR2443230     1  0.0000      0.959 1.000 0.000
#> SRR2443229     1  0.9710      0.388 0.600 0.400
#> SRR2443228     2  0.0000      0.987 0.000 1.000
#> SRR2443227     1  0.0000      0.959 1.000 0.000
#> SRR2443226     1  0.0000      0.959 1.000 0.000
#> SRR2443225     1  0.0000      0.959 1.000 0.000
#> SRR2443223     1  0.0000      0.959 1.000 0.000
#> SRR2443224     2  0.0000      0.987 0.000 1.000
#> SRR2443222     2  0.0000      0.987 0.000 1.000
#> SRR2443221     2  0.0000      0.987 0.000 1.000
#> SRR2443219     2  0.0000      0.987 0.000 1.000
#> SRR2443220     1  0.7883      0.704 0.764 0.236
#> SRR2443218     2  0.0000      0.987 0.000 1.000
#> SRR2443217     1  0.0000      0.959 1.000 0.000
#> SRR2443216     1  0.0000      0.959 1.000 0.000
#> SRR2443215     2  0.0000      0.987 0.000 1.000
#> SRR2443214     1  0.0000      0.959 1.000 0.000
#> SRR2443213     1  0.0000      0.959 1.000 0.000
#> SRR2443212     2  0.0000      0.987 0.000 1.000
#> SRR2443211     2  0.0000      0.987 0.000 1.000
#> SRR2443210     2  0.0000      0.987 0.000 1.000
#> SRR2443209     2  0.9427      0.375 0.360 0.640
#> SRR2443208     2  0.0376      0.983 0.004 0.996
#> SRR2443207     2  0.0000      0.987 0.000 1.000
#> SRR2443206     2  0.0000      0.987 0.000 1.000
#> SRR2443205     2  0.0000      0.987 0.000 1.000
#> SRR2443204     1  0.0000      0.959 1.000 0.000
#> SRR2443203     1  0.0000      0.959 1.000 0.000
#> SRR2443202     1  0.0000      0.959 1.000 0.000
#> SRR2443201     1  0.0000      0.959 1.000 0.000
#> SRR2443200     2  0.0000      0.987 0.000 1.000
#> SRR2443199     2  0.0000      0.987 0.000 1.000
#> SRR2443197     1  0.0000      0.959 1.000 0.000
#> SRR2443196     1  0.6887      0.773 0.816 0.184
#> SRR2443198     1  0.0000      0.959 1.000 0.000
#> SRR2443195     1  0.0000      0.959 1.000 0.000
#> SRR2443194     1  0.0000      0.959 1.000 0.000
#> SRR2443193     1  0.0376      0.956 0.996 0.004
#> SRR2443191     2  0.0376      0.983 0.004 0.996
#> SRR2443192     1  0.9460      0.473 0.636 0.364
#> SRR2443190     1  0.0000      0.959 1.000 0.000
#> SRR2443189     1  0.0000      0.959 1.000 0.000
#> SRR2443188     1  0.0000      0.959 1.000 0.000
#> SRR2443186     2  0.0000      0.987 0.000 1.000
#> SRR2443187     2  0.0000      0.987 0.000 1.000
#> SRR2443185     1  0.0000      0.959 1.000 0.000
#> SRR2443184     1  0.0000      0.959 1.000 0.000
#> SRR2443183     1  0.0000      0.959 1.000 0.000
#> SRR2443182     1  0.0000      0.959 1.000 0.000
#> SRR2443181     2  0.0000      0.987 0.000 1.000
#> SRR2443180     2  0.0000      0.987 0.000 1.000
#> SRR2443179     1  0.0938      0.950 0.988 0.012
#> SRR2443178     1  0.0000      0.959 1.000 0.000
#> SRR2443177     1  0.0000      0.959 1.000 0.000
#> SRR2443176     1  0.0000      0.959 1.000 0.000
#> SRR2443175     1  0.0000      0.959 1.000 0.000
#> SRR2443174     1  0.0000      0.959 1.000 0.000
#> SRR2443173     2  0.0000      0.987 0.000 1.000
#> SRR2443172     2  0.0000      0.987 0.000 1.000
#> SRR2443171     1  0.0000      0.959 1.000 0.000
#> SRR2443170     1  0.0376      0.956 0.996 0.004
#> SRR2443169     1  0.0000      0.959 1.000 0.000
#> SRR2443168     1  0.6801      0.781 0.820 0.180
#> SRR2443167     1  0.0000      0.959 1.000 0.000
#> SRR2443166     1  0.0000      0.959 1.000 0.000
#> SRR2443165     1  0.0000      0.959 1.000 0.000
#> SRR2443164     2  0.0000      0.987 0.000 1.000
#> SRR2443163     1  0.0000      0.959 1.000 0.000
#> SRR2443162     1  0.0000      0.959 1.000 0.000
#> SRR2443161     1  0.0000      0.959 1.000 0.000
#> SRR2443160     1  0.0000      0.959 1.000 0.000
#> SRR2443159     1  0.0000      0.959 1.000 0.000
#> SRR2443158     1  0.0000      0.959 1.000 0.000
#> SRR2443157     1  0.0000      0.959 1.000 0.000
#> SRR2443156     1  0.0000      0.959 1.000 0.000
#> SRR2443155     1  0.0000      0.959 1.000 0.000
#> SRR2443154     1  0.0000      0.959 1.000 0.000
#> SRR2443153     1  0.0000      0.959 1.000 0.000
#> SRR2443152     2  0.0000      0.987 0.000 1.000
#> SRR2443151     2  0.0000      0.987 0.000 1.000
#> SRR2443150     2  0.0000      0.987 0.000 1.000
#> SRR2443148     2  0.0000      0.987 0.000 1.000
#> SRR2443147     2  0.0000      0.987 0.000 1.000
#> SRR2443149     1  0.0000      0.959 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.6008     0.4376 0.628 0.000 0.372
#> SRR2443262     3  0.5988     0.3764 0.000 0.368 0.632
#> SRR2443261     3  0.1585     0.8068 0.008 0.028 0.964
#> SRR2443260     3  0.1031     0.8208 0.024 0.000 0.976
#> SRR2443259     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443258     3  0.0892     0.8215 0.020 0.000 0.980
#> SRR2443257     3  0.0829     0.8196 0.012 0.004 0.984
#> SRR2443256     3  0.6309    -0.1420 0.496 0.000 0.504
#> SRR2443255     3  0.1163     0.8197 0.028 0.000 0.972
#> SRR2443254     3  0.6126     0.2472 0.400 0.000 0.600
#> SRR2443253     3  0.0592     0.8208 0.012 0.000 0.988
#> SRR2443251     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443250     3  0.2301     0.7872 0.004 0.060 0.936
#> SRR2443249     3  0.2200     0.7905 0.004 0.056 0.940
#> SRR2443252     3  0.1529     0.8156 0.040 0.000 0.960
#> SRR2443247     1  0.3686     0.8261 0.860 0.000 0.140
#> SRR2443246     1  0.4750     0.7365 0.784 0.000 0.216
#> SRR2443248     3  0.8211    -0.0128 0.464 0.072 0.464
#> SRR2443244     1  0.4452     0.6531 0.808 0.192 0.000
#> SRR2443245     1  0.6215     0.2710 0.572 0.000 0.428
#> SRR2443243     1  0.2537     0.8577 0.920 0.000 0.080
#> SRR2443242     3  0.7332     0.4692 0.064 0.276 0.660
#> SRR2443241     1  0.1453     0.8364 0.968 0.008 0.024
#> SRR2443240     1  0.4452     0.6703 0.808 0.192 0.000
#> SRR2443239     2  0.1031     0.9452 0.024 0.976 0.000
#> SRR2443238     1  0.2860     0.8064 0.912 0.004 0.084
#> SRR2443237     3  0.7741     0.3755 0.068 0.324 0.608
#> SRR2443236     1  0.0592     0.8158 0.988 0.012 0.000
#> SRR2443235     1  0.2448     0.8586 0.924 0.000 0.076
#> SRR2443233     1  0.2356     0.8592 0.928 0.000 0.072
#> SRR2443234     1  0.2261     0.8589 0.932 0.000 0.068
#> SRR2443232     1  0.2261     0.8589 0.932 0.000 0.068
#> SRR2443231     1  0.2261     0.8589 0.932 0.000 0.068
#> SRR2443230     1  0.2356     0.8592 0.928 0.000 0.072
#> SRR2443229     1  0.6180     0.3987 0.660 0.332 0.008
#> SRR2443228     2  0.0424     0.9395 0.000 0.992 0.008
#> SRR2443227     1  0.2625     0.8558 0.916 0.000 0.084
#> SRR2443226     1  0.5706     0.5530 0.680 0.000 0.320
#> SRR2443225     1  0.3412     0.8319 0.876 0.000 0.124
#> SRR2443223     3  0.6081     0.3997 0.344 0.004 0.652
#> SRR2443224     2  0.4531     0.7894 0.168 0.824 0.008
#> SRR2443222     2  0.2165     0.9415 0.064 0.936 0.000
#> SRR2443221     2  0.2584     0.9396 0.064 0.928 0.008
#> SRR2443219     2  0.2400     0.9406 0.064 0.932 0.004
#> SRR2443220     3  0.2680     0.7845 0.008 0.068 0.924
#> SRR2443218     2  0.2651     0.9415 0.060 0.928 0.012
#> SRR2443217     1  0.2066     0.8548 0.940 0.000 0.060
#> SRR2443216     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443215     2  0.2584     0.9396 0.064 0.928 0.008
#> SRR2443214     1  0.4346     0.7466 0.816 0.000 0.184
#> SRR2443213     1  0.2165     0.8581 0.936 0.000 0.064
#> SRR2443212     2  0.6451     0.3538 0.436 0.560 0.004
#> SRR2443211     2  0.3193     0.8746 0.100 0.896 0.004
#> SRR2443210     2  0.0424     0.9395 0.000 0.992 0.008
#> SRR2443209     1  0.4409     0.6950 0.824 0.172 0.004
#> SRR2443208     2  0.2261     0.9414 0.068 0.932 0.000
#> SRR2443207     2  0.1411     0.9454 0.036 0.964 0.000
#> SRR2443206     2  0.1267     0.9448 0.024 0.972 0.004
#> SRR2443205     2  0.1647     0.9278 0.036 0.960 0.004
#> SRR2443204     3  0.5650     0.5462 0.312 0.000 0.688
#> SRR2443203     3  0.5733     0.5168 0.324 0.000 0.676
#> SRR2443202     3  0.5859     0.4810 0.344 0.000 0.656
#> SRR2443201     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443200     2  0.2584     0.9396 0.064 0.928 0.008
#> SRR2443199     2  0.2651     0.9410 0.060 0.928 0.012
#> SRR2443197     3  0.3340     0.7712 0.120 0.000 0.880
#> SRR2443196     3  0.6063     0.7194 0.132 0.084 0.784
#> SRR2443198     3  0.4062     0.7371 0.164 0.000 0.836
#> SRR2443195     1  0.4291     0.7791 0.820 0.000 0.180
#> SRR2443194     3  0.5968     0.4443 0.364 0.000 0.636
#> SRR2443193     1  0.2772     0.8581 0.916 0.004 0.080
#> SRR2443191     1  0.4702     0.6344 0.788 0.212 0.000
#> SRR2443192     1  0.8544     0.4810 0.600 0.248 0.152
#> SRR2443190     1  0.2261     0.8589 0.932 0.000 0.068
#> SRR2443189     3  0.4235     0.7306 0.176 0.000 0.824
#> SRR2443188     1  0.1289     0.8449 0.968 0.000 0.032
#> SRR2443186     2  0.1267     0.9448 0.024 0.972 0.004
#> SRR2443187     2  0.2066     0.9426 0.060 0.940 0.000
#> SRR2443185     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443184     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443183     1  0.2261     0.8589 0.932 0.000 0.068
#> SRR2443182     1  0.2261     0.8589 0.932 0.000 0.068
#> SRR2443181     2  0.2356     0.9395 0.072 0.928 0.000
#> SRR2443180     2  0.1620     0.9438 0.024 0.964 0.012
#> SRR2443179     3  0.5156     0.7238 0.216 0.008 0.776
#> SRR2443178     1  0.5982     0.4241 0.668 0.004 0.328
#> SRR2443177     1  0.4452     0.7664 0.808 0.000 0.192
#> SRR2443176     1  0.3752     0.8161 0.856 0.000 0.144
#> SRR2443175     1  0.2537     0.8573 0.920 0.000 0.080
#> SRR2443174     1  0.2356     0.8590 0.928 0.000 0.072
#> SRR2443173     2  0.0661     0.9394 0.004 0.988 0.008
#> SRR2443172     2  0.0661     0.9394 0.004 0.988 0.008
#> SRR2443171     1  0.2448     0.8583 0.924 0.000 0.076
#> SRR2443170     1  0.2846     0.8262 0.924 0.056 0.020
#> SRR2443169     1  0.2448     0.8583 0.924 0.000 0.076
#> SRR2443168     1  0.8790     0.3333 0.532 0.340 0.128
#> SRR2443167     3  0.0592     0.8208 0.012 0.000 0.988
#> SRR2443166     3  0.1643     0.8142 0.044 0.000 0.956
#> SRR2443165     3  0.4291     0.7266 0.180 0.000 0.820
#> SRR2443164     2  0.0892     0.9353 0.000 0.980 0.020
#> SRR2443163     3  0.0829     0.8199 0.012 0.004 0.984
#> SRR2443162     3  0.1753     0.8125 0.048 0.000 0.952
#> SRR2443161     3  0.5291     0.5649 0.268 0.000 0.732
#> SRR2443160     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443159     3  0.0747     0.8218 0.016 0.000 0.984
#> SRR2443158     3  0.5650     0.4761 0.312 0.000 0.688
#> SRR2443157     1  0.5016     0.7035 0.760 0.000 0.240
#> SRR2443156     1  0.2400     0.8584 0.932 0.004 0.064
#> SRR2443155     1  0.2793     0.8374 0.928 0.044 0.028
#> SRR2443154     1  0.3112     0.8499 0.900 0.004 0.096
#> SRR2443153     1  0.2356     0.8590 0.928 0.000 0.072
#> SRR2443152     2  0.0661     0.9394 0.004 0.988 0.008
#> SRR2443151     2  0.0424     0.9395 0.000 0.992 0.008
#> SRR2443150     2  0.0661     0.9394 0.004 0.988 0.008
#> SRR2443148     2  0.2584     0.9396 0.064 0.928 0.008
#> SRR2443147     2  0.3481     0.9267 0.052 0.904 0.044
#> SRR2443149     3  0.0892     0.8215 0.020 0.000 0.980

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     1  0.4093    0.77811 0.832 0.000 0.072 0.096
#> SRR2443262     3  0.1211    0.88723 0.000 0.040 0.960 0.000
#> SRR2443261     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443260     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443259     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443258     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443257     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443256     3  0.4977    0.09023 0.460 0.000 0.540 0.000
#> SRR2443255     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.0817    0.90155 0.024 0.000 0.976 0.000
#> SRR2443253     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443251     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443250     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443249     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443252     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443247     1  0.1356    0.86723 0.960 0.000 0.032 0.008
#> SRR2443246     1  0.1640    0.86524 0.956 0.020 0.012 0.012
#> SRR2443248     3  0.2334    0.83770 0.000 0.088 0.908 0.004
#> SRR2443244     1  0.4307    0.66192 0.784 0.024 0.000 0.192
#> SRR2443245     1  0.5592    0.38155 0.572 0.000 0.024 0.404
#> SRR2443243     1  0.3356    0.76105 0.824 0.000 0.000 0.176
#> SRR2443242     3  0.1610    0.88442 0.000 0.032 0.952 0.016
#> SRR2443241     1  0.0336    0.87602 0.992 0.000 0.000 0.008
#> SRR2443240     1  0.3933    0.66774 0.792 0.200 0.000 0.008
#> SRR2443239     2  0.0188    0.86372 0.000 0.996 0.000 0.004
#> SRR2443238     1  0.4948    0.34100 0.560 0.000 0.000 0.440
#> SRR2443237     4  0.0712    0.53280 0.004 0.008 0.004 0.984
#> SRR2443236     1  0.0336    0.87602 0.992 0.000 0.000 0.008
#> SRR2443235     1  0.1022    0.87347 0.968 0.000 0.000 0.032
#> SRR2443233     1  0.1389    0.86746 0.952 0.000 0.000 0.048
#> SRR2443234     1  0.1211    0.87082 0.960 0.000 0.000 0.040
#> SRR2443232     1  0.0188    0.87774 0.996 0.000 0.000 0.004
#> SRR2443231     1  0.0000    0.87741 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0469    0.87732 0.988 0.000 0.000 0.012
#> SRR2443229     1  0.6893    0.38328 0.624 0.176 0.008 0.192
#> SRR2443228     2  0.0921    0.85573 0.000 0.972 0.000 0.028
#> SRR2443227     1  0.1022    0.87347 0.968 0.000 0.000 0.032
#> SRR2443226     1  0.5472    0.31745 0.544 0.000 0.016 0.440
#> SRR2443225     1  0.2867    0.82525 0.884 0.000 0.012 0.104
#> SRR2443223     3  0.1888    0.87669 0.044 0.016 0.940 0.000
#> SRR2443224     2  0.1938    0.81026 0.052 0.936 0.000 0.012
#> SRR2443222     2  0.0921    0.85573 0.000 0.972 0.000 0.028
#> SRR2443221     2  0.3764    0.65463 0.000 0.784 0.000 0.216
#> SRR2443219     2  0.4072    0.58845 0.000 0.748 0.000 0.252
#> SRR2443220     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443218     4  0.4994   -0.00204 0.000 0.480 0.000 0.520
#> SRR2443217     1  0.3157    0.75707 0.852 0.000 0.004 0.144
#> SRR2443216     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443215     4  0.5143    0.06126 0.004 0.456 0.000 0.540
#> SRR2443214     4  0.5497   -0.16875 0.460 0.000 0.016 0.524
#> SRR2443213     1  0.0188    0.87681 0.996 0.000 0.000 0.004
#> SRR2443212     2  0.7754   -0.08986 0.336 0.420 0.000 0.244
#> SRR2443211     2  0.1978    0.79515 0.068 0.928 0.000 0.004
#> SRR2443210     2  0.0707    0.85933 0.000 0.980 0.000 0.020
#> SRR2443209     1  0.0804    0.87333 0.980 0.008 0.000 0.012
#> SRR2443208     2  0.3831    0.65041 0.004 0.792 0.000 0.204
#> SRR2443207     2  0.0000    0.86395 0.000 1.000 0.000 0.000
#> SRR2443206     2  0.0000    0.86395 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.0524    0.86120 0.008 0.988 0.000 0.004
#> SRR2443204     3  0.5740    0.59872 0.092 0.000 0.700 0.208
#> SRR2443203     4  0.7732    0.20718 0.268 0.000 0.288 0.444
#> SRR2443202     4  0.6605    0.33982 0.248 0.000 0.136 0.616
#> SRR2443201     3  0.0592    0.90939 0.000 0.000 0.984 0.016
#> SRR2443200     4  0.4981    0.04311 0.000 0.464 0.000 0.536
#> SRR2443199     4  0.4994   -0.00149 0.000 0.480 0.000 0.520
#> SRR2443197     3  0.5193    0.38143 0.008 0.000 0.580 0.412
#> SRR2443196     4  0.4328    0.38725 0.008 0.000 0.244 0.748
#> SRR2443198     3  0.5842    0.25420 0.032 0.000 0.520 0.448
#> SRR2443195     1  0.5236    0.34696 0.560 0.000 0.008 0.432
#> SRR2443194     1  0.7693    0.06112 0.432 0.000 0.340 0.228
#> SRR2443193     1  0.0336    0.87752 0.992 0.000 0.008 0.000
#> SRR2443191     1  0.1174    0.86897 0.968 0.020 0.000 0.012
#> SRR2443192     4  0.1151    0.53596 0.024 0.008 0.000 0.968
#> SRR2443190     1  0.1302    0.86916 0.956 0.000 0.000 0.044
#> SRR2443189     3  0.1624    0.88718 0.020 0.000 0.952 0.028
#> SRR2443188     1  0.0336    0.87763 0.992 0.000 0.000 0.008
#> SRR2443186     2  0.0000    0.86395 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0188    0.86372 0.000 0.996 0.000 0.004
#> SRR2443185     3  0.0188    0.91476 0.000 0.000 0.996 0.004
#> SRR2443184     3  0.0188    0.91476 0.000 0.000 0.996 0.004
#> SRR2443183     1  0.1118    0.87223 0.964 0.000 0.000 0.036
#> SRR2443182     1  0.0707    0.87612 0.980 0.000 0.000 0.020
#> SRR2443181     2  0.0376    0.86292 0.004 0.992 0.000 0.004
#> SRR2443180     2  0.4992    0.04160 0.000 0.524 0.000 0.476
#> SRR2443179     4  0.0524    0.53364 0.008 0.000 0.004 0.988
#> SRR2443178     4  0.4103    0.37025 0.256 0.000 0.000 0.744
#> SRR2443177     1  0.2635    0.84153 0.904 0.000 0.020 0.076
#> SRR2443176     1  0.1510    0.87012 0.956 0.000 0.016 0.028
#> SRR2443175     1  0.0000    0.87741 1.000 0.000 0.000 0.000
#> SRR2443174     1  0.0000    0.87741 1.000 0.000 0.000 0.000
#> SRR2443173     2  0.0188    0.86308 0.000 0.996 0.000 0.004
#> SRR2443172     2  0.0336    0.86183 0.000 0.992 0.000 0.008
#> SRR2443171     1  0.0804    0.87264 0.980 0.008 0.000 0.012
#> SRR2443170     1  0.0927    0.87100 0.976 0.016 0.000 0.008
#> SRR2443169     1  0.0376    0.87747 0.992 0.000 0.004 0.004
#> SRR2443168     2  0.5694    0.50016 0.176 0.728 0.088 0.008
#> SRR2443167     3  0.1389    0.89006 0.000 0.000 0.952 0.048
#> SRR2443166     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443165     3  0.5374    0.60708 0.052 0.000 0.704 0.244
#> SRR2443164     2  0.0707    0.85968 0.000 0.980 0.000 0.020
#> SRR2443163     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443162     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443161     3  0.0000    0.91607 0.000 0.000 1.000 0.000
#> SRR2443160     3  0.0921    0.90323 0.000 0.000 0.972 0.028
#> SRR2443159     3  0.0336    0.91315 0.000 0.000 0.992 0.008
#> SRR2443158     3  0.2973    0.76138 0.144 0.000 0.856 0.000
#> SRR2443157     1  0.1975    0.85488 0.936 0.000 0.048 0.016
#> SRR2443156     1  0.0657    0.87397 0.984 0.004 0.000 0.012
#> SRR2443155     1  0.1174    0.86664 0.968 0.020 0.000 0.012
#> SRR2443154     1  0.1174    0.86664 0.968 0.020 0.000 0.012
#> SRR2443153     1  0.0000    0.87741 1.000 0.000 0.000 0.000
#> SRR2443152     2  0.0657    0.85745 0.004 0.984 0.000 0.012
#> SRR2443151     2  0.0592    0.86075 0.000 0.984 0.000 0.016
#> SRR2443150     2  0.0336    0.86183 0.000 0.992 0.000 0.008
#> SRR2443148     4  0.4454    0.31598 0.000 0.308 0.000 0.692
#> SRR2443147     4  0.5339    0.20594 0.000 0.384 0.016 0.600
#> SRR2443149     3  0.0000    0.91607 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     1  0.5227    0.22003 0.508 0.000 0.044 0.448 0.000
#> SRR2443262     3  0.1179    0.87265 0.000 0.016 0.964 0.004 0.016
#> SRR2443261     3  0.0693    0.87665 0.000 0.012 0.980 0.000 0.008
#> SRR2443260     3  0.0324    0.87948 0.004 0.000 0.992 0.004 0.000
#> SRR2443259     3  0.0324    0.87948 0.004 0.000 0.992 0.004 0.000
#> SRR2443258     3  0.1012    0.87741 0.020 0.000 0.968 0.012 0.000
#> SRR2443257     3  0.0162    0.87883 0.000 0.000 0.996 0.004 0.000
#> SRR2443256     1  0.4452   -0.00852 0.500 0.000 0.496 0.004 0.000
#> SRR2443255     3  0.0771    0.87769 0.020 0.000 0.976 0.004 0.000
#> SRR2443254     3  0.1808    0.86060 0.040 0.000 0.936 0.004 0.020
#> SRR2443253     3  0.0162    0.87923 0.000 0.000 0.996 0.004 0.000
#> SRR2443251     3  0.0000    0.87898 0.000 0.000 1.000 0.000 0.000
#> SRR2443250     3  0.0727    0.87638 0.000 0.012 0.980 0.004 0.004
#> SRR2443249     3  0.0404    0.87710 0.000 0.012 0.988 0.000 0.000
#> SRR2443252     3  0.0324    0.87948 0.004 0.000 0.992 0.004 0.000
#> SRR2443247     1  0.2045    0.69399 0.932 0.004 0.032 0.012 0.020
#> SRR2443246     1  0.5140    0.60608 0.760 0.060 0.056 0.008 0.116
#> SRR2443248     3  0.1990    0.85550 0.004 0.028 0.928 0.000 0.040
#> SRR2443244     1  0.5304    0.49027 0.664 0.008 0.000 0.076 0.252
#> SRR2443245     1  0.5253    0.38535 0.572 0.000 0.036 0.384 0.008
#> SRR2443243     1  0.4138    0.43064 0.616 0.000 0.000 0.384 0.000
#> SRR2443242     3  0.5107    0.59334 0.048 0.008 0.692 0.008 0.244
#> SRR2443241     1  0.3395    0.65275 0.844 0.104 0.000 0.004 0.048
#> SRR2443240     2  0.5345   -0.19222 0.480 0.480 0.000 0.024 0.016
#> SRR2443239     5  0.5697   -0.26241 0.068 0.448 0.004 0.000 0.480
#> SRR2443238     1  0.4867    0.33019 0.544 0.000 0.000 0.432 0.024
#> SRR2443237     5  0.5257    0.13971 0.024 0.000 0.012 0.476 0.488
#> SRR2443236     1  0.3812    0.65134 0.824 0.076 0.000 0.008 0.092
#> SRR2443235     1  0.2813    0.65630 0.832 0.000 0.000 0.168 0.000
#> SRR2443233     1  0.3741    0.57500 0.732 0.000 0.000 0.264 0.004
#> SRR2443234     1  0.3274    0.61373 0.780 0.000 0.000 0.220 0.000
#> SRR2443232     1  0.1928    0.69504 0.920 0.004 0.000 0.072 0.004
#> SRR2443231     1  0.1498    0.69607 0.952 0.008 0.000 0.024 0.016
#> SRR2443230     1  0.2026    0.69566 0.928 0.000 0.012 0.044 0.016
#> SRR2443229     5  0.7202    0.01463 0.408 0.048 0.112 0.008 0.424
#> SRR2443228     2  0.4031    0.62386 0.000 0.772 0.000 0.044 0.184
#> SRR2443227     1  0.2699    0.68611 0.880 0.000 0.012 0.100 0.008
#> SRR2443226     1  0.5447    0.35410 0.552 0.000 0.012 0.396 0.040
#> SRR2443225     1  0.3331    0.67130 0.864 0.000 0.032 0.032 0.072
#> SRR2443223     3  0.2077    0.83532 0.008 0.084 0.908 0.000 0.000
#> SRR2443224     2  0.1661    0.65733 0.024 0.940 0.000 0.000 0.036
#> SRR2443222     2  0.3812    0.62744 0.000 0.772 0.000 0.024 0.204
#> SRR2443221     2  0.4744    0.55182 0.000 0.692 0.000 0.056 0.252
#> SRR2443219     5  0.5452    0.43737 0.000 0.108 0.128 0.044 0.720
#> SRR2443220     3  0.0000    0.87898 0.000 0.000 1.000 0.000 0.000
#> SRR2443218     2  0.6742   -0.02188 0.000 0.412 0.000 0.296 0.292
#> SRR2443217     1  0.5604    0.24081 0.532 0.000 0.056 0.008 0.404
#> SRR2443216     3  0.1310    0.87395 0.024 0.000 0.956 0.020 0.000
#> SRR2443215     5  0.1533    0.49422 0.004 0.024 0.004 0.016 0.952
#> SRR2443214     1  0.6222    0.47222 0.592 0.000 0.016 0.248 0.144
#> SRR2443213     1  0.1682    0.69071 0.940 0.012 0.000 0.004 0.044
#> SRR2443212     5  0.8104    0.17252 0.284 0.256 0.000 0.100 0.360
#> SRR2443211     2  0.2393    0.61835 0.080 0.900 0.000 0.004 0.016
#> SRR2443210     2  0.2930    0.65232 0.000 0.832 0.000 0.004 0.164
#> SRR2443209     1  0.4822    0.53690 0.704 0.076 0.000 0.000 0.220
#> SRR2443208     5  0.5507   -0.10617 0.048 0.396 0.004 0.004 0.548
#> SRR2443207     2  0.3857    0.58249 0.000 0.688 0.000 0.000 0.312
#> SRR2443206     2  0.3966    0.55730 0.000 0.664 0.000 0.000 0.336
#> SRR2443205     2  0.4049    0.55738 0.124 0.792 0.000 0.000 0.084
#> SRR2443204     3  0.6621    0.20891 0.224 0.000 0.552 0.204 0.020
#> SRR2443203     4  0.4295    0.50492 0.216 0.000 0.044 0.740 0.000
#> SRR2443202     4  0.2673    0.51422 0.072 0.000 0.028 0.892 0.008
#> SRR2443201     3  0.2136    0.84386 0.000 0.000 0.904 0.088 0.008
#> SRR2443200     5  0.6047    0.23741 0.000 0.332 0.000 0.136 0.532
#> SRR2443199     5  0.5274    0.44266 0.000 0.192 0.000 0.132 0.676
#> SRR2443197     3  0.4582    0.27355 0.012 0.000 0.572 0.416 0.000
#> SRR2443196     4  0.6051   -0.05858 0.000 0.000 0.120 0.476 0.404
#> SRR2443198     4  0.5542   -0.01162 0.048 0.000 0.448 0.496 0.008
#> SRR2443195     1  0.4528    0.33730 0.548 0.000 0.000 0.444 0.008
#> SRR2443194     1  0.5736    0.07992 0.468 0.000 0.084 0.448 0.000
#> SRR2443193     1  0.5723    0.40468 0.612 0.000 0.084 0.012 0.292
#> SRR2443191     1  0.4818    0.52601 0.708 0.080 0.000 0.000 0.212
#> SRR2443192     5  0.4477    0.40248 0.040 0.000 0.000 0.252 0.708
#> SRR2443190     1  0.2612    0.67621 0.868 0.000 0.000 0.124 0.008
#> SRR2443189     3  0.4462    0.71424 0.124 0.000 0.788 0.032 0.056
#> SRR2443188     1  0.1626    0.69598 0.940 0.000 0.000 0.016 0.044
#> SRR2443186     2  0.3983    0.55164 0.000 0.660 0.000 0.000 0.340
#> SRR2443187     2  0.4150    0.49124 0.000 0.612 0.000 0.000 0.388
#> SRR2443185     3  0.1012    0.87681 0.012 0.000 0.968 0.020 0.000
#> SRR2443184     3  0.2236    0.84632 0.024 0.000 0.908 0.068 0.000
#> SRR2443183     1  0.2193    0.69038 0.900 0.000 0.000 0.092 0.008
#> SRR2443182     1  0.1282    0.69661 0.952 0.000 0.000 0.044 0.004
#> SRR2443181     2  0.4266    0.56202 0.104 0.776 0.000 0.000 0.120
#> SRR2443180     2  0.6152    0.24782 0.000 0.524 0.000 0.152 0.324
#> SRR2443179     4  0.2966    0.30618 0.000 0.000 0.016 0.848 0.136
#> SRR2443178     4  0.3602    0.53201 0.180 0.000 0.000 0.796 0.024
#> SRR2443177     1  0.6346    0.37475 0.596 0.000 0.228 0.024 0.152
#> SRR2443176     1  0.4722    0.58024 0.760 0.000 0.156 0.028 0.056
#> SRR2443175     1  0.2017    0.68581 0.924 0.004 0.008 0.004 0.060
#> SRR2443174     1  0.0290    0.69511 0.992 0.000 0.000 0.000 0.008
#> SRR2443173     2  0.0404    0.67503 0.000 0.988 0.000 0.000 0.012
#> SRR2443172     2  0.0162    0.67293 0.000 0.996 0.004 0.000 0.000
#> SRR2443171     1  0.3163    0.65278 0.848 0.128 0.000 0.012 0.012
#> SRR2443170     1  0.4775    0.58104 0.720 0.220 0.000 0.048 0.012
#> SRR2443169     1  0.0968    0.69415 0.972 0.012 0.000 0.004 0.012
#> SRR2443168     2  0.2418    0.64668 0.020 0.912 0.024 0.000 0.044
#> SRR2443167     3  0.3928    0.57964 0.000 0.000 0.700 0.296 0.004
#> SRR2443166     3  0.2236    0.84010 0.068 0.000 0.908 0.024 0.000
#> SRR2443165     4  0.5435    0.18513 0.352 0.000 0.072 0.576 0.000
#> SRR2443164     2  0.4911    0.56832 0.000 0.728 0.004 0.148 0.120
#> SRR2443163     3  0.0898    0.87638 0.000 0.020 0.972 0.008 0.000
#> SRR2443162     3  0.4361    0.65750 0.124 0.000 0.768 0.108 0.000
#> SRR2443161     3  0.2843    0.74364 0.144 0.000 0.848 0.008 0.000
#> SRR2443160     3  0.3906    0.59403 0.000 0.000 0.704 0.292 0.004
#> SRR2443159     3  0.1121    0.87000 0.000 0.000 0.956 0.044 0.000
#> SRR2443158     1  0.6585    0.02666 0.428 0.000 0.360 0.212 0.000
#> SRR2443157     1  0.4928    0.51143 0.660 0.000 0.056 0.284 0.000
#> SRR2443156     1  0.5102    0.59438 0.732 0.144 0.000 0.104 0.020
#> SRR2443155     1  0.4137    0.61920 0.780 0.176 0.000 0.028 0.016
#> SRR2443154     1  0.6124    0.50180 0.608 0.176 0.000 0.204 0.012
#> SRR2443153     1  0.0880    0.69708 0.968 0.000 0.000 0.032 0.000
#> SRR2443152     2  0.0798    0.66367 0.008 0.976 0.000 0.000 0.016
#> SRR2443151     2  0.2929    0.65974 0.000 0.856 0.004 0.012 0.128
#> SRR2443150     2  0.0000    0.67269 0.000 1.000 0.000 0.000 0.000
#> SRR2443148     5  0.4974    0.33736 0.000 0.028 0.000 0.464 0.508
#> SRR2443147     5  0.6173    0.39408 0.000 0.060 0.036 0.376 0.528
#> SRR2443149     3  0.1278    0.87510 0.020 0.000 0.960 0.004 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     6  0.5031    0.31934 0.332 0.000 0.012 0.052 0.004 0.600
#> SRR2443262     3  0.1578    0.76680 0.000 0.012 0.944 0.012 0.028 0.004
#> SRR2443261     3  0.1410    0.77511 0.000 0.000 0.944 0.004 0.044 0.008
#> SRR2443260     3  0.2688    0.76181 0.000 0.000 0.868 0.000 0.064 0.068
#> SRR2443259     3  0.3278    0.74493 0.000 0.000 0.824 0.000 0.088 0.088
#> SRR2443258     3  0.4067    0.69176 0.000 0.000 0.752 0.000 0.104 0.144
#> SRR2443257     3  0.0984    0.77646 0.000 0.000 0.968 0.012 0.008 0.012
#> SRR2443256     3  0.6719    0.16137 0.216 0.000 0.500 0.000 0.080 0.204
#> SRR2443255     3  0.3277    0.74967 0.000 0.000 0.824 0.000 0.084 0.092
#> SRR2443254     3  0.2144    0.77092 0.008 0.000 0.908 0.004 0.068 0.012
#> SRR2443253     3  0.1875    0.75621 0.000 0.000 0.928 0.032 0.020 0.020
#> SRR2443251     3  0.1320    0.77933 0.000 0.000 0.948 0.000 0.036 0.016
#> SRR2443250     3  0.0922    0.77117 0.000 0.000 0.968 0.004 0.024 0.004
#> SRR2443249     3  0.0951    0.77120 0.000 0.000 0.968 0.008 0.020 0.004
#> SRR2443252     3  0.3563    0.72367 0.000 0.000 0.800 0.000 0.108 0.092
#> SRR2443247     1  0.5755    0.35823 0.604 0.000 0.056 0.000 0.092 0.248
#> SRR2443246     1  0.6247    0.19635 0.576 0.016 0.164 0.000 0.212 0.032
#> SRR2443248     3  0.3044    0.73426 0.000 0.048 0.836 0.000 0.116 0.000
#> SRR2443244     1  0.5694    0.26240 0.548 0.000 0.000 0.204 0.244 0.004
#> SRR2443245     6  0.4330    0.49738 0.168 0.000 0.020 0.004 0.056 0.752
#> SRR2443243     6  0.4353    0.26937 0.360 0.000 0.000 0.024 0.004 0.612
#> SRR2443242     5  0.5625    0.25886 0.000 0.020 0.364 0.012 0.540 0.064
#> SRR2443241     1  0.1625    0.57507 0.928 0.012 0.000 0.000 0.060 0.000
#> SRR2443240     1  0.5394    0.44371 0.704 0.152 0.000 0.056 0.056 0.032
#> SRR2443239     5  0.5477    0.43809 0.136 0.144 0.028 0.016 0.676 0.000
#> SRR2443238     6  0.4952    0.47487 0.168 0.000 0.000 0.072 0.052 0.708
#> SRR2443237     6  0.6339   -0.25104 0.000 0.020 0.000 0.256 0.264 0.460
#> SRR2443236     1  0.2810    0.54624 0.832 0.008 0.000 0.000 0.156 0.004
#> SRR2443235     1  0.4279    0.19480 0.548 0.000 0.000 0.004 0.012 0.436
#> SRR2443233     6  0.4206    0.29062 0.356 0.000 0.000 0.000 0.024 0.620
#> SRR2443234     1  0.4098    0.18155 0.548 0.000 0.000 0.004 0.004 0.444
#> SRR2443232     1  0.4893    0.35525 0.584 0.000 0.000 0.000 0.076 0.340
#> SRR2443231     1  0.2669    0.56973 0.836 0.000 0.000 0.000 0.008 0.156
#> SRR2443230     6  0.5213    0.22623 0.352 0.000 0.000 0.000 0.104 0.544
#> SRR2443229     5  0.5555    0.57561 0.128 0.012 0.128 0.000 0.680 0.052
#> SRR2443228     2  0.2697    0.65463 0.000 0.864 0.000 0.092 0.044 0.000
#> SRR2443227     1  0.4715    0.16804 0.536 0.000 0.000 0.000 0.048 0.416
#> SRR2443226     6  0.4723    0.48377 0.156 0.000 0.000 0.012 0.124 0.708
#> SRR2443225     1  0.7098    0.17420 0.388 0.000 0.044 0.016 0.328 0.224
#> SRR2443223     3  0.3061    0.74072 0.040 0.024 0.880 0.008 0.024 0.024
#> SRR2443224     2  0.2669    0.66697 0.156 0.836 0.000 0.000 0.008 0.000
#> SRR2443222     2  0.3118    0.64880 0.000 0.836 0.000 0.092 0.072 0.000
#> SRR2443221     2  0.5242    0.12840 0.000 0.516 0.000 0.384 0.100 0.000
#> SRR2443219     5  0.6657    0.26694 0.000 0.084 0.192 0.184 0.536 0.004
#> SRR2443220     3  0.1225    0.77920 0.000 0.000 0.952 0.000 0.036 0.012
#> SRR2443218     4  0.4738    0.39710 0.000 0.268 0.000 0.660 0.060 0.012
#> SRR2443217     5  0.5132    0.55737 0.188 0.000 0.132 0.000 0.664 0.016
#> SRR2443216     3  0.4838    0.38888 0.000 0.000 0.564 0.000 0.064 0.372
#> SRR2443215     5  0.3652    0.40706 0.028 0.024 0.020 0.100 0.828 0.000
#> SRR2443214     6  0.6087    0.37710 0.132 0.000 0.012 0.032 0.244 0.580
#> SRR2443213     1  0.3453    0.58920 0.804 0.000 0.000 0.000 0.132 0.064
#> SRR2443212     1  0.7624   -0.20631 0.356 0.196 0.000 0.308 0.128 0.012
#> SRR2443211     1  0.4069    0.17864 0.612 0.376 0.000 0.008 0.004 0.000
#> SRR2443210     2  0.1644    0.69233 0.000 0.932 0.000 0.028 0.040 0.000
#> SRR2443209     1  0.3221    0.49267 0.792 0.020 0.000 0.000 0.188 0.000
#> SRR2443208     5  0.6153    0.04696 0.016 0.392 0.004 0.028 0.484 0.076
#> SRR2443207     2  0.4223    0.49461 0.004 0.664 0.008 0.004 0.312 0.008
#> SRR2443206     2  0.4976    0.45981 0.076 0.596 0.000 0.004 0.324 0.000
#> SRR2443205     1  0.5481   -0.09477 0.488 0.420 0.000 0.020 0.072 0.000
#> SRR2443204     6  0.4844    0.50986 0.056 0.000 0.132 0.000 0.084 0.728
#> SRR2443203     6  0.4426    0.24696 0.040 0.000 0.000 0.248 0.016 0.696
#> SRR2443202     4  0.4964    0.36870 0.020 0.000 0.028 0.568 0.004 0.380
#> SRR2443201     3  0.6133    0.31907 0.000 0.004 0.524 0.120 0.036 0.316
#> SRR2443200     2  0.5956    0.00906 0.000 0.476 0.000 0.336 0.180 0.008
#> SRR2443199     4  0.6113    0.35855 0.000 0.224 0.000 0.456 0.312 0.008
#> SRR2443197     6  0.5001    0.37189 0.004 0.000 0.248 0.096 0.004 0.648
#> SRR2443196     4  0.6481    0.43933 0.000 0.000 0.040 0.484 0.216 0.260
#> SRR2443198     6  0.7213   -0.04258 0.020 0.000 0.256 0.296 0.044 0.384
#> SRR2443195     6  0.4429    0.43317 0.244 0.000 0.000 0.032 0.024 0.700
#> SRR2443194     6  0.5228    0.51078 0.152 0.000 0.068 0.076 0.004 0.700
#> SRR2443193     5  0.6317    0.48923 0.192 0.004 0.108 0.000 0.588 0.108
#> SRR2443191     1  0.4060    0.46974 0.752 0.048 0.000 0.012 0.188 0.000
#> SRR2443192     5  0.5291   -0.07522 0.012 0.016 0.000 0.344 0.580 0.048
#> SRR2443190     1  0.4135    0.44120 0.668 0.000 0.000 0.000 0.032 0.300
#> SRR2443189     6  0.6030    0.18678 0.004 0.000 0.272 0.000 0.256 0.468
#> SRR2443188     1  0.5304    0.47177 0.580 0.000 0.000 0.000 0.276 0.144
#> SRR2443186     2  0.4715    0.45573 0.052 0.608 0.000 0.004 0.336 0.000
#> SRR2443187     2  0.4751    0.37001 0.036 0.556 0.000 0.008 0.400 0.000
#> SRR2443185     3  0.4619    0.28319 0.000 0.004 0.548 0.004 0.024 0.420
#> SRR2443184     6  0.4960    0.23752 0.000 0.004 0.320 0.016 0.044 0.616
#> SRR2443183     1  0.4020    0.54196 0.744 0.000 0.000 0.008 0.044 0.204
#> SRR2443182     1  0.3110    0.55261 0.792 0.000 0.000 0.000 0.012 0.196
#> SRR2443181     1  0.5949    0.12197 0.552 0.280 0.000 0.032 0.136 0.000
#> SRR2443180     4  0.5382    0.07431 0.000 0.400 0.000 0.504 0.088 0.008
#> SRR2443179     4  0.3571    0.51207 0.000 0.000 0.008 0.744 0.008 0.240
#> SRR2443178     4  0.5466    0.19855 0.136 0.000 0.000 0.560 0.004 0.300
#> SRR2443177     5  0.7085    0.25641 0.140 0.000 0.172 0.000 0.464 0.224
#> SRR2443176     6  0.6798    0.33100 0.200 0.000 0.092 0.000 0.212 0.496
#> SRR2443175     1  0.4800    0.47033 0.640 0.000 0.004 0.000 0.280 0.076
#> SRR2443174     1  0.3088    0.58004 0.832 0.000 0.000 0.000 0.048 0.120
#> SRR2443173     2  0.1644    0.69947 0.076 0.920 0.000 0.000 0.004 0.000
#> SRR2443172     2  0.1753    0.69897 0.084 0.912 0.000 0.000 0.004 0.000
#> SRR2443171     1  0.2819    0.58127 0.864 0.016 0.008 0.000 0.008 0.104
#> SRR2443170     1  0.4447    0.53225 0.704 0.196 0.000 0.000 0.000 0.100
#> SRR2443169     1  0.2871    0.55062 0.804 0.000 0.000 0.000 0.004 0.192
#> SRR2443168     2  0.2896    0.69422 0.080 0.864 0.012 0.000 0.044 0.000
#> SRR2443167     6  0.6382   -0.01023 0.000 0.004 0.352 0.224 0.012 0.408
#> SRR2443166     6  0.5359   -0.09597 0.000 0.000 0.432 0.000 0.108 0.460
#> SRR2443165     6  0.4341    0.51832 0.144 0.000 0.056 0.040 0.000 0.760
#> SRR2443164     2  0.4963    0.48595 0.004 0.728 0.036 0.164 0.016 0.052
#> SRR2443163     3  0.2838    0.73888 0.000 0.016 0.880 0.044 0.008 0.052
#> SRR2443162     6  0.5270    0.12281 0.052 0.000 0.452 0.000 0.020 0.476
#> SRR2443161     3  0.5132    0.51101 0.136 0.000 0.672 0.000 0.020 0.172
#> SRR2443160     6  0.5973   -0.04694 0.000 0.000 0.360 0.228 0.000 0.412
#> SRR2443159     3  0.3925    0.58223 0.000 0.000 0.724 0.040 0.000 0.236
#> SRR2443158     6  0.6320    0.24471 0.364 0.000 0.228 0.008 0.004 0.396
#> SRR2443157     6  0.3984    0.32900 0.336 0.000 0.016 0.000 0.000 0.648
#> SRR2443156     1  0.4586    0.52436 0.764 0.016 0.000 0.100 0.028 0.092
#> SRR2443155     1  0.2872    0.58273 0.864 0.076 0.000 0.000 0.008 0.052
#> SRR2443154     1  0.4509    0.51610 0.712 0.104 0.000 0.000 0.004 0.180
#> SRR2443153     1  0.4629    0.13259 0.524 0.000 0.000 0.000 0.040 0.436
#> SRR2443152     2  0.2320    0.68153 0.132 0.864 0.000 0.000 0.004 0.000
#> SRR2443151     2  0.1261    0.69018 0.000 0.952 0.000 0.024 0.024 0.000
#> SRR2443150     2  0.1949    0.69621 0.088 0.904 0.000 0.004 0.004 0.000
#> SRR2443148     4  0.3268    0.52614 0.000 0.008 0.000 0.808 0.164 0.020
#> SRR2443147     4  0.5045    0.50190 0.000 0.048 0.092 0.728 0.120 0.012
#> SRR2443149     3  0.4401    0.67529 0.000 0.008 0.736 0.000 0.144 0.112

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.891           0.951       0.966         0.4913 0.500   0.500
#> 3 3 0.744           0.854       0.916         0.3031 0.849   0.699
#> 4 4 0.710           0.786       0.894         0.1425 0.907   0.734
#> 5 5 0.732           0.718       0.807         0.0682 0.944   0.789
#> 6 6 0.720           0.599       0.786         0.0502 0.929   0.692

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.4562      0.932 0.904 0.096
#> SRR2443262     2  0.0000      0.982 0.000 1.000
#> SRR2443261     2  0.0000      0.982 0.000 1.000
#> SRR2443260     1  0.4562      0.932 0.904 0.096
#> SRR2443259     1  0.4298      0.937 0.912 0.088
#> SRR2443258     1  0.3584      0.944 0.932 0.068
#> SRR2443257     2  0.0000      0.982 0.000 1.000
#> SRR2443256     1  0.3274      0.946 0.940 0.060
#> SRR2443255     1  0.4431      0.935 0.908 0.092
#> SRR2443254     1  0.4562      0.932 0.904 0.096
#> SRR2443253     2  0.0000      0.982 0.000 1.000
#> SRR2443251     2  0.0376      0.981 0.004 0.996
#> SRR2443250     2  0.0000      0.982 0.000 1.000
#> SRR2443249     2  0.0000      0.982 0.000 1.000
#> SRR2443252     1  0.4562      0.932 0.904 0.096
#> SRR2443247     1  0.0000      0.950 1.000 0.000
#> SRR2443246     1  0.0000      0.950 1.000 0.000
#> SRR2443248     2  0.1184      0.975 0.016 0.984
#> SRR2443244     2  0.1184      0.975 0.016 0.984
#> SRR2443245     1  0.0000      0.950 1.000 0.000
#> SRR2443243     1  0.0000      0.950 1.000 0.000
#> SRR2443242     2  0.4939      0.888 0.108 0.892
#> SRR2443241     1  0.4298      0.937 0.912 0.088
#> SRR2443240     1  0.6148      0.879 0.848 0.152
#> SRR2443239     2  0.1184      0.975 0.016 0.984
#> SRR2443238     1  0.0000      0.950 1.000 0.000
#> SRR2443237     2  0.4939      0.888 0.108 0.892
#> SRR2443236     1  0.0672      0.951 0.992 0.008
#> SRR2443235     1  0.0000      0.950 1.000 0.000
#> SRR2443233     1  0.0000      0.950 1.000 0.000
#> SRR2443234     1  0.0000      0.950 1.000 0.000
#> SRR2443232     1  0.0000      0.950 1.000 0.000
#> SRR2443231     1  0.0000      0.950 1.000 0.000
#> SRR2443230     1  0.0000      0.950 1.000 0.000
#> SRR2443229     1  0.3114      0.947 0.944 0.056
#> SRR2443228     2  0.0000      0.982 0.000 1.000
#> SRR2443227     1  0.0000      0.950 1.000 0.000
#> SRR2443226     1  0.0000      0.950 1.000 0.000
#> SRR2443225     1  0.6148      0.879 0.848 0.152
#> SRR2443223     2  0.1184      0.975 0.016 0.984
#> SRR2443224     1  0.8813      0.647 0.700 0.300
#> SRR2443222     2  0.0000      0.982 0.000 1.000
#> SRR2443221     2  0.0000      0.982 0.000 1.000
#> SRR2443219     2  0.0000      0.982 0.000 1.000
#> SRR2443220     2  0.0000      0.982 0.000 1.000
#> SRR2443218     2  0.0000      0.982 0.000 1.000
#> SRR2443217     1  0.4562      0.932 0.904 0.096
#> SRR2443216     1  0.4022      0.940 0.920 0.080
#> SRR2443215     2  0.1184      0.975 0.016 0.984
#> SRR2443214     1  0.0000      0.950 1.000 0.000
#> SRR2443213     1  0.0000      0.950 1.000 0.000
#> SRR2443212     2  0.5059      0.883 0.112 0.888
#> SRR2443211     2  0.5059      0.883 0.112 0.888
#> SRR2443210     2  0.0000      0.982 0.000 1.000
#> SRR2443209     1  0.4298      0.937 0.912 0.088
#> SRR2443208     1  0.4562      0.932 0.904 0.096
#> SRR2443207     1  0.4562      0.932 0.904 0.096
#> SRR2443206     2  0.0376      0.981 0.004 0.996
#> SRR2443205     2  0.3584      0.929 0.068 0.932
#> SRR2443204     1  0.0000      0.950 1.000 0.000
#> SRR2443203     1  0.4022      0.940 0.920 0.080
#> SRR2443202     2  0.1184      0.975 0.016 0.984
#> SRR2443201     2  0.4939      0.888 0.108 0.892
#> SRR2443200     2  0.0000      0.982 0.000 1.000
#> SRR2443199     2  0.0000      0.982 0.000 1.000
#> SRR2443197     2  0.0000      0.982 0.000 1.000
#> SRR2443196     2  0.0000      0.982 0.000 1.000
#> SRR2443198     2  0.0376      0.981 0.004 0.996
#> SRR2443195     1  0.0000      0.950 1.000 0.000
#> SRR2443194     1  0.6148      0.879 0.848 0.152
#> SRR2443193     1  0.0376      0.951 0.996 0.004
#> SRR2443191     1  0.4431      0.935 0.908 0.092
#> SRR2443192     2  0.1184      0.975 0.016 0.984
#> SRR2443190     1  0.0000      0.950 1.000 0.000
#> SRR2443189     1  0.0000      0.950 1.000 0.000
#> SRR2443188     1  0.0000      0.950 1.000 0.000
#> SRR2443186     2  0.0376      0.981 0.004 0.996
#> SRR2443187     2  0.0376      0.981 0.004 0.996
#> SRR2443185     2  0.0376      0.981 0.004 0.996
#> SRR2443184     1  0.4022      0.940 0.920 0.080
#> SRR2443183     1  0.0000      0.950 1.000 0.000
#> SRR2443182     1  0.2948      0.947 0.948 0.052
#> SRR2443181     2  0.0376      0.981 0.004 0.996
#> SRR2443180     2  0.0000      0.982 0.000 1.000
#> SRR2443179     2  0.0000      0.982 0.000 1.000
#> SRR2443178     2  0.0376      0.981 0.004 0.996
#> SRR2443177     1  0.0000      0.950 1.000 0.000
#> SRR2443176     1  0.2948      0.947 0.948 0.052
#> SRR2443175     1  0.0000      0.950 1.000 0.000
#> SRR2443174     1  0.0000      0.950 1.000 0.000
#> SRR2443173     2  0.0000      0.982 0.000 1.000
#> SRR2443172     2  0.0000      0.982 0.000 1.000
#> SRR2443171     1  0.0000      0.950 1.000 0.000
#> SRR2443170     1  0.0938      0.951 0.988 0.012
#> SRR2443169     1  0.0000      0.950 1.000 0.000
#> SRR2443168     1  0.3733      0.943 0.928 0.072
#> SRR2443167     2  0.0000      0.982 0.000 1.000
#> SRR2443166     1  0.0000      0.950 1.000 0.000
#> SRR2443165     2  0.0000      0.982 0.000 1.000
#> SRR2443164     2  0.0000      0.982 0.000 1.000
#> SRR2443163     2  0.4939      0.888 0.108 0.892
#> SRR2443162     1  0.4431      0.935 0.908 0.092
#> SRR2443161     1  0.6048      0.883 0.852 0.148
#> SRR2443160     2  0.0000      0.982 0.000 1.000
#> SRR2443159     2  0.0000      0.982 0.000 1.000
#> SRR2443158     1  0.4431      0.935 0.908 0.092
#> SRR2443157     1  0.0000      0.950 1.000 0.000
#> SRR2443156     1  0.4298      0.937 0.912 0.088
#> SRR2443155     1  0.2043      0.949 0.968 0.032
#> SRR2443154     1  0.2948      0.947 0.948 0.052
#> SRR2443153     1  0.0000      0.950 1.000 0.000
#> SRR2443152     2  0.0000      0.982 0.000 1.000
#> SRR2443151     2  0.0000      0.982 0.000 1.000
#> SRR2443150     2  0.0000      0.982 0.000 1.000
#> SRR2443148     2  0.0000      0.982 0.000 1.000
#> SRR2443147     2  0.0000      0.982 0.000 1.000
#> SRR2443149     1  0.4022      0.940 0.920 0.080

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443262     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443261     2  0.2448      0.942 0.000 0.924 0.076
#> SRR2443260     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443259     3  0.0424      0.889 0.008 0.000 0.992
#> SRR2443258     3  0.1163      0.882 0.028 0.000 0.972
#> SRR2443257     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443256     3  0.4504      0.711 0.196 0.000 0.804
#> SRR2443255     3  0.0237      0.890 0.004 0.000 0.996
#> SRR2443254     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443253     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443251     2  0.2625      0.940 0.000 0.916 0.084
#> SRR2443250     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443249     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443252     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443247     1  0.1163      0.866 0.972 0.000 0.028
#> SRR2443246     1  0.5988      0.529 0.632 0.000 0.368
#> SRR2443248     2  0.3116      0.930 0.000 0.892 0.108
#> SRR2443244     2  0.3038      0.932 0.000 0.896 0.104
#> SRR2443245     1  0.3879      0.842 0.848 0.000 0.152
#> SRR2443243     1  0.4654      0.797 0.792 0.000 0.208
#> SRR2443242     2  0.4605      0.844 0.000 0.796 0.204
#> SRR2443241     3  0.0892      0.887 0.020 0.000 0.980
#> SRR2443240     3  0.1964      0.845 0.000 0.056 0.944
#> SRR2443239     2  0.3116      0.930 0.000 0.892 0.108
#> SRR2443238     1  0.4842      0.781 0.776 0.000 0.224
#> SRR2443237     2  0.4605      0.844 0.000 0.796 0.204
#> SRR2443236     1  0.6291      0.238 0.532 0.000 0.468
#> SRR2443235     1  0.2625      0.865 0.916 0.000 0.084
#> SRR2443233     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443229     3  0.3752      0.780 0.144 0.000 0.856
#> SRR2443228     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443226     1  0.4750      0.789 0.784 0.000 0.216
#> SRR2443225     3  0.1964      0.851 0.000 0.056 0.944
#> SRR2443223     2  0.3038      0.932 0.000 0.896 0.104
#> SRR2443224     3  0.4605      0.657 0.000 0.204 0.796
#> SRR2443222     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443219     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443220     2  0.2448      0.942 0.000 0.924 0.076
#> SRR2443218     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443217     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443216     3  0.0747      0.888 0.016 0.000 0.984
#> SRR2443215     2  0.3116      0.930 0.000 0.892 0.108
#> SRR2443214     1  0.3879      0.842 0.848 0.000 0.152
#> SRR2443213     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443212     2  0.4654      0.839 0.000 0.792 0.208
#> SRR2443211     2  0.4654      0.839 0.000 0.792 0.208
#> SRR2443210     2  0.1031      0.943 0.000 0.976 0.024
#> SRR2443209     3  0.0892      0.887 0.020 0.000 0.980
#> SRR2443208     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443207     3  0.0000      0.889 0.000 0.000 1.000
#> SRR2443206     2  0.2711      0.939 0.000 0.912 0.088
#> SRR2443205     2  0.4062      0.885 0.000 0.836 0.164
#> SRR2443204     1  0.3686      0.850 0.860 0.000 0.140
#> SRR2443203     3  0.0747      0.888 0.016 0.000 0.984
#> SRR2443202     2  0.3038      0.932 0.000 0.896 0.104
#> SRR2443201     2  0.4605      0.844 0.000 0.796 0.204
#> SRR2443200     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443199     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443197     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443196     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443198     2  0.2711      0.939 0.000 0.912 0.088
#> SRR2443195     1  0.4842      0.781 0.776 0.000 0.224
#> SRR2443194     3  0.1964      0.851 0.000 0.056 0.944
#> SRR2443193     1  0.5948      0.549 0.640 0.000 0.360
#> SRR2443191     3  0.0237      0.890 0.004 0.000 0.996
#> SRR2443192     2  0.3038      0.932 0.000 0.896 0.104
#> SRR2443190     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443189     1  0.3686      0.850 0.860 0.000 0.140
#> SRR2443188     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443186     2  0.2796      0.938 0.000 0.908 0.092
#> SRR2443187     2  0.2796      0.938 0.000 0.908 0.092
#> SRR2443185     2  0.2711      0.939 0.000 0.912 0.088
#> SRR2443184     3  0.0747      0.888 0.016 0.000 0.984
#> SRR2443183     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443182     3  0.5650      0.508 0.312 0.000 0.688
#> SRR2443181     2  0.2625      0.940 0.000 0.916 0.084
#> SRR2443180     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443179     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443178     2  0.2796      0.938 0.000 0.908 0.092
#> SRR2443177     1  0.5497      0.676 0.708 0.000 0.292
#> SRR2443176     3  0.5431      0.567 0.284 0.000 0.716
#> SRR2443175     1  0.2625      0.865 0.916 0.000 0.084
#> SRR2443174     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443173     2  0.1031      0.943 0.000 0.976 0.024
#> SRR2443172     2  0.1031      0.943 0.000 0.976 0.024
#> SRR2443171     1  0.3267      0.859 0.884 0.000 0.116
#> SRR2443170     3  0.6309     -0.165 0.500 0.000 0.500
#> SRR2443169     1  0.0000      0.865 1.000 0.000 0.000
#> SRR2443168     3  0.2356      0.852 0.072 0.000 0.928
#> SRR2443167     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443166     1  0.3686      0.850 0.860 0.000 0.140
#> SRR2443165     2  0.2711      0.939 0.000 0.912 0.088
#> SRR2443164     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443163     2  0.4605      0.844 0.000 0.796 0.204
#> SRR2443162     3  0.0237      0.890 0.004 0.000 0.996
#> SRR2443161     3  0.1860      0.854 0.000 0.052 0.948
#> SRR2443160     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443159     2  0.0892      0.943 0.000 0.980 0.020
#> SRR2443158     3  0.0237      0.890 0.004 0.000 0.996
#> SRR2443157     1  0.3267      0.859 0.884 0.000 0.116
#> SRR2443156     3  0.0892      0.887 0.020 0.000 0.980
#> SRR2443155     3  0.5988      0.356 0.368 0.000 0.632
#> SRR2443154     3  0.5760      0.471 0.328 0.000 0.672
#> SRR2443153     1  0.0237      0.865 0.996 0.000 0.004
#> SRR2443152     2  0.2448      0.941 0.000 0.924 0.076
#> SRR2443151     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443150     2  0.2448      0.941 0.000 0.924 0.076
#> SRR2443148     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443147     2  0.0000      0.935 0.000 1.000 0.000
#> SRR2443149     3  0.0747      0.888 0.016 0.000 0.984

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443262     4  0.4790      0.461 0.000 0.380 0.000 0.620
#> SRR2443261     2  0.0592      0.875 0.000 0.984 0.000 0.016
#> SRR2443260     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443259     3  0.0336      0.888 0.000 0.008 0.992 0.000
#> SRR2443258     3  0.0524      0.883 0.008 0.000 0.988 0.004
#> SRR2443257     4  0.4790      0.461 0.000 0.380 0.000 0.620
#> SRR2443256     3  0.3950      0.720 0.184 0.008 0.804 0.004
#> SRR2443255     3  0.0592      0.889 0.000 0.016 0.984 0.000
#> SRR2443254     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443253     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443251     2  0.0336      0.878 0.000 0.992 0.000 0.008
#> SRR2443250     4  0.4790      0.461 0.000 0.380 0.000 0.620
#> SRR2443249     4  0.4790      0.461 0.000 0.380 0.000 0.620
#> SRR2443252     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443247     1  0.1388      0.858 0.960 0.000 0.028 0.012
#> SRR2443246     1  0.4950      0.509 0.620 0.000 0.376 0.004
#> SRR2443248     2  0.0592      0.877 0.000 0.984 0.016 0.000
#> SRR2443244     2  0.0469      0.878 0.000 0.988 0.012 0.000
#> SRR2443245     1  0.3172      0.831 0.840 0.000 0.160 0.000
#> SRR2443243     1  0.3945      0.783 0.780 0.000 0.216 0.004
#> SRR2443242     2  0.2589      0.818 0.000 0.884 0.116 0.000
#> SRR2443241     3  0.0804      0.887 0.012 0.008 0.980 0.000
#> SRR2443240     3  0.2469      0.823 0.000 0.108 0.892 0.000
#> SRR2443239     2  0.0592      0.877 0.000 0.984 0.016 0.000
#> SRR2443238     1  0.4088      0.767 0.764 0.000 0.232 0.004
#> SRR2443237     2  0.2589      0.818 0.000 0.884 0.116 0.000
#> SRR2443236     1  0.5163      0.204 0.516 0.000 0.480 0.004
#> SRR2443235     1  0.2081      0.855 0.916 0.000 0.084 0.000
#> SRR2443233     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443234     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443232     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443231     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443230     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443229     3  0.2888      0.788 0.124 0.000 0.872 0.004
#> SRR2443228     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443227     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443226     1  0.4018      0.775 0.772 0.000 0.224 0.004
#> SRR2443225     3  0.2081      0.853 0.000 0.084 0.916 0.000
#> SRR2443223     2  0.0469      0.878 0.000 0.988 0.012 0.000
#> SRR2443224     3  0.4164      0.607 0.000 0.264 0.736 0.000
#> SRR2443222     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443221     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443219     4  0.4790      0.461 0.000 0.380 0.000 0.620
#> SRR2443220     2  0.0592      0.875 0.000 0.984 0.000 0.016
#> SRR2443218     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443217     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443216     3  0.0000      0.887 0.000 0.000 1.000 0.000
#> SRR2443215     2  0.0592      0.877 0.000 0.984 0.016 0.000
#> SRR2443214     1  0.3172      0.831 0.840 0.000 0.160 0.000
#> SRR2443213     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443212     2  0.2760      0.808 0.000 0.872 0.128 0.000
#> SRR2443211     2  0.2760      0.808 0.000 0.872 0.128 0.000
#> SRR2443210     2  0.3610      0.727 0.000 0.800 0.000 0.200
#> SRR2443209     3  0.0804      0.887 0.012 0.008 0.980 0.000
#> SRR2443208     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443207     3  0.0817      0.889 0.000 0.024 0.976 0.000
#> SRR2443206     2  0.0524      0.879 0.000 0.988 0.004 0.008
#> SRR2443205     2  0.2011      0.846 0.000 0.920 0.080 0.000
#> SRR2443204     1  0.3024      0.838 0.852 0.000 0.148 0.000
#> SRR2443203     3  0.0000      0.887 0.000 0.000 1.000 0.000
#> SRR2443202     2  0.0469      0.878 0.000 0.988 0.012 0.000
#> SRR2443201     2  0.2589      0.818 0.000 0.884 0.116 0.000
#> SRR2443200     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443199     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443197     2  0.4643      0.467 0.000 0.656 0.000 0.344
#> SRR2443196     2  0.4643      0.467 0.000 0.656 0.000 0.344
#> SRR2443198     2  0.0188      0.879 0.000 0.996 0.000 0.004
#> SRR2443195     1  0.4088      0.767 0.764 0.000 0.232 0.004
#> SRR2443194     3  0.2081      0.853 0.000 0.084 0.916 0.000
#> SRR2443193     1  0.4936      0.526 0.624 0.000 0.372 0.004
#> SRR2443191     3  0.0707      0.889 0.000 0.020 0.980 0.000
#> SRR2443192     2  0.0469      0.878 0.000 0.988 0.012 0.000
#> SRR2443190     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443189     1  0.3024      0.838 0.852 0.000 0.148 0.000
#> SRR2443188     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443186     2  0.0672      0.879 0.000 0.984 0.008 0.008
#> SRR2443187     2  0.0672      0.879 0.000 0.984 0.008 0.008
#> SRR2443185     2  0.0188      0.879 0.000 0.996 0.000 0.004
#> SRR2443184     3  0.0000      0.887 0.000 0.000 1.000 0.000
#> SRR2443183     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443182     3  0.4535      0.526 0.292 0.000 0.704 0.004
#> SRR2443181     2  0.0336      0.878 0.000 0.992 0.000 0.008
#> SRR2443180     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443179     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443178     2  0.0000      0.879 0.000 1.000 0.000 0.000
#> SRR2443177     1  0.4406      0.663 0.700 0.000 0.300 0.000
#> SRR2443176     3  0.4343      0.583 0.264 0.000 0.732 0.004
#> SRR2443175     1  0.2081      0.855 0.916 0.000 0.084 0.000
#> SRR2443174     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443173     2  0.3610      0.727 0.000 0.800 0.000 0.200
#> SRR2443172     2  0.3610      0.727 0.000 0.800 0.000 0.200
#> SRR2443171     1  0.2647      0.849 0.880 0.000 0.120 0.000
#> SRR2443170     3  0.5165     -0.135 0.484 0.000 0.512 0.004
#> SRR2443169     1  0.0469      0.856 0.988 0.000 0.000 0.012
#> SRR2443168     3  0.1661      0.854 0.052 0.000 0.944 0.004
#> SRR2443167     2  0.4643      0.467 0.000 0.656 0.000 0.344
#> SRR2443166     1  0.3024      0.838 0.852 0.000 0.148 0.000
#> SRR2443165     2  0.0188      0.879 0.000 0.996 0.000 0.004
#> SRR2443164     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443163     2  0.2589      0.818 0.000 0.884 0.116 0.000
#> SRR2443162     3  0.0592      0.889 0.000 0.016 0.984 0.000
#> SRR2443161     3  0.2011      0.856 0.000 0.080 0.920 0.000
#> SRR2443160     2  0.4643      0.467 0.000 0.656 0.000 0.344
#> SRR2443159     2  0.4643      0.467 0.000 0.656 0.000 0.344
#> SRR2443158     3  0.0592      0.889 0.000 0.016 0.984 0.000
#> SRR2443157     1  0.2647      0.849 0.880 0.000 0.120 0.000
#> SRR2443156     3  0.0804      0.887 0.012 0.008 0.980 0.000
#> SRR2443155     3  0.4837      0.384 0.348 0.000 0.648 0.004
#> SRR2443154     3  0.4632      0.489 0.308 0.000 0.688 0.004
#> SRR2443153     1  0.0657      0.857 0.984 0.000 0.004 0.012
#> SRR2443152     2  0.0707      0.874 0.000 0.980 0.000 0.020
#> SRR2443151     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443150     2  0.0707      0.874 0.000 0.980 0.000 0.020
#> SRR2443148     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443147     4  0.0592      0.869 0.000 0.016 0.000 0.984
#> SRR2443149     3  0.0000      0.887 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443262     2  0.5452     0.4933 0.000 0.616 0.000 0.292 0.092
#> SRR2443261     4  0.1502     0.7997 0.000 0.004 0.000 0.940 0.056
#> SRR2443260     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443259     3  0.0794     0.8866 0.000 0.000 0.972 0.000 0.028
#> SRR2443258     3  0.1851     0.8654 0.000 0.000 0.912 0.000 0.088
#> SRR2443257     2  0.5452     0.4933 0.000 0.616 0.000 0.292 0.092
#> SRR2443256     3  0.4045     0.4480 0.000 0.000 0.644 0.000 0.356
#> SRR2443255     3  0.0000     0.8899 0.000 0.000 1.000 0.000 0.000
#> SRR2443254     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443253     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443251     4  0.1197     0.8026 0.000 0.000 0.000 0.952 0.048
#> SRR2443250     2  0.5452     0.4933 0.000 0.616 0.000 0.292 0.092
#> SRR2443249     2  0.5452     0.4933 0.000 0.616 0.000 0.292 0.092
#> SRR2443252     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443247     1  0.4101     0.1977 0.628 0.000 0.000 0.000 0.372
#> SRR2443246     5  0.5396     0.6216 0.124 0.000 0.220 0.000 0.656
#> SRR2443248     4  0.2761     0.8035 0.000 0.000 0.024 0.872 0.104
#> SRR2443244     4  0.1568     0.8103 0.000 0.000 0.020 0.944 0.036
#> SRR2443245     5  0.4066     0.6553 0.324 0.000 0.004 0.000 0.672
#> SRR2443243     5  0.4597     0.6865 0.260 0.000 0.044 0.000 0.696
#> SRR2443242     4  0.3012     0.7661 0.000 0.000 0.124 0.852 0.024
#> SRR2443241     3  0.1270     0.8817 0.000 0.000 0.948 0.000 0.052
#> SRR2443240     3  0.2172     0.8324 0.000 0.000 0.908 0.076 0.016
#> SRR2443239     4  0.2761     0.8035 0.000 0.000 0.024 0.872 0.104
#> SRR2443238     5  0.4693     0.6882 0.244 0.000 0.056 0.000 0.700
#> SRR2443237     4  0.2921     0.7651 0.000 0.000 0.124 0.856 0.020
#> SRR2443236     5  0.4275     0.5327 0.020 0.000 0.284 0.000 0.696
#> SRR2443235     5  0.4262     0.4725 0.440 0.000 0.000 0.000 0.560
#> SRR2443233     1  0.3480     0.5886 0.752 0.000 0.000 0.000 0.248
#> SRR2443234     1  0.0609     0.8588 0.980 0.000 0.000 0.000 0.020
#> SRR2443232     1  0.3480     0.5886 0.752 0.000 0.000 0.000 0.248
#> SRR2443231     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     3  0.3662     0.6662 0.004 0.000 0.744 0.000 0.252
#> SRR2443228     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443227     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     5  0.4615     0.6876 0.252 0.000 0.048 0.000 0.700
#> SRR2443225     3  0.1544     0.8542 0.000 0.000 0.932 0.068 0.000
#> SRR2443223     4  0.1568     0.8103 0.000 0.000 0.020 0.944 0.036
#> SRR2443224     3  0.3607     0.6201 0.000 0.000 0.752 0.244 0.004
#> SRR2443222     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443221     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443219     2  0.5452     0.4933 0.000 0.616 0.000 0.292 0.092
#> SRR2443220     4  0.1502     0.7997 0.000 0.004 0.000 0.940 0.056
#> SRR2443218     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443217     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443216     3  0.1410     0.8804 0.000 0.000 0.940 0.000 0.060
#> SRR2443215     4  0.2761     0.8035 0.000 0.000 0.024 0.872 0.104
#> SRR2443214     5  0.4066     0.6553 0.324 0.000 0.004 0.000 0.672
#> SRR2443213     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     4  0.4528     0.7533 0.000 0.000 0.144 0.752 0.104
#> SRR2443211     4  0.4528     0.7533 0.000 0.000 0.144 0.752 0.104
#> SRR2443210     4  0.5998     0.6010 0.000 0.188 0.000 0.584 0.228
#> SRR2443209     3  0.1270     0.8817 0.000 0.000 0.948 0.000 0.052
#> SRR2443208     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443207     3  0.0290     0.8899 0.000 0.000 0.992 0.008 0.000
#> SRR2443206     4  0.2930     0.7872 0.000 0.000 0.004 0.832 0.164
#> SRR2443205     4  0.3916     0.7851 0.000 0.000 0.092 0.804 0.104
#> SRR2443204     5  0.3966     0.6452 0.336 0.000 0.000 0.000 0.664
#> SRR2443203     3  0.1410     0.8804 0.000 0.000 0.940 0.000 0.060
#> SRR2443202     4  0.1012     0.8061 0.000 0.000 0.020 0.968 0.012
#> SRR2443201     4  0.2921     0.7651 0.000 0.000 0.124 0.856 0.020
#> SRR2443200     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443199     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443197     4  0.5658     0.3372 0.000 0.332 0.000 0.572 0.096
#> SRR2443196     4  0.5658     0.3372 0.000 0.332 0.000 0.572 0.096
#> SRR2443198     4  0.1282     0.8038 0.000 0.000 0.004 0.952 0.044
#> SRR2443195     5  0.4693     0.6882 0.244 0.000 0.056 0.000 0.700
#> SRR2443194     3  0.1544     0.8542 0.000 0.000 0.932 0.068 0.000
#> SRR2443193     5  0.5045     0.6294 0.108 0.000 0.196 0.000 0.696
#> SRR2443191     3  0.0162     0.8900 0.000 0.000 0.996 0.004 0.000
#> SRR2443192     4  0.1117     0.8069 0.000 0.000 0.020 0.964 0.016
#> SRR2443190     1  0.0609     0.8588 0.980 0.000 0.000 0.000 0.020
#> SRR2443189     5  0.3966     0.6452 0.336 0.000 0.000 0.000 0.664
#> SRR2443188     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     4  0.3053     0.7873 0.000 0.000 0.008 0.828 0.164
#> SRR2443187     4  0.3053     0.7873 0.000 0.000 0.008 0.828 0.164
#> SRR2443185     4  0.1282     0.8043 0.000 0.000 0.004 0.952 0.044
#> SRR2443184     3  0.1410     0.8804 0.000 0.000 0.940 0.000 0.060
#> SRR2443183     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.4304     0.0695 0.000 0.000 0.516 0.000 0.484
#> SRR2443181     4  0.3274     0.7745 0.000 0.000 0.000 0.780 0.220
#> SRR2443180     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443179     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443178     4  0.2358     0.8105 0.000 0.000 0.008 0.888 0.104
#> SRR2443177     5  0.5283     0.6586 0.188 0.000 0.136 0.000 0.676
#> SRR2443176     3  0.4283     0.1817 0.000 0.000 0.544 0.000 0.456
#> SRR2443175     5  0.4262     0.4725 0.440 0.000 0.000 0.000 0.560
#> SRR2443174     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     4  0.5998     0.6010 0.000 0.188 0.000 0.584 0.228
#> SRR2443172     4  0.5998     0.6010 0.000 0.188 0.000 0.584 0.228
#> SRR2443171     5  0.4310     0.5740 0.392 0.000 0.004 0.000 0.604
#> SRR2443170     5  0.4348     0.4774 0.016 0.000 0.316 0.000 0.668
#> SRR2443169     1  0.0000     0.8670 1.000 0.000 0.000 0.000 0.000
#> SRR2443168     3  0.2690     0.7932 0.000 0.000 0.844 0.000 0.156
#> SRR2443167     4  0.5658     0.3372 0.000 0.332 0.000 0.572 0.096
#> SRR2443166     5  0.3966     0.6452 0.336 0.000 0.000 0.000 0.664
#> SRR2443165     4  0.1628     0.8025 0.000 0.000 0.008 0.936 0.056
#> SRR2443164     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443163     4  0.2921     0.7651 0.000 0.000 0.124 0.856 0.020
#> SRR2443162     3  0.0000     0.8899 0.000 0.000 1.000 0.000 0.000
#> SRR2443161     3  0.1478     0.8575 0.000 0.000 0.936 0.064 0.000
#> SRR2443160     4  0.5658     0.3372 0.000 0.332 0.000 0.572 0.096
#> SRR2443159     4  0.5658     0.3372 0.000 0.332 0.000 0.572 0.096
#> SRR2443158     3  0.0000     0.8899 0.000 0.000 1.000 0.000 0.000
#> SRR2443157     5  0.4310     0.5740 0.392 0.000 0.004 0.000 0.604
#> SRR2443156     3  0.1270     0.8817 0.000 0.000 0.948 0.000 0.052
#> SRR2443155     5  0.4278     0.1049 0.000 0.000 0.452 0.000 0.548
#> SRR2443154     5  0.4307    -0.0839 0.000 0.000 0.500 0.000 0.500
#> SRR2443153     1  0.3636     0.5340 0.728 0.000 0.000 0.000 0.272
#> SRR2443152     4  0.3582     0.7700 0.000 0.008 0.000 0.768 0.224
#> SRR2443151     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443150     4  0.3582     0.7700 0.000 0.008 0.000 0.768 0.224
#> SRR2443148     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443147     2  0.0000     0.8690 0.000 1.000 0.000 0.000 0.000
#> SRR2443149     3  0.1410     0.8804 0.000 0.000 0.940 0.000 0.060

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.1010     0.8596 0.000 0.004 0.960 0.036 0.000 0.000
#> SRR2443262     4  0.5139     0.2177 0.000 0.084 0.000 0.492 0.424 0.000
#> SRR2443261     4  0.3828    -0.2227 0.000 0.440 0.000 0.560 0.000 0.000
#> SRR2443260     3  0.1152     0.8577 0.000 0.004 0.952 0.044 0.000 0.000
#> SRR2443259     3  0.1461     0.8520 0.000 0.000 0.940 0.044 0.000 0.016
#> SRR2443258     3  0.2962     0.8115 0.000 0.000 0.848 0.068 0.000 0.084
#> SRR2443257     4  0.5139     0.2177 0.000 0.084 0.000 0.492 0.424 0.000
#> SRR2443256     3  0.4932     0.2090 0.000 0.000 0.556 0.072 0.000 0.372
#> SRR2443255     3  0.0000     0.8622 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443254     3  0.1933     0.8589 0.000 0.004 0.920 0.044 0.000 0.032
#> SRR2443253     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443251     4  0.3847    -0.2482 0.000 0.456 0.000 0.544 0.000 0.000
#> SRR2443250     4  0.5139     0.2177 0.000 0.084 0.000 0.492 0.424 0.000
#> SRR2443249     4  0.5139     0.2177 0.000 0.084 0.000 0.492 0.424 0.000
#> SRR2443252     3  0.1152     0.8577 0.000 0.004 0.952 0.044 0.000 0.000
#> SRR2443247     1  0.4096     0.0216 0.508 0.000 0.000 0.008 0.000 0.484
#> SRR2443246     6  0.2604     0.6610 0.036 0.000 0.076 0.008 0.000 0.880
#> SRR2443248     2  0.3103     0.5774 0.000 0.784 0.008 0.208 0.000 0.000
#> SRR2443244     2  0.3911     0.4834 0.000 0.624 0.008 0.368 0.000 0.000
#> SRR2443245     6  0.2948     0.6873 0.188 0.000 0.000 0.008 0.000 0.804
#> SRR2443243     6  0.2178     0.7056 0.132 0.000 0.000 0.000 0.000 0.868
#> SRR2443242     2  0.4885     0.4993 0.000 0.560 0.068 0.372 0.000 0.000
#> SRR2443241     3  0.3083     0.8264 0.000 0.000 0.828 0.040 0.000 0.132
#> SRR2443240     3  0.4650     0.7725 0.000 0.108 0.744 0.044 0.000 0.104
#> SRR2443239     2  0.3103     0.5774 0.000 0.784 0.008 0.208 0.000 0.000
#> SRR2443238     6  0.2377     0.7069 0.124 0.000 0.004 0.004 0.000 0.868
#> SRR2443237     2  0.4946     0.4755 0.000 0.528 0.068 0.404 0.000 0.000
#> SRR2443236     6  0.2999     0.6178 0.000 0.000 0.112 0.048 0.000 0.840
#> SRR2443235     6  0.3672     0.5436 0.304 0.000 0.000 0.008 0.000 0.688
#> SRR2443233     1  0.3887     0.4367 0.632 0.000 0.000 0.008 0.000 0.360
#> SRR2443234     1  0.1267     0.8055 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR2443232     1  0.3887     0.4367 0.632 0.000 0.000 0.008 0.000 0.360
#> SRR2443231     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443229     3  0.4607     0.5474 0.000 0.000 0.616 0.056 0.000 0.328
#> SRR2443228     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443227     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443226     6  0.2462     0.7070 0.132 0.000 0.004 0.004 0.000 0.860
#> SRR2443225     3  0.2839     0.8364 0.000 0.008 0.860 0.100 0.000 0.032
#> SRR2443223     2  0.3911     0.4834 0.000 0.624 0.008 0.368 0.000 0.000
#> SRR2443224     3  0.5837     0.5363 0.000 0.248 0.596 0.056 0.000 0.100
#> SRR2443222     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443221     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443219     4  0.5139     0.2177 0.000 0.084 0.000 0.492 0.424 0.000
#> SRR2443220     4  0.3828    -0.2227 0.000 0.440 0.000 0.560 0.000 0.000
#> SRR2443218     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443217     3  0.1933     0.8589 0.000 0.004 0.920 0.044 0.000 0.032
#> SRR2443216     3  0.2250     0.8379 0.000 0.000 0.896 0.064 0.000 0.040
#> SRR2443215     2  0.3103     0.5774 0.000 0.784 0.008 0.208 0.000 0.000
#> SRR2443214     6  0.2948     0.6873 0.188 0.000 0.000 0.008 0.000 0.804
#> SRR2443213     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     2  0.4810     0.5406 0.000 0.624 0.084 0.292 0.000 0.000
#> SRR2443211     2  0.4810     0.5406 0.000 0.624 0.084 0.292 0.000 0.000
#> SRR2443210     2  0.5380     0.1012 0.000 0.592 0.000 0.256 0.148 0.004
#> SRR2443209     3  0.3083     0.8264 0.000 0.000 0.828 0.040 0.000 0.132
#> SRR2443208     3  0.3065     0.8429 0.000 0.004 0.844 0.052 0.000 0.100
#> SRR2443207     3  0.3065     0.8429 0.000 0.004 0.844 0.052 0.000 0.100
#> SRR2443206     2  0.1219     0.5060 0.000 0.948 0.000 0.048 0.000 0.004
#> SRR2443205     2  0.3925     0.5737 0.000 0.724 0.040 0.236 0.000 0.000
#> SRR2443204     6  0.3043     0.6802 0.200 0.000 0.000 0.008 0.000 0.792
#> SRR2443203     3  0.2250     0.8379 0.000 0.000 0.896 0.064 0.000 0.040
#> SRR2443202     2  0.4002     0.4412 0.000 0.588 0.008 0.404 0.000 0.000
#> SRR2443201     2  0.4946     0.4755 0.000 0.528 0.068 0.404 0.000 0.000
#> SRR2443200     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443199     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443197     4  0.2983     0.4564 0.000 0.032 0.000 0.832 0.136 0.000
#> SRR2443196     4  0.2983     0.4564 0.000 0.032 0.000 0.832 0.136 0.000
#> SRR2443198     4  0.3996    -0.3090 0.000 0.484 0.004 0.512 0.000 0.000
#> SRR2443195     6  0.2377     0.7069 0.124 0.000 0.004 0.004 0.000 0.868
#> SRR2443194     3  0.2070     0.8345 0.000 0.008 0.892 0.100 0.000 0.000
#> SRR2443193     6  0.3016     0.6619 0.016 0.000 0.136 0.012 0.000 0.836
#> SRR2443191     3  0.2984     0.8397 0.000 0.004 0.848 0.044 0.000 0.104
#> SRR2443192     2  0.3923     0.4739 0.000 0.620 0.008 0.372 0.000 0.000
#> SRR2443190     1  0.1267     0.8055 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR2443189     6  0.3043     0.6802 0.200 0.000 0.000 0.008 0.000 0.792
#> SRR2443188     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.0777     0.5172 0.000 0.972 0.000 0.024 0.000 0.004
#> SRR2443187     2  0.0777     0.5172 0.000 0.972 0.000 0.024 0.000 0.004
#> SRR2443185     4  0.3996    -0.3187 0.000 0.484 0.004 0.512 0.000 0.000
#> SRR2443184     3  0.2250     0.8379 0.000 0.000 0.896 0.064 0.000 0.040
#> SRR2443183     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     6  0.4747     0.2727 0.000 0.000 0.324 0.068 0.000 0.608
#> SRR2443181     2  0.2902     0.3955 0.000 0.800 0.000 0.196 0.000 0.004
#> SRR2443180     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443179     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443178     2  0.3965     0.4505 0.000 0.604 0.008 0.388 0.000 0.000
#> SRR2443177     6  0.3196     0.6760 0.064 0.000 0.108 0.000 0.000 0.828
#> SRR2443176     6  0.5025     0.1130 0.000 0.000 0.436 0.072 0.000 0.492
#> SRR2443175     6  0.3672     0.5436 0.304 0.000 0.000 0.008 0.000 0.688
#> SRR2443174     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.5380     0.1012 0.000 0.592 0.000 0.256 0.148 0.004
#> SRR2443172     2  0.5380     0.1012 0.000 0.592 0.000 0.256 0.148 0.004
#> SRR2443171     6  0.3421     0.6213 0.256 0.000 0.000 0.008 0.000 0.736
#> SRR2443170     6  0.3377     0.6001 0.000 0.000 0.136 0.056 0.000 0.808
#> SRR2443169     1  0.0000     0.8297 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443168     3  0.4122     0.7173 0.000 0.000 0.724 0.064 0.000 0.212
#> SRR2443167     4  0.2983     0.4564 0.000 0.032 0.000 0.832 0.136 0.000
#> SRR2443166     6  0.3043     0.6802 0.200 0.000 0.000 0.008 0.000 0.792
#> SRR2443165     4  0.4089    -0.2959 0.000 0.468 0.008 0.524 0.000 0.000
#> SRR2443164     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443163     2  0.4946     0.4755 0.000 0.528 0.068 0.404 0.000 0.000
#> SRR2443162     3  0.0000     0.8622 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443161     3  0.2020     0.8370 0.000 0.008 0.896 0.096 0.000 0.000
#> SRR2443160     4  0.2983     0.4564 0.000 0.032 0.000 0.832 0.136 0.000
#> SRR2443159     4  0.2983     0.4564 0.000 0.032 0.000 0.832 0.136 0.000
#> SRR2443158     3  0.0000     0.8622 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443157     6  0.3421     0.6213 0.256 0.000 0.000 0.008 0.000 0.736
#> SRR2443156     3  0.3083     0.8264 0.000 0.000 0.828 0.040 0.000 0.132
#> SRR2443155     6  0.4466     0.4264 0.000 0.000 0.260 0.068 0.000 0.672
#> SRR2443154     6  0.4687     0.3164 0.000 0.000 0.308 0.068 0.000 0.624
#> SRR2443153     1  0.3955     0.3776 0.608 0.000 0.000 0.008 0.000 0.384
#> SRR2443152     2  0.3104     0.3832 0.000 0.788 0.000 0.204 0.004 0.004
#> SRR2443151     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443150     2  0.3104     0.3832 0.000 0.788 0.000 0.204 0.004 0.004
#> SRR2443148     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443147     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443149     3  0.2250     0.8379 0.000 0.000 0.896 0.064 0.000 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.997         0.5023 0.499   0.499
#> 3 3 0.929           0.954       0.981         0.3106 0.660   0.424
#> 4 4 0.698           0.733       0.789         0.1254 0.823   0.538
#> 5 5 0.829           0.794       0.843         0.0667 0.936   0.752
#> 6 6 0.794           0.817       0.833         0.0396 0.939   0.722

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette  p1  p2
#> SRR2443263     1   0.000      0.994 1.0 0.0
#> SRR2443262     2   0.000      1.000 0.0 1.0
#> SRR2443261     2   0.000      1.000 0.0 1.0
#> SRR2443260     1   0.000      0.994 1.0 0.0
#> SRR2443259     1   0.000      0.994 1.0 0.0
#> SRR2443258     1   0.000      0.994 1.0 0.0
#> SRR2443257     2   0.000      1.000 0.0 1.0
#> SRR2443256     1   0.000      0.994 1.0 0.0
#> SRR2443255     1   0.000      0.994 1.0 0.0
#> SRR2443254     1   0.000      0.994 1.0 0.0
#> SRR2443253     2   0.000      1.000 0.0 1.0
#> SRR2443251     2   0.000      1.000 0.0 1.0
#> SRR2443250     2   0.000      1.000 0.0 1.0
#> SRR2443249     2   0.000      1.000 0.0 1.0
#> SRR2443252     1   0.000      0.994 1.0 0.0
#> SRR2443247     1   0.000      0.994 1.0 0.0
#> SRR2443246     1   0.000      0.994 1.0 0.0
#> SRR2443248     2   0.000      1.000 0.0 1.0
#> SRR2443244     2   0.000      1.000 0.0 1.0
#> SRR2443245     1   0.000      0.994 1.0 0.0
#> SRR2443243     1   0.000      0.994 1.0 0.0
#> SRR2443242     2   0.000      1.000 0.0 1.0
#> SRR2443241     1   0.000      0.994 1.0 0.0
#> SRR2443240     1   0.000      0.994 1.0 0.0
#> SRR2443239     2   0.000      1.000 0.0 1.0
#> SRR2443238     1   0.000      0.994 1.0 0.0
#> SRR2443237     2   0.000      1.000 0.0 1.0
#> SRR2443236     1   0.000      0.994 1.0 0.0
#> SRR2443235     1   0.000      0.994 1.0 0.0
#> SRR2443233     1   0.000      0.994 1.0 0.0
#> SRR2443234     1   0.000      0.994 1.0 0.0
#> SRR2443232     1   0.000      0.994 1.0 0.0
#> SRR2443231     1   0.000      0.994 1.0 0.0
#> SRR2443230     1   0.000      0.994 1.0 0.0
#> SRR2443229     1   0.000      0.994 1.0 0.0
#> SRR2443228     2   0.000      1.000 0.0 1.0
#> SRR2443227     1   0.000      0.994 1.0 0.0
#> SRR2443226     1   0.000      0.994 1.0 0.0
#> SRR2443225     1   0.971      0.333 0.6 0.4
#> SRR2443223     2   0.000      1.000 0.0 1.0
#> SRR2443224     2   0.000      1.000 0.0 1.0
#> SRR2443222     2   0.000      1.000 0.0 1.0
#> SRR2443221     2   0.000      1.000 0.0 1.0
#> SRR2443219     2   0.000      1.000 0.0 1.0
#> SRR2443220     2   0.000      1.000 0.0 1.0
#> SRR2443218     2   0.000      1.000 0.0 1.0
#> SRR2443217     1   0.000      0.994 1.0 0.0
#> SRR2443216     1   0.000      0.994 1.0 0.0
#> SRR2443215     2   0.000      1.000 0.0 1.0
#> SRR2443214     1   0.000      0.994 1.0 0.0
#> SRR2443213     1   0.000      0.994 1.0 0.0
#> SRR2443212     2   0.000      1.000 0.0 1.0
#> SRR2443211     2   0.000      1.000 0.0 1.0
#> SRR2443210     2   0.000      1.000 0.0 1.0
#> SRR2443209     1   0.000      0.994 1.0 0.0
#> SRR2443208     1   0.000      0.994 1.0 0.0
#> SRR2443207     1   0.000      0.994 1.0 0.0
#> SRR2443206     2   0.000      1.000 0.0 1.0
#> SRR2443205     2   0.000      1.000 0.0 1.0
#> SRR2443204     1   0.000      0.994 1.0 0.0
#> SRR2443203     1   0.000      0.994 1.0 0.0
#> SRR2443202     2   0.000      1.000 0.0 1.0
#> SRR2443201     2   0.000      1.000 0.0 1.0
#> SRR2443200     2   0.000      1.000 0.0 1.0
#> SRR2443199     2   0.000      1.000 0.0 1.0
#> SRR2443197     2   0.000      1.000 0.0 1.0
#> SRR2443196     2   0.000      1.000 0.0 1.0
#> SRR2443198     2   0.000      1.000 0.0 1.0
#> SRR2443195     1   0.000      0.994 1.0 0.0
#> SRR2443194     1   0.000      0.994 1.0 0.0
#> SRR2443193     1   0.000      0.994 1.0 0.0
#> SRR2443191     1   0.000      0.994 1.0 0.0
#> SRR2443192     2   0.000      1.000 0.0 1.0
#> SRR2443190     1   0.000      0.994 1.0 0.0
#> SRR2443189     1   0.000      0.994 1.0 0.0
#> SRR2443188     1   0.000      0.994 1.0 0.0
#> SRR2443186     2   0.000      1.000 0.0 1.0
#> SRR2443187     2   0.000      1.000 0.0 1.0
#> SRR2443185     2   0.000      1.000 0.0 1.0
#> SRR2443184     1   0.000      0.994 1.0 0.0
#> SRR2443183     1   0.000      0.994 1.0 0.0
#> SRR2443182     1   0.000      0.994 1.0 0.0
#> SRR2443181     2   0.000      1.000 0.0 1.0
#> SRR2443180     2   0.000      1.000 0.0 1.0
#> SRR2443179     2   0.000      1.000 0.0 1.0
#> SRR2443178     2   0.000      1.000 0.0 1.0
#> SRR2443177     1   0.000      0.994 1.0 0.0
#> SRR2443176     1   0.000      0.994 1.0 0.0
#> SRR2443175     1   0.000      0.994 1.0 0.0
#> SRR2443174     1   0.000      0.994 1.0 0.0
#> SRR2443173     2   0.000      1.000 0.0 1.0
#> SRR2443172     2   0.000      1.000 0.0 1.0
#> SRR2443171     1   0.000      0.994 1.0 0.0
#> SRR2443170     1   0.000      0.994 1.0 0.0
#> SRR2443169     1   0.000      0.994 1.0 0.0
#> SRR2443168     1   0.000      0.994 1.0 0.0
#> SRR2443167     2   0.000      1.000 0.0 1.0
#> SRR2443166     1   0.000      0.994 1.0 0.0
#> SRR2443165     2   0.000      1.000 0.0 1.0
#> SRR2443164     2   0.000      1.000 0.0 1.0
#> SRR2443163     2   0.000      1.000 0.0 1.0
#> SRR2443162     1   0.000      0.994 1.0 0.0
#> SRR2443161     1   0.000      0.994 1.0 0.0
#> SRR2443160     2   0.000      1.000 0.0 1.0
#> SRR2443159     2   0.000      1.000 0.0 1.0
#> SRR2443158     1   0.000      0.994 1.0 0.0
#> SRR2443157     1   0.000      0.994 1.0 0.0
#> SRR2443156     1   0.000      0.994 1.0 0.0
#> SRR2443155     1   0.000      0.994 1.0 0.0
#> SRR2443154     1   0.000      0.994 1.0 0.0
#> SRR2443153     1   0.000      0.994 1.0 0.0
#> SRR2443152     2   0.000      1.000 0.0 1.0
#> SRR2443151     2   0.000      1.000 0.0 1.0
#> SRR2443150     2   0.000      1.000 0.0 1.0
#> SRR2443148     2   0.000      1.000 0.0 1.0
#> SRR2443147     2   0.000      1.000 0.0 1.0
#> SRR2443149     1   0.000      0.994 1.0 0.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1   p2    p3
#> SRR2443263     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443262     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443261     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443260     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443259     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443258     1   0.226      0.913 0.932 0.00 0.068
#> SRR2443257     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443256     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443255     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443254     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443253     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443251     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443250     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443249     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443252     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443247     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443246     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443248     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443244     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443245     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443243     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443242     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443241     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443240     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443239     3   0.429      0.780 0.000 0.18 0.820
#> SRR2443238     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443237     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443236     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443235     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443233     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443234     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443232     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443231     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443230     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443229     1   0.424      0.797 0.824 0.00 0.176
#> SRR2443228     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443227     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443226     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443225     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443223     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443224     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443222     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443221     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443219     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443220     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443218     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443217     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443216     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443215     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443214     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443213     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443212     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443211     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443210     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443209     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443208     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443207     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443206     3   0.429      0.780 0.000 0.18 0.820
#> SRR2443205     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443204     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443203     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443202     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443201     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443200     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443199     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443197     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443196     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443198     3   0.429      0.780 0.000 0.18 0.820
#> SRR2443195     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443194     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443193     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443191     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443192     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443190     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443189     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443188     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443186     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443187     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443185     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443184     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443183     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443182     1   0.562      0.577 0.692 0.00 0.308
#> SRR2443181     2   0.595      0.412 0.000 0.64 0.360
#> SRR2443180     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443179     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443178     3   0.429      0.780 0.000 0.18 0.820
#> SRR2443177     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443176     3   0.614      0.284 0.404 0.00 0.596
#> SRR2443175     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443174     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443173     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443172     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443171     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443170     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443169     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443168     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443167     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443166     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443165     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443164     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443163     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443162     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443161     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443160     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443159     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443158     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443157     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443156     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443155     1   0.418      0.803 0.828 0.00 0.172
#> SRR2443154     3   0.000      0.976 0.000 0.00 1.000
#> SRR2443153     1   0.000      0.977 1.000 0.00 0.000
#> SRR2443152     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443151     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443150     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443148     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443147     2   0.000      0.987 0.000 1.00 0.000
#> SRR2443149     3   0.000      0.976 0.000 0.00 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.4866     0.6153 0.000 0.404 0.596 0.000
#> SRR2443262     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443261     2  0.4679     0.2566 0.000 0.648 0.000 0.352
#> SRR2443260     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443259     3  0.6808     0.7365 0.236 0.164 0.600 0.000
#> SRR2443258     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443257     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443256     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443255     3  0.6592     0.7040 0.116 0.284 0.600 0.000
#> SRR2443254     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443253     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443251     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443250     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443249     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443252     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443247     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443246     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443248     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443244     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443245     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443243     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443242     2  0.2149     0.7607 0.000 0.912 0.088 0.000
#> SRR2443241     3  0.6852     0.7343 0.208 0.192 0.600 0.000
#> SRR2443240     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443239     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443238     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443237     2  0.2149     0.7607 0.000 0.912 0.088 0.000
#> SRR2443236     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443235     1  0.4250     0.7722 0.724 0.000 0.276 0.000
#> SRR2443233     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443234     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443232     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443231     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443230     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443229     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443228     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443227     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443226     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443225     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443223     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443224     2  0.3873     0.4730 0.000 0.772 0.228 0.000
#> SRR2443222     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443221     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443219     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443220     2  0.4888     0.0667 0.000 0.588 0.000 0.412
#> SRR2443218     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443217     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443216     3  0.5244     0.6994 0.388 0.012 0.600 0.000
#> SRR2443215     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443214     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443213     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443212     2  0.1211     0.8173 0.000 0.960 0.040 0.000
#> SRR2443211     2  0.1211     0.8173 0.000 0.960 0.040 0.000
#> SRR2443210     4  0.1022     0.8686 0.000 0.032 0.000 0.968
#> SRR2443209     3  0.6852     0.7343 0.208 0.192 0.600 0.000
#> SRR2443208     3  0.6592     0.7040 0.116 0.284 0.600 0.000
#> SRR2443207     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443206     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443205     2  0.1022     0.8243 0.000 0.968 0.032 0.000
#> SRR2443204     1  0.0188     0.7384 0.996 0.000 0.004 0.000
#> SRR2443203     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443202     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443201     2  0.3873     0.4730 0.000 0.772 0.228 0.000
#> SRR2443200     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443199     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443197     2  0.4888     0.0667 0.000 0.588 0.000 0.412
#> SRR2443196     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443198     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443195     3  0.4996     0.5593 0.484 0.000 0.516 0.000
#> SRR2443194     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443193     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443191     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443192     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443190     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443189     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443188     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443186     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443187     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443185     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443184     3  0.6641     0.7076 0.124 0.276 0.600 0.000
#> SRR2443183     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443182     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443181     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443180     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443179     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443178     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443177     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443176     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443175     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443174     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443173     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443172     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443171     1  0.0000     0.7376 1.000 0.000 0.000 0.000
#> SRR2443170     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443169     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443168     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443167     4  0.4564     0.6604 0.000 0.328 0.000 0.672
#> SRR2443166     1  0.0000     0.7376 1.000 0.000 0.000 0.000
#> SRR2443165     2  0.0000     0.8485 0.000 1.000 0.000 0.000
#> SRR2443164     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443163     2  0.2216     0.7548 0.000 0.908 0.092 0.000
#> SRR2443162     3  0.6797     0.7229 0.160 0.240 0.600 0.000
#> SRR2443161     3  0.4888     0.6080 0.000 0.412 0.588 0.000
#> SRR2443160     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443159     4  0.3873     0.8151 0.000 0.228 0.000 0.772
#> SRR2443158     3  0.5244     0.6994 0.388 0.012 0.600 0.000
#> SRR2443157     1  0.0469     0.7336 0.988 0.000 0.012 0.000
#> SRR2443156     3  0.6840     0.7370 0.220 0.180 0.600 0.000
#> SRR2443155     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443154     3  0.4855     0.6915 0.400 0.000 0.600 0.000
#> SRR2443153     1  0.4855     0.7833 0.600 0.000 0.400 0.000
#> SRR2443152     2  0.4888     0.0667 0.000 0.588 0.000 0.412
#> SRR2443151     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443150     2  0.4888     0.0667 0.000 0.588 0.000 0.412
#> SRR2443148     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443147     4  0.0000     0.8739 0.000 0.000 0.000 1.000
#> SRR2443149     3  0.5244     0.6994 0.388 0.012 0.600 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443262     2  0.5912     0.7139 0.000 0.536 0.000 0.116 0.348
#> SRR2443261     4  0.4101     0.5462 0.000 0.000 0.000 0.628 0.372
#> SRR2443260     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443259     3  0.0703     0.9090 0.000 0.000 0.976 0.000 0.024
#> SRR2443258     5  0.4114     0.3640 0.000 0.000 0.376 0.000 0.624
#> SRR2443257     2  0.5912     0.7139 0.000 0.536 0.000 0.116 0.348
#> SRR2443256     3  0.1043     0.9020 0.000 0.000 0.960 0.000 0.040
#> SRR2443255     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000
#> SRR2443254     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443253     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443251     4  0.1851     0.8249 0.000 0.000 0.000 0.912 0.088
#> SRR2443250     2  0.5912     0.7139 0.000 0.536 0.000 0.116 0.348
#> SRR2443249     2  0.5912     0.7139 0.000 0.536 0.000 0.116 0.348
#> SRR2443252     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443247     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443246     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443248     4  0.1121     0.8599 0.000 0.000 0.044 0.956 0.000
#> SRR2443244     4  0.0290     0.8575 0.000 0.000 0.008 0.992 0.000
#> SRR2443245     5  0.4599     0.8609 0.356 0.000 0.020 0.000 0.624
#> SRR2443243     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443242     4  0.2824     0.8185 0.000 0.000 0.116 0.864 0.020
#> SRR2443241     3  0.0290     0.9156 0.000 0.000 0.992 0.000 0.008
#> SRR2443240     3  0.1544     0.8802 0.000 0.000 0.932 0.068 0.000
#> SRR2443239     4  0.0000     0.8551 0.000 0.000 0.000 1.000 0.000
#> SRR2443238     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443237     4  0.2824     0.8185 0.000 0.000 0.116 0.864 0.020
#> SRR2443236     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443235     5  0.4182     0.7891 0.400 0.000 0.000 0.000 0.600
#> SRR2443233     1  0.1671     0.8409 0.924 0.000 0.000 0.000 0.076
#> SRR2443234     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.4015    -0.0307 0.652 0.000 0.000 0.000 0.348
#> SRR2443231     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     5  0.4101     0.3660 0.000 0.000 0.372 0.000 0.628
#> SRR2443228     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443227     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     5  0.4599     0.8609 0.356 0.000 0.020 0.000 0.624
#> SRR2443225     3  0.2230     0.8293 0.000 0.000 0.884 0.116 0.000
#> SRR2443223     4  0.0963     0.8611 0.000 0.000 0.036 0.964 0.000
#> SRR2443224     3  0.4249     0.1930 0.000 0.000 0.568 0.432 0.000
#> SRR2443222     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443221     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443219     2  0.5912     0.7139 0.000 0.536 0.000 0.116 0.348
#> SRR2443220     4  0.4367     0.5330 0.000 0.008 0.000 0.620 0.372
#> SRR2443218     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443217     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443216     3  0.0880     0.9054 0.000 0.000 0.968 0.000 0.032
#> SRR2443215     4  0.0963     0.8611 0.000 0.000 0.036 0.964 0.000
#> SRR2443214     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443213     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     4  0.1792     0.8425 0.000 0.000 0.084 0.916 0.000
#> SRR2443211     4  0.1792     0.8425 0.000 0.000 0.084 0.916 0.000
#> SRR2443210     2  0.5129     0.7330 0.000 0.616 0.000 0.056 0.328
#> SRR2443209     3  0.0290     0.9156 0.000 0.000 0.992 0.000 0.008
#> SRR2443208     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000
#> SRR2443207     3  0.1197     0.8960 0.000 0.000 0.952 0.048 0.000
#> SRR2443206     4  0.0000     0.8551 0.000 0.000 0.000 1.000 0.000
#> SRR2443205     4  0.1792     0.8425 0.000 0.000 0.084 0.916 0.000
#> SRR2443204     5  0.4599     0.8609 0.356 0.000 0.020 0.000 0.624
#> SRR2443203     3  0.0963     0.9026 0.000 0.000 0.964 0.000 0.036
#> SRR2443202     4  0.1725     0.8602 0.000 0.000 0.044 0.936 0.020
#> SRR2443201     4  0.4686     0.3839 0.000 0.000 0.384 0.596 0.020
#> SRR2443200     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443199     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443197     4  0.4367     0.5330 0.000 0.008 0.000 0.620 0.372
#> SRR2443196     2  0.5968     0.6988 0.000 0.512 0.000 0.116 0.372
#> SRR2443198     4  0.1851     0.8249 0.000 0.000 0.000 0.912 0.088
#> SRR2443195     5  0.4101     0.3660 0.000 0.000 0.372 0.000 0.628
#> SRR2443194     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443193     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443191     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443192     4  0.1568     0.8610 0.000 0.000 0.036 0.944 0.020
#> SRR2443190     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     5  0.4599     0.8609 0.356 0.000 0.020 0.000 0.624
#> SRR2443188     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     4  0.1270     0.8576 0.000 0.000 0.052 0.948 0.000
#> SRR2443187     4  0.0963     0.8611 0.000 0.000 0.036 0.964 0.000
#> SRR2443185     4  0.1661     0.8609 0.000 0.000 0.036 0.940 0.024
#> SRR2443184     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000
#> SRR2443183     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     3  0.4138     0.3601 0.000 0.000 0.616 0.000 0.384
#> SRR2443181     4  0.0794     0.8453 0.000 0.000 0.000 0.972 0.028
#> SRR2443180     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443179     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443178     4  0.1270     0.8447 0.000 0.000 0.000 0.948 0.052
#> SRR2443177     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443176     3  0.3534     0.6326 0.000 0.000 0.744 0.000 0.256
#> SRR2443175     5  0.4210     0.7653 0.412 0.000 0.000 0.000 0.588
#> SRR2443174     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.6047     0.7087 0.000 0.532 0.000 0.136 0.332
#> SRR2443172     2  0.6090     0.7006 0.000 0.516 0.000 0.136 0.348
#> SRR2443171     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443170     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443169     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443168     3  0.0963     0.9026 0.000 0.000 0.964 0.000 0.036
#> SRR2443167     2  0.6628     0.5428 0.000 0.408 0.000 0.220 0.372
#> SRR2443166     5  0.4599     0.8609 0.356 0.000 0.020 0.000 0.624
#> SRR2443165     4  0.1894     0.8401 0.000 0.000 0.008 0.920 0.072
#> SRR2443164     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443163     4  0.2824     0.8185 0.000 0.000 0.116 0.864 0.020
#> SRR2443162     3  0.0000     0.9160 0.000 0.000 1.000 0.000 0.000
#> SRR2443161     3  0.0609     0.9130 0.000 0.000 0.980 0.020 0.000
#> SRR2443160     2  0.5968     0.6988 0.000 0.512 0.000 0.116 0.372
#> SRR2443159     2  0.5968     0.6988 0.000 0.512 0.000 0.116 0.372
#> SRR2443158     3  0.0880     0.9054 0.000 0.000 0.968 0.000 0.032
#> SRR2443157     5  0.4511     0.8627 0.356 0.000 0.016 0.000 0.628
#> SRR2443156     3  0.0290     0.9156 0.000 0.000 0.992 0.000 0.008
#> SRR2443155     3  0.4161     0.3388 0.000 0.000 0.608 0.000 0.392
#> SRR2443154     3  0.1043     0.9020 0.000 0.000 0.960 0.000 0.040
#> SRR2443153     1  0.0000     0.9497 1.000 0.000 0.000 0.000 0.000
#> SRR2443152     4  0.4283     0.5393 0.000 0.008 0.000 0.644 0.348
#> SRR2443151     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443150     4  0.4283     0.5393 0.000 0.008 0.000 0.644 0.348
#> SRR2443148     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443147     2  0.0000     0.7720 0.000 1.000 0.000 0.000 0.000
#> SRR2443149     3  0.0880     0.9054 0.000 0.000 0.968 0.000 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.0000      0.894 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443262     4  0.4389      0.696 0.000 0.032 0.000 0.596 0.372 0.000
#> SRR2443261     4  0.3747      0.425 0.000 0.396 0.000 0.604 0.000 0.000
#> SRR2443260     3  0.0458      0.893 0.000 0.000 0.984 0.016 0.000 0.000
#> SRR2443259     3  0.1219      0.892 0.000 0.000 0.948 0.048 0.000 0.004
#> SRR2443258     6  0.3834      0.683 0.000 0.000 0.116 0.108 0.000 0.776
#> SRR2443257     4  0.4209      0.689 0.000 0.020 0.000 0.596 0.384 0.000
#> SRR2443256     3  0.2946      0.853 0.000 0.000 0.812 0.176 0.000 0.012
#> SRR2443255     3  0.0865      0.893 0.000 0.000 0.964 0.036 0.000 0.000
#> SRR2443254     3  0.0000      0.894 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443253     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443251     2  0.2488      0.829 0.044 0.880 0.000 0.076 0.000 0.000
#> SRR2443250     4  0.4209      0.689 0.000 0.020 0.000 0.596 0.384 0.000
#> SRR2443249     4  0.4209      0.689 0.000 0.020 0.000 0.596 0.384 0.000
#> SRR2443252     3  0.0458      0.893 0.000 0.000 0.984 0.016 0.000 0.000
#> SRR2443247     1  0.4533      0.801 0.704 0.000 0.000 0.156 0.000 0.140
#> SRR2443246     6  0.2597      0.828 0.000 0.000 0.000 0.176 0.000 0.824
#> SRR2443248     2  0.0622      0.897 0.008 0.980 0.012 0.000 0.000 0.000
#> SRR2443244     2  0.0405      0.897 0.000 0.988 0.008 0.004 0.000 0.000
#> SRR2443245     6  0.0000      0.859 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443243     6  0.2135      0.840 0.000 0.000 0.000 0.128 0.000 0.872
#> SRR2443242     2  0.2174      0.857 0.008 0.896 0.088 0.008 0.000 0.000
#> SRR2443241     3  0.2595      0.859 0.000 0.000 0.836 0.160 0.000 0.004
#> SRR2443240     3  0.2568      0.864 0.000 0.056 0.876 0.068 0.000 0.000
#> SRR2443239     2  0.0993      0.890 0.024 0.964 0.000 0.012 0.000 0.000
#> SRR2443238     6  0.0260      0.858 0.000 0.000 0.000 0.008 0.000 0.992
#> SRR2443237     2  0.3065      0.778 0.008 0.812 0.172 0.008 0.000 0.000
#> SRR2443236     6  0.3151      0.781 0.000 0.000 0.000 0.252 0.000 0.748
#> SRR2443235     6  0.2743      0.823 0.008 0.000 0.000 0.164 0.000 0.828
#> SRR2443233     1  0.5634      0.377 0.492 0.000 0.000 0.160 0.000 0.348
#> SRR2443234     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443232     6  0.5354      0.401 0.260 0.000 0.000 0.160 0.000 0.580
#> SRR2443231     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443230     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443229     6  0.4641      0.622 0.000 0.000 0.116 0.200 0.000 0.684
#> SRR2443228     5  0.0146      0.997 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR2443227     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443226     6  0.0146      0.859 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR2443225     3  0.2146      0.805 0.004 0.116 0.880 0.000 0.000 0.000
#> SRR2443223     2  0.0508      0.897 0.004 0.984 0.012 0.000 0.000 0.000
#> SRR2443224     2  0.4064      0.491 0.016 0.624 0.360 0.000 0.000 0.000
#> SRR2443222     5  0.0146      0.997 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR2443221     5  0.0146      0.997 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR2443219     4  0.4209      0.689 0.000 0.020 0.000 0.596 0.384 0.000
#> SRR2443220     4  0.4159      0.417 0.016 0.396 0.000 0.588 0.000 0.000
#> SRR2443218     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443217     3  0.0000      0.894 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443216     3  0.2250      0.881 0.000 0.000 0.896 0.064 0.000 0.040
#> SRR2443215     2  0.0820      0.897 0.016 0.972 0.012 0.000 0.000 0.000
#> SRR2443214     6  0.0000      0.859 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443213     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443212     2  0.0972      0.895 0.008 0.964 0.028 0.000 0.000 0.000
#> SRR2443211     2  0.1116      0.895 0.008 0.960 0.028 0.004 0.000 0.000
#> SRR2443210     4  0.4715      0.625 0.032 0.008 0.000 0.544 0.416 0.000
#> SRR2443209     3  0.2558      0.860 0.000 0.000 0.840 0.156 0.000 0.004
#> SRR2443208     3  0.0632      0.894 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR2443207     3  0.1528      0.868 0.000 0.048 0.936 0.016 0.000 0.000
#> SRR2443206     2  0.1225      0.885 0.036 0.952 0.000 0.012 0.000 0.000
#> SRR2443205     2  0.1232      0.895 0.016 0.956 0.024 0.004 0.000 0.000
#> SRR2443204     6  0.0790      0.853 0.000 0.000 0.000 0.032 0.000 0.968
#> SRR2443203     3  0.2420      0.879 0.000 0.000 0.884 0.076 0.000 0.040
#> SRR2443202     2  0.0881      0.895 0.008 0.972 0.012 0.008 0.000 0.000
#> SRR2443201     2  0.4046      0.483 0.008 0.620 0.368 0.004 0.000 0.000
#> SRR2443200     5  0.0146      0.997 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR2443199     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443197     4  0.4851      0.387 0.060 0.404 0.000 0.536 0.000 0.000
#> SRR2443196     4  0.5475      0.673 0.060 0.032 0.000 0.536 0.372 0.000
#> SRR2443198     2  0.2488      0.829 0.044 0.880 0.000 0.076 0.000 0.000
#> SRR2443195     6  0.2357      0.759 0.000 0.000 0.116 0.012 0.000 0.872
#> SRR2443194     3  0.0291      0.892 0.004 0.004 0.992 0.000 0.000 0.000
#> SRR2443193     6  0.0260      0.859 0.000 0.000 0.000 0.008 0.000 0.992
#> SRR2443191     3  0.2135      0.869 0.000 0.000 0.872 0.128 0.000 0.000
#> SRR2443192     2  0.0881      0.895 0.008 0.972 0.012 0.008 0.000 0.000
#> SRR2443190     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443189     6  0.0000      0.859 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443188     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443186     2  0.1232      0.895 0.024 0.956 0.016 0.004 0.000 0.000
#> SRR2443187     2  0.1138      0.895 0.024 0.960 0.012 0.004 0.000 0.000
#> SRR2443185     2  0.1605      0.876 0.044 0.936 0.004 0.016 0.000 0.000
#> SRR2443184     3  0.1075      0.892 0.000 0.000 0.952 0.048 0.000 0.000
#> SRR2443183     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443182     3  0.5444      0.563 0.000 0.000 0.576 0.212 0.000 0.212
#> SRR2443181     2  0.2554      0.828 0.048 0.876 0.000 0.076 0.000 0.000
#> SRR2443180     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443179     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443178     2  0.1713      0.869 0.044 0.928 0.000 0.028 0.000 0.000
#> SRR2443177     6  0.0000      0.859 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR2443176     3  0.4573      0.749 0.000 0.000 0.688 0.208 0.000 0.104
#> SRR2443175     6  0.2841      0.820 0.012 0.000 0.000 0.164 0.000 0.824
#> SRR2443174     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443173     4  0.5219      0.674 0.036 0.036 0.000 0.552 0.376 0.000
#> SRR2443172     4  0.5143      0.682 0.028 0.040 0.000 0.560 0.372 0.000
#> SRR2443171     6  0.2631      0.825 0.000 0.000 0.000 0.180 0.000 0.820
#> SRR2443170     6  0.3126      0.783 0.000 0.000 0.000 0.248 0.000 0.752
#> SRR2443169     1  0.2003      0.936 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR2443168     3  0.3141      0.852 0.000 0.000 0.788 0.200 0.000 0.012
#> SRR2443167     4  0.6242      0.663 0.060 0.124 0.000 0.536 0.280 0.000
#> SRR2443166     6  0.0790      0.853 0.000 0.000 0.000 0.032 0.000 0.968
#> SRR2443165     2  0.2318      0.840 0.044 0.892 0.000 0.064 0.000 0.000
#> SRR2443164     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443163     2  0.2643      0.823 0.008 0.856 0.128 0.008 0.000 0.000
#> SRR2443162     3  0.0458      0.895 0.000 0.000 0.984 0.016 0.000 0.000
#> SRR2443161     3  0.0000      0.894 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR2443160     4  0.5475      0.673 0.060 0.032 0.000 0.536 0.372 0.000
#> SRR2443159     4  0.5369      0.672 0.056 0.028 0.000 0.540 0.376 0.000
#> SRR2443158     3  0.1967      0.887 0.000 0.000 0.904 0.084 0.000 0.012
#> SRR2443157     6  0.2135      0.840 0.000 0.000 0.000 0.128 0.000 0.872
#> SRR2443156     3  0.2558      0.860 0.000 0.000 0.840 0.156 0.000 0.004
#> SRR2443155     3  0.6086      0.109 0.000 0.000 0.388 0.328 0.000 0.284
#> SRR2443154     3  0.3231      0.837 0.000 0.000 0.784 0.200 0.000 0.016
#> SRR2443153     1  0.4348      0.822 0.724 0.000 0.000 0.152 0.000 0.124
#> SRR2443152     4  0.4475      0.398 0.032 0.412 0.000 0.556 0.000 0.000
#> SRR2443151     5  0.0146      0.997 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR2443150     4  0.4475      0.398 0.032 0.412 0.000 0.556 0.000 0.000
#> SRR2443148     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443147     5  0.0000      0.998 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR2443149     3  0.1686      0.890 0.000 0.000 0.924 0.064 0.000 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.977       0.992         0.5044 0.496   0.496
#> 3 3 1.000           0.977       0.989         0.1708 0.908   0.816
#> 4 4 0.919           0.920       0.958         0.1063 0.935   0.842
#> 5 5 0.781           0.782       0.866         0.0659 0.958   0.883
#> 6 6 0.786           0.746       0.861         0.0405 0.966   0.897

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     1  0.0000      1.000 1.000 0.000
#> SRR2443262     2  0.0000      0.983 0.000 1.000
#> SRR2443261     2  0.0000      0.983 0.000 1.000
#> SRR2443260     1  0.0000      1.000 1.000 0.000
#> SRR2443259     1  0.0000      1.000 1.000 0.000
#> SRR2443258     1  0.0000      1.000 1.000 0.000
#> SRR2443257     2  0.0000      0.983 0.000 1.000
#> SRR2443256     1  0.0000      1.000 1.000 0.000
#> SRR2443255     1  0.0000      1.000 1.000 0.000
#> SRR2443254     1  0.0000      1.000 1.000 0.000
#> SRR2443253     2  0.0000      0.983 0.000 1.000
#> SRR2443251     2  0.0000      0.983 0.000 1.000
#> SRR2443250     2  0.0000      0.983 0.000 1.000
#> SRR2443249     2  0.0000      0.983 0.000 1.000
#> SRR2443252     1  0.0000      1.000 1.000 0.000
#> SRR2443247     1  0.0000      1.000 1.000 0.000
#> SRR2443246     1  0.0000      1.000 1.000 0.000
#> SRR2443248     2  0.0000      0.983 0.000 1.000
#> SRR2443244     2  0.0000      0.983 0.000 1.000
#> SRR2443245     1  0.0000      1.000 1.000 0.000
#> SRR2443243     1  0.0000      1.000 1.000 0.000
#> SRR2443242     2  0.0000      0.983 0.000 1.000
#> SRR2443241     1  0.0000      1.000 1.000 0.000
#> SRR2443240     1  0.0376      0.996 0.996 0.004
#> SRR2443239     2  0.0000      0.983 0.000 1.000
#> SRR2443238     1  0.0000      1.000 1.000 0.000
#> SRR2443237     2  0.0000      0.983 0.000 1.000
#> SRR2443236     1  0.0000      1.000 1.000 0.000
#> SRR2443235     1  0.0000      1.000 1.000 0.000
#> SRR2443233     1  0.0000      1.000 1.000 0.000
#> SRR2443234     1  0.0000      1.000 1.000 0.000
#> SRR2443232     1  0.0000      1.000 1.000 0.000
#> SRR2443231     1  0.0000      1.000 1.000 0.000
#> SRR2443230     1  0.0000      1.000 1.000 0.000
#> SRR2443229     1  0.0000      1.000 1.000 0.000
#> SRR2443228     2  0.0000      0.983 0.000 1.000
#> SRR2443227     1  0.0000      1.000 1.000 0.000
#> SRR2443226     1  0.0000      1.000 1.000 0.000
#> SRR2443225     2  0.0000      0.983 0.000 1.000
#> SRR2443223     2  0.0000      0.983 0.000 1.000
#> SRR2443224     2  0.0000      0.983 0.000 1.000
#> SRR2443222     2  0.0000      0.983 0.000 1.000
#> SRR2443221     2  0.0000      0.983 0.000 1.000
#> SRR2443219     2  0.0000      0.983 0.000 1.000
#> SRR2443220     2  0.0000      0.983 0.000 1.000
#> SRR2443218     2  0.0000      0.983 0.000 1.000
#> SRR2443217     1  0.0000      1.000 1.000 0.000
#> SRR2443216     1  0.0000      1.000 1.000 0.000
#> SRR2443215     2  0.0000      0.983 0.000 1.000
#> SRR2443214     1  0.0000      1.000 1.000 0.000
#> SRR2443213     1  0.0000      1.000 1.000 0.000
#> SRR2443212     2  0.0000      0.983 0.000 1.000
#> SRR2443211     2  0.0000      0.983 0.000 1.000
#> SRR2443210     2  0.0000      0.983 0.000 1.000
#> SRR2443209     1  0.0000      1.000 1.000 0.000
#> SRR2443208     1  0.0000      1.000 1.000 0.000
#> SRR2443207     2  0.1184      0.968 0.016 0.984
#> SRR2443206     2  0.0000      0.983 0.000 1.000
#> SRR2443205     2  0.0000      0.983 0.000 1.000
#> SRR2443204     1  0.0000      1.000 1.000 0.000
#> SRR2443203     1  0.0000      1.000 1.000 0.000
#> SRR2443202     2  0.0000      0.983 0.000 1.000
#> SRR2443201     2  0.0000      0.983 0.000 1.000
#> SRR2443200     2  0.0000      0.983 0.000 1.000
#> SRR2443199     2  0.0000      0.983 0.000 1.000
#> SRR2443197     2  0.0000      0.983 0.000 1.000
#> SRR2443196     2  0.0000      0.983 0.000 1.000
#> SRR2443198     2  0.0000      0.983 0.000 1.000
#> SRR2443195     1  0.0000      1.000 1.000 0.000
#> SRR2443194     2  0.9970      0.135 0.468 0.532
#> SRR2443193     1  0.0000      1.000 1.000 0.000
#> SRR2443191     1  0.0000      1.000 1.000 0.000
#> SRR2443192     2  0.0000      0.983 0.000 1.000
#> SRR2443190     1  0.0000      1.000 1.000 0.000
#> SRR2443189     1  0.0000      1.000 1.000 0.000
#> SRR2443188     1  0.0000      1.000 1.000 0.000
#> SRR2443186     2  0.0000      0.983 0.000 1.000
#> SRR2443187     2  0.0000      0.983 0.000 1.000
#> SRR2443185     2  0.0000      0.983 0.000 1.000
#> SRR2443184     1  0.0000      1.000 1.000 0.000
#> SRR2443183     1  0.0000      1.000 1.000 0.000
#> SRR2443182     1  0.0000      1.000 1.000 0.000
#> SRR2443181     2  0.0000      0.983 0.000 1.000
#> SRR2443180     2  0.0000      0.983 0.000 1.000
#> SRR2443179     2  0.0000      0.983 0.000 1.000
#> SRR2443178     2  0.0000      0.983 0.000 1.000
#> SRR2443177     1  0.0000      1.000 1.000 0.000
#> SRR2443176     1  0.0000      1.000 1.000 0.000
#> SRR2443175     1  0.0000      1.000 1.000 0.000
#> SRR2443174     1  0.0000      1.000 1.000 0.000
#> SRR2443173     2  0.0000      0.983 0.000 1.000
#> SRR2443172     2  0.0000      0.983 0.000 1.000
#> SRR2443171     1  0.0000      1.000 1.000 0.000
#> SRR2443170     1  0.0000      1.000 1.000 0.000
#> SRR2443169     1  0.0000      1.000 1.000 0.000
#> SRR2443168     1  0.0000      1.000 1.000 0.000
#> SRR2443167     2  0.0000      0.983 0.000 1.000
#> SRR2443166     1  0.0000      1.000 1.000 0.000
#> SRR2443165     2  0.0000      0.983 0.000 1.000
#> SRR2443164     2  0.0000      0.983 0.000 1.000
#> SRR2443163     2  0.0000      0.983 0.000 1.000
#> SRR2443162     1  0.0000      1.000 1.000 0.000
#> SRR2443161     2  0.9963      0.148 0.464 0.536
#> SRR2443160     2  0.0000      0.983 0.000 1.000
#> SRR2443159     2  0.0000      0.983 0.000 1.000
#> SRR2443158     1  0.0000      1.000 1.000 0.000
#> SRR2443157     1  0.0000      1.000 1.000 0.000
#> SRR2443156     1  0.0000      1.000 1.000 0.000
#> SRR2443155     1  0.0000      1.000 1.000 0.000
#> SRR2443154     1  0.0000      1.000 1.000 0.000
#> SRR2443153     1  0.0000      1.000 1.000 0.000
#> SRR2443152     2  0.0000      0.983 0.000 1.000
#> SRR2443151     2  0.0000      0.983 0.000 1.000
#> SRR2443150     2  0.0000      0.983 0.000 1.000
#> SRR2443148     2  0.0000      0.983 0.000 1.000
#> SRR2443147     2  0.0000      0.983 0.000 1.000
#> SRR2443149     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443262     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443261     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443260     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443259     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443258     1  0.5760      0.465 0.672 0.000 0.328
#> SRR2443257     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443256     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443255     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443254     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443253     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443251     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443250     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443249     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443252     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443247     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443246     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443248     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443244     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443245     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443242     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443241     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2443240     1  0.0747      0.976 0.984 0.000 0.016
#> SRR2443239     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443238     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443237     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443236     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443229     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443228     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443225     2  0.4062      0.807 0.000 0.836 0.164
#> SRR2443223     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443224     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443222     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443219     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443220     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443218     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443217     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2443216     3  0.3879      0.827 0.152 0.000 0.848
#> SRR2443215     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443214     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443212     2  0.0592      0.987 0.000 0.988 0.012
#> SRR2443211     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443210     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443209     1  0.0237      0.988 0.996 0.000 0.004
#> SRR2443208     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443207     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443206     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443205     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443204     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443203     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443202     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443201     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443200     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443199     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443197     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443196     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443198     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443195     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443194     3  0.0747      0.940 0.000 0.016 0.984
#> SRR2443193     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443191     1  0.0747      0.976 0.984 0.000 0.016
#> SRR2443192     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443190     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443189     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443188     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443186     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443187     2  0.0747      0.984 0.000 0.984 0.016
#> SRR2443185     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443184     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443183     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443182     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443181     2  0.0424      0.990 0.000 0.992 0.008
#> SRR2443180     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443179     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443178     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443177     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443176     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443175     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443171     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443170     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443169     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443168     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443167     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443166     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443165     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443164     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443163     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443162     3  0.0747      0.953 0.016 0.000 0.984
#> SRR2443161     3  0.0747      0.940 0.000 0.016 0.984
#> SRR2443160     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443159     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443158     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443157     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443156     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443155     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443154     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443153     1  0.0000      0.992 1.000 0.000 0.000
#> SRR2443152     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443151     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443150     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443148     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443147     2  0.0000      0.995 0.000 1.000 0.000
#> SRR2443149     3  0.5785      0.536 0.332 0.000 0.668

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.1389      0.886 0.000 0.048 0.952 0.000
#> SRR2443262     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443261     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443260     3  0.1118      0.885 0.000 0.036 0.964 0.000
#> SRR2443259     3  0.2081      0.868 0.000 0.084 0.916 0.000
#> SRR2443258     1  0.3893      0.738 0.796 0.008 0.196 0.000
#> SRR2443257     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443256     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443255     3  0.0000      0.889 0.000 0.000 1.000 0.000
#> SRR2443254     3  0.1118      0.888 0.000 0.036 0.964 0.000
#> SRR2443253     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443251     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443250     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443249     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443252     3  0.1118      0.885 0.000 0.036 0.964 0.000
#> SRR2443247     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443246     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443248     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443244     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443245     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443243     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443242     4  0.0707      0.959 0.000 0.020 0.000 0.980
#> SRR2443241     1  0.0592      0.969 0.984 0.016 0.000 0.000
#> SRR2443240     2  0.3311      0.589 0.172 0.828 0.000 0.000
#> SRR2443239     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443238     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443237     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443236     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443235     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443229     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443228     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443227     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443226     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443225     4  0.4552      0.734 0.000 0.072 0.128 0.800
#> SRR2443223     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443224     2  0.3172      0.885 0.000 0.840 0.000 0.160
#> SRR2443222     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443221     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443219     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443220     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443218     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443217     1  0.1637      0.928 0.940 0.060 0.000 0.000
#> SRR2443216     3  0.3900      0.799 0.072 0.084 0.844 0.000
#> SRR2443215     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443214     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443213     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443212     2  0.4304      0.752 0.000 0.716 0.000 0.284
#> SRR2443211     2  0.3528      0.872 0.000 0.808 0.000 0.192
#> SRR2443210     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443209     1  0.0592      0.969 0.984 0.016 0.000 0.000
#> SRR2443208     1  0.3266      0.857 0.876 0.084 0.040 0.000
#> SRR2443207     2  0.2313      0.703 0.000 0.924 0.044 0.032
#> SRR2443206     2  0.3311      0.889 0.000 0.828 0.000 0.172
#> SRR2443205     2  0.3266      0.891 0.000 0.832 0.000 0.168
#> SRR2443204     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443203     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443202     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443201     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443200     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443199     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443197     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443196     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443198     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443195     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443194     3  0.1474      0.884 0.000 0.052 0.948 0.000
#> SRR2443193     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443191     1  0.4866      0.331 0.596 0.404 0.000 0.000
#> SRR2443192     4  0.0592      0.961 0.000 0.016 0.000 0.984
#> SRR2443190     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443189     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443188     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443186     2  0.3266      0.891 0.000 0.832 0.000 0.168
#> SRR2443187     2  0.3266      0.891 0.000 0.832 0.000 0.168
#> SRR2443185     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443184     3  0.2081      0.868 0.000 0.084 0.916 0.000
#> SRR2443183     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443181     4  0.4972     -0.132 0.000 0.456 0.000 0.544
#> SRR2443180     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443179     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443178     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443177     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443176     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443175     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443174     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443173     4  0.4522      0.392 0.000 0.320 0.000 0.680
#> SRR2443172     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443171     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443170     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443169     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443168     1  0.0336      0.977 0.992 0.008 0.000 0.000
#> SRR2443167     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443166     1  0.0188      0.979 0.996 0.004 0.000 0.000
#> SRR2443165     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443164     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443163     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443162     3  0.1389      0.886 0.000 0.048 0.952 0.000
#> SRR2443161     3  0.1389      0.886 0.000 0.048 0.952 0.000
#> SRR2443160     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443159     4  0.0817      0.958 0.000 0.024 0.000 0.976
#> SRR2443158     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443157     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443156     1  0.0469      0.973 0.988 0.012 0.000 0.000
#> SRR2443155     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443154     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443153     1  0.0000      0.981 1.000 0.000 0.000 0.000
#> SRR2443152     4  0.0469      0.956 0.000 0.012 0.000 0.988
#> SRR2443151     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443150     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443148     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443147     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> SRR2443149     3  0.6543      0.354 0.372 0.084 0.544 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.4352    0.79588 0.020 0.012 0.732 0.000 0.236
#> SRR2443262     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443261     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443260     3  0.0404    0.84742 0.000 0.012 0.988 0.000 0.000
#> SRR2443259     3  0.3321    0.79167 0.000 0.032 0.832 0.000 0.136
#> SRR2443258     1  0.5588    0.40282 0.680 0.016 0.168 0.000 0.136
#> SRR2443257     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443256     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443255     3  0.0000    0.84816 0.000 0.000 1.000 0.000 0.000
#> SRR2443254     3  0.1341    0.84321 0.000 0.000 0.944 0.000 0.056
#> SRR2443253     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443251     4  0.2813    0.79739 0.000 0.168 0.000 0.832 0.000
#> SRR2443250     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443249     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443252     3  0.0404    0.84742 0.000 0.012 0.988 0.000 0.000
#> SRR2443247     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443246     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443248     4  0.3274    0.56828 0.000 0.220 0.000 0.780 0.000
#> SRR2443244     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443245     1  0.1792    0.83157 0.916 0.000 0.000 0.000 0.084
#> SRR2443243     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443242     4  0.2516    0.81006 0.000 0.140 0.000 0.860 0.000
#> SRR2443241     5  0.4294    0.78791 0.468 0.000 0.000 0.000 0.532
#> SRR2443240     5  0.5584    0.00216 0.076 0.392 0.000 0.000 0.532
#> SRR2443239     4  0.3424    0.52928 0.000 0.240 0.000 0.760 0.000
#> SRR2443238     1  0.0404    0.90550 0.988 0.000 0.000 0.000 0.012
#> SRR2443237     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443236     1  0.3796    0.03490 0.700 0.000 0.000 0.000 0.300
#> SRR2443235     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443228     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443227     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     1  0.1478    0.85382 0.936 0.000 0.000 0.000 0.064
#> SRR2443225     4  0.8186    0.03030 0.000 0.180 0.144 0.372 0.304
#> SRR2443223     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443224     2  0.4111    0.72807 0.000 0.788 0.000 0.092 0.120
#> SRR2443222     4  0.0794    0.83152 0.000 0.028 0.000 0.972 0.000
#> SRR2443221     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443219     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443220     4  0.0290    0.84855 0.000 0.008 0.000 0.992 0.000
#> SRR2443218     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443217     5  0.4582    0.80540 0.416 0.012 0.000 0.000 0.572
#> SRR2443216     3  0.4082    0.76837 0.028 0.032 0.804 0.000 0.136
#> SRR2443215     4  0.3424    0.52928 0.000 0.240 0.000 0.760 0.000
#> SRR2443214     1  0.0404    0.90550 0.988 0.000 0.000 0.000 0.012
#> SRR2443213     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     2  0.4150    0.64907 0.000 0.612 0.000 0.388 0.000
#> SRR2443211     2  0.3913    0.76536 0.000 0.676 0.000 0.324 0.000
#> SRR2443210     4  0.0794    0.83152 0.000 0.028 0.000 0.972 0.000
#> SRR2443209     5  0.4287    0.79585 0.460 0.000 0.000 0.000 0.540
#> SRR2443208     1  0.4863    0.54492 0.740 0.036 0.040 0.000 0.184
#> SRR2443207     2  0.4218    0.57192 0.000 0.776 0.032 0.016 0.176
#> SRR2443206     2  0.3242    0.85286 0.000 0.784 0.000 0.216 0.000
#> SRR2443205     2  0.3242    0.85286 0.000 0.784 0.000 0.216 0.000
#> SRR2443204     1  0.2329    0.78270 0.876 0.000 0.000 0.000 0.124
#> SRR2443203     1  0.2583    0.76650 0.864 0.000 0.004 0.000 0.132
#> SRR2443202     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443201     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443200     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443199     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443197     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443196     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443198     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443195     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443194     3  0.4420    0.77421 0.000 0.028 0.692 0.000 0.280
#> SRR2443193     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443191     5  0.5010    0.79614 0.392 0.036 0.000 0.000 0.572
#> SRR2443192     4  0.0290    0.84854 0.000 0.008 0.000 0.992 0.000
#> SRR2443190     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.2424    0.77178 0.868 0.000 0.000 0.000 0.132
#> SRR2443188     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.3242    0.85286 0.000 0.784 0.000 0.216 0.000
#> SRR2443187     2  0.3242    0.85286 0.000 0.784 0.000 0.216 0.000
#> SRR2443185     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443184     3  0.3478    0.78976 0.004 0.032 0.828 0.000 0.136
#> SRR2443183     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443181     4  0.4235   -0.11047 0.000 0.424 0.000 0.576 0.000
#> SRR2443180     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443179     4  0.2424    0.81214 0.000 0.132 0.000 0.868 0.000
#> SRR2443178     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443177     1  0.0404    0.90550 0.988 0.000 0.000 0.000 0.012
#> SRR2443176     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443175     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443174     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     4  0.4088    0.14211 0.000 0.368 0.000 0.632 0.000
#> SRR2443172     4  0.0794    0.83152 0.000 0.028 0.000 0.972 0.000
#> SRR2443171     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443170     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443169     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443168     1  0.2865    0.75537 0.856 0.008 0.004 0.000 0.132
#> SRR2443167     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443166     1  0.2329    0.78270 0.876 0.000 0.000 0.000 0.124
#> SRR2443165     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443164     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443163     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443162     3  0.4095    0.80267 0.016 0.008 0.748 0.000 0.228
#> SRR2443161     3  0.4138    0.78436 0.000 0.016 0.708 0.000 0.276
#> SRR2443160     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443159     4  0.3304    0.79125 0.000 0.168 0.000 0.816 0.016
#> SRR2443158     1  0.0404    0.90550 0.988 0.000 0.000 0.000 0.012
#> SRR2443157     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443156     5  0.4300    0.77336 0.476 0.000 0.000 0.000 0.524
#> SRR2443155     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443154     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443153     1  0.0000    0.91400 1.000 0.000 0.000 0.000 0.000
#> SRR2443152     4  0.3636    0.45364 0.000 0.272 0.000 0.728 0.000
#> SRR2443151     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443150     4  0.0880    0.82839 0.000 0.032 0.000 0.968 0.000
#> SRR2443148     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443147     4  0.0000    0.84953 0.000 0.000 0.000 1.000 0.000
#> SRR2443149     1  0.6893   -0.12644 0.444 0.032 0.388 0.000 0.136

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     6  0.4117     0.6619 0.004 0.004 0.256 0.000 0.028 0.708
#> SRR2443262     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443261     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443260     3  0.3960     0.4712 0.000 0.004 0.736 0.000 0.040 0.220
#> SRR2443259     3  0.0260     0.5818 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR2443258     3  0.3899     0.1505 0.404 0.000 0.592 0.000 0.004 0.000
#> SRR2443257     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443256     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443255     3  0.4039     0.4547 0.000 0.004 0.724 0.000 0.040 0.232
#> SRR2443254     3  0.5094     0.2363 0.000 0.004 0.596 0.000 0.092 0.308
#> SRR2443253     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443251     4  0.4618     0.6923 0.000 0.124 0.000 0.720 0.012 0.144
#> SRR2443250     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443249     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443252     3  0.3877     0.4818 0.000 0.004 0.748 0.000 0.040 0.208
#> SRR2443247     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443246     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443248     4  0.2730     0.6054 0.000 0.192 0.000 0.808 0.000 0.000
#> SRR2443244     4  0.0260     0.7997 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR2443245     1  0.1285     0.9092 0.944 0.000 0.052 0.000 0.004 0.000
#> SRR2443243     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443242     4  0.5013     0.6776 0.000 0.148 0.000 0.696 0.028 0.128
#> SRR2443241     5  0.2854     0.8317 0.208 0.000 0.000 0.000 0.792 0.000
#> SRR2443240     5  0.3353     0.6731 0.032 0.160 0.000 0.000 0.804 0.004
#> SRR2443239     4  0.3101     0.5240 0.000 0.244 0.000 0.756 0.000 0.000
#> SRR2443238     1  0.0405     0.9426 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR2443237     4  0.5593     0.6389 0.000 0.132 0.000 0.644 0.048 0.176
#> SRR2443236     1  0.3737     0.1644 0.608 0.000 0.000 0.000 0.392 0.000
#> SRR2443235     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443233     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443234     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443232     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443231     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443229     1  0.0146     0.9470 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2443228     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443227     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443226     1  0.1152     0.9159 0.952 0.000 0.044 0.000 0.004 0.000
#> SRR2443225     6  0.3779     0.3836 0.000 0.056 0.000 0.124 0.020 0.800
#> SRR2443223     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443224     2  0.2697     0.7753 0.000 0.864 0.000 0.092 0.044 0.000
#> SRR2443222     4  0.0790     0.7851 0.000 0.032 0.000 0.968 0.000 0.000
#> SRR2443221     4  0.0363     0.7976 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR2443219     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443220     4  0.0458     0.8005 0.000 0.016 0.000 0.984 0.000 0.000
#> SRR2443218     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443217     5  0.1753     0.7936 0.084 0.004 0.000 0.000 0.912 0.000
#> SRR2443216     3  0.0146     0.5786 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR2443215     4  0.3023     0.5467 0.000 0.232 0.000 0.768 0.000 0.000
#> SRR2443214     1  0.0405     0.9426 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR2443213     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     4  0.4086    -0.1957 0.000 0.464 0.000 0.528 0.008 0.000
#> SRR2443211     2  0.4083     0.3095 0.000 0.532 0.000 0.460 0.008 0.000
#> SRR2443210     4  0.0865     0.7824 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR2443209     5  0.2823     0.8342 0.204 0.000 0.000 0.000 0.796 0.000
#> SRR2443208     1  0.5372     0.2460 0.540 0.004 0.348 0.000 0.108 0.000
#> SRR2443207     2  0.4525     0.4902 0.000 0.716 0.152 0.004 0.128 0.000
#> SRR2443206     2  0.2260     0.8179 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR2443205     2  0.2260     0.8179 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR2443204     1  0.1908     0.8689 0.900 0.000 0.096 0.000 0.004 0.000
#> SRR2443203     1  0.2743     0.7911 0.828 0.000 0.164 0.000 0.008 0.000
#> SRR2443202     4  0.5558     0.6427 0.000 0.128 0.000 0.648 0.048 0.176
#> SRR2443201     4  0.5593     0.6389 0.000 0.132 0.000 0.644 0.048 0.176
#> SRR2443200     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443199     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443197     4  0.4940     0.6739 0.000 0.124 0.000 0.688 0.016 0.172
#> SRR2443196     4  0.5128     0.6660 0.000 0.124 0.000 0.676 0.024 0.176
#> SRR2443198     4  0.4844     0.6814 0.000 0.124 0.000 0.700 0.016 0.160
#> SRR2443195     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443194     6  0.2527     0.7178 0.000 0.000 0.168 0.000 0.000 0.832
#> SRR2443193     1  0.0146     0.9470 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2443191     5  0.2070     0.8122 0.100 0.008 0.000 0.000 0.892 0.000
#> SRR2443192     4  0.0260     0.8024 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR2443190     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443189     1  0.2595     0.7998 0.836 0.000 0.160 0.000 0.004 0.000
#> SRR2443188     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.2389     0.8131 0.000 0.864 0.000 0.128 0.008 0.000
#> SRR2443187     2  0.2340     0.8125 0.000 0.852 0.000 0.148 0.000 0.000
#> SRR2443185     4  0.5270     0.6599 0.000 0.124 0.000 0.668 0.032 0.176
#> SRR2443184     3  0.0520     0.5804 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR2443183     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443182     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443181     4  0.3747     0.0847 0.000 0.396 0.000 0.604 0.000 0.000
#> SRR2443180     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443179     4  0.2457     0.7645 0.000 0.084 0.000 0.880 0.000 0.036
#> SRR2443178     4  0.4342     0.7090 0.000 0.100 0.000 0.752 0.016 0.132
#> SRR2443177     1  0.0291     0.9449 0.992 0.000 0.004 0.000 0.004 0.000
#> SRR2443176     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443175     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443174     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443173     4  0.3531     0.3146 0.000 0.328 0.000 0.672 0.000 0.000
#> SRR2443172     4  0.0865     0.7824 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR2443171     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443170     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443169     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443168     1  0.3323     0.6841 0.752 0.000 0.240 0.000 0.008 0.000
#> SRR2443167     4  0.5400     0.6533 0.000 0.124 0.000 0.660 0.040 0.176
#> SRR2443166     1  0.2278     0.8361 0.868 0.000 0.128 0.000 0.004 0.000
#> SRR2443165     4  0.4940     0.6739 0.000 0.124 0.000 0.688 0.016 0.172
#> SRR2443164     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443163     4  0.5593     0.6389 0.000 0.132 0.000 0.644 0.048 0.176
#> SRR2443162     6  0.4751     0.6237 0.044 0.004 0.256 0.000 0.020 0.676
#> SRR2443161     6  0.2597     0.7173 0.000 0.000 0.176 0.000 0.000 0.824
#> SRR2443160     4  0.5201     0.6630 0.000 0.124 0.000 0.672 0.028 0.176
#> SRR2443159     4  0.4940     0.6739 0.000 0.124 0.000 0.688 0.016 0.172
#> SRR2443158     1  0.0547     0.9368 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR2443157     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443156     5  0.2941     0.8167 0.220 0.000 0.000 0.000 0.780 0.000
#> SRR2443155     1  0.0146     0.9463 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR2443154     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443153     1  0.0000     0.9489 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443152     4  0.3221     0.4720 0.000 0.264 0.000 0.736 0.000 0.000
#> SRR2443151     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443150     4  0.1075     0.7731 0.000 0.048 0.000 0.952 0.000 0.000
#> SRR2443148     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443147     4  0.0000     0.8036 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR2443149     3  0.2778     0.4302 0.168 0.000 0.824 0.000 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.671           0.875       0.937         0.4753 0.541   0.541
#> 3 3 1.000           0.981       0.993         0.3992 0.711   0.504
#> 4 4 1.000           0.975       0.991         0.0917 0.891   0.696
#> 5 5 0.843           0.900       0.939         0.0559 0.955   0.840
#> 6 6 1.000           0.988       0.994         0.0687 0.874   0.541

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4

There is also optional best \(k\) = 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.9580      0.539 0.380 0.620
#> SRR2443262     2  0.0000      0.897 0.000 1.000
#> SRR2443261     2  0.0000      0.897 0.000 1.000
#> SRR2443260     2  0.7883      0.731 0.236 0.764
#> SRR2443259     2  0.9608      0.533 0.384 0.616
#> SRR2443258     1  0.0000      0.995 1.000 0.000
#> SRR2443257     2  0.0000      0.897 0.000 1.000
#> SRR2443256     1  0.2778      0.939 0.952 0.048
#> SRR2443255     2  0.9608      0.533 0.384 0.616
#> SRR2443254     2  0.8144      0.714 0.252 0.748
#> SRR2443253     2  0.0000      0.897 0.000 1.000
#> SRR2443251     2  0.0000      0.897 0.000 1.000
#> SRR2443250     2  0.0000      0.897 0.000 1.000
#> SRR2443249     2  0.0000      0.897 0.000 1.000
#> SRR2443252     2  0.7883      0.731 0.236 0.764
#> SRR2443247     1  0.0000      0.995 1.000 0.000
#> SRR2443246     1  0.0000      0.995 1.000 0.000
#> SRR2443248     2  0.0000      0.897 0.000 1.000
#> SRR2443244     2  0.0000      0.897 0.000 1.000
#> SRR2443245     1  0.0000      0.995 1.000 0.000
#> SRR2443243     1  0.0000      0.995 1.000 0.000
#> SRR2443242     2  0.0000      0.897 0.000 1.000
#> SRR2443241     2  0.9608      0.533 0.384 0.616
#> SRR2443240     2  0.7883      0.731 0.236 0.764
#> SRR2443239     2  0.0000      0.897 0.000 1.000
#> SRR2443238     1  0.0000      0.995 1.000 0.000
#> SRR2443237     2  0.0000      0.897 0.000 1.000
#> SRR2443236     1  0.0000      0.995 1.000 0.000
#> SRR2443235     1  0.0000      0.995 1.000 0.000
#> SRR2443233     1  0.0000      0.995 1.000 0.000
#> SRR2443234     1  0.0000      0.995 1.000 0.000
#> SRR2443232     1  0.0000      0.995 1.000 0.000
#> SRR2443231     1  0.0000      0.995 1.000 0.000
#> SRR2443230     1  0.0000      0.995 1.000 0.000
#> SRR2443229     1  0.0000      0.995 1.000 0.000
#> SRR2443228     2  0.0000      0.897 0.000 1.000
#> SRR2443227     1  0.0000      0.995 1.000 0.000
#> SRR2443226     1  0.0000      0.995 1.000 0.000
#> SRR2443225     2  0.7883      0.731 0.236 0.764
#> SRR2443223     2  0.0000      0.897 0.000 1.000
#> SRR2443224     2  0.0376      0.895 0.004 0.996
#> SRR2443222     2  0.0000      0.897 0.000 1.000
#> SRR2443221     2  0.0000      0.897 0.000 1.000
#> SRR2443219     2  0.0000      0.897 0.000 1.000
#> SRR2443220     2  0.0000      0.897 0.000 1.000
#> SRR2443218     2  0.0000      0.897 0.000 1.000
#> SRR2443217     2  0.7883      0.731 0.236 0.764
#> SRR2443216     2  0.9922      0.386 0.448 0.552
#> SRR2443215     2  0.0000      0.897 0.000 1.000
#> SRR2443214     1  0.0000      0.995 1.000 0.000
#> SRR2443213     1  0.0000      0.995 1.000 0.000
#> SRR2443212     2  0.0000      0.897 0.000 1.000
#> SRR2443211     2  0.0000      0.897 0.000 1.000
#> SRR2443210     2  0.0000      0.897 0.000 1.000
#> SRR2443209     2  0.9608      0.533 0.384 0.616
#> SRR2443208     2  0.9608      0.533 0.384 0.616
#> SRR2443207     2  0.7883      0.731 0.236 0.764
#> SRR2443206     2  0.0000      0.897 0.000 1.000
#> SRR2443205     2  0.0000      0.897 0.000 1.000
#> SRR2443204     1  0.0000      0.995 1.000 0.000
#> SRR2443203     1  0.4939      0.855 0.892 0.108
#> SRR2443202     2  0.0000      0.897 0.000 1.000
#> SRR2443201     2  0.0376      0.895 0.004 0.996
#> SRR2443200     2  0.0000      0.897 0.000 1.000
#> SRR2443199     2  0.0000      0.897 0.000 1.000
#> SRR2443197     2  0.0000      0.897 0.000 1.000
#> SRR2443196     2  0.0000      0.897 0.000 1.000
#> SRR2443198     2  0.0000      0.897 0.000 1.000
#> SRR2443195     1  0.0000      0.995 1.000 0.000
#> SRR2443194     2  0.7883      0.731 0.236 0.764
#> SRR2443193     1  0.0000      0.995 1.000 0.000
#> SRR2443191     2  0.9608      0.533 0.384 0.616
#> SRR2443192     2  0.0000      0.897 0.000 1.000
#> SRR2443190     1  0.0000      0.995 1.000 0.000
#> SRR2443189     1  0.0000      0.995 1.000 0.000
#> SRR2443188     1  0.0000      0.995 1.000 0.000
#> SRR2443186     2  0.0000      0.897 0.000 1.000
#> SRR2443187     2  0.0000      0.897 0.000 1.000
#> SRR2443185     2  0.0000      0.897 0.000 1.000
#> SRR2443184     2  0.9608      0.533 0.384 0.616
#> SRR2443183     1  0.0000      0.995 1.000 0.000
#> SRR2443182     1  0.0000      0.995 1.000 0.000
#> SRR2443181     2  0.0000      0.897 0.000 1.000
#> SRR2443180     2  0.0000      0.897 0.000 1.000
#> SRR2443179     2  0.0000      0.897 0.000 1.000
#> SRR2443178     2  0.0000      0.897 0.000 1.000
#> SRR2443177     1  0.0000      0.995 1.000 0.000
#> SRR2443176     1  0.0000      0.995 1.000 0.000
#> SRR2443175     1  0.0000      0.995 1.000 0.000
#> SRR2443174     1  0.0000      0.995 1.000 0.000
#> SRR2443173     2  0.0000      0.897 0.000 1.000
#> SRR2443172     2  0.0000      0.897 0.000 1.000
#> SRR2443171     1  0.0000      0.995 1.000 0.000
#> SRR2443170     1  0.0000      0.995 1.000 0.000
#> SRR2443169     1  0.0000      0.995 1.000 0.000
#> SRR2443168     1  0.0376      0.991 0.996 0.004
#> SRR2443167     2  0.0000      0.897 0.000 1.000
#> SRR2443166     1  0.0000      0.995 1.000 0.000
#> SRR2443165     2  0.0000      0.897 0.000 1.000
#> SRR2443164     2  0.0000      0.897 0.000 1.000
#> SRR2443163     2  0.0000      0.897 0.000 1.000
#> SRR2443162     2  0.9608      0.533 0.384 0.616
#> SRR2443161     2  0.7883      0.731 0.236 0.764
#> SRR2443160     2  0.0000      0.897 0.000 1.000
#> SRR2443159     2  0.0000      0.897 0.000 1.000
#> SRR2443158     2  0.9608      0.533 0.384 0.616
#> SRR2443157     1  0.0000      0.995 1.000 0.000
#> SRR2443156     2  0.9608      0.533 0.384 0.616
#> SRR2443155     1  0.0000      0.995 1.000 0.000
#> SRR2443154     1  0.0000      0.995 1.000 0.000
#> SRR2443153     1  0.0000      0.995 1.000 0.000
#> SRR2443152     2  0.0000      0.897 0.000 1.000
#> SRR2443151     2  0.0000      0.897 0.000 1.000
#> SRR2443150     2  0.0000      0.897 0.000 1.000
#> SRR2443148     2  0.0000      0.897 0.000 1.000
#> SRR2443147     2  0.0000      0.897 0.000 1.000
#> SRR2443149     2  0.9608      0.533 0.384 0.616

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443262     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443261     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443260     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443259     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443258     3  0.0237      0.988 0.004 0.000 0.996
#> SRR2443257     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443256     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443255     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443254     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443253     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443251     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443250     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443249     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443252     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443247     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443246     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443248     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443244     3  0.4555      0.749 0.000 0.200 0.800
#> SRR2443245     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443243     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443242     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443241     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443240     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443239     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443238     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443237     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443236     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443235     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443233     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443234     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443232     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443231     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443230     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443229     1  0.6286      0.126 0.536 0.000 0.464
#> SRR2443228     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443227     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443226     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443225     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443223     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443224     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443222     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443221     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443219     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443220     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443218     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443217     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443216     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443215     3  0.0592      0.981 0.000 0.012 0.988
#> SRR2443214     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443213     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443212     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443211     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443210     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443209     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443208     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443207     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443206     2  0.1529      0.955 0.000 0.960 0.040
#> SRR2443205     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443204     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443203     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443202     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443201     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443200     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443199     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443197     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443196     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443198     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443195     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443194     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443193     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443191     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443192     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443190     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443189     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443188     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443186     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443187     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443185     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443184     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443183     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443182     3  0.3686      0.832 0.140 0.000 0.860
#> SRR2443181     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443180     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443179     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443178     2  0.0237      0.995 0.000 0.996 0.004
#> SRR2443177     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443176     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443175     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443174     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443173     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443172     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443171     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443170     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443169     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443168     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443167     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443166     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443165     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443164     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443163     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443162     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443161     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443160     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443159     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443158     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443157     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443156     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443155     1  0.0237      0.981 0.996 0.000 0.004
#> SRR2443154     3  0.0000      0.992 0.000 0.000 1.000
#> SRR2443153     1  0.0000      0.985 1.000 0.000 0.000
#> SRR2443152     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443151     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443150     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443148     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443147     2  0.0000      0.999 0.000 1.000 0.000
#> SRR2443149     3  0.0000      0.992 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3    p4
#> SRR2443263     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443262     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443261     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443260     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443259     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443258     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443257     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443256     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443255     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443254     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443253     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443251     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443250     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443249     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443252     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443247     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443246     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443248     3  0.0469      0.983 0.000  0 0.988 0.012
#> SRR2443244     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443245     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443243     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443242     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443241     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443240     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443239     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443238     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443237     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443236     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443235     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443233     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443234     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443232     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443231     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443230     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443229     1  0.4985      0.111 0.532  0 0.468 0.000
#> SRR2443228     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443227     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443226     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443225     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443223     4  0.4522      0.531 0.000  0 0.320 0.680
#> SRR2443224     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443222     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443221     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443219     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443220     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443218     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443217     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443216     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443215     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443214     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443213     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443212     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443211     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443210     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443209     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443208     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443207     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443206     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443205     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443204     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443203     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443202     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443201     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443200     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443199     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443197     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443196     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443198     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443195     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443194     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443193     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443191     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443192     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443190     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443189     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443188     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443186     3  0.0188      0.991 0.000  0 0.996 0.004
#> SRR2443187     4  0.1792      0.901 0.000  0 0.068 0.932
#> SRR2443185     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443184     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443183     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443182     3  0.2921      0.818 0.140  0 0.860 0.000
#> SRR2443181     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443180     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443179     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443178     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443177     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443176     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443175     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443174     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443173     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443172     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443171     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443170     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443169     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443168     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443167     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443166     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443165     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443164     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443163     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443162     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443161     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443160     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443159     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443158     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443157     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443156     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443155     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443154     3  0.0000      0.995 0.000  0 1.000 0.000
#> SRR2443153     1  0.0000      0.982 1.000  0 0.000 0.000
#> SRR2443152     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443151     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443150     4  0.0000      0.983 0.000  0 0.000 1.000
#> SRR2443148     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443147     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR2443149     3  0.0000      0.995 0.000  0 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443262     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443261     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443260     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443259     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443258     3   0.388     0.5254 0.316 0.000 0.684 0.000 0.000
#> SRR2443257     4   0.112     0.8944 0.000 0.044 0.000 0.956 0.000
#> SRR2443256     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443255     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443254     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443253     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443251     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443250     4   0.112     0.8944 0.000 0.044 0.000 0.956 0.000
#> SRR2443249     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443252     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443247     1   0.167     0.8769 0.924 0.000 0.000 0.000 0.076
#> SRR2443246     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443248     3   0.336     0.8411 0.000 0.000 0.840 0.052 0.108
#> SRR2443244     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443245     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443243     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443242     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443241     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443240     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443239     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443238     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443237     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443236     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443235     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443233     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443234     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443232     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443231     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443230     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443229     3   0.431     0.0171 0.492 0.000 0.508 0.000 0.000
#> SRR2443228     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443227     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443226     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443225     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443223     4   0.570     0.4464 0.000 0.000 0.308 0.584 0.108
#> SRR2443224     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443222     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443221     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443219     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443220     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443218     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443217     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443216     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443215     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443214     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443213     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443212     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443211     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443210     4   0.112     0.8944 0.000 0.044 0.000 0.956 0.000
#> SRR2443209     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443208     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443207     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443206     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443205     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443204     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443203     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443202     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443201     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443200     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443199     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443197     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443196     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443198     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443195     1   0.265     0.7710 0.848 0.000 0.152 0.000 0.000
#> SRR2443194     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443193     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443191     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443192     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443190     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443189     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443188     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443186     3   0.329     0.8442 0.000 0.000 0.844 0.048 0.108
#> SRR2443187     4   0.356     0.8481 0.000 0.000 0.064 0.828 0.108
#> SRR2443185     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443184     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443183     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443182     3   0.389     0.5173 0.320 0.000 0.680 0.000 0.000
#> SRR2443181     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443180     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443179     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443178     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443177     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443176     3   0.388     0.5254 0.316 0.000 0.684 0.000 0.000
#> SRR2443175     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443174     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443173     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443172     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443171     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443170     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443169     5   0.213     1.0000 0.108 0.000 0.000 0.000 0.892
#> SRR2443168     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443167     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443166     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443165     4   0.213     0.9110 0.000 0.000 0.000 0.892 0.108
#> SRR2443164     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443163     3   0.322     0.8475 0.000 0.000 0.848 0.044 0.108
#> SRR2443162     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443161     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443160     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443159     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443158     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443157     1   0.000     0.9586 1.000 0.000 0.000 0.000 0.000
#> SRR2443156     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000
#> SRR2443155     1   0.265     0.7710 0.848 0.000 0.152 0.000 0.000
#> SRR2443154     3   0.051     0.8921 0.016 0.000 0.984 0.000 0.000
#> SRR2443153     1   0.386     0.4350 0.688 0.000 0.000 0.000 0.312
#> SRR2443152     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443151     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443150     4   0.000     0.9282 0.000 0.000 0.000 1.000 0.000
#> SRR2443148     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443147     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR2443149     3   0.000     0.9019 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4 p5    p6
#> SRR2443263     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443262     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443261     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443260     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443259     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443258     3   0.127      0.939 0.000 0.000 0.940  0  0 0.060
#> SRR2443257     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443256     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443255     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443254     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443253     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443251     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443250     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443249     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443252     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443247     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443246     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443248     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443244     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443245     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443243     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443242     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443241     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443240     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443239     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443238     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443237     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443236     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443235     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443233     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443234     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443232     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443231     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443230     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443229     3   0.139      0.932 0.000 0.000 0.932  0  0 0.068
#> SRR2443228     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443227     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443226     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443225     2   0.133      0.931 0.000 0.936 0.064  0  0 0.000
#> SRR2443223     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443224     2   0.127      0.935 0.000 0.940 0.060  0  0 0.000
#> SRR2443222     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443221     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443219     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443220     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443218     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443217     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443216     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443215     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443214     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443213     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443212     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443211     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443210     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443209     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443208     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443207     2   0.127      0.935 0.000 0.940 0.060  0  0 0.000
#> SRR2443206     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443205     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443204     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443203     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443202     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443201     2   0.127      0.935 0.000 0.940 0.060  0  0 0.000
#> SRR2443200     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443199     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443197     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443196     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443198     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443195     3   0.166      0.911 0.000 0.000 0.912  0  0 0.088
#> SRR2443194     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443193     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443191     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443192     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443190     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443189     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443188     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443186     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443187     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443185     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443184     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443183     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443182     3   0.127      0.939 0.000 0.000 0.940  0  0 0.060
#> SRR2443181     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443180     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443179     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443178     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443177     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443176     3   0.127      0.939 0.000 0.000 0.940  0  0 0.060
#> SRR2443175     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443174     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443173     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443172     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443171     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443170     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443169     1   0.000      1.000 1.000 0.000 0.000  0  0 0.000
#> SRR2443168     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443167     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443166     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443165     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443164     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443163     2   0.000      0.988 0.000 1.000 0.000  0  0 0.000
#> SRR2443162     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443161     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443160     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443159     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443158     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443157     6   0.000      0.996 0.000 0.000 0.000  0  0 1.000
#> SRR2443156     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000
#> SRR2443155     3   0.127      0.939 0.000 0.000 0.940  0  0 0.060
#> SRR2443154     3   0.026      0.979 0.000 0.000 0.992  0  0 0.008
#> SRR2443153     6   0.139      0.921 0.068 0.000 0.000  0  0 0.932
#> SRR2443152     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443151     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443150     4   0.000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR2443148     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443147     5   0.000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR2443149     3   0.000      0.984 0.000 0.000 1.000  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.787           0.940       0.954         0.1699 0.814   0.814
#> 3 3 0.383           0.804       0.797         1.7719 0.638   0.556
#> 4 4 0.279           0.622       0.771         0.2830 0.769   0.560
#> 5 5 0.459           0.653       0.814         0.1052 0.915   0.784
#> 6 6 0.440           0.514       0.718         0.0674 0.822   0.560

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.0000      0.972 0.000 1.000
#> SRR2443262     2  0.3431      0.912 0.064 0.936
#> SRR2443261     2  0.0000      0.972 0.000 1.000
#> SRR2443260     2  0.0000      0.972 0.000 1.000
#> SRR2443259     2  0.0000      0.972 0.000 1.000
#> SRR2443258     2  0.0000      0.972 0.000 1.000
#> SRR2443257     2  0.3274      0.915 0.060 0.940
#> SRR2443256     2  0.0672      0.966 0.008 0.992
#> SRR2443255     2  0.0000      0.972 0.000 1.000
#> SRR2443254     2  0.0000      0.972 0.000 1.000
#> SRR2443253     2  0.5519      0.833 0.128 0.872
#> SRR2443251     2  0.0000      0.972 0.000 1.000
#> SRR2443250     2  0.3431      0.912 0.064 0.936
#> SRR2443249     2  0.1633      0.952 0.024 0.976
#> SRR2443252     2  0.0000      0.972 0.000 1.000
#> SRR2443247     2  0.1633      0.952 0.024 0.976
#> SRR2443246     2  0.0000      0.972 0.000 1.000
#> SRR2443248     2  0.0000      0.972 0.000 1.000
#> SRR2443244     2  0.1184      0.959 0.016 0.984
#> SRR2443245     2  0.0000      0.972 0.000 1.000
#> SRR2443243     2  0.0672      0.966 0.008 0.992
#> SRR2443242     2  0.0000      0.972 0.000 1.000
#> SRR2443241     2  0.0672      0.966 0.008 0.992
#> SRR2443240     2  0.0000      0.972 0.000 1.000
#> SRR2443239     2  0.0000      0.972 0.000 1.000
#> SRR2443238     2  0.0000      0.972 0.000 1.000
#> SRR2443237     2  0.0000      0.972 0.000 1.000
#> SRR2443236     2  0.0672      0.966 0.008 0.992
#> SRR2443235     2  0.1414      0.956 0.020 0.980
#> SRR2443233     2  0.4562      0.850 0.096 0.904
#> SRR2443234     1  0.9323      0.822 0.652 0.348
#> SRR2443232     1  0.9754      0.730 0.592 0.408
#> SRR2443231     1  0.7453      0.919 0.788 0.212
#> SRR2443230     1  0.7453      0.919 0.788 0.212
#> SRR2443229     2  0.0000      0.972 0.000 1.000
#> SRR2443228     2  0.3879      0.897 0.076 0.924
#> SRR2443227     1  0.7453      0.919 0.788 0.212
#> SRR2443226     2  0.0000      0.972 0.000 1.000
#> SRR2443225     2  0.0000      0.972 0.000 1.000
#> SRR2443223     2  0.0000      0.972 0.000 1.000
#> SRR2443224     2  0.0000      0.972 0.000 1.000
#> SRR2443222     2  0.3274      0.915 0.060 0.940
#> SRR2443221     2  0.3274      0.915 0.060 0.940
#> SRR2443219     2  0.3274      0.915 0.060 0.940
#> SRR2443220     2  0.0000      0.972 0.000 1.000
#> SRR2443218     2  0.7745      0.664 0.228 0.772
#> SRR2443217     2  0.0000      0.972 0.000 1.000
#> SRR2443216     2  0.0000      0.972 0.000 1.000
#> SRR2443215     2  0.0000      0.972 0.000 1.000
#> SRR2443214     2  0.0000      0.972 0.000 1.000
#> SRR2443213     1  0.7453      0.919 0.788 0.212
#> SRR2443212     2  0.0000      0.972 0.000 1.000
#> SRR2443211     2  0.0000      0.972 0.000 1.000
#> SRR2443210     2  0.0000      0.972 0.000 1.000
#> SRR2443209     2  0.0000      0.972 0.000 1.000
#> SRR2443208     2  0.0000      0.972 0.000 1.000
#> SRR2443207     2  0.0000      0.972 0.000 1.000
#> SRR2443206     2  0.0000      0.972 0.000 1.000
#> SRR2443205     2  0.0000      0.972 0.000 1.000
#> SRR2443204     2  0.0000      0.972 0.000 1.000
#> SRR2443203     2  0.0000      0.972 0.000 1.000
#> SRR2443202     2  0.0000      0.972 0.000 1.000
#> SRR2443201     2  0.0000      0.972 0.000 1.000
#> SRR2443200     2  0.5059      0.850 0.112 0.888
#> SRR2443199     2  0.5629      0.822 0.132 0.868
#> SRR2443197     2  0.0000      0.972 0.000 1.000
#> SRR2443196     2  0.0000      0.972 0.000 1.000
#> SRR2443198     2  0.0000      0.972 0.000 1.000
#> SRR2443195     2  0.0000      0.972 0.000 1.000
#> SRR2443194     2  0.0000      0.972 0.000 1.000
#> SRR2443193     2  0.0000      0.972 0.000 1.000
#> SRR2443191     2  0.0000      0.972 0.000 1.000
#> SRR2443192     2  0.0672      0.966 0.008 0.992
#> SRR2443190     1  0.9286      0.827 0.656 0.344
#> SRR2443189     2  0.0000      0.972 0.000 1.000
#> SRR2443188     1  0.7453      0.919 0.788 0.212
#> SRR2443186     2  0.0000      0.972 0.000 1.000
#> SRR2443187     2  0.0000      0.972 0.000 1.000
#> SRR2443185     2  0.0000      0.972 0.000 1.000
#> SRR2443184     2  0.0000      0.972 0.000 1.000
#> SRR2443183     1  0.7453      0.919 0.788 0.212
#> SRR2443182     2  0.0672      0.966 0.008 0.992
#> SRR2443181     2  0.0000      0.972 0.000 1.000
#> SRR2443180     2  0.7745      0.664 0.228 0.772
#> SRR2443179     2  0.0000      0.972 0.000 1.000
#> SRR2443178     2  0.0000      0.972 0.000 1.000
#> SRR2443177     2  0.0000      0.972 0.000 1.000
#> SRR2443176     2  0.0000      0.972 0.000 1.000
#> SRR2443175     2  0.0000      0.972 0.000 1.000
#> SRR2443174     1  0.7453      0.919 0.788 0.212
#> SRR2443173     2  0.0000      0.972 0.000 1.000
#> SRR2443172     2  0.3274      0.915 0.060 0.940
#> SRR2443171     2  0.1633      0.952 0.024 0.976
#> SRR2443170     2  0.0672      0.966 0.008 0.992
#> SRR2443169     1  0.7453      0.919 0.788 0.212
#> SRR2443168     2  0.0000      0.972 0.000 1.000
#> SRR2443167     2  0.0000      0.972 0.000 1.000
#> SRR2443166     2  0.0000      0.972 0.000 1.000
#> SRR2443165     2  0.0000      0.972 0.000 1.000
#> SRR2443164     2  0.3431      0.911 0.064 0.936
#> SRR2443163     2  0.0000      0.972 0.000 1.000
#> SRR2443162     2  0.0000      0.972 0.000 1.000
#> SRR2443161     2  0.0000      0.972 0.000 1.000
#> SRR2443160     2  0.0000      0.972 0.000 1.000
#> SRR2443159     2  0.0000      0.972 0.000 1.000
#> SRR2443158     2  0.0000      0.972 0.000 1.000
#> SRR2443157     2  0.0672      0.966 0.008 0.992
#> SRR2443156     2  0.0000      0.972 0.000 1.000
#> SRR2443155     2  0.0672      0.966 0.008 0.992
#> SRR2443154     2  0.1633      0.952 0.024 0.976
#> SRR2443153     1  0.9866      0.680 0.568 0.432
#> SRR2443152     2  0.0000      0.972 0.000 1.000
#> SRR2443151     2  0.2236      0.941 0.036 0.964
#> SRR2443150     2  0.0000      0.972 0.000 1.000
#> SRR2443148     2  0.7745      0.664 0.228 0.772
#> SRR2443147     2  0.7745      0.664 0.228 0.772
#> SRR2443149     2  0.0000      0.972 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     3  0.3293     0.8142 0.012 0.088 0.900
#> SRR2443262     2  0.5327     0.9389 0.000 0.728 0.272
#> SRR2443261     2  0.5621     0.9240 0.000 0.692 0.308
#> SRR2443260     3  0.2356     0.8166 0.000 0.072 0.928
#> SRR2443259     3  0.1753     0.7660 0.000 0.048 0.952
#> SRR2443258     3  0.4605     0.5794 0.000 0.204 0.796
#> SRR2443257     2  0.5363     0.9347 0.000 0.724 0.276
#> SRR2443256     3  0.5122     0.7620 0.012 0.200 0.788
#> SRR2443255     3  0.0237     0.8041 0.000 0.004 0.996
#> SRR2443254     3  0.4702     0.7560 0.000 0.212 0.788
#> SRR2443253     2  0.5178     0.9333 0.000 0.744 0.256
#> SRR2443251     3  0.0237     0.8041 0.000 0.004 0.996
#> SRR2443250     2  0.5178     0.9359 0.000 0.744 0.256
#> SRR2443249     2  0.5465     0.9367 0.000 0.712 0.288
#> SRR2443252     3  0.2448     0.8165 0.000 0.076 0.924
#> SRR2443247     3  0.7169     0.6704 0.208 0.088 0.704
#> SRR2443246     3  0.4796     0.7462 0.000 0.220 0.780
#> SRR2443248     2  0.5560     0.9307 0.000 0.700 0.300
#> SRR2443244     3  0.4931     0.7327 0.000 0.232 0.768
#> SRR2443245     3  0.1015     0.7979 0.008 0.012 0.980
#> SRR2443243     3  0.4075     0.8096 0.048 0.072 0.880
#> SRR2443242     3  0.1031     0.8125 0.000 0.024 0.976
#> SRR2443241     3  0.5967     0.7446 0.032 0.216 0.752
#> SRR2443240     3  0.5643     0.7457 0.020 0.220 0.760
#> SRR2443239     2  0.5621     0.9290 0.000 0.692 0.308
#> SRR2443238     3  0.0829     0.8083 0.012 0.004 0.984
#> SRR2443237     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443236     3  0.5921     0.7462 0.032 0.212 0.756
#> SRR2443235     3  0.6247     0.6975 0.212 0.044 0.744
#> SRR2443233     1  0.7694     0.3250 0.616 0.068 0.316
#> SRR2443234     1  0.2096     0.8552 0.944 0.004 0.052
#> SRR2443232     1  0.4110     0.7617 0.844 0.004 0.152
#> SRR2443231     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443230     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443229     3  0.4654     0.7582 0.000 0.208 0.792
#> SRR2443228     2  0.5138     0.9334 0.000 0.748 0.252
#> SRR2443227     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443226     3  0.0848     0.8008 0.008 0.008 0.984
#> SRR2443225     3  0.4883     0.7588 0.004 0.208 0.788
#> SRR2443223     3  0.4842     0.7434 0.000 0.224 0.776
#> SRR2443224     2  0.5621     0.9290 0.000 0.692 0.308
#> SRR2443222     2  0.5216     0.9357 0.000 0.740 0.260
#> SRR2443221     2  0.5216     0.9357 0.000 0.740 0.260
#> SRR2443219     2  0.5254     0.9381 0.000 0.736 0.264
#> SRR2443220     2  0.6244     0.6975 0.000 0.560 0.440
#> SRR2443218     2  0.5012     0.8814 0.008 0.788 0.204
#> SRR2443217     3  0.4796     0.7462 0.000 0.220 0.780
#> SRR2443216     3  0.4605     0.5794 0.000 0.204 0.796
#> SRR2443215     2  0.5591     0.9301 0.000 0.696 0.304
#> SRR2443214     3  0.0661     0.8028 0.004 0.008 0.988
#> SRR2443213     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443212     3  0.5202     0.7473 0.008 0.220 0.772
#> SRR2443211     3  0.5687     0.7447 0.020 0.224 0.756
#> SRR2443210     2  0.5497     0.9358 0.000 0.708 0.292
#> SRR2443209     3  0.5202     0.7474 0.008 0.220 0.772
#> SRR2443208     3  0.4654     0.7582 0.000 0.208 0.792
#> SRR2443207     3  0.5216     0.6789 0.000 0.260 0.740
#> SRR2443206     2  0.5591     0.9300 0.000 0.696 0.304
#> SRR2443205     2  0.5560     0.9307 0.000 0.700 0.300
#> SRR2443204     3  0.4605     0.5794 0.000 0.204 0.796
#> SRR2443203     3  0.0592     0.8062 0.012 0.000 0.988
#> SRR2443202     3  0.2590     0.8167 0.004 0.072 0.924
#> SRR2443201     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443200     2  0.4887     0.9093 0.000 0.772 0.228
#> SRR2443199     2  0.4842     0.9052 0.000 0.776 0.224
#> SRR2443197     3  0.0661     0.8074 0.004 0.008 0.988
#> SRR2443196     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443198     3  0.3030     0.8135 0.004 0.092 0.904
#> SRR2443195     3  0.1877     0.8162 0.012 0.032 0.956
#> SRR2443194     3  0.2590     0.8167 0.004 0.072 0.924
#> SRR2443193     3  0.3752     0.7974 0.000 0.144 0.856
#> SRR2443191     3  0.5291     0.6748 0.000 0.268 0.732
#> SRR2443192     3  0.4750     0.7519 0.000 0.216 0.784
#> SRR2443190     1  0.2096     0.8552 0.944 0.004 0.052
#> SRR2443189     3  0.4605     0.5794 0.000 0.204 0.796
#> SRR2443188     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443186     2  0.5621     0.9290 0.000 0.692 0.308
#> SRR2443187     2  0.5621     0.9290 0.000 0.692 0.308
#> SRR2443185     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443184     3  0.0424     0.8001 0.000 0.008 0.992
#> SRR2443183     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443182     3  0.5778     0.7582 0.032 0.200 0.768
#> SRR2443181     2  0.5591     0.9291 0.000 0.696 0.304
#> SRR2443180     2  0.5012     0.8814 0.008 0.788 0.204
#> SRR2443179     3  0.5058     0.6092 0.000 0.244 0.756
#> SRR2443178     3  0.4883     0.7588 0.004 0.208 0.788
#> SRR2443177     3  0.0237     0.8041 0.000 0.004 0.996
#> SRR2443176     3  0.4912     0.7684 0.008 0.196 0.796
#> SRR2443175     3  0.5115     0.7735 0.016 0.188 0.796
#> SRR2443174     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443173     2  0.5529     0.9327 0.000 0.704 0.296
#> SRR2443172     2  0.5397     0.9386 0.000 0.720 0.280
#> SRR2443171     3  0.6336     0.7257 0.180 0.064 0.756
#> SRR2443170     3  0.5921     0.7462 0.032 0.212 0.756
#> SRR2443169     1  0.0475     0.8801 0.992 0.004 0.004
#> SRR2443168     3  0.4702     0.7544 0.000 0.212 0.788
#> SRR2443167     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443166     3  0.4605     0.5794 0.000 0.204 0.796
#> SRR2443165     3  0.1399     0.8137 0.004 0.028 0.968
#> SRR2443164     2  0.5216     0.9315 0.000 0.740 0.260
#> SRR2443163     3  0.1964     0.8169 0.000 0.056 0.944
#> SRR2443162     3  0.2116     0.8171 0.012 0.040 0.948
#> SRR2443161     3  0.3425     0.8087 0.004 0.112 0.884
#> SRR2443160     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443159     3  0.0424     0.8065 0.000 0.008 0.992
#> SRR2443158     3  0.2939     0.8165 0.012 0.072 0.916
#> SRR2443157     3  0.2414     0.8169 0.020 0.040 0.940
#> SRR2443156     3  0.5414     0.7507 0.016 0.212 0.772
#> SRR2443155     3  0.5967     0.7446 0.032 0.216 0.752
#> SRR2443154     3  0.5921     0.7462 0.032 0.212 0.756
#> SRR2443153     1  0.6683    -0.0356 0.500 0.008 0.492
#> SRR2443152     2  0.5560     0.9314 0.000 0.700 0.300
#> SRR2443151     2  0.5138     0.9334 0.000 0.748 0.252
#> SRR2443150     2  0.5591     0.9291 0.000 0.696 0.304
#> SRR2443148     2  0.5012     0.8814 0.008 0.788 0.204
#> SRR2443147     2  0.5012     0.8814 0.008 0.788 0.204
#> SRR2443149     3  0.0592     0.7992 0.000 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     3  0.2149     0.6373 0.000 0.088 0.912 0.000
#> SRR2443262     2  0.4824     0.7579 0.000 0.780 0.076 0.144
#> SRR2443261     2  0.4008     0.6454 0.000 0.756 0.244 0.000
#> SRR2443260     3  0.5356     0.6417 0.000 0.200 0.728 0.072
#> SRR2443259     4  0.5760     0.6858 0.000 0.028 0.448 0.524
#> SRR2443258     4  0.5018     0.9500 0.000 0.012 0.332 0.656
#> SRR2443257     2  0.5676     0.7186 0.000 0.720 0.136 0.144
#> SRR2443256     3  0.3873     0.6378 0.000 0.228 0.772 0.000
#> SRR2443255     3  0.2871     0.5414 0.000 0.032 0.896 0.072
#> SRR2443254     3  0.4194     0.6451 0.000 0.228 0.764 0.008
#> SRR2443253     2  0.5355     0.7448 0.000 0.736 0.084 0.180
#> SRR2443251     3  0.5356     0.6413 0.000 0.200 0.728 0.072
#> SRR2443250     2  0.4756     0.7580 0.000 0.784 0.072 0.144
#> SRR2443249     2  0.5209     0.7421 0.000 0.756 0.104 0.140
#> SRR2443252     3  0.5356     0.6417 0.000 0.200 0.728 0.072
#> SRR2443247     3  0.6826     0.4933 0.172 0.228 0.600 0.000
#> SRR2443246     3  0.4994     0.3061 0.000 0.480 0.520 0.000
#> SRR2443248     2  0.1867     0.7763 0.000 0.928 0.072 0.000
#> SRR2443244     2  0.4193     0.6421 0.000 0.732 0.268 0.000
#> SRR2443245     3  0.5108    -0.1734 0.000 0.020 0.672 0.308
#> SRR2443243     3  0.1792     0.6256 0.000 0.068 0.932 0.000
#> SRR2443242     3  0.6028     0.6104 0.000 0.280 0.644 0.076
#> SRR2443241     2  0.4522     0.5815 0.000 0.680 0.320 0.000
#> SRR2443240     2  0.4406     0.6049 0.000 0.700 0.300 0.000
#> SRR2443239     2  0.1256     0.7616 0.000 0.964 0.028 0.008
#> SRR2443238     3  0.1209     0.5922 0.000 0.032 0.964 0.004
#> SRR2443237     3  0.3392     0.5466 0.000 0.056 0.872 0.072
#> SRR2443236     2  0.4500     0.5851 0.000 0.684 0.316 0.000
#> SRR2443235     3  0.6201     0.3312 0.300 0.080 0.620 0.000
#> SRR2443233     1  0.5691     0.3989 0.648 0.048 0.304 0.000
#> SRR2443234     1  0.3108     0.7830 0.872 0.016 0.112 0.000
#> SRR2443232     1  0.4121     0.6989 0.796 0.020 0.184 0.000
#> SRR2443231     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443230     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443229     3  0.6171     0.5646 0.000 0.348 0.588 0.064
#> SRR2443228     2  0.4491     0.7606 0.000 0.800 0.060 0.140
#> SRR2443227     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443226     3  0.3925     0.3395 0.000 0.016 0.808 0.176
#> SRR2443225     3  0.3764     0.6519 0.000 0.216 0.784 0.000
#> SRR2443223     2  0.4898     0.2281 0.000 0.584 0.416 0.000
#> SRR2443224     2  0.1824     0.7683 0.000 0.936 0.060 0.004
#> SRR2443222     2  0.2255     0.7821 0.000 0.920 0.068 0.012
#> SRR2443221     2  0.2871     0.7824 0.000 0.896 0.072 0.032
#> SRR2443219     2  0.4614     0.7579 0.000 0.792 0.064 0.144
#> SRR2443220     3  0.4761     0.5280 0.000 0.372 0.628 0.000
#> SRR2443218     2  0.6623     0.6598 0.008 0.588 0.080 0.324
#> SRR2443217     3  0.5771     0.3251 0.000 0.460 0.512 0.028
#> SRR2443216     4  0.5018     0.9500 0.000 0.012 0.332 0.656
#> SRR2443215     2  0.1211     0.7646 0.000 0.960 0.040 0.000
#> SRR2443214     3  0.6075     0.5601 0.000 0.148 0.684 0.168
#> SRR2443213     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443212     2  0.4382     0.6093 0.000 0.704 0.296 0.000
#> SRR2443211     2  0.4331     0.6224 0.000 0.712 0.288 0.000
#> SRR2443210     2  0.2021     0.7807 0.000 0.932 0.056 0.012
#> SRR2443209     2  0.4477     0.5926 0.000 0.688 0.312 0.000
#> SRR2443208     3  0.6253     0.5459 0.000 0.372 0.564 0.064
#> SRR2443207     2  0.5805    -0.1575 0.000 0.576 0.388 0.036
#> SRR2443206     2  0.1297     0.7590 0.000 0.964 0.020 0.016
#> SRR2443205     2  0.2198     0.7781 0.000 0.920 0.072 0.008
#> SRR2443204     4  0.5018     0.9500 0.000 0.012 0.332 0.656
#> SRR2443203     3  0.3123     0.3322 0.000 0.000 0.844 0.156
#> SRR2443202     3  0.3803     0.6467 0.000 0.132 0.836 0.032
#> SRR2443201     3  0.4756     0.6289 0.000 0.144 0.784 0.072
#> SRR2443200     2  0.5880     0.7222 0.000 0.680 0.088 0.232
#> SRR2443199     2  0.6027     0.7104 0.000 0.660 0.088 0.252
#> SRR2443197     3  0.2660     0.5254 0.000 0.036 0.908 0.056
#> SRR2443196     3  0.3037     0.5051 0.000 0.036 0.888 0.076
#> SRR2443198     3  0.1716     0.6044 0.000 0.064 0.936 0.000
#> SRR2443195     3  0.1022     0.5925 0.000 0.032 0.968 0.000
#> SRR2443194     3  0.1022     0.5925 0.000 0.032 0.968 0.000
#> SRR2443193     3  0.6058     0.5849 0.000 0.308 0.624 0.068
#> SRR2443191     2  0.3726     0.7086 0.000 0.788 0.212 0.000
#> SRR2443192     2  0.4830     0.4070 0.000 0.608 0.392 0.000
#> SRR2443190     1  0.2987     0.7916 0.880 0.016 0.104 0.000
#> SRR2443189     4  0.5018     0.9500 0.000 0.012 0.332 0.656
#> SRR2443188     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443186     2  0.1297     0.7590 0.000 0.964 0.020 0.016
#> SRR2443187     2  0.1297     0.7590 0.000 0.964 0.020 0.016
#> SRR2443185     3  0.3312     0.5403 0.000 0.052 0.876 0.072
#> SRR2443184     3  0.4663    -0.0859 0.000 0.012 0.716 0.272
#> SRR2443183     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443182     3  0.4331     0.5991 0.000 0.288 0.712 0.000
#> SRR2443181     2  0.2944     0.7677 0.000 0.868 0.128 0.004
#> SRR2443180     2  0.6564     0.6633 0.008 0.592 0.076 0.324
#> SRR2443179     3  0.4948     0.0351 0.000 0.440 0.560 0.000
#> SRR2443178     3  0.4431     0.4380 0.000 0.304 0.696 0.000
#> SRR2443177     3  0.5669     0.6349 0.000 0.200 0.708 0.092
#> SRR2443176     3  0.4134     0.6228 0.000 0.260 0.740 0.000
#> SRR2443175     3  0.4511     0.6126 0.008 0.268 0.724 0.000
#> SRR2443174     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443173     2  0.2125     0.7775 0.000 0.920 0.076 0.004
#> SRR2443172     2  0.2101     0.7815 0.000 0.928 0.060 0.012
#> SRR2443171     3  0.6797     0.4242 0.240 0.160 0.600 0.000
#> SRR2443170     3  0.4898     0.3537 0.000 0.416 0.584 0.000
#> SRR2443169     1  0.0336     0.8644 0.992 0.000 0.008 0.000
#> SRR2443168     3  0.6264     0.5416 0.000 0.376 0.560 0.064
#> SRR2443167     3  0.4508     0.2782 0.000 0.036 0.780 0.184
#> SRR2443166     4  0.5018     0.9500 0.000 0.012 0.332 0.656
#> SRR2443165     3  0.1389     0.5851 0.000 0.048 0.952 0.000
#> SRR2443164     2  0.5528     0.7296 0.000 0.732 0.124 0.144
#> SRR2443163     3  0.5533     0.6404 0.000 0.220 0.708 0.072
#> SRR2443162     3  0.0817     0.5818 0.000 0.024 0.976 0.000
#> SRR2443161     3  0.3528     0.6522 0.000 0.192 0.808 0.000
#> SRR2443160     3  0.3037     0.5051 0.000 0.036 0.888 0.076
#> SRR2443159     3  0.3037     0.5051 0.000 0.036 0.888 0.076
#> SRR2443158     3  0.3219     0.6551 0.000 0.164 0.836 0.000
#> SRR2443157     3  0.1474     0.6131 0.000 0.052 0.948 0.000
#> SRR2443156     2  0.4543     0.5740 0.000 0.676 0.324 0.000
#> SRR2443155     2  0.4543     0.5762 0.000 0.676 0.324 0.000
#> SRR2443154     3  0.4855     0.3925 0.000 0.400 0.600 0.000
#> SRR2443153     1  0.4882     0.5516 0.708 0.020 0.272 0.000
#> SRR2443152     2  0.2714     0.7726 0.000 0.884 0.112 0.004
#> SRR2443151     2  0.4565     0.7601 0.000 0.796 0.064 0.140
#> SRR2443150     2  0.2281     0.7757 0.000 0.904 0.096 0.000
#> SRR2443148     2  0.6564     0.6633 0.008 0.592 0.076 0.324
#> SRR2443147     2  0.6623     0.6598 0.008 0.588 0.080 0.324
#> SRR2443149     3  0.6756     0.5107 0.000 0.252 0.600 0.148

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     3  0.1117     0.7424 0.000 0.016 0.964 0.000 0.020
#> SRR2443262     2  0.3151     0.6455 0.000 0.836 0.020 0.144 0.000
#> SRR2443261     2  0.3885     0.5805 0.000 0.724 0.268 0.008 0.000
#> SRR2443260     3  0.3954     0.6829 0.000 0.192 0.772 0.000 0.036
#> SRR2443259     3  0.4045     0.4739 0.000 0.000 0.644 0.000 0.356
#> SRR2443258     5  0.1851     0.9906 0.000 0.000 0.088 0.000 0.912
#> SRR2443257     2  0.5592     0.4482 0.000 0.636 0.220 0.144 0.000
#> SRR2443256     3  0.4904     0.5801 0.032 0.240 0.704 0.000 0.024
#> SRR2443255     3  0.1408     0.7308 0.000 0.008 0.948 0.000 0.044
#> SRR2443254     3  0.3861     0.5896 0.000 0.264 0.728 0.000 0.008
#> SRR2443253     2  0.4736     0.2551 0.000 0.576 0.020 0.404 0.000
#> SRR2443251     3  0.3307     0.7373 0.000 0.104 0.844 0.000 0.052
#> SRR2443250     2  0.3639     0.6407 0.000 0.812 0.044 0.144 0.000
#> SRR2443249     2  0.5153     0.5268 0.000 0.684 0.204 0.112 0.000
#> SRR2443252     3  0.3944     0.6773 0.000 0.200 0.768 0.000 0.032
#> SRR2443247     3  0.7371     0.3154 0.320 0.196 0.444 0.004 0.036
#> SRR2443246     2  0.4945     0.0869 0.000 0.536 0.440 0.004 0.020
#> SRR2443248     2  0.1410     0.7572 0.000 0.940 0.060 0.000 0.000
#> SRR2443244     2  0.2970     0.7194 0.000 0.828 0.168 0.004 0.000
#> SRR2443245     3  0.3177     0.6178 0.000 0.000 0.792 0.000 0.208
#> SRR2443243     3  0.2108     0.7363 0.036 0.008 0.928 0.004 0.024
#> SRR2443242     3  0.4370     0.6371 0.000 0.236 0.724 0.000 0.040
#> SRR2443241     2  0.4605     0.6971 0.036 0.768 0.164 0.004 0.028
#> SRR2443240     2  0.4520     0.6994 0.036 0.772 0.164 0.004 0.024
#> SRR2443239     2  0.1197     0.7555 0.000 0.952 0.048 0.000 0.000
#> SRR2443238     3  0.0865     0.7386 0.000 0.004 0.972 0.000 0.024
#> SRR2443237     3  0.1365     0.7294 0.000 0.004 0.952 0.004 0.040
#> SRR2443236     2  0.4647     0.6971 0.036 0.768 0.160 0.004 0.032
#> SRR2443235     3  0.6482     0.1784 0.420 0.068 0.472 0.004 0.036
#> SRR2443233     1  0.4929     0.5937 0.716 0.012 0.220 0.004 0.048
#> SRR2443234     1  0.2234     0.8795 0.916 0.000 0.044 0.004 0.036
#> SRR2443232     1  0.2605     0.8646 0.896 0.000 0.056 0.004 0.044
#> SRR2443231     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443229     3  0.5096     0.2068 0.000 0.444 0.520 0.000 0.036
#> SRR2443228     2  0.3445     0.6490 0.000 0.824 0.036 0.140 0.000
#> SRR2443227     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443226     3  0.2471     0.6774 0.000 0.000 0.864 0.000 0.136
#> SRR2443225     3  0.2873     0.7325 0.000 0.120 0.860 0.000 0.020
#> SRR2443223     2  0.3857     0.5401 0.000 0.688 0.312 0.000 0.000
#> SRR2443224     2  0.1571     0.7557 0.000 0.936 0.060 0.004 0.000
#> SRR2443222     2  0.1544     0.6950 0.000 0.932 0.000 0.068 0.000
#> SRR2443221     2  0.1732     0.6865 0.000 0.920 0.000 0.080 0.000
#> SRR2443219     2  0.3011     0.6498 0.000 0.844 0.016 0.140 0.000
#> SRR2443220     3  0.3521     0.6688 0.000 0.232 0.764 0.000 0.004
#> SRR2443218     4  0.1410     1.0000 0.000 0.060 0.000 0.940 0.000
#> SRR2443217     2  0.4855     0.1208 0.000 0.552 0.424 0.000 0.024
#> SRR2443216     5  0.1908     0.9860 0.000 0.000 0.092 0.000 0.908
#> SRR2443215     2  0.1478     0.7572 0.000 0.936 0.064 0.000 0.000
#> SRR2443214     3  0.3099     0.7095 0.000 0.028 0.848 0.000 0.124
#> SRR2443213     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443212     2  0.4323     0.7079 0.032 0.788 0.152 0.004 0.024
#> SRR2443211     2  0.4402     0.7059 0.036 0.784 0.152 0.004 0.024
#> SRR2443210     2  0.1800     0.7256 0.000 0.932 0.020 0.048 0.000
#> SRR2443209     2  0.3606     0.7124 0.000 0.808 0.164 0.004 0.024
#> SRR2443208     3  0.5106     0.1766 0.000 0.456 0.508 0.000 0.036
#> SRR2443207     2  0.4375     0.1635 0.000 0.576 0.420 0.000 0.004
#> SRR2443206     2  0.1364     0.7502 0.000 0.952 0.036 0.012 0.000
#> SRR2443205     2  0.1197     0.7555 0.000 0.952 0.048 0.000 0.000
#> SRR2443204     5  0.2074     0.9713 0.000 0.000 0.104 0.000 0.896
#> SRR2443203     3  0.1831     0.7093 0.000 0.000 0.920 0.004 0.076
#> SRR2443202     3  0.1372     0.7404 0.000 0.024 0.956 0.004 0.016
#> SRR2443201     3  0.2157     0.7425 0.000 0.040 0.920 0.004 0.036
#> SRR2443200     2  0.5009     0.1845 0.000 0.540 0.032 0.428 0.000
#> SRR2443199     2  0.4648     0.0931 0.000 0.524 0.012 0.464 0.000
#> SRR2443197     3  0.2741     0.6964 0.000 0.012 0.892 0.032 0.064
#> SRR2443196     3  0.3265     0.6786 0.000 0.012 0.860 0.040 0.088
#> SRR2443198     3  0.1243     0.7406 0.000 0.028 0.960 0.004 0.008
#> SRR2443195     3  0.1372     0.7385 0.016 0.004 0.956 0.000 0.024
#> SRR2443194     3  0.0932     0.7379 0.000 0.004 0.972 0.004 0.020
#> SRR2443193     3  0.5026     0.3958 0.000 0.372 0.588 0.000 0.040
#> SRR2443191     2  0.2488     0.7437 0.000 0.872 0.124 0.004 0.000
#> SRR2443192     2  0.3932     0.5315 0.000 0.672 0.328 0.000 0.000
#> SRR2443190     1  0.2234     0.8795 0.916 0.000 0.044 0.004 0.036
#> SRR2443189     5  0.1851     0.9906 0.000 0.000 0.088 0.000 0.912
#> SRR2443188     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.1444     0.7513 0.000 0.948 0.040 0.012 0.000
#> SRR2443187     2  0.1364     0.7502 0.000 0.952 0.036 0.012 0.000
#> SRR2443185     3  0.1970     0.7192 0.000 0.012 0.924 0.004 0.060
#> SRR2443184     3  0.2471     0.6743 0.000 0.000 0.864 0.000 0.136
#> SRR2443183     1  0.0324     0.9103 0.992 0.000 0.004 0.000 0.004
#> SRR2443182     3  0.5572     0.2101 0.036 0.404 0.540 0.000 0.020
#> SRR2443181     2  0.1704     0.7563 0.000 0.928 0.068 0.004 0.000
#> SRR2443180     4  0.1410     1.0000 0.000 0.060 0.000 0.940 0.000
#> SRR2443179     3  0.5188     0.3267 0.000 0.304 0.644 0.024 0.028
#> SRR2443178     3  0.3812     0.6027 0.000 0.196 0.780 0.004 0.020
#> SRR2443177     3  0.4498     0.7062 0.000 0.132 0.756 0.000 0.112
#> SRR2443176     3  0.4435     0.4471 0.000 0.336 0.648 0.000 0.016
#> SRR2443175     3  0.6237     0.2433 0.076 0.376 0.520 0.000 0.028
#> SRR2443174     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.1197     0.7555 0.000 0.952 0.048 0.000 0.000
#> SRR2443172     2  0.1270     0.7026 0.000 0.948 0.000 0.052 0.000
#> SRR2443171     3  0.7300     0.2933 0.340 0.176 0.444 0.004 0.036
#> SRR2443170     2  0.5905     0.0767 0.036 0.504 0.428 0.004 0.028
#> SRR2443169     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000
#> SRR2443168     3  0.5114     0.1107 0.000 0.476 0.488 0.000 0.036
#> SRR2443167     3  0.3776     0.6452 0.000 0.012 0.820 0.040 0.128
#> SRR2443166     5  0.1851     0.9906 0.000 0.000 0.088 0.000 0.912
#> SRR2443165     3  0.1787     0.7318 0.000 0.016 0.936 0.004 0.044
#> SRR2443164     2  0.5367     0.5035 0.000 0.668 0.184 0.148 0.000
#> SRR2443163     3  0.3883     0.6937 0.000 0.184 0.780 0.000 0.036
#> SRR2443162     3  0.0671     0.7382 0.000 0.004 0.980 0.000 0.016
#> SRR2443161     3  0.2249     0.7436 0.000 0.096 0.896 0.000 0.008
#> SRR2443160     3  0.3265     0.6786 0.000 0.012 0.860 0.040 0.088
#> SRR2443159     3  0.3265     0.6786 0.000 0.012 0.860 0.040 0.088
#> SRR2443158     3  0.1300     0.7459 0.000 0.028 0.956 0.000 0.016
#> SRR2443157     3  0.2108     0.7363 0.036 0.008 0.928 0.004 0.024
#> SRR2443156     2  0.4680     0.6891 0.036 0.760 0.172 0.004 0.028
#> SRR2443155     2  0.4605     0.6971 0.036 0.768 0.164 0.004 0.028
#> SRR2443154     2  0.5552    -0.0181 0.036 0.476 0.472 0.000 0.016
#> SRR2443153     1  0.3529     0.7722 0.836 0.004 0.120 0.004 0.036
#> SRR2443152     2  0.1410     0.7570 0.000 0.940 0.060 0.000 0.000
#> SRR2443151     2  0.4010     0.6371 0.000 0.792 0.072 0.136 0.000
#> SRR2443150     2  0.1197     0.7555 0.000 0.952 0.048 0.000 0.000
#> SRR2443148     4  0.1410     1.0000 0.000 0.060 0.000 0.940 0.000
#> SRR2443147     4  0.1410     1.0000 0.000 0.060 0.000 0.940 0.000
#> SRR2443149     3  0.5102     0.6722 0.000 0.176 0.696 0.000 0.128

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3  0.1282     0.6082 0.000 0.012 0.956 0.004 0.024 0.004
#> SRR2443262     2  0.4621     0.5217 0.000 0.664 0.032 0.280 0.024 0.000
#> SRR2443261     2  0.5075     0.2326 0.000 0.532 0.416 0.012 0.024 0.016
#> SRR2443260     3  0.5264     0.5535 0.000 0.068 0.668 0.016 0.024 0.224
#> SRR2443259     6  0.3833     0.0162 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR2443258     6  0.1387     0.7358 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR2443257     2  0.6131     0.3852 0.000 0.552 0.112 0.284 0.048 0.004
#> SRR2443256     3  0.1074     0.6088 0.000 0.028 0.960 0.000 0.012 0.000
#> SRR2443255     3  0.4288     0.5598 0.000 0.020 0.732 0.000 0.044 0.204
#> SRR2443254     3  0.3059     0.6172 0.000 0.072 0.860 0.012 0.004 0.052
#> SRR2443253     2  0.4815     0.3275 0.000 0.552 0.048 0.396 0.004 0.000
#> SRR2443251     3  0.5922     0.5271 0.000 0.076 0.628 0.016 0.064 0.216
#> SRR2443250     2  0.4831     0.5110 0.000 0.648 0.044 0.284 0.024 0.000
#> SRR2443249     2  0.5436     0.4874 0.000 0.616 0.088 0.264 0.032 0.000
#> SRR2443252     3  0.4942     0.5582 0.000 0.064 0.688 0.016 0.012 0.220
#> SRR2443247     3  0.6088     0.2971 0.208 0.036 0.644 0.056 0.024 0.032
#> SRR2443246     3  0.5899     0.3878 0.004 0.228 0.628 0.016 0.044 0.080
#> SRR2443248     2  0.3221     0.5347 0.000 0.772 0.220 0.000 0.004 0.004
#> SRR2443244     2  0.5360     0.0317 0.000 0.508 0.420 0.004 0.036 0.032
#> SRR2443245     6  0.3864     0.0275 0.000 0.000 0.480 0.000 0.000 0.520
#> SRR2443243     3  0.2233     0.5740 0.020 0.000 0.916 0.020 0.012 0.032
#> SRR2443242     3  0.5869     0.5223 0.000 0.120 0.608 0.016 0.024 0.232
#> SRR2443241     5  0.5574     0.4617 0.000 0.156 0.332 0.000 0.512 0.000
#> SRR2443240     5  0.5620     0.4642 0.000 0.168 0.320 0.000 0.512 0.000
#> SRR2443239     2  0.1957     0.6524 0.000 0.888 0.112 0.000 0.000 0.000
#> SRR2443238     3  0.1647     0.5923 0.016 0.000 0.940 0.004 0.008 0.032
#> SRR2443237     3  0.4840     0.5401 0.000 0.028 0.712 0.000 0.104 0.156
#> SRR2443236     5  0.5866     0.4609 0.000 0.148 0.312 0.000 0.524 0.016
#> SRR2443235     3  0.5775     0.2943 0.216 0.016 0.656 0.056 0.024 0.032
#> SRR2443233     1  0.5718     0.4045 0.572 0.000 0.324 0.056 0.020 0.028
#> SRR2443234     1  0.3615     0.7627 0.820 0.000 0.104 0.056 0.016 0.004
#> SRR2443232     1  0.4937     0.6886 0.724 0.000 0.168 0.056 0.024 0.028
#> SRR2443231     1  0.0000     0.8274 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443230     1  0.0000     0.8274 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443229     3  0.5713     0.4943 0.000 0.128 0.596 0.016 0.008 0.252
#> SRR2443228     2  0.4022     0.5216 0.000 0.688 0.016 0.288 0.008 0.000
#> SRR2443227     1  0.0000     0.8274 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443226     3  0.3650     0.4581 0.012 0.000 0.708 0.000 0.000 0.280
#> SRR2443225     3  0.1503     0.6164 0.000 0.032 0.944 0.000 0.016 0.008
#> SRR2443223     3  0.4944     0.3621 0.000 0.352 0.592 0.016 0.004 0.036
#> SRR2443224     2  0.2651     0.6420 0.000 0.860 0.112 0.000 0.028 0.000
#> SRR2443222     2  0.2454     0.6086 0.000 0.840 0.000 0.160 0.000 0.000
#> SRR2443221     2  0.2454     0.6086 0.000 0.840 0.000 0.160 0.000 0.000
#> SRR2443219     2  0.4403     0.5249 0.000 0.676 0.020 0.280 0.024 0.000
#> SRR2443220     3  0.5785     0.3340 0.000 0.320 0.568 0.020 0.068 0.024
#> SRR2443218     4  0.1663     1.0000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR2443217     3  0.5205     0.3630 0.000 0.328 0.596 0.016 0.008 0.052
#> SRR2443216     6  0.1610     0.7240 0.000 0.000 0.084 0.000 0.000 0.916
#> SRR2443215     2  0.3151     0.5082 0.000 0.748 0.252 0.000 0.000 0.000
#> SRR2443214     3  0.3383     0.5180 0.000 0.000 0.728 0.000 0.004 0.268
#> SRR2443213     1  0.0000     0.8274 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443212     5  0.6040     0.3880 0.000 0.284 0.296 0.000 0.420 0.000
#> SRR2443211     5  0.5847     0.4194 0.000 0.252 0.260 0.000 0.488 0.000
#> SRR2443210     2  0.1914     0.6387 0.000 0.920 0.008 0.056 0.016 0.000
#> SRR2443209     3  0.6419    -0.0973 0.000 0.296 0.468 0.000 0.204 0.032
#> SRR2443208     3  0.5845     0.4528 0.000 0.188 0.580 0.016 0.004 0.212
#> SRR2443207     3  0.5114     0.1589 0.000 0.460 0.484 0.016 0.004 0.036
#> SRR2443206     2  0.2070     0.6581 0.000 0.896 0.092 0.012 0.000 0.000
#> SRR2443205     2  0.1957     0.6501 0.000 0.888 0.112 0.000 0.000 0.000
#> SRR2443204     6  0.1387     0.7326 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR2443203     3  0.4176     0.5468 0.016 0.000 0.768 0.000 0.096 0.120
#> SRR2443202     3  0.3903     0.6028 0.000 0.056 0.808 0.000 0.068 0.068
#> SRR2443201     3  0.4755     0.5682 0.000 0.048 0.724 0.000 0.064 0.164
#> SRR2443200     2  0.4672     0.3612 0.000 0.568 0.032 0.392 0.008 0.000
#> SRR2443199     2  0.4609     0.2503 0.000 0.532 0.024 0.436 0.008 0.000
#> SRR2443197     3  0.5227    -0.1329 0.000 0.000 0.456 0.000 0.452 0.092
#> SRR2443196     5  0.5719     0.0739 0.000 0.000 0.372 0.000 0.460 0.168
#> SRR2443198     3  0.3416     0.5916 0.000 0.040 0.832 0.000 0.100 0.028
#> SRR2443195     3  0.2057     0.5786 0.016 0.000 0.924 0.016 0.012 0.032
#> SRR2443194     3  0.1812     0.5999 0.000 0.008 0.924 0.004 0.060 0.004
#> SRR2443193     3  0.5214     0.5501 0.000 0.088 0.656 0.016 0.008 0.232
#> SRR2443191     2  0.5248     0.3437 0.000 0.616 0.256 0.000 0.120 0.008
#> SRR2443192     3  0.4079     0.5557 0.000 0.192 0.752 0.000 0.024 0.032
#> SRR2443190     1  0.3725     0.7608 0.816 0.000 0.104 0.056 0.016 0.008
#> SRR2443189     6  0.1267     0.7354 0.000 0.000 0.060 0.000 0.000 0.940
#> SRR2443188     1  0.0000     0.8274 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443186     2  0.2070     0.6581 0.000 0.896 0.092 0.012 0.000 0.000
#> SRR2443187     2  0.2070     0.6581 0.000 0.896 0.092 0.012 0.000 0.000
#> SRR2443185     3  0.5073     0.5152 0.000 0.024 0.684 0.000 0.128 0.164
#> SRR2443184     3  0.4892     0.0984 0.000 0.000 0.500 0.000 0.060 0.440
#> SRR2443183     1  0.0551     0.8246 0.984 0.000 0.008 0.004 0.004 0.000
#> SRR2443182     3  0.2409     0.5928 0.020 0.032 0.908 0.000 0.016 0.024
#> SRR2443181     2  0.3644     0.5914 0.000 0.792 0.120 0.000 0.088 0.000
#> SRR2443180     4  0.1663     1.0000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR2443179     3  0.7405     0.1033 0.000 0.168 0.500 0.108 0.184 0.040
#> SRR2443178     3  0.2767     0.6095 0.000 0.056 0.868 0.000 0.072 0.004
#> SRR2443177     3  0.4385     0.4955 0.000 0.032 0.636 0.000 0.004 0.328
#> SRR2443176     3  0.3039     0.6124 0.000 0.068 0.868 0.016 0.012 0.036
#> SRR2443175     3  0.5526     0.4481 0.136 0.072 0.712 0.020 0.024 0.036
#> SRR2443174     1  0.0000     0.8274 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR2443173     2  0.2405     0.6621 0.000 0.880 0.100 0.004 0.016 0.000
#> SRR2443172     2  0.1801     0.6353 0.000 0.924 0.004 0.056 0.016 0.000
#> SRR2443171     3  0.5880     0.2864 0.220 0.020 0.648 0.056 0.024 0.032
#> SRR2443170     3  0.4986     0.3719 0.004 0.200 0.688 0.000 0.088 0.020
#> SRR2443169     1  0.0146     0.8268 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR2443168     3  0.5784     0.4634 0.000 0.160 0.584 0.016 0.004 0.236
#> SRR2443167     5  0.5904    -0.0203 0.000 0.000 0.320 0.000 0.456 0.224
#> SRR2443166     6  0.1267     0.7354 0.000 0.000 0.060 0.000 0.000 0.940
#> SRR2443165     3  0.3393     0.5734 0.000 0.024 0.824 0.000 0.124 0.028
#> SRR2443164     2  0.4957     0.4835 0.000 0.624 0.076 0.292 0.008 0.000
#> SRR2443163     3  0.5792     0.5504 0.000 0.104 0.640 0.016 0.040 0.200
#> SRR2443162     3  0.1261     0.6064 0.000 0.008 0.956 0.004 0.028 0.004
#> SRR2443161     3  0.1851     0.6192 0.000 0.036 0.928 0.000 0.012 0.024
#> SRR2443160     5  0.5642     0.0903 0.000 0.000 0.388 0.000 0.460 0.152
#> SRR2443159     5  0.5621     0.0931 0.000 0.000 0.392 0.000 0.460 0.148
#> SRR2443158     3  0.0551     0.6061 0.000 0.008 0.984 0.004 0.004 0.000
#> SRR2443157     3  0.2228     0.5731 0.016 0.000 0.916 0.024 0.012 0.032
#> SRR2443156     3  0.5587     0.0545 0.000 0.180 0.564 0.000 0.252 0.004
#> SRR2443155     5  0.5866     0.4609 0.000 0.148 0.312 0.000 0.524 0.016
#> SRR2443154     3  0.3735     0.4983 0.004 0.152 0.792 0.000 0.044 0.008
#> SRR2443153     1  0.5987     0.3391 0.508 0.000 0.380 0.056 0.024 0.032
#> SRR2443152     2  0.3285     0.6288 0.000 0.820 0.116 0.000 0.064 0.000
#> SRR2443151     2  0.3935     0.5210 0.000 0.692 0.012 0.288 0.008 0.000
#> SRR2443150     2  0.2575     0.6618 0.000 0.872 0.100 0.004 0.024 0.000
#> SRR2443148     4  0.1663     1.0000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR2443147     4  0.1663     1.0000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR2443149     3  0.5038     0.4504 0.000 0.040 0.576 0.016 0.004 0.364

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16442 rows and 117 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.695           0.867       0.936         0.4915 0.496   0.496
#> 3 3 0.477           0.681       0.837         0.1905 0.659   0.458
#> 4 4 0.461           0.436       0.688         0.1902 0.768   0.510
#> 5 5 0.470           0.401       0.658         0.0951 0.803   0.462
#> 6 6 0.495           0.397       0.643         0.0470 0.794   0.363

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR2443263     2  0.0672     0.9401 0.008 0.992
#> SRR2443262     1  0.7219     0.8101 0.800 0.200
#> SRR2443261     2  0.0672     0.9401 0.008 0.992
#> SRR2443260     2  0.0376     0.9425 0.004 0.996
#> SRR2443259     2  0.0000     0.9441 0.000 1.000
#> SRR2443258     2  0.0000     0.9441 0.000 1.000
#> SRR2443257     2  0.0000     0.9441 0.000 1.000
#> SRR2443256     2  0.9393     0.3837 0.356 0.644
#> SRR2443255     2  0.0000     0.9441 0.000 1.000
#> SRR2443254     2  0.6148     0.7805 0.152 0.848
#> SRR2443253     1  0.7139     0.8110 0.804 0.196
#> SRR2443251     2  0.0000     0.9441 0.000 1.000
#> SRR2443250     2  0.9754     0.2279 0.408 0.592
#> SRR2443249     2  0.0000     0.9441 0.000 1.000
#> SRR2443252     2  0.0376     0.9425 0.004 0.996
#> SRR2443247     1  0.4562     0.8955 0.904 0.096
#> SRR2443246     1  0.0376     0.9164 0.996 0.004
#> SRR2443248     1  0.1414     0.9162 0.980 0.020
#> SRR2443244     1  0.3584     0.9073 0.932 0.068
#> SRR2443245     2  0.0000     0.9441 0.000 1.000
#> SRR2443243     2  0.2236     0.9156 0.036 0.964
#> SRR2443242     2  0.0000     0.9441 0.000 1.000
#> SRR2443241     1  0.0000     0.9159 1.000 0.000
#> SRR2443240     1  0.0000     0.9159 1.000 0.000
#> SRR2443239     1  0.0000     0.9159 1.000 0.000
#> SRR2443238     2  0.0376     0.9425 0.004 0.996
#> SRR2443237     2  0.0000     0.9441 0.000 1.000
#> SRR2443236     1  0.0000     0.9159 1.000 0.000
#> SRR2443235     1  0.9710     0.4397 0.600 0.400
#> SRR2443233     2  0.9000     0.4854 0.316 0.684
#> SRR2443234     1  0.8499     0.7008 0.724 0.276
#> SRR2443232     1  0.6973     0.8217 0.812 0.188
#> SRR2443231     1  0.4562     0.8953 0.904 0.096
#> SRR2443230     1  0.6623     0.8391 0.828 0.172
#> SRR2443229     1  0.6148     0.8583 0.848 0.152
#> SRR2443228     1  0.1843     0.9120 0.972 0.028
#> SRR2443227     1  0.6247     0.8547 0.844 0.156
#> SRR2443226     2  0.0000     0.9441 0.000 1.000
#> SRR2443225     2  0.2948     0.9002 0.052 0.948
#> SRR2443223     2  1.0000    -0.1247 0.496 0.504
#> SRR2443224     1  0.0000     0.9159 1.000 0.000
#> SRR2443222     1  0.0000     0.9159 1.000 0.000
#> SRR2443221     1  0.0000     0.9159 1.000 0.000
#> SRR2443219     1  0.1184     0.9167 0.984 0.016
#> SRR2443220     2  0.0000     0.9441 0.000 1.000
#> SRR2443218     2  0.0376     0.9419 0.004 0.996
#> SRR2443217     1  0.3733     0.9055 0.928 0.072
#> SRR2443216     2  0.0000     0.9441 0.000 1.000
#> SRR2443215     1  0.0672     0.9167 0.992 0.008
#> SRR2443214     2  0.0376     0.9425 0.004 0.996
#> SRR2443213     1  0.3879     0.9039 0.924 0.076
#> SRR2443212     1  0.0000     0.9159 1.000 0.000
#> SRR2443211     1  0.0000     0.9159 1.000 0.000
#> SRR2443210     1  0.0000     0.9159 1.000 0.000
#> SRR2443209     1  0.0000     0.9159 1.000 0.000
#> SRR2443208     1  0.4815     0.8879 0.896 0.104
#> SRR2443207     1  0.1633     0.9161 0.976 0.024
#> SRR2443206     1  0.0000     0.9159 1.000 0.000
#> SRR2443205     1  0.0000     0.9159 1.000 0.000
#> SRR2443204     2  0.0000     0.9441 0.000 1.000
#> SRR2443203     2  0.0000     0.9441 0.000 1.000
#> SRR2443202     2  0.0000     0.9441 0.000 1.000
#> SRR2443201     2  0.0000     0.9441 0.000 1.000
#> SRR2443200     2  0.4298     0.8684 0.088 0.912
#> SRR2443199     2  0.0938     0.9369 0.012 0.988
#> SRR2443197     2  0.0000     0.9441 0.000 1.000
#> SRR2443196     2  0.0000     0.9441 0.000 1.000
#> SRR2443198     2  0.0000     0.9441 0.000 1.000
#> SRR2443195     2  0.0376     0.9425 0.004 0.996
#> SRR2443194     2  0.0000     0.9441 0.000 1.000
#> SRR2443193     1  0.8713     0.6731 0.708 0.292
#> SRR2443191     1  0.0000     0.9159 1.000 0.000
#> SRR2443192     2  0.9909     0.0979 0.444 0.556
#> SRR2443190     1  0.9209     0.5912 0.664 0.336
#> SRR2443189     2  0.0000     0.9441 0.000 1.000
#> SRR2443188     1  0.4431     0.8972 0.908 0.092
#> SRR2443186     1  0.0000     0.9159 1.000 0.000
#> SRR2443187     1  0.0000     0.9159 1.000 0.000
#> SRR2443185     2  0.0000     0.9441 0.000 1.000
#> SRR2443184     2  0.0000     0.9441 0.000 1.000
#> SRR2443183     1  0.4298     0.8991 0.912 0.088
#> SRR2443182     1  0.6623     0.8401 0.828 0.172
#> SRR2443181     1  0.0000     0.9159 1.000 0.000
#> SRR2443180     1  0.3584     0.9075 0.932 0.068
#> SRR2443179     2  0.0000     0.9441 0.000 1.000
#> SRR2443178     2  0.0000     0.9441 0.000 1.000
#> SRR2443177     2  0.0376     0.9425 0.004 0.996
#> SRR2443176     1  0.9922     0.2959 0.552 0.448
#> SRR2443175     1  0.6343     0.8510 0.840 0.160
#> SRR2443174     1  0.5519     0.8759 0.872 0.128
#> SRR2443173     1  0.0000     0.9159 1.000 0.000
#> SRR2443172     1  0.0000     0.9159 1.000 0.000
#> SRR2443171     1  0.2423     0.9133 0.960 0.040
#> SRR2443170     1  0.0376     0.9164 0.996 0.004
#> SRR2443169     1  0.5178     0.8838 0.884 0.116
#> SRR2443168     1  0.4939     0.8879 0.892 0.108
#> SRR2443167     2  0.0000     0.9441 0.000 1.000
#> SRR2443166     2  0.0000     0.9441 0.000 1.000
#> SRR2443165     2  0.0000     0.9441 0.000 1.000
#> SRR2443164     2  0.0000     0.9441 0.000 1.000
#> SRR2443163     2  0.0000     0.9441 0.000 1.000
#> SRR2443162     2  0.0000     0.9441 0.000 1.000
#> SRR2443161     2  0.0672     0.9401 0.008 0.992
#> SRR2443160     2  0.0000     0.9441 0.000 1.000
#> SRR2443159     2  0.0000     0.9441 0.000 1.000
#> SRR2443158     2  0.0376     0.9425 0.004 0.996
#> SRR2443157     2  0.0672     0.9401 0.008 0.992
#> SRR2443156     1  0.0672     0.9167 0.992 0.008
#> SRR2443155     1  0.0000     0.9159 1.000 0.000
#> SRR2443154     1  0.3274     0.9090 0.940 0.060
#> SRR2443153     1  0.5946     0.8643 0.856 0.144
#> SRR2443152     1  0.0000     0.9159 1.000 0.000
#> SRR2443151     2  0.9608     0.3622 0.384 0.616
#> SRR2443150     1  0.0000     0.9159 1.000 0.000
#> SRR2443148     1  0.0938     0.9164 0.988 0.012
#> SRR2443147     2  0.0000     0.9441 0.000 1.000
#> SRR2443149     2  0.0000     0.9441 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR2443263     1  0.5785     0.6253 0.696 0.004 0.300
#> SRR2443262     1  0.2187     0.8270 0.948 0.028 0.024
#> SRR2443261     1  0.8270     0.2863 0.540 0.084 0.376
#> SRR2443260     3  0.6985     0.3040 0.384 0.024 0.592
#> SRR2443259     3  0.2492     0.7319 0.016 0.048 0.936
#> SRR2443258     3  0.4700     0.6240 0.008 0.180 0.812
#> SRR2443257     3  0.6799     0.0525 0.456 0.012 0.532
#> SRR2443256     1  0.5156     0.7225 0.776 0.008 0.216
#> SRR2443255     3  0.6566     0.3345 0.376 0.012 0.612
#> SRR2443254     1  0.5541     0.6864 0.740 0.008 0.252
#> SRR2443253     1  0.4473     0.7667 0.828 0.008 0.164
#> SRR2443251     3  0.4121     0.7230 0.040 0.084 0.876
#> SRR2443250     1  0.5633     0.7263 0.768 0.024 0.208
#> SRR2443249     3  0.9037     0.2594 0.392 0.136 0.472
#> SRR2443252     3  0.6783     0.2642 0.396 0.016 0.588
#> SRR2443247     1  0.1129     0.8237 0.976 0.020 0.004
#> SRR2443246     1  0.1964     0.8065 0.944 0.056 0.000
#> SRR2443248     1  0.2096     0.8127 0.944 0.052 0.004
#> SRR2443244     1  0.0829     0.8261 0.984 0.004 0.012
#> SRR2443245     3  0.3551     0.7107 0.132 0.000 0.868
#> SRR2443243     1  0.5656     0.6525 0.712 0.004 0.284
#> SRR2443242     3  0.5803     0.5441 0.016 0.248 0.736
#> SRR2443241     1  0.1529     0.8097 0.960 0.040 0.000
#> SRR2443240     1  0.2356     0.7897 0.928 0.072 0.000
#> SRR2443239     2  0.6045     0.4481 0.380 0.620 0.000
#> SRR2443238     3  0.5158     0.6165 0.232 0.004 0.764
#> SRR2443237     3  0.1337     0.7373 0.012 0.016 0.972
#> SRR2443236     1  0.2165     0.7941 0.936 0.064 0.000
#> SRR2443235     1  0.3851     0.7889 0.860 0.004 0.136
#> SRR2443233     1  0.5058     0.7033 0.756 0.000 0.244
#> SRR2443234     1  0.3349     0.8028 0.888 0.004 0.108
#> SRR2443232     1  0.1765     0.8267 0.956 0.004 0.040
#> SRR2443231     1  0.0829     0.8261 0.984 0.004 0.012
#> SRR2443230     1  0.1647     0.8271 0.960 0.004 0.036
#> SRR2443229     1  0.6934     0.4454 0.624 0.348 0.028
#> SRR2443228     2  0.2066     0.7949 0.000 0.940 0.060
#> SRR2443227     1  0.1643     0.8252 0.956 0.000 0.044
#> SRR2443226     3  0.2860     0.7347 0.084 0.004 0.912
#> SRR2443225     1  0.5178     0.6874 0.744 0.000 0.256
#> SRR2443223     1  0.5223     0.7647 0.800 0.024 0.176
#> SRR2443224     1  0.2356     0.7963 0.928 0.072 0.000
#> SRR2443222     2  0.5254     0.7478 0.264 0.736 0.000
#> SRR2443221     2  0.5291     0.7442 0.268 0.732 0.000
#> SRR2443219     1  0.1878     0.8183 0.952 0.044 0.004
#> SRR2443220     3  0.5174     0.6961 0.048 0.128 0.824
#> SRR2443218     3  0.6299     0.0582 0.000 0.476 0.524
#> SRR2443217     1  0.1525     0.8215 0.964 0.032 0.004
#> SRR2443216     3  0.4796     0.5705 0.000 0.220 0.780
#> SRR2443215     1  0.5363     0.5803 0.724 0.276 0.000
#> SRR2443214     3  0.6081     0.4128 0.344 0.004 0.652
#> SRR2443213     1  0.0475     0.8244 0.992 0.004 0.004
#> SRR2443212     1  0.1411     0.8111 0.964 0.036 0.000
#> SRR2443211     1  0.1753     0.8051 0.952 0.048 0.000
#> SRR2443210     2  0.1267     0.8162 0.004 0.972 0.024
#> SRR2443209     1  0.1643     0.8068 0.956 0.044 0.000
#> SRR2443208     2  0.2187     0.8234 0.028 0.948 0.024
#> SRR2443207     2  0.1315     0.8190 0.008 0.972 0.020
#> SRR2443206     2  0.4654     0.7885 0.208 0.792 0.000
#> SRR2443205     1  0.5254     0.5329 0.736 0.264 0.000
#> SRR2443204     3  0.1289     0.7468 0.032 0.000 0.968
#> SRR2443203     3  0.1647     0.7452 0.036 0.004 0.960
#> SRR2443202     3  0.4733     0.6636 0.196 0.004 0.800
#> SRR2443201     3  0.1647     0.7471 0.036 0.004 0.960
#> SRR2443200     2  0.3340     0.7463 0.000 0.880 0.120
#> SRR2443199     3  0.6470     0.3674 0.012 0.356 0.632
#> SRR2443197     3  0.2200     0.7430 0.056 0.004 0.940
#> SRR2443196     3  0.0829     0.7345 0.004 0.012 0.984
#> SRR2443198     1  0.6033     0.5676 0.660 0.004 0.336
#> SRR2443195     1  0.6298     0.4594 0.608 0.004 0.388
#> SRR2443194     1  0.6033     0.5633 0.660 0.004 0.336
#> SRR2443193     1  0.3669     0.8148 0.896 0.040 0.064
#> SRR2443191     1  0.1860     0.8023 0.948 0.052 0.000
#> SRR2443192     1  0.5012     0.7409 0.788 0.008 0.204
#> SRR2443190     1  0.3682     0.7978 0.876 0.008 0.116
#> SRR2443189     3  0.3941     0.6431 0.000 0.156 0.844
#> SRR2443188     1  0.0475     0.8244 0.992 0.004 0.004
#> SRR2443186     2  0.2711     0.8264 0.088 0.912 0.000
#> SRR2443187     2  0.1411     0.8289 0.036 0.964 0.000
#> SRR2443185     3  0.1163     0.7458 0.028 0.000 0.972
#> SRR2443184     3  0.1289     0.7217 0.000 0.032 0.968
#> SRR2443183     1  0.1129     0.8271 0.976 0.004 0.020
#> SRR2443182     1  0.2625     0.8118 0.916 0.000 0.084
#> SRR2443181     1  0.1860     0.8023 0.948 0.052 0.000
#> SRR2443180     1  0.6632     0.1341 0.596 0.392 0.012
#> SRR2443179     3  0.2096     0.7434 0.052 0.004 0.944
#> SRR2443178     1  0.5553     0.6699 0.724 0.004 0.272
#> SRR2443177     3  0.6763     0.1285 0.436 0.012 0.552
#> SRR2443176     1  0.4575     0.7699 0.828 0.012 0.160
#> SRR2443175     1  0.1636     0.8284 0.964 0.016 0.020
#> SRR2443174     1  0.1129     0.8271 0.976 0.004 0.020
#> SRR2443173     2  0.4750     0.7826 0.216 0.784 0.000
#> SRR2443172     2  0.3941     0.8088 0.156 0.844 0.000
#> SRR2443171     1  0.0424     0.8222 0.992 0.008 0.000
#> SRR2443170     1  0.2537     0.7822 0.920 0.080 0.000
#> SRR2443169     1  0.1031     0.8274 0.976 0.000 0.024
#> SRR2443168     2  0.1774     0.8246 0.024 0.960 0.016
#> SRR2443167     3  0.1964     0.7103 0.000 0.056 0.944
#> SRR2443166     3  0.3148     0.7450 0.048 0.036 0.916
#> SRR2443165     3  0.6008     0.3554 0.372 0.000 0.628
#> SRR2443164     3  0.5810     0.3855 0.000 0.336 0.664
#> SRR2443163     3  0.4095     0.7385 0.056 0.064 0.880
#> SRR2443162     1  0.6026     0.4867 0.624 0.000 0.376
#> SRR2443161     1  0.5785     0.6273 0.696 0.004 0.300
#> SRR2443160     3  0.1399     0.7446 0.028 0.004 0.968
#> SRR2443159     3  0.1529     0.7462 0.040 0.000 0.960
#> SRR2443158     1  0.6421     0.3568 0.572 0.004 0.424
#> SRR2443157     1  0.5785     0.6253 0.696 0.004 0.300
#> SRR2443156     1  0.1411     0.8116 0.964 0.036 0.000
#> SRR2443155     1  0.1529     0.8086 0.960 0.040 0.000
#> SRR2443154     1  0.0592     0.8210 0.988 0.012 0.000
#> SRR2443153     1  0.0747     0.8276 0.984 0.000 0.016
#> SRR2443152     1  0.2165     0.7949 0.936 0.064 0.000
#> SRR2443151     2  0.2959     0.7668 0.000 0.900 0.100
#> SRR2443150     1  0.5291     0.5083 0.732 0.268 0.000
#> SRR2443148     1  0.2229     0.8260 0.944 0.012 0.044
#> SRR2443147     1  0.5553     0.6665 0.724 0.004 0.272
#> SRR2443149     3  0.5480     0.5107 0.004 0.264 0.732

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR2443263     1  0.5968    0.27801 0.672 0.000 0.236 0.092
#> SRR2443262     3  0.4916    0.48521 0.424 0.000 0.576 0.000
#> SRR2443261     3  0.4585    0.54819 0.332 0.000 0.668 0.000
#> SRR2443260     3  0.4585    0.54718 0.332 0.000 0.668 0.000
#> SRR2443259     3  0.4087    0.40650 0.064 0.040 0.856 0.040
#> SRR2443258     3  0.3947    0.19082 0.004 0.116 0.840 0.040
#> SRR2443257     3  0.4761    0.53159 0.372 0.000 0.628 0.000
#> SRR2443256     1  0.4996   -0.31049 0.516 0.000 0.484 0.000
#> SRR2443255     3  0.4713    0.53812 0.360 0.000 0.640 0.000
#> SRR2443254     3  0.4985    0.40592 0.468 0.000 0.532 0.000
#> SRR2443253     3  0.4992    0.38576 0.476 0.000 0.524 0.000
#> SRR2443251     3  0.2810    0.48833 0.088 0.008 0.896 0.008
#> SRR2443250     3  0.4877    0.50373 0.408 0.000 0.592 0.000
#> SRR2443249     3  0.4331    0.54816 0.288 0.000 0.712 0.000
#> SRR2443252     3  0.4661    0.54311 0.348 0.000 0.652 0.000
#> SRR2443247     1  0.5244   -0.17214 0.556 0.008 0.436 0.000
#> SRR2443246     1  0.5435   -0.13231 0.564 0.016 0.420 0.000
#> SRR2443248     3  0.4941    0.46877 0.436 0.000 0.564 0.000
#> SRR2443244     1  0.1677    0.59654 0.948 0.012 0.040 0.000
#> SRR2443245     4  0.6508    0.58769 0.168 0.000 0.192 0.640
#> SRR2443243     4  0.5168    0.07321 0.492 0.004 0.000 0.504
#> SRR2443242     3  0.3933    0.18920 0.008 0.132 0.836 0.024
#> SRR2443241     1  0.3583    0.58292 0.816 0.180 0.000 0.004
#> SRR2443240     1  0.5682    0.30088 0.612 0.352 0.000 0.036
#> SRR2443239     2  0.7622    0.04944 0.248 0.472 0.280 0.000
#> SRR2443238     4  0.1792    0.73885 0.068 0.000 0.000 0.932
#> SRR2443237     4  0.2928    0.76378 0.012 0.000 0.108 0.880
#> SRR2443236     1  0.5085    0.30797 0.616 0.376 0.000 0.008
#> SRR2443235     1  0.1443    0.59891 0.960 0.008 0.028 0.004
#> SRR2443233     1  0.3571    0.60375 0.880 0.040 0.028 0.052
#> SRR2443234     1  0.3143    0.60864 0.876 0.100 0.000 0.024
#> SRR2443232     1  0.3217    0.60375 0.860 0.128 0.000 0.012
#> SRR2443231     1  0.0524    0.60649 0.988 0.008 0.004 0.000
#> SRR2443230     1  0.2530    0.54008 0.888 0.000 0.112 0.000
#> SRR2443229     3  0.6837    0.48364 0.340 0.116 0.544 0.000
#> SRR2443228     2  0.5536    0.64246 0.000 0.592 0.384 0.024
#> SRR2443227     1  0.2469    0.54346 0.892 0.000 0.108 0.000
#> SRR2443226     4  0.1174    0.75870 0.020 0.000 0.012 0.968
#> SRR2443225     1  0.4454    0.24133 0.692 0.000 0.308 0.000
#> SRR2443223     1  0.5277   -0.25118 0.532 0.008 0.460 0.000
#> SRR2443224     1  0.5558    0.14057 0.640 0.036 0.324 0.000
#> SRR2443222     2  0.3172    0.60684 0.160 0.840 0.000 0.000
#> SRR2443221     2  0.3688    0.55270 0.208 0.792 0.000 0.000
#> SRR2443219     3  0.4855    0.51107 0.400 0.000 0.600 0.000
#> SRR2443220     3  0.3201    0.44962 0.072 0.032 0.888 0.008
#> SRR2443218     4  0.2635    0.71388 0.020 0.076 0.000 0.904
#> SRR2443217     3  0.5158    0.39327 0.472 0.004 0.524 0.000
#> SRR2443216     3  0.5272    0.04338 0.000 0.136 0.752 0.112
#> SRR2443215     3  0.6464    0.49488 0.384 0.076 0.540 0.000
#> SRR2443214     4  0.6677    0.24320 0.364 0.000 0.096 0.540
#> SRR2443213     1  0.1305    0.61146 0.960 0.036 0.004 0.000
#> SRR2443212     1  0.6252    0.34348 0.624 0.288 0.000 0.088
#> SRR2443211     1  0.4980    0.41694 0.680 0.304 0.000 0.016
#> SRR2443210     2  0.4049    0.70751 0.000 0.780 0.212 0.008
#> SRR2443209     1  0.3088    0.59680 0.888 0.052 0.060 0.000
#> SRR2443208     2  0.5349    0.67114 0.008 0.620 0.364 0.008
#> SRR2443207     2  0.5013    0.68692 0.004 0.644 0.348 0.004
#> SRR2443206     2  0.3448    0.59907 0.168 0.828 0.000 0.004
#> SRR2443205     1  0.5080    0.27882 0.576 0.420 0.004 0.000
#> SRR2443204     4  0.5085    0.65814 0.020 0.000 0.304 0.676
#> SRR2443203     4  0.1151    0.75696 0.024 0.000 0.008 0.968
#> SRR2443202     4  0.1489    0.75121 0.044 0.000 0.004 0.952
#> SRR2443201     4  0.4214    0.73604 0.016 0.000 0.204 0.780
#> SRR2443200     2  0.5745    0.66007 0.000 0.656 0.288 0.056
#> SRR2443199     3  0.4323    0.00365 0.000 0.204 0.776 0.020
#> SRR2443197     4  0.2635    0.76932 0.020 0.000 0.076 0.904
#> SRR2443196     4  0.2921    0.75062 0.000 0.000 0.140 0.860
#> SRR2443198     1  0.6558    0.06644 0.472 0.000 0.076 0.452
#> SRR2443195     4  0.3172    0.67437 0.160 0.000 0.000 0.840
#> SRR2443194     1  0.7084    0.17863 0.552 0.000 0.164 0.284
#> SRR2443193     3  0.5097    0.47887 0.428 0.004 0.568 0.000
#> SRR2443191     1  0.3616    0.55141 0.852 0.036 0.112 0.000
#> SRR2443192     1  0.6685    0.34144 0.592 0.124 0.000 0.284
#> SRR2443190     1  0.4824    0.55751 0.780 0.144 0.000 0.076
#> SRR2443189     3  0.6123   -0.06229 0.000 0.132 0.676 0.192
#> SRR2443188     1  0.1637    0.61323 0.940 0.060 0.000 0.000
#> SRR2443186     2  0.2773    0.69132 0.028 0.900 0.072 0.000
#> SRR2443187     2  0.3710    0.71134 0.004 0.804 0.192 0.000
#> SRR2443185     4  0.4535    0.67586 0.004 0.000 0.292 0.704
#> SRR2443184     4  0.4053    0.70789 0.000 0.004 0.228 0.768
#> SRR2443183     1  0.0657    0.60809 0.984 0.012 0.004 0.000
#> SRR2443182     1  0.2868    0.51814 0.864 0.000 0.136 0.000
#> SRR2443181     1  0.3813    0.60254 0.828 0.148 0.024 0.000
#> SRR2443180     1  0.7410    0.10858 0.488 0.184 0.000 0.328
#> SRR2443179     4  0.1118    0.75068 0.036 0.000 0.000 0.964
#> SRR2443178     4  0.4866    0.30693 0.404 0.000 0.000 0.596
#> SRR2443177     3  0.5243    0.49532 0.416 0.004 0.576 0.004
#> SRR2443176     3  0.4967    0.44148 0.452 0.000 0.548 0.000
#> SRR2443175     1  0.5040    0.08029 0.628 0.008 0.364 0.000
#> SRR2443174     1  0.1302    0.58750 0.956 0.000 0.044 0.000
#> SRR2443173     2  0.2814    0.62369 0.132 0.868 0.000 0.000
#> SRR2443172     2  0.2706    0.65846 0.080 0.900 0.020 0.000
#> SRR2443171     1  0.4594    0.30637 0.712 0.008 0.280 0.000
#> SRR2443170     1  0.4643    0.38849 0.656 0.344 0.000 0.000
#> SRR2443169     1  0.3626    0.46642 0.812 0.004 0.184 0.000
#> SRR2443168     2  0.5127    0.69571 0.008 0.668 0.316 0.008
#> SRR2443167     4  0.3668    0.72667 0.000 0.004 0.188 0.808
#> SRR2443166     3  0.4277    0.42711 0.076 0.028 0.844 0.052
#> SRR2443165     1  0.7712   -0.28384 0.404 0.000 0.372 0.224
#> SRR2443164     3  0.7756   -0.49870 0.000 0.364 0.400 0.236
#> SRR2443163     3  0.8169   -0.36048 0.076 0.084 0.428 0.412
#> SRR2443162     3  0.4992    0.39668 0.476 0.000 0.524 0.000
#> SRR2443161     1  0.5000   -0.35720 0.500 0.000 0.500 0.000
#> SRR2443160     4  0.2676    0.76739 0.012 0.000 0.092 0.896
#> SRR2443159     4  0.4391    0.70886 0.008 0.000 0.252 0.740
#> SRR2443158     1  0.7220    0.09503 0.548 0.000 0.212 0.240
#> SRR2443157     1  0.5343    0.16958 0.656 0.000 0.316 0.028
#> SRR2443156     1  0.3032    0.60847 0.868 0.124 0.008 0.000
#> SRR2443155     1  0.2742    0.61182 0.900 0.076 0.024 0.000
#> SRR2443154     1  0.3448    0.58931 0.828 0.168 0.000 0.004
#> SRR2443153     1  0.3583    0.47227 0.816 0.004 0.180 0.000
#> SRR2443152     1  0.4671    0.56108 0.752 0.220 0.028 0.000
#> SRR2443151     2  0.5613    0.63776 0.000 0.592 0.380 0.028
#> SRR2443150     1  0.5821    0.39038 0.592 0.368 0.040 0.000
#> SRR2443148     1  0.6216    0.37987 0.652 0.108 0.000 0.240
#> SRR2443147     3  0.4985    0.40692 0.468 0.000 0.532 0.000
#> SRR2443149     3  0.3763    0.14741 0.000 0.144 0.832 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR2443263     1  0.2050     0.6327 0.920 0.008 0.000 0.008 0.064
#> SRR2443262     3  0.3278     0.6032 0.156 0.000 0.824 0.000 0.020
#> SRR2443261     3  0.5223     0.5641 0.220 0.000 0.672 0.000 0.108
#> SRR2443260     3  0.6630     0.3484 0.376 0.000 0.404 0.000 0.220
#> SRR2443259     5  0.6358     0.2115 0.112 0.000 0.364 0.016 0.508
#> SRR2443258     3  0.4657    -0.1093 0.008 0.000 0.604 0.008 0.380
#> SRR2443257     3  0.4486     0.5910 0.172 0.000 0.748 0.000 0.080
#> SRR2443256     1  0.5506    -0.0942 0.528 0.000 0.404 0.000 0.068
#> SRR2443255     3  0.6296     0.4506 0.324 0.000 0.504 0.000 0.172
#> SRR2443254     3  0.4501     0.5845 0.276 0.008 0.696 0.000 0.020
#> SRR2443253     1  0.5597    -0.1896 0.488 0.000 0.440 0.000 0.072
#> SRR2443251     3  0.4062     0.4377 0.040 0.000 0.764 0.000 0.196
#> SRR2443250     3  0.5843     0.3884 0.388 0.000 0.512 0.000 0.100
#> SRR2443249     3  0.5991     0.4991 0.288 0.000 0.564 0.000 0.148
#> SRR2443252     3  0.5167     0.5681 0.200 0.000 0.684 0.000 0.116
#> SRR2443247     1  0.5172     0.1934 0.616 0.000 0.324 0.000 0.060
#> SRR2443246     3  0.5592     0.5372 0.220 0.144 0.636 0.000 0.000
#> SRR2443248     3  0.2588     0.6033 0.100 0.008 0.884 0.000 0.008
#> SRR2443244     3  0.7153     0.1019 0.152 0.356 0.448 0.044 0.000
#> SRR2443245     4  0.6536     0.4106 0.080 0.004 0.044 0.556 0.316
#> SRR2443243     1  0.4886     0.3346 0.596 0.032 0.000 0.372 0.000
#> SRR2443242     3  0.1671     0.4930 0.000 0.000 0.924 0.000 0.076
#> SRR2443241     1  0.5945     0.1555 0.460 0.452 0.080 0.008 0.000
#> SRR2443240     2  0.5715     0.1927 0.312 0.608 0.028 0.052 0.000
#> SRR2443239     3  0.2899     0.4942 0.004 0.132 0.856 0.004 0.004
#> SRR2443238     4  0.1787     0.6168 0.016 0.044 0.004 0.936 0.000
#> SRR2443237     4  0.3399     0.6025 0.000 0.004 0.012 0.812 0.172
#> SRR2443236     2  0.5584     0.2197 0.300 0.624 0.052 0.024 0.000
#> SRR2443235     1  0.6801     0.2885 0.492 0.336 0.144 0.028 0.000
#> SRR2443233     1  0.2799     0.6354 0.896 0.032 0.004 0.052 0.016
#> SRR2443234     1  0.2972     0.6337 0.872 0.084 0.004 0.040 0.000
#> SRR2443232     1  0.3197     0.6244 0.852 0.116 0.008 0.024 0.000
#> SRR2443231     1  0.4318     0.5617 0.736 0.228 0.032 0.004 0.000
#> SRR2443230     1  0.3712     0.6214 0.820 0.124 0.052 0.004 0.000
#> SRR2443229     3  0.1843     0.5409 0.008 0.052 0.932 0.000 0.008
#> SRR2443228     5  0.5316     0.4145 0.004 0.232 0.096 0.000 0.668
#> SRR2443227     1  0.4527     0.5913 0.752 0.172 0.072 0.004 0.000
#> SRR2443226     4  0.1828     0.6179 0.004 0.032 0.028 0.936 0.000
#> SRR2443225     1  0.6237     0.2973 0.564 0.124 0.300 0.008 0.004
#> SRR2443223     3  0.5461     0.5284 0.284 0.096 0.620 0.000 0.000
#> SRR2443224     1  0.6228     0.3528 0.620 0.084 0.244 0.000 0.052
#> SRR2443222     2  0.3634     0.4286 0.008 0.796 0.012 0.000 0.184
#> SRR2443221     2  0.3754     0.4357 0.020 0.796 0.008 0.000 0.176
#> SRR2443219     3  0.5191     0.5650 0.252 0.000 0.660 0.000 0.088
#> SRR2443220     3  0.6191     0.0233 0.136 0.000 0.440 0.000 0.424
#> SRR2443218     4  0.2694     0.5872 0.000 0.040 0.000 0.884 0.076
#> SRR2443217     3  0.3291     0.5861 0.064 0.088 0.848 0.000 0.000
#> SRR2443216     5  0.4956     0.5442 0.000 0.000 0.316 0.048 0.636
#> SRR2443215     3  0.1830     0.5411 0.008 0.068 0.924 0.000 0.000
#> SRR2443214     3  0.6986    -0.0185 0.036 0.120 0.436 0.404 0.004
#> SRR2443213     1  0.5782     0.4275 0.592 0.320 0.072 0.016 0.000
#> SRR2443212     2  0.6138    -0.1131 0.428 0.480 0.024 0.068 0.000
#> SRR2443211     1  0.5321     0.3205 0.564 0.396 0.020 0.004 0.016
#> SRR2443210     2  0.5175     0.1000 0.000 0.548 0.044 0.000 0.408
#> SRR2443209     3  0.6386     0.0766 0.144 0.412 0.440 0.004 0.000
#> SRR2443208     5  0.6653     0.2307 0.000 0.364 0.228 0.000 0.408
#> SRR2443207     3  0.4948     0.2479 0.000 0.184 0.708 0.000 0.108
#> SRR2443206     2  0.4524     0.3993 0.020 0.692 0.280 0.008 0.000
#> SRR2443205     2  0.5638     0.1122 0.068 0.532 0.396 0.004 0.000
#> SRR2443204     4  0.6269     0.2886 0.012 0.000 0.112 0.512 0.364
#> SRR2443203     4  0.0609     0.6239 0.000 0.000 0.000 0.980 0.020
#> SRR2443202     4  0.4840     0.4993 0.012 0.152 0.092 0.744 0.000
#> SRR2443201     4  0.5486     0.3466 0.000 0.004 0.288 0.624 0.084
#> SRR2443200     5  0.3989     0.2985 0.008 0.260 0.004 0.000 0.728
#> SRR2443199     5  0.4943     0.4803 0.012 0.016 0.376 0.000 0.596
#> SRR2443197     4  0.6992     0.3101 0.200 0.008 0.008 0.448 0.336
#> SRR2443196     4  0.3768     0.5774 0.000 0.004 0.008 0.760 0.228
#> SRR2443198     1  0.5090     0.3925 0.616 0.004 0.020 0.348 0.012
#> SRR2443195     4  0.4078     0.5536 0.128 0.072 0.004 0.796 0.000
#> SRR2443194     1  0.3363     0.6277 0.860 0.008 0.004 0.072 0.056
#> SRR2443193     3  0.2054     0.5847 0.052 0.028 0.920 0.000 0.000
#> SRR2443191     1  0.5917     0.4981 0.636 0.180 0.172 0.000 0.012
#> SRR2443192     4  0.7528    -0.0678 0.076 0.340 0.152 0.432 0.000
#> SRR2443190     1  0.5733     0.4159 0.612 0.300 0.020 0.068 0.000
#> SRR2443189     5  0.5637     0.5148 0.004 0.000 0.300 0.092 0.604
#> SRR2443188     1  0.5335     0.4700 0.632 0.300 0.060 0.008 0.000
#> SRR2443186     2  0.5838     0.2862 0.000 0.552 0.336 0.000 0.112
#> SRR2443187     2  0.6248     0.1041 0.000 0.524 0.300 0.000 0.176
#> SRR2443185     5  0.5835    -0.2224 0.032 0.008 0.024 0.400 0.536
#> SRR2443184     4  0.4938     0.3588 0.008 0.008 0.004 0.532 0.448
#> SRR2443183     1  0.4608     0.5649 0.732 0.212 0.048 0.008 0.000
#> SRR2443182     1  0.0613     0.6478 0.984 0.004 0.008 0.004 0.000
#> SRR2443181     1  0.4125     0.5615 0.740 0.236 0.020 0.000 0.004
#> SRR2443180     1  0.7766    -0.0328 0.412 0.356 0.004 0.108 0.120
#> SRR2443179     4  0.0162     0.6229 0.000 0.000 0.000 0.996 0.004
#> SRR2443178     4  0.6470     0.0173 0.388 0.120 0.016 0.476 0.000
#> SRR2443177     3  0.2316     0.5703 0.036 0.036 0.916 0.012 0.000
#> SRR2443176     1  0.5996    -0.0851 0.512 0.000 0.368 0.000 0.120
#> SRR2443175     3  0.5990     0.4338 0.164 0.232 0.600 0.004 0.000
#> SRR2443174     1  0.4679     0.5629 0.720 0.220 0.056 0.004 0.000
#> SRR2443173     2  0.4004     0.3935 0.016 0.748 0.004 0.000 0.232
#> SRR2443172     2  0.4449     0.3470 0.020 0.688 0.004 0.000 0.288
#> SRR2443171     1  0.1357     0.6385 0.948 0.000 0.004 0.000 0.048
#> SRR2443170     1  0.5691     0.3212 0.600 0.308 0.008 0.000 0.084
#> SRR2443169     1  0.0671     0.6472 0.980 0.000 0.016 0.000 0.004
#> SRR2443168     3  0.5398     0.1574 0.000 0.240 0.648 0.000 0.112
#> SRR2443167     4  0.4365     0.5187 0.000 0.004 0.012 0.676 0.308
#> SRR2443166     5  0.6619     0.3370 0.108 0.000 0.312 0.040 0.540
#> SRR2443165     1  0.3821     0.5638 0.780 0.008 0.008 0.004 0.200
#> SRR2443164     5  0.5817     0.4250 0.000 0.088 0.088 0.124 0.700
#> SRR2443163     3  0.4248     0.3780 0.000 0.012 0.792 0.128 0.068
#> SRR2443162     1  0.3646     0.5898 0.820 0.008 0.032 0.000 0.140
#> SRR2443161     1  0.4548     0.5181 0.752 0.000 0.120 0.000 0.128
#> SRR2443160     4  0.3088     0.6083 0.000 0.004 0.004 0.828 0.164
#> SRR2443159     4  0.6027     0.3773 0.036 0.008 0.032 0.536 0.388
#> SRR2443158     1  0.5856     0.5121 0.660 0.004 0.048 0.232 0.056
#> SRR2443157     1  0.2401     0.6300 0.904 0.008 0.008 0.004 0.076
#> SRR2443156     2  0.6829    -0.0342 0.332 0.440 0.220 0.008 0.000
#> SRR2443155     1  0.2339     0.6368 0.912 0.052 0.008 0.000 0.028
#> SRR2443154     1  0.2756     0.6208 0.880 0.092 0.004 0.000 0.024
#> SRR2443153     1  0.1728     0.6481 0.940 0.020 0.036 0.000 0.004
#> SRR2443152     1  0.3867     0.5875 0.804 0.144 0.004 0.000 0.048
#> SRR2443151     5  0.5848     0.4348 0.000 0.228 0.168 0.000 0.604
#> SRR2443150     1  0.5423     0.4462 0.676 0.168 0.004 0.000 0.152
#> SRR2443148     1  0.6791     0.2686 0.520 0.248 0.020 0.212 0.000
#> SRR2443147     1  0.4545     0.5083 0.752 0.000 0.132 0.000 0.116
#> SRR2443149     5  0.4383     0.4170 0.004 0.000 0.424 0.000 0.572

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR2443263     3   0.531    -0.0896 0.444 0.020 0.492 0.012 0.000 0.032
#> SRR2443262     3   0.312     0.5321 0.008 0.004 0.824 0.000 0.152 0.012
#> SRR2443261     3   0.229     0.5464 0.000 0.004 0.876 0.000 0.116 0.004
#> SRR2443260     3   0.204     0.5817 0.012 0.000 0.924 0.008 0.028 0.028
#> SRR2443259     3   0.684     0.0771 0.000 0.028 0.524 0.112 0.072 0.264
#> SRR2443258     3   0.791    -0.1279 0.004 0.040 0.380 0.084 0.248 0.244
#> SRR2443257     3   0.330     0.4261 0.000 0.000 0.756 0.000 0.236 0.008
#> SRR2443256     3   0.288     0.5709 0.096 0.000 0.852 0.000 0.052 0.000
#> SRR2443255     3   0.235     0.5748 0.008 0.000 0.900 0.004 0.064 0.024
#> SRR2443254     3   0.317     0.5391 0.028 0.000 0.820 0.000 0.148 0.004
#> SRR2443253     3   0.207     0.5830 0.048 0.000 0.912 0.000 0.036 0.004
#> SRR2443251     3   0.542     0.3386 0.004 0.016 0.664 0.036 0.228 0.052
#> SRR2443250     3   0.178     0.5841 0.024 0.004 0.928 0.000 0.044 0.000
#> SRR2443249     3   0.206     0.5655 0.004 0.000 0.900 0.000 0.088 0.008
#> SRR2443252     3   0.326     0.4981 0.004 0.000 0.800 0.004 0.180 0.012
#> SRR2443247     3   0.393     0.4641 0.236 0.000 0.724 0.000 0.040 0.000
#> SRR2443246     3   0.522     0.1012 0.076 0.008 0.540 0.000 0.376 0.000
#> SRR2443248     3   0.393     0.2603 0.012 0.000 0.644 0.000 0.344 0.000
#> SRR2443244     5   0.690     0.3933 0.276 0.024 0.236 0.024 0.440 0.000
#> SRR2443245     6   0.713     0.1721 0.084 0.000 0.092 0.320 0.040 0.464
#> SRR2443243     1   0.340     0.5671 0.792 0.000 0.008 0.184 0.012 0.004
#> SRR2443242     5   0.466     0.4792 0.000 0.000 0.236 0.004 0.676 0.084
#> SRR2443241     1   0.562     0.5218 0.648 0.136 0.032 0.008 0.176 0.000
#> SRR2443240     2   0.567     0.3190 0.308 0.584 0.032 0.012 0.064 0.000
#> SRR2443239     5   0.422     0.5376 0.016 0.016 0.264 0.000 0.700 0.004
#> SRR2443238     4   0.579     0.1336 0.364 0.000 0.000 0.472 0.160 0.004
#> SRR2443237     4   0.166     0.6584 0.008 0.000 0.000 0.932 0.008 0.052
#> SRR2443236     1   0.571     0.4035 0.580 0.184 0.000 0.008 0.224 0.004
#> SRR2443235     1   0.567     0.4040 0.592 0.008 0.056 0.048 0.296 0.000
#> SRR2443233     1   0.462     0.5873 0.744 0.008 0.152 0.028 0.000 0.068
#> SRR2443234     1   0.252     0.6337 0.876 0.004 0.104 0.008 0.000 0.008
#> SRR2443232     1   0.331     0.6153 0.816 0.032 0.144 0.008 0.000 0.000
#> SRR2443231     1   0.289     0.6485 0.860 0.004 0.068 0.000 0.068 0.000
#> SRR2443230     1   0.308     0.6485 0.844 0.000 0.096 0.000 0.056 0.004
#> SRR2443229     5   0.396     0.5558 0.016 0.000 0.244 0.000 0.724 0.016
#> SRR2443228     6   0.511     0.2367 0.000 0.292 0.004 0.000 0.100 0.604
#> SRR2443227     1   0.375     0.6348 0.800 0.000 0.084 0.004 0.108 0.004
#> SRR2443226     4   0.363     0.5860 0.056 0.000 0.000 0.792 0.148 0.004
#> SRR2443225     1   0.605     0.3297 0.504 0.000 0.288 0.004 0.196 0.008
#> SRR2443223     3   0.461     0.5451 0.060 0.044 0.772 0.024 0.100 0.000
#> SRR2443224     3   0.537     0.3028 0.224 0.168 0.604 0.000 0.004 0.000
#> SRR2443222     2   0.380     0.6047 0.044 0.792 0.004 0.000 0.148 0.012
#> SRR2443221     2   0.421     0.5941 0.060 0.756 0.004 0.000 0.168 0.012
#> SRR2443219     3   0.544    -0.1311 0.020 0.000 0.484 0.000 0.428 0.068
#> SRR2443220     3   0.531     0.3270 0.000 0.004 0.652 0.028 0.088 0.228
#> SRR2443218     4   0.516     0.5548 0.044 0.152 0.000 0.716 0.068 0.020
#> SRR2443217     5   0.472     0.5162 0.064 0.000 0.296 0.000 0.636 0.004
#> SRR2443216     6   0.637     0.5133 0.000 0.032 0.124 0.080 0.140 0.624
#> SRR2443215     5   0.393     0.5506 0.024 0.000 0.260 0.000 0.712 0.004
#> SRR2443214     5   0.627     0.4311 0.252 0.000 0.072 0.044 0.588 0.044
#> SRR2443213     1   0.428     0.5666 0.716 0.004 0.048 0.004 0.228 0.000
#> SRR2443212     1   0.497     0.5180 0.704 0.140 0.000 0.020 0.132 0.004
#> SRR2443211     1   0.537     0.2457 0.548 0.368 0.064 0.000 0.016 0.004
#> SRR2443210     2   0.218     0.5661 0.000 0.900 0.000 0.000 0.036 0.064
#> SRR2443209     5   0.635     0.4724 0.248 0.044 0.188 0.000 0.520 0.000
#> SRR2443208     5   0.556    -0.2039 0.000 0.060 0.032 0.000 0.468 0.440
#> SRR2443207     5   0.519     0.4578 0.000 0.052 0.136 0.004 0.704 0.104
#> SRR2443206     5   0.530     0.2089 0.092 0.328 0.004 0.004 0.572 0.000
#> SRR2443205     5   0.571     0.5145 0.160 0.108 0.084 0.000 0.648 0.000
#> SRR2443204     6   0.699     0.3264 0.008 0.000 0.080 0.288 0.164 0.460
#> SRR2443203     4   0.082     0.6560 0.016 0.000 0.000 0.972 0.012 0.000
#> SRR2443202     4   0.422     0.5776 0.060 0.000 0.012 0.764 0.156 0.008
#> SRR2443201     4   0.440     0.5961 0.004 0.016 0.052 0.792 0.084 0.052
#> SRR2443200     6   0.455     0.0741 0.004 0.384 0.000 0.004 0.024 0.584
#> SRR2443199     6   0.439     0.5023 0.008 0.008 0.072 0.004 0.152 0.756
#> SRR2443197     6   0.655    -0.0941 0.112 0.000 0.076 0.400 0.000 0.412
#> SRR2443196     4   0.211     0.6498 0.008 0.000 0.012 0.904 0.000 0.076
#> SRR2443198     3   0.639     0.1105 0.220 0.008 0.404 0.360 0.000 0.008
#> SRR2443195     1   0.536     0.3248 0.580 0.000 0.000 0.288 0.128 0.004
#> SRR2443194     3   0.626     0.0625 0.356 0.012 0.488 0.116 0.000 0.028
#> SRR2443193     5   0.509     0.5576 0.060 0.000 0.208 0.000 0.680 0.052
#> SRR2443191     1   0.570     0.3889 0.568 0.012 0.168 0.000 0.252 0.000
#> SRR2443192     5   0.575     0.1079 0.384 0.004 0.016 0.084 0.508 0.004
#> SRR2443190     1   0.318     0.6247 0.848 0.000 0.016 0.060 0.076 0.000
#> SRR2443189     6   0.505     0.5087 0.000 0.000 0.104 0.024 0.192 0.680
#> SRR2443188     1   0.388     0.5876 0.748 0.000 0.040 0.004 0.208 0.000
#> SRR2443186     5   0.470    -0.0455 0.008 0.476 0.020 0.000 0.492 0.004
#> SRR2443187     5   0.545     0.2772 0.000 0.272 0.028 0.000 0.608 0.092
#> SRR2443185     4   0.583     0.3635 0.008 0.020 0.120 0.576 0.000 0.276
#> SRR2443184     4   0.450     0.5581 0.004 0.032 0.040 0.732 0.000 0.192
#> SRR2443183     1   0.339     0.6384 0.824 0.000 0.052 0.004 0.116 0.004
#> SRR2443182     1   0.380     0.5158 0.692 0.016 0.292 0.000 0.000 0.000
#> SRR2443181     1   0.533     0.4959 0.624 0.192 0.176 0.000 0.008 0.000
#> SRR2443180     1   0.693     0.0950 0.508 0.316 0.016 0.052 0.060 0.048
#> SRR2443179     4   0.219     0.6361 0.032 0.000 0.000 0.904 0.060 0.004
#> SRR2443178     1   0.473     0.4885 0.680 0.000 0.004 0.232 0.080 0.004
#> SRR2443177     5   0.474     0.5812 0.064 0.000 0.208 0.004 0.704 0.020
#> SRR2443176     3   0.760    -0.0765 0.280 0.000 0.328 0.000 0.196 0.196
#> SRR2443175     5   0.587     0.4727 0.176 0.012 0.280 0.000 0.532 0.000
#> SRR2443174     1   0.345     0.6436 0.816 0.004 0.072 0.000 0.108 0.000
#> SRR2443173     2   0.178     0.6291 0.060 0.924 0.000 0.000 0.008 0.008
#> SRR2443172     2   0.270     0.6224 0.068 0.884 0.012 0.000 0.008 0.028
#> SRR2443171     1   0.497     0.3288 0.560 0.032 0.388 0.000 0.004 0.016
#> SRR2443170     1   0.475     0.3990 0.640 0.296 0.056 0.000 0.004 0.004
#> SRR2443169     1   0.388     0.5332 0.708 0.012 0.272 0.000 0.004 0.004
#> SRR2443168     5   0.715     0.2693 0.004 0.292 0.136 0.020 0.472 0.076
#> SRR2443167     4   0.370     0.6167 0.004 0.036 0.016 0.812 0.004 0.128
#> SRR2443166     6   0.607     0.4609 0.000 0.004 0.252 0.056 0.108 0.580
#> SRR2443165     6   0.660    -0.0920 0.360 0.000 0.228 0.032 0.000 0.380
#> SRR2443164     4   0.736    -0.0322 0.004 0.304 0.012 0.324 0.052 0.304
#> SRR2443163     4   0.764     0.1282 0.004 0.056 0.248 0.436 0.204 0.052
#> SRR2443162     3   0.539     0.2519 0.308 0.016 0.604 0.020 0.000 0.052
#> SRR2443161     3   0.475     0.3719 0.240 0.032 0.692 0.016 0.000 0.020
#> SRR2443160     4   0.159     0.6594 0.008 0.000 0.020 0.940 0.000 0.032
#> SRR2443159     4   0.520     0.3844 0.000 0.000 0.180 0.616 0.000 0.204
#> SRR2443158     3   0.665     0.2025 0.228 0.012 0.480 0.256 0.004 0.020
#> SRR2443157     1   0.487     0.3968 0.600 0.008 0.344 0.004 0.000 0.044
#> SRR2443156     1   0.740     0.2646 0.408 0.216 0.184 0.000 0.192 0.000
#> SRR2443155     1   0.521     0.3066 0.532 0.084 0.380 0.000 0.000 0.004
#> SRR2443154     1   0.598     0.3229 0.484 0.256 0.256 0.000 0.000 0.004
#> SRR2443153     1   0.318     0.6202 0.804 0.000 0.176 0.000 0.016 0.004
#> SRR2443152     1   0.624     0.0317 0.352 0.344 0.300 0.000 0.000 0.004
#> SRR2443151     2   0.662    -0.1181 0.004 0.432 0.008 0.024 0.176 0.356
#> SRR2443150     2   0.646     0.1129 0.292 0.460 0.216 0.000 0.000 0.032
#> SRR2443148     1   0.372     0.5920 0.804 0.000 0.008 0.064 0.120 0.004
#> SRR2443147     3   0.392     0.4495 0.216 0.000 0.736 0.000 0.000 0.048
#> SRR2443149     6   0.707     0.2530 0.000 0.032 0.264 0.028 0.240 0.436

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0