cola Report for recount2:TCGA_eye

Date: 2019-12-26 01:29:38 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 16751    80

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
ATC:skmeans 2 1.000 0.993 0.997 **
ATC:pam 3 1.000 0.978 0.991 **
ATC:kmeans 3 1.000 0.975 0.989 ** 2
ATC:mclust 2 0.998 0.936 0.963 **
MAD:kmeans 2 0.992 0.934 0.965 **
MAD:skmeans 5 0.959 0.913 0.957 ** 2,3,4
MAD:mclust 5 0.941 0.893 0.941 * 3
SD:skmeans 5 0.935 0.861 0.931 * 4
CV:NMF 2 0.921 0.923 0.969 *
MAD:pam 4 0.915 0.910 0.963 * 3
SD:pam 4 0.908 0.908 0.960 *
SD:kmeans 4 0.878 0.857 0.923
MAD:NMF 2 0.876 0.926 0.961
SD:hclust 2 0.873 0.933 0.966
MAD:hclust 2 0.873 0.935 0.968
SD:NMF 3 0.829 0.877 0.945
CV:skmeans 4 0.758 0.850 0.889
ATC:NMF 2 0.599 0.841 0.920
CV:pam 3 0.551 0.716 0.858
ATC:hclust 2 0.510 0.783 0.902
CV:kmeans 3 0.506 0.796 0.826
CV:hclust 4 0.499 0.831 0.844
CV:mclust 2 0.404 0.697 0.855
SD:mclust 2 0.334 0.880 0.895

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.488           0.798       0.894          0.482 0.532   0.532
#> CV:NMF      2 0.921           0.923       0.969          0.506 0.494   0.494
#> MAD:NMF     2 0.876           0.926       0.961          0.479 0.519   0.519
#> ATC:NMF     2 0.599           0.841       0.920          0.485 0.509   0.509
#> SD:skmeans  2 0.525           0.883       0.925          0.506 0.494   0.494
#> CV:skmeans  2 0.525           0.732       0.888          0.483 0.539   0.539
#> MAD:skmeans 2 1.000           0.992       0.996          0.507 0.494   0.494
#> ATC:skmeans 2 1.000           0.993       0.997          0.506 0.495   0.495
#> SD:mclust   2 0.334           0.880       0.895          0.444 0.494   0.494
#> CV:mclust   2 0.404           0.697       0.855          0.463 0.596   0.596
#> MAD:mclust  2 0.585           0.856       0.883          0.439 0.494   0.494
#> ATC:mclust  2 0.998           0.936       0.963          0.492 0.509   0.509
#> SD:kmeans   2 0.417           0.848       0.901          0.488 0.494   0.494
#> CV:kmeans   2 0.705           0.898       0.954          0.419 0.585   0.585
#> MAD:kmeans  2 0.992           0.934       0.965          0.499 0.494   0.494
#> ATC:kmeans  2 1.000           0.982       0.992          0.503 0.499   0.499
#> SD:pam      2 0.274           0.571       0.732          0.446 0.547   0.547
#> CV:pam      2 0.505           0.812       0.913          0.381 0.633   0.633
#> MAD:pam     2 0.495           0.853       0.890          0.489 0.499   0.499
#> ATC:pam     2 0.898           0.927       0.971          0.503 0.495   0.495
#> SD:hclust   2 0.873           0.933       0.966          0.503 0.494   0.494
#> CV:hclust   2 0.388           0.812       0.865          0.283 0.633   0.633
#> MAD:hclust  2 0.873           0.935       0.968          0.501 0.494   0.494
#> ATC:hclust  2 0.510           0.783       0.902          0.472 0.514   0.514
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.829           0.877       0.945          0.386 0.701   0.485
#> CV:NMF      3 0.630           0.672       0.843          0.313 0.740   0.520
#> MAD:NMF     3 0.748           0.786       0.912          0.395 0.665   0.436
#> ATC:NMF     3 0.532           0.673       0.838          0.378 0.669   0.433
#> SD:skmeans  3 0.865           0.912       0.960          0.301 0.803   0.619
#> CV:skmeans  3 0.666           0.718       0.871          0.359 0.696   0.489
#> MAD:skmeans 3 1.000           0.961       0.985          0.290 0.806   0.625
#> ATC:skmeans 3 0.840           0.796       0.922          0.198 0.895   0.790
#> SD:mclust   3 0.624           0.877       0.910          0.364 0.582   0.357
#> CV:mclust   3 0.451           0.738       0.822          0.342 0.753   0.594
#> MAD:mclust  3 0.938           0.894       0.963          0.335 0.576   0.354
#> ATC:mclust  3 0.765           0.830       0.882          0.289 0.741   0.542
#> SD:kmeans   3 0.662           0.914       0.910          0.335 0.819   0.648
#> CV:kmeans   3 0.506           0.796       0.826          0.458 0.742   0.571
#> MAD:kmeans  3 0.680           0.879       0.875          0.305 0.821   0.649
#> ATC:kmeans  3 1.000           0.975       0.989          0.342 0.736   0.515
#> SD:pam      3 0.889           0.918       0.965          0.452 0.716   0.521
#> CV:pam      3 0.551           0.716       0.858          0.622 0.692   0.533
#> MAD:pam     3 0.947           0.955       0.981          0.316 0.807   0.634
#> ATC:pam     3 1.000           0.978       0.991          0.343 0.736   0.513
#> SD:hclust   3 0.667           0.752       0.754          0.271 0.878   0.754
#> CV:hclust   3 0.475           0.664       0.827          0.559 0.985   0.976
#> MAD:hclust  3 0.625           0.725       0.782          0.264 0.893   0.783
#> ATC:hclust  3 0.543           0.710       0.860          0.381 0.746   0.536
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.587           0.647       0.795         0.1144 0.820   0.522
#> CV:NMF      4 0.566           0.472       0.748         0.1117 0.686   0.302
#> MAD:NMF     4 0.512           0.507       0.654         0.1148 0.853   0.595
#> ATC:NMF     4 0.541           0.602       0.787         0.0921 0.727   0.370
#> SD:skmeans  4 1.000           0.966       0.984         0.1496 0.889   0.683
#> CV:skmeans  4 0.758           0.850       0.889         0.1427 0.852   0.598
#> MAD:skmeans 4 1.000           0.976       0.988         0.1555 0.888   0.682
#> ATC:skmeans 4 0.788           0.755       0.886         0.0739 0.947   0.869
#> SD:mclust   4 0.727           0.855       0.910         0.2222 0.829   0.573
#> CV:mclust   4 0.491           0.566       0.762         0.1149 0.929   0.822
#> MAD:mclust  4 0.827           0.868       0.928         0.2658 0.810   0.541
#> ATC:mclust  4 0.596           0.716       0.807         0.0856 0.726   0.392
#> SD:kmeans   4 0.878           0.857       0.923         0.1571 0.845   0.585
#> CV:kmeans   4 0.565           0.588       0.747         0.1419 0.973   0.926
#> MAD:kmeans  4 0.833           0.802       0.907         0.1567 0.868   0.636
#> ATC:kmeans  4 0.749           0.803       0.894         0.1164 0.806   0.492
#> SD:pam      4 0.908           0.908       0.960         0.1632 0.878   0.665
#> CV:pam      4 0.538           0.588       0.678         0.1311 0.760   0.488
#> MAD:pam     4 0.915           0.910       0.963         0.1768 0.860   0.625
#> ATC:pam     4 0.690           0.702       0.829         0.0978 0.828   0.544
#> SD:hclust   4 0.766           0.814       0.857         0.1687 0.864   0.639
#> CV:hclust   4 0.499           0.831       0.844         0.3419 0.723   0.552
#> MAD:hclust  4 0.727           0.780       0.868         0.1660 0.837   0.591
#> ATC:hclust  4 0.685           0.680       0.848         0.1333 0.826   0.535
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.661           0.707       0.822         0.0727 0.894   0.615
#> CV:NMF      5 0.780           0.741       0.876         0.0783 0.855   0.520
#> MAD:NMF     5 0.616           0.599       0.775         0.0671 0.883   0.580
#> ATC:NMF     5 0.515           0.497       0.692         0.0643 0.909   0.700
#> SD:skmeans  5 0.935           0.861       0.931         0.0413 0.970   0.877
#> CV:skmeans  5 0.753           0.716       0.856         0.0666 0.910   0.658
#> MAD:skmeans 5 0.959           0.913       0.957         0.0393 0.969   0.876
#> ATC:skmeans 5 0.831           0.810       0.856         0.0621 0.887   0.693
#> SD:mclust   5 0.702           0.766       0.817         0.0342 0.932   0.735
#> CV:mclust   5 0.556           0.631       0.742         0.0891 0.832   0.548
#> MAD:mclust  5 0.941           0.893       0.941         0.0713 0.925   0.709
#> ATC:mclust  5 0.762           0.711       0.834         0.1439 0.915   0.694
#> SD:kmeans   5 0.774           0.720       0.826         0.0580 0.949   0.796
#> CV:kmeans   5 0.555           0.691       0.755         0.0839 0.859   0.595
#> MAD:kmeans  5 0.759           0.716       0.826         0.0587 0.920   0.689
#> ATC:kmeans  5 0.749           0.616       0.778         0.0624 0.966   0.862
#> SD:pam      5 0.806           0.671       0.851         0.0541 0.954   0.828
#> CV:pam      5 0.707           0.665       0.846         0.0952 0.871   0.617
#> MAD:pam     5 0.868           0.752       0.852         0.0526 0.925   0.710
#> ATC:pam     5 0.745           0.740       0.840         0.0685 0.934   0.752
#> SD:hclust   5 0.783           0.800       0.825         0.0628 0.958   0.830
#> CV:hclust   5 0.489           0.762       0.814         0.1233 0.980   0.942
#> MAD:hclust  5 0.735           0.589       0.751         0.0638 0.912   0.675
#> ATC:hclust  5 0.710           0.595       0.791         0.0738 0.881   0.582
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.688           0.572       0.748         0.0416 0.941   0.719
#> CV:NMF      6 0.750           0.644       0.796         0.0448 0.863   0.466
#> MAD:NMF     6 0.644           0.496       0.691         0.0381 0.916   0.627
#> ATC:NMF     6 0.589           0.463       0.663         0.0496 0.881   0.568
#> SD:skmeans  6 0.864           0.741       0.869         0.0346 0.971   0.869
#> CV:skmeans  6 0.753           0.655       0.791         0.0348 0.981   0.905
#> MAD:skmeans 6 0.887           0.780       0.895         0.0312 0.982   0.916
#> ATC:skmeans 6 0.885           0.922       0.926         0.0424 0.966   0.881
#> SD:mclust   6 0.763           0.734       0.852         0.0698 0.975   0.881
#> CV:mclust   6 0.629           0.588       0.765         0.0523 0.857   0.486
#> MAD:mclust  6 0.898           0.868       0.913         0.0376 0.956   0.793
#> ATC:mclust  6 0.871           0.856       0.923         0.0452 0.938   0.723
#> SD:kmeans   6 0.787           0.695       0.811         0.0386 0.941   0.733
#> CV:kmeans   6 0.642           0.549       0.693         0.0624 0.879   0.540
#> MAD:kmeans  6 0.782           0.697       0.790         0.0396 0.922   0.651
#> ATC:kmeans  6 0.748           0.571       0.704         0.0385 0.885   0.545
#> SD:pam      6 0.833           0.803       0.824         0.0395 0.921   0.683
#> CV:pam      6 0.799           0.747       0.905         0.0317 0.970   0.871
#> MAD:pam     6 0.853           0.806       0.859         0.0385 0.929   0.681
#> ATC:pam     6 0.878           0.795       0.920         0.0477 0.925   0.669
#> SD:hclust   6 0.825           0.692       0.841         0.0418 0.967   0.843
#> CV:hclust   6 0.535           0.611       0.731         0.0568 0.959   0.872
#> MAD:hclust  6 0.808           0.726       0.847         0.0497 0.879   0.506
#> ATC:hclust  6 0.755           0.578       0.767         0.0363 0.912   0.627

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.873           0.933       0.966         0.5025 0.494   0.494
#> 3 3 0.667           0.752       0.754         0.2707 0.878   0.754
#> 4 4 0.766           0.814       0.857         0.1687 0.864   0.639
#> 5 5 0.783           0.800       0.825         0.0628 0.958   0.830
#> 6 6 0.825           0.692       0.841         0.0418 0.967   0.843

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0672      0.981 0.992 0.008
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0938      0.979 0.988 0.012
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.948 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.948 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.980 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.948 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.948 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.948 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.948 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.980 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.8144      0.691 0.252 0.748
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.980 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.948 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0672      0.981 0.992 0.008
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.948 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.980 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0672      0.981 0.992 0.008
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0938      0.945 0.012 0.988
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.948 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0672      0.981 0.992 0.008
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1414      0.973 0.980 0.020
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0672      0.981 0.992 0.008
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1843      0.966 0.972 0.028
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.7602      0.750 0.220 0.780
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.980 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.948 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6887      0.768 0.816 0.184
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.1414      0.941 0.020 0.980
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0672      0.981 0.992 0.008
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0672      0.981 0.992 0.008
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0672      0.981 0.992 0.008
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.948 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2778      0.944 0.952 0.048
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0672      0.946 0.008 0.992
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0938      0.978 0.988 0.012
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.980 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.948 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0672      0.981 0.992 0.008
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.948 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.980 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.980 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.948 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.2423      0.926 0.040 0.960
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.980 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0376      0.947 0.004 0.996
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0672      0.981 0.992 0.008
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.948 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.980 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.1633      0.938 0.024 0.976
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0672      0.981 0.992 0.008
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0376      0.947 0.004 0.996
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.8207      0.700 0.256 0.744
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.6712      0.801 0.176 0.824
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.948 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0938      0.945 0.012 0.988
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.948 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.948 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.9248      0.526 0.340 0.660
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.7815      0.735 0.232 0.768
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0376      0.979 0.996 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.980 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.7815      0.735 0.232 0.768
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3733      0.903 0.072 0.928
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0938      0.979 0.988 0.012
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0938      0.979 0.988 0.012
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.1633      0.938 0.024 0.976
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0938      0.945 0.012 0.988
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0672      0.981 0.992 0.008
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.8861      0.544 0.696 0.304
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.980 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0672      0.981 0.992 0.008
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.980 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.948 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.980 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.980 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.948 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.980 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.948 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.948 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0672      0.981 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.763 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0829      0.765 0.984 0.004 0.012
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     3  0.6308      0.995 0.000 0.492 0.508
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     3  0.6308      0.995 0.000 0.492 0.508
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.6308      0.722 0.508 0.000 0.492
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     3  0.6308      0.995 0.000 0.492 0.508
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0237      0.742 0.000 0.996 0.004
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.1411      0.707 0.000 0.964 0.036
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0237      0.742 0.000 0.996 0.004
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.6308      0.722 0.508 0.000 0.492
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.8994      0.302 0.260 0.556 0.184
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.6308      0.722 0.508 0.000 0.492
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.6008     -0.662 0.000 0.628 0.372
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0592      0.765 0.988 0.000 0.012
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     3  0.6308      0.995 0.000 0.492 0.508
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.6308      0.722 0.508 0.000 0.492
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.763 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0592      0.752 0.012 0.988 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     3  0.6308      0.995 0.000 0.492 0.508
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1643      0.768 0.956 0.000 0.044
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0592      0.760 0.988 0.012 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.763 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0892      0.757 0.980 0.020 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.5318      0.621 0.204 0.780 0.016
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.6308      0.722 0.508 0.000 0.492
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     3  0.6308      0.995 0.000 0.492 0.508
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4235      0.586 0.824 0.176 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.1031      0.753 0.024 0.976 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1643      0.768 0.956 0.000 0.044
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.763 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.763 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     3  0.6309      0.994 0.000 0.496 0.504
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1529      0.735 0.960 0.040 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0424      0.750 0.008 0.992 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0237      0.762 0.996 0.004 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.6308      0.722 0.508 0.000 0.492
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     3  0.6309      0.994 0.000 0.496 0.504
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.2261      0.767 0.932 0.000 0.068
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     3  0.6308      0.995 0.000 0.492 0.508
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.6308      0.722 0.508 0.000 0.492
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.6308      0.722 0.508 0.000 0.492
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0237      0.742 0.000 0.996 0.004
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.1647      0.734 0.036 0.960 0.004
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.6308      0.722 0.508 0.000 0.492
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.2116      0.714 0.012 0.948 0.040
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.763 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.744 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.6308      0.722 0.508 0.000 0.492
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.2689      0.725 0.032 0.932 0.036
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.2261      0.767 0.932 0.000 0.068
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2116      0.714 0.012 0.948 0.040
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.5982      0.589 0.228 0.744 0.028
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.4531      0.650 0.168 0.824 0.008
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     3  0.6309      0.994 0.000 0.496 0.504
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0747      0.753 0.016 0.984 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     3  0.6309      0.994 0.000 0.496 0.504
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     3  0.6308      0.995 0.000 0.492 0.508
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.5882      0.449 0.348 0.652 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.5551      0.613 0.212 0.768 0.020
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.6521      0.719 0.504 0.004 0.492
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.6308      0.722 0.508 0.000 0.492
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.5551      0.613 0.212 0.768 0.020
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.2703      0.730 0.056 0.928 0.016
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.2496      0.767 0.928 0.004 0.068
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0829      0.765 0.984 0.004 0.012
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.2689      0.725 0.032 0.932 0.036
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0983      0.753 0.016 0.980 0.004
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.763 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.5529      0.388 0.704 0.296 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.6308      0.722 0.508 0.000 0.492
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.763 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.6308      0.722 0.508 0.000 0.492
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3  0.6309      0.994 0.000 0.496 0.504
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.6308      0.722 0.508 0.000 0.492
#> 976507F2-192B-4095-920A-3014889CD617     1  0.6308      0.722 0.508 0.000 0.492
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     3  0.6309      0.994 0.000 0.496 0.504
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.6308      0.722 0.508 0.000 0.492
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     3  0.6308      0.995 0.000 0.492 0.508
#> E25C9578-9493-466E-A2CD-546DEB076B2D     3  0.6680      0.979 0.008 0.484 0.508
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.763 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.2412      0.908 0.908 0.000 0.008 0.084
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4431      0.684 0.000 0.304 0.000 0.696
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.3764      0.629 0.000 0.216 0.000 0.784
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.4431      0.684 0.000 0.304 0.000 0.696
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.7478      0.272 0.256 0.240 0.000 0.504
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.4382      0.360 0.000 0.704 0.000 0.296
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2342      0.910 0.912 0.000 0.008 0.080
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.2831      0.707 0.004 0.120 0.000 0.876
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1854      0.915 0.940 0.000 0.048 0.012
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0779      0.931 0.980 0.004 0.000 0.016
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1042      0.927 0.972 0.008 0.000 0.020
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.6019      0.667 0.144 0.128 0.012 0.716
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3764      0.752 0.816 0.012 0.000 0.172
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     4  0.3047      0.710 0.012 0.116 0.000 0.872
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1576      0.916 0.948 0.000 0.048 0.004
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2973      0.664 0.000 0.856 0.000 0.144
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1389      0.915 0.952 0.000 0.000 0.048
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.2704      0.706 0.000 0.124 0.000 0.876
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0336      0.934 0.992 0.000 0.000 0.008
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.2589      0.688 0.000 0.884 0.000 0.116
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.3691      0.877 0.856 0.000 0.068 0.076
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3649      0.804 0.000 0.796 0.000 0.204
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4431      0.684 0.000 0.304 0.000 0.696
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.5247      0.676 0.000 0.284 0.032 0.684
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.3450      0.677 0.008 0.156 0.000 0.836
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.4356      0.689 0.000 0.292 0.000 0.708
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.3913      0.685 0.028 0.148 0.000 0.824
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.3691      0.877 0.856 0.000 0.068 0.076
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.3450      0.677 0.008 0.156 0.000 0.836
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.6160      0.649 0.156 0.104 0.024 0.716
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.6208      0.683 0.144 0.168 0.004 0.684
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3024      0.659 0.000 0.852 0.000 0.148
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.2773      0.707 0.004 0.116 0.000 0.880
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.2589      0.688 0.000 0.884 0.000 0.116
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     4  0.5460      0.470 0.340 0.028 0.000 0.632
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.5980      0.662 0.144 0.116 0.016 0.724
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0188      0.995 0.000 0.000 0.996 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.5980      0.662 0.144 0.116 0.016 0.724
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.4353      0.679 0.000 0.232 0.012 0.756
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.3828      0.871 0.848 0.000 0.068 0.084
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.2412      0.908 0.908 0.000 0.008 0.084
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.3913      0.685 0.028 0.148 0.000 0.824
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.2999      0.714 0.004 0.132 0.000 0.864
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4795      0.552 0.696 0.012 0.000 0.292
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3024      0.659 0.000 0.852 0.000 0.148
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.2589      0.688 0.000 0.884 0.000 0.116
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3610      0.806 0.000 0.800 0.000 0.200
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3831      0.797 0.004 0.792 0.000 0.204
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0188      0.935 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0162      0.851 0.996 0.004 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.6406      0.678 0.616 0.092 0.000 0.228 0.064
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3612      0.720 0.000 0.732 0.000 0.000 0.268
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3586      0.720 0.000 0.736 0.000 0.000 0.264
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3586      0.720 0.000 0.736 0.000 0.000 0.264
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4430      0.840 0.000 0.172 0.000 0.752 0.076
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.4194      0.779 0.000 0.132 0.000 0.088 0.780
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.4430      0.840 0.000 0.172 0.000 0.752 0.076
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.6410      0.441 0.236 0.204 0.000 0.008 0.552
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.5658      0.199 0.000 0.572 0.000 0.332 0.096
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6381      0.681 0.620 0.092 0.000 0.224 0.064
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3612      0.720 0.000 0.732 0.000 0.000 0.268
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0510      0.851 0.984 0.016 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.3152      0.846 0.000 0.024 0.000 0.136 0.840
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3612      0.720 0.000 0.732 0.000 0.000 0.268
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2812      0.813 0.876 0.024 0.000 0.004 0.096
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2238      0.833 0.912 0.004 0.000 0.020 0.064
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0510      0.851 0.984 0.016 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1770      0.839 0.936 0.008 0.000 0.008 0.048
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0693      0.829 0.000 0.012 0.000 0.980 0.008
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3612      0.720 0.000 0.732 0.000 0.000 0.268
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4067      0.671 0.748 0.004 0.000 0.020 0.228
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.3219      0.844 0.004 0.020 0.000 0.136 0.840
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2813      0.816 0.880 0.032 0.000 0.004 0.084
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0162      0.851 0.996 0.004 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.4725      0.543 0.000 0.720 0.000 0.200 0.080
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1661      0.835 0.940 0.000 0.000 0.024 0.036
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.3445      0.847 0.000 0.036 0.000 0.140 0.824
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0510      0.849 0.984 0.000 0.000 0.000 0.016
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.4486      0.606 0.000 0.748 0.000 0.172 0.080
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.6979      0.635 0.572 0.108 0.000 0.220 0.100
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3612      0.718 0.000 0.732 0.000 0.000 0.268
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4430      0.840 0.000 0.172 0.000 0.752 0.076
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.5175      0.826 0.000 0.152 0.032 0.732 0.084
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.3838      0.839 0.008 0.064 0.000 0.108 0.820
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0609      0.852 0.980 0.020 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.4428      0.839 0.000 0.160 0.000 0.756 0.084
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.4216      0.844 0.028 0.064 0.000 0.100 0.808
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6979      0.635 0.572 0.108 0.000 0.220 0.100
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.3838      0.839 0.008 0.064 0.000 0.108 0.820
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0613      0.803 0.000 0.008 0.004 0.984 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.1725      0.840 0.000 0.044 0.000 0.936 0.020
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.4701      0.536 0.000 0.720 0.000 0.204 0.076
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.2966      0.845 0.000 0.016 0.000 0.136 0.848
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4486      0.606 0.000 0.748 0.000 0.172 0.080
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3612      0.720 0.000 0.732 0.000 0.000 0.268
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.5124      0.474 0.320 0.004 0.000 0.048 0.628
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0290      0.823 0.000 0.000 0.000 0.992 0.008
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0162      0.996 0.000 0.000 0.996 0.004 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0290      0.823 0.000 0.000 0.000 0.992 0.008
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3437      0.850 0.000 0.120 0.000 0.832 0.048
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.7025      0.626 0.564 0.108 0.000 0.228 0.100
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.6406      0.678 0.616 0.092 0.000 0.228 0.064
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.4216      0.844 0.028 0.064 0.000 0.100 0.808
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.3452      0.818 0.000 0.032 0.000 0.148 0.820
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0404      0.850 0.988 0.000 0.000 0.000 0.012
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4752      0.523 0.684 0.004 0.000 0.040 0.272
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0404      0.850 0.988 0.000 0.000 0.000 0.012
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.4701      0.536 0.000 0.720 0.000 0.204 0.076
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.4522      0.601 0.000 0.744 0.000 0.176 0.080
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3612      0.720 0.000 0.732 0.000 0.000 0.268
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3766      0.714 0.004 0.728 0.000 0.000 0.268
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0510      0.849 0.984 0.000 0.000 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.3330     0.6360 0.716 0.000 0.000 0.000 0.000 0.284
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.0820     0.7449 0.012 0.000 0.000 0.016 0.000 0.972
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0260     0.7882 0.000 0.992 0.000 0.000 0.008 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1204     0.7738 0.000 0.944 0.000 0.000 0.056 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1204     0.7738 0.000 0.944 0.000 0.000 0.056 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1493     0.7926 0.000 0.004 0.000 0.936 0.056 0.004
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.3101     0.7183 0.000 0.244 0.000 0.000 0.756 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1411     0.7928 0.000 0.004 0.000 0.936 0.060 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.6855     0.3871 0.144 0.224 0.000 0.008 0.520 0.104
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.5529    -0.2407 0.000 0.400 0.000 0.488 0.104 0.008
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.0725     0.7432 0.012 0.000 0.000 0.012 0.000 0.976
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.7878 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.3409     0.6271 0.700 0.000 0.000 0.000 0.000 0.300
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.1492     0.8448 0.000 0.036 0.000 0.024 0.940 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0547     0.7868 0.000 0.980 0.000 0.000 0.020 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0622     0.3952 0.980 0.000 0.000 0.000 0.012 0.008
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4543     0.2667 0.492 0.004 0.000 0.008 0.012 0.484
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3409     0.6271 0.700 0.000 0.000 0.000 0.000 0.300
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4605     0.4697 0.584 0.008 0.000 0.008 0.016 0.384
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.2838     0.7415 0.000 0.000 0.000 0.808 0.004 0.188
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0632     0.7870 0.000 0.976 0.000 0.000 0.024 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.6046    -0.0924 0.328 0.004 0.000 0.008 0.176 0.484
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.1434     0.8414 0.008 0.020 0.000 0.024 0.948 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0632     0.3933 0.976 0.000 0.000 0.000 0.000 0.024
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3330     0.6360 0.716 0.000 0.000 0.000 0.000 0.284
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3288     0.6369 0.724 0.000 0.000 0.000 0.000 0.276
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.5371     0.5334 0.000 0.544 0.000 0.352 0.096 0.008
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4519     0.5929 0.656 0.000 0.000 0.012 0.036 0.296
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.1845     0.8461 0.000 0.052 0.000 0.028 0.920 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3595     0.6284 0.704 0.000 0.000 0.000 0.008 0.288
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.5082     0.6000 0.000 0.600 0.000 0.312 0.080 0.008
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.4326    -0.2737 0.500 0.000 0.000 0.008 0.008 0.484
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2048     0.7410 0.000 0.880 0.000 0.000 0.120 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1493     0.7939 0.000 0.004 0.000 0.936 0.056 0.004
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.2632     0.7791 0.000 0.000 0.032 0.880 0.076 0.012
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.1788     0.8454 0.004 0.076 0.000 0.000 0.916 0.004
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3371     0.6290 0.708 0.000 0.000 0.000 0.000 0.292
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1757     0.7878 0.000 0.000 0.000 0.916 0.076 0.008
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.2034     0.8454 0.024 0.060 0.000 0.000 0.912 0.004
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4326    -0.2737 0.500 0.000 0.000 0.008 0.008 0.484
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.1788     0.8454 0.004 0.076 0.000 0.000 0.916 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.3301     0.7077 0.000 0.000 0.004 0.772 0.008 0.216
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2768     0.7597 0.000 0.000 0.000 0.832 0.012 0.156
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.5380     0.5267 0.000 0.540 0.000 0.356 0.096 0.008
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.1261     0.8428 0.000 0.024 0.000 0.024 0.952 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.5082     0.6000 0.000 0.600 0.000 0.312 0.080 0.008
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7878 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.5870     0.3986 0.184 0.012 0.000 0.032 0.624 0.148
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.3200     0.7354 0.000 0.000 0.000 0.788 0.016 0.196
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0146     0.9955 0.000 0.000 0.996 0.004 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3012     0.7327 0.000 0.000 0.000 0.796 0.008 0.196
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2001     0.7943 0.000 0.000 0.000 0.912 0.040 0.048
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.4492    -0.2793 0.496 0.000 0.000 0.016 0.008 0.480
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.0820     0.7449 0.012 0.000 0.000 0.016 0.000 0.972
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.2034     0.8454 0.024 0.060 0.000 0.000 0.912 0.004
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.1765     0.8299 0.000 0.024 0.000 0.052 0.924 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.3390     0.6296 0.704 0.000 0.000 0.000 0.000 0.296
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.6741     0.1478 0.404 0.008 0.000 0.024 0.272 0.292
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3390     0.6296 0.704 0.000 0.000 0.000 0.000 0.296
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.5380     0.5267 0.000 0.540 0.000 0.356 0.096 0.008
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.5096     0.5954 0.000 0.596 0.000 0.316 0.080 0.008
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0547     0.7868 0.000 0.980 0.000 0.000 0.020 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.1010     0.7821 0.000 0.960 0.000 0.000 0.036 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3528     0.6268 0.700 0.000 0.000 0.000 0.004 0.296

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.417           0.848       0.901         0.4878 0.494   0.494
#> 3 3 0.662           0.914       0.910         0.3346 0.819   0.648
#> 4 4 0.878           0.857       0.923         0.1571 0.845   0.585
#> 5 5 0.774           0.720       0.826         0.0580 0.949   0.796
#> 6 6 0.787           0.695       0.811         0.0386 0.941   0.733

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.9044      0.754 0.680 0.320
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.8386      0.770 0.732 0.268
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.931 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.931 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.834 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.931 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.6801      0.815 0.180 0.820
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.931 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.6531      0.829 0.168 0.832
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.834 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.931 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.834 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.5629      0.860 0.132 0.868
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.9044      0.754 0.680 0.320
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.931 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.834 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.9044      0.754 0.680 0.320
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.931 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.931 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.7219      0.793 0.800 0.200
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.9044      0.754 0.680 0.320
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.9044      0.754 0.680 0.320
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.9044      0.754 0.680 0.320
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.6247      0.841 0.156 0.844
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.834 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.931 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.0938      0.923 0.012 0.988
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.4939      0.819 0.108 0.892
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.9044      0.754 0.680 0.320
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.9044      0.754 0.680 0.320
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.9044      0.754 0.680 0.320
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.931 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.9044      0.754 0.680 0.320
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.931 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.9044      0.754 0.680 0.320
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.834 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.931 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.834 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.931 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.834 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.834 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.5629      0.860 0.132 0.868
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000      0.834 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.834 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.931 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.9044      0.754 0.680 0.320
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.6801      0.815 0.180 0.820
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.834 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.931 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.834 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.931 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0000      0.834 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.6247      0.841 0.156 0.844
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.5629      0.860 0.132 0.868
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.931 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.931 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.931 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.2603      0.895 0.044 0.956
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.6247      0.841 0.156 0.844
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.834 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.834 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.6343      0.838 0.160 0.840
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.6343      0.838 0.160 0.840
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.7815      0.785 0.768 0.232
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.9044      0.754 0.680 0.320
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.931 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.931 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.9044      0.754 0.680 0.320
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4815      0.824 0.104 0.896
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.834 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.9044      0.754 0.680 0.320
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.834 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.5629      0.860 0.132 0.868
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.834 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.834 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.931 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.834 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.931 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.931 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.9044      0.754 0.680 0.320

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.3412      0.950 0.876 0.000 0.124
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.3918      0.809 0.868 0.120 0.012
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3551      0.900 0.132 0.868 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3412      0.903 0.124 0.876 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.974 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3412      0.903 0.124 0.876 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.3888      0.875 0.064 0.888 0.048
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3551      0.900 0.132 0.868 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3983      0.874 0.068 0.884 0.048
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.974 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4702      0.852 0.212 0.788 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0747      0.958 0.016 0.000 0.984
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.2261      0.892 0.068 0.932 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3412      0.950 0.876 0.000 0.124
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3412      0.903 0.124 0.876 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.974 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.3412      0.950 0.876 0.000 0.124
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.3816      0.904 0.148 0.852 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3551      0.900 0.132 0.868 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3482      0.947 0.872 0.000 0.128
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3412      0.950 0.876 0.000 0.124
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3412      0.950 0.876 0.000 0.124
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3412      0.950 0.876 0.000 0.124
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.3983      0.874 0.068 0.884 0.048
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.974 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3551      0.900 0.132 0.868 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.1643      0.855 0.956 0.044 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.5404      0.805 0.256 0.740 0.004
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.3412      0.950 0.876 0.000 0.124
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3412      0.950 0.876 0.000 0.124
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3412      0.950 0.876 0.000 0.124
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.904 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3340      0.948 0.880 0.000 0.120
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3941      0.902 0.156 0.844 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3412      0.950 0.876 0.000 0.124
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.974 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.904 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.974 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1964      0.903 0.056 0.944 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.974 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.974 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.2165      0.893 0.064 0.936 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.5722      0.774 0.068 0.132 0.800
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.974 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3482      0.902 0.128 0.872 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3412      0.950 0.876 0.000 0.124
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.3983      0.874 0.068 0.884 0.048
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.974 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3686      0.897 0.140 0.860 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4555      0.865 0.800 0.000 0.200
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.3482      0.902 0.128 0.872 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.5787      0.770 0.068 0.136 0.796
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.3983      0.874 0.068 0.884 0.048
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0237      0.904 0.004 0.996 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.3941      0.902 0.156 0.844 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.904 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3482      0.902 0.128 0.872 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.1411      0.858 0.964 0.036 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.3406      0.884 0.068 0.904 0.028
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.974 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.974 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.3983      0.874 0.068 0.884 0.048
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3983      0.874 0.068 0.884 0.048
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5564      0.890 0.808 0.064 0.128
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.3845      0.813 0.872 0.116 0.012
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4750      0.882 0.216 0.784 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.3752      0.902 0.144 0.856 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.3412      0.950 0.876 0.000 0.124
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0747      0.860 0.984 0.016 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.974 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3412      0.950 0.876 0.000 0.124
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.974 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.904 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.974 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.974 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.904 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.974 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4002      0.886 0.160 0.840 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4002      0.886 0.160 0.840 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3412      0.950 0.876 0.000 0.124

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0376     0.9761 0.992 0.000 0.004 0.004
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.4804     0.3306 0.384 0.000 0.000 0.616
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8993 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0336     0.8998 0.000 0.992 0.000 0.008
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0336     0.8998 0.000 0.992 0.000 0.008
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1902     0.8247 0.000 0.064 0.004 0.932
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.8993 0.000 1.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1576     0.8268 0.000 0.048 0.004 0.948
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0921     0.9852 0.000 0.000 0.972 0.028
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0817     0.8935 0.000 0.976 0.000 0.024
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1474     0.8258 0.000 0.052 0.000 0.948
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0376     0.9761 0.992 0.000 0.004 0.004
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0336     0.8998 0.000 0.992 0.000 0.008
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4250     0.6312 0.000 0.724 0.000 0.276
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0336     0.8998 0.000 0.992 0.000 0.008
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0376     0.9760 0.992 0.000 0.004 0.004
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0376     0.9760 0.992 0.000 0.004 0.004
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.1585     0.8277 0.004 0.040 0.004 0.952
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0188     0.9880 0.000 0.000 0.996 0.004
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0336     0.8998 0.000 0.992 0.000 0.008
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6198     0.5451 0.660 0.116 0.000 0.224
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     4  0.5999     0.1160 0.044 0.404 0.000 0.552
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.4356     0.6625 0.000 0.292 0.000 0.708
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0524     0.9756 0.988 0.000 0.004 0.008
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.4250     0.6312 0.000 0.724 0.000 0.276
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0376     0.9760 0.992 0.000 0.004 0.004
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4356     0.6625 0.000 0.292 0.000 0.708
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0921     0.9855 0.000 0.000 0.972 0.028
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0469     0.8987 0.000 0.988 0.000 0.012
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0921     0.9852 0.000 0.000 0.972 0.028
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0188     0.9880 0.000 0.000 0.996 0.004
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1792     0.8236 0.000 0.068 0.000 0.932
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.1209     0.8008 0.004 0.000 0.032 0.964
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0921     0.9852 0.000 0.000 0.972 0.028
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0707     0.8948 0.000 0.980 0.000 0.020
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0188     0.9765 0.996 0.000 0.004 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1398     0.8275 0.000 0.040 0.004 0.956
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0707     0.8948 0.000 0.980 0.000 0.020
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1109     0.9584 0.968 0.000 0.004 0.028
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.1118     0.8882 0.000 0.964 0.000 0.036
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0895     0.8008 0.004 0.000 0.020 0.976
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.1585     0.8277 0.004 0.040 0.004 0.952
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.3400     0.7608 0.000 0.180 0.000 0.820
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.4679     0.4962 0.000 0.648 0.000 0.352
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4356     0.6625 0.000 0.292 0.000 0.708
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0336     0.8998 0.000 0.992 0.000 0.008
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.1151     0.9565 0.968 0.008 0.000 0.024
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.1585     0.8277 0.004 0.040 0.004 0.952
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0921     0.9852 0.000 0.000 0.972 0.028
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.1492     0.8262 0.004 0.036 0.004 0.956
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.1585     0.8277 0.004 0.040 0.004 0.952
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0895     0.9671 0.976 0.000 0.004 0.020
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.4817     0.3206 0.388 0.000 0.000 0.612
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.2530     0.8244 0.000 0.888 0.000 0.112
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.4999     0.0682 0.000 0.508 0.000 0.492
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0376     0.9761 0.992 0.000 0.004 0.004
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.1151     0.9592 0.968 0.008 0.000 0.024
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0336     0.9879 0.000 0.000 0.992 0.008
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0376     0.9761 0.992 0.000 0.004 0.004
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0921     0.9852 0.000 0.000 0.972 0.028
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.4331     0.6667 0.000 0.288 0.000 0.712
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0817     0.9860 0.000 0.000 0.976 0.024
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0188     0.9880 0.000 0.000 0.996 0.004
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.4356     0.6625 0.000 0.292 0.000 0.708
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0921     0.9852 0.000 0.000 0.972 0.028
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.8993 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.8993 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0524     0.9756 0.988 0.000 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8711 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.6325     0.1101 0.156 0.000 0.000 0.424 0.420
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0963     0.8017 0.000 0.964 0.000 0.000 0.036
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.1197     0.9361 0.000 0.000 0.952 0.000 0.048
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0963     0.8017 0.000 0.964 0.000 0.000 0.036
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000     0.8104 0.000 0.000 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.1341     0.7944 0.000 0.944 0.000 0.000 0.056
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.8104 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.2127     0.9266 0.000 0.000 0.892 0.000 0.108
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4400     0.5010 0.000 0.672 0.000 0.020 0.308
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1270     0.9348 0.000 0.000 0.948 0.000 0.052
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1121     0.7990 0.000 0.000 0.000 0.956 0.044
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3586     0.7701 0.736 0.000 0.000 0.000 0.264
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.1043     0.9377 0.000 0.000 0.960 0.000 0.040
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0162     0.8703 0.996 0.000 0.000 0.000 0.004
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.6349     0.1009 0.000 0.412 0.000 0.160 0.428
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1270     0.8617 0.948 0.000 0.000 0.000 0.052
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3395     0.8002 0.764 0.000 0.000 0.000 0.236
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0162     0.8703 0.996 0.000 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2852     0.8347 0.828 0.000 0.000 0.000 0.172
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.2605     0.7845 0.000 0.000 0.000 0.852 0.148
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9394 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.5598     0.0512 0.296 0.036 0.000 0.040 0.628
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.6615     0.3975 0.008 0.208 0.000 0.276 0.508
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0880     0.8645 0.968 0.000 0.000 0.000 0.032
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8711 1.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8711 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.3053     0.7153 0.000 0.164 0.000 0.828 0.008
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2732     0.8363 0.840 0.000 0.000 0.000 0.160
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.6347     0.1119 0.000 0.408 0.000 0.160 0.432
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.2648     0.8407 0.848 0.000 0.000 0.000 0.152
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.1121     0.9370 0.000 0.000 0.956 0.000 0.044
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.3264     0.7099 0.000 0.164 0.000 0.820 0.016
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.2690     0.9062 0.000 0.000 0.844 0.000 0.156
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2130     0.7628 0.000 0.908 0.000 0.012 0.080
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.2074     0.9280 0.000 0.000 0.896 0.000 0.104
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9394 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.8104 0.000 0.000 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.3039     0.7661 0.000 0.000 0.000 0.808 0.192
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.2074     0.9280 0.000 0.000 0.896 0.000 0.104
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4972     0.4463 0.000 0.620 0.000 0.044 0.336
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0162     0.8703 0.996 0.000 0.000 0.000 0.004
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1341     0.8049 0.000 0.000 0.000 0.944 0.056
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.1121     0.9370 0.000 0.000 0.956 0.000 0.044
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4508     0.4919 0.000 0.648 0.000 0.020 0.332
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.3983     0.6359 0.660 0.000 0.000 0.000 0.340
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.5218     0.4108 0.000 0.604 0.000 0.060 0.336
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.3857     0.6434 0.000 0.000 0.000 0.688 0.312
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2605     0.7845 0.000 0.000 0.000 0.852 0.148
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.1043     0.8008 0.000 0.040 0.000 0.960 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.6526     0.2514 0.000 0.344 0.000 0.204 0.452
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.3053     0.7153 0.000 0.164 0.000 0.828 0.008
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.4227    -0.2567 0.420 0.000 0.000 0.000 0.580
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.2929     0.7662 0.000 0.000 0.000 0.820 0.180
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1270     0.9348 0.000 0.000 0.948 0.000 0.052
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.2074     0.9280 0.000 0.000 0.896 0.000 0.104
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.2891     0.7688 0.000 0.000 0.000 0.824 0.176
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.1544     0.8049 0.000 0.000 0.000 0.932 0.068
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.3949     0.7172 0.668 0.000 0.000 0.000 0.332
#> EF1A102F-C206-4874-8F27-0BF069A613B8     5  0.6373    -0.2446 0.164 0.000 0.000 0.416 0.420
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5492     0.2267 0.000 0.536 0.000 0.068 0.396
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.6632     0.3607 0.000 0.228 0.000 0.344 0.428
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0404     0.8714 0.988 0.000 0.000 0.000 0.012
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4262     0.3907 0.560 0.000 0.000 0.000 0.440
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.1121     0.9370 0.000 0.000 0.956 0.000 0.044
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0404     0.8714 0.988 0.000 0.000 0.000 0.012
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.2074     0.9280 0.000 0.000 0.896 0.000 0.104
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.3573     0.7088 0.000 0.152 0.000 0.812 0.036
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3003     0.9042 0.000 0.000 0.812 0.000 0.188
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9394 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.2660     0.7455 0.000 0.128 0.000 0.864 0.008
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.2127     0.9266 0.000 0.000 0.892 0.000 0.108
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.8079 0.000 1.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.2605     0.8410 0.852 0.000 0.000 0.000 0.148

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000    0.79845 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.4583    0.50049 0.040 0.000 0.000 0.224 0.032 0.704
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0146    0.93158 0.000 0.996 0.000 0.000 0.004 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1297    0.90861 0.000 0.948 0.000 0.000 0.040 0.012
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0260    0.86816 0.000 0.000 0.992 0.000 0.008 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1297    0.90861 0.000 0.948 0.000 0.000 0.040 0.012
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0146    0.79301 0.000 0.004 0.000 0.996 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3271    0.62165 0.000 0.760 0.000 0.000 0.232 0.008
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0146    0.79301 0.000 0.004 0.000 0.996 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.4387    0.83880 0.000 0.000 0.720 0.000 0.152 0.128
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.5339    0.39972 0.000 0.416 0.000 0.004 0.488 0.092
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0748    0.86191 0.000 0.000 0.976 0.004 0.016 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1788    0.76088 0.000 0.004 0.000 0.916 0.076 0.004
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4576    0.41470 0.560 0.000 0.000 0.000 0.040 0.400
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0146    0.92939 0.000 0.996 0.000 0.000 0.000 0.004
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0146    0.87073 0.000 0.000 0.996 0.000 0.000 0.004
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000    0.79845 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.4358    0.68517 0.000 0.184 0.000 0.100 0.716 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0291    0.93122 0.000 0.992 0.000 0.000 0.004 0.004
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2937    0.74756 0.848 0.000 0.000 0.000 0.056 0.096
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4963    0.58283 0.612 0.000 0.000 0.000 0.100 0.288
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0146    0.79831 0.996 0.000 0.000 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4596    0.64882 0.672 0.000 0.000 0.000 0.088 0.240
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.4135    0.56375 0.000 0.000 0.000 0.668 0.032 0.300
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1391    0.87297 0.000 0.000 0.944 0.000 0.040 0.016
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0405    0.92954 0.000 0.988 0.000 0.000 0.008 0.004
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.5922    0.14757 0.128 0.020 0.000 0.004 0.312 0.536
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.4572    0.64660 0.000 0.096 0.000 0.144 0.736 0.024
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2201    0.75637 0.896 0.000 0.000 0.000 0.028 0.076
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000    0.79845 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000    0.79845 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.1732    0.77516 0.000 0.072 0.000 0.920 0.004 0.004
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4328    0.66600 0.708 0.000 0.000 0.000 0.080 0.212
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.4403    0.68832 0.000 0.172 0.000 0.100 0.724 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4011    0.69321 0.736 0.000 0.000 0.000 0.060 0.204
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0146    0.86927 0.000 0.000 0.996 0.000 0.004 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.1845    0.77403 0.000 0.072 0.000 0.916 0.004 0.008
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.5023    0.76538 0.000 0.000 0.636 0.000 0.144 0.220
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2889    0.80183 0.000 0.852 0.000 0.020 0.116 0.012
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4382    0.83911 0.000 0.000 0.720 0.000 0.156 0.124
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.1549    0.87285 0.000 0.000 0.936 0.000 0.044 0.020
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0146    0.79301 0.000 0.004 0.000 0.996 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4889    0.50588 0.000 0.000 0.000 0.604 0.084 0.312
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4387    0.83880 0.000 0.000 0.720 0.000 0.152 0.128
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.5042    0.57626 0.000 0.356 0.000 0.028 0.580 0.036
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0146    0.79831 0.996 0.000 0.000 0.000 0.000 0.004
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.2179    0.76763 0.000 0.000 0.000 0.900 0.064 0.036
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0146    0.86927 0.000 0.000 0.996 0.000 0.004 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.4665    0.55456 0.000 0.372 0.000 0.016 0.588 0.024
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.5449    0.14841 0.464 0.000 0.008 0.000 0.092 0.436
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.5293    0.62021 0.000 0.320 0.000 0.052 0.592 0.036
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.4899   -0.05803 0.000 0.000 0.000 0.404 0.064 0.532
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.4135    0.56375 0.000 0.000 0.000 0.668 0.032 0.300
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0547    0.79297 0.000 0.020 0.000 0.980 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.4270    0.68744 0.000 0.156 0.000 0.100 0.740 0.004
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1845    0.77403 0.000 0.072 0.000 0.916 0.004 0.008
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0291    0.93133 0.000 0.992 0.000 0.000 0.004 0.004
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.5881   -0.00988 0.232 0.000 0.000 0.000 0.472 0.296
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.4234    0.52797 0.000 0.000 0.000 0.644 0.032 0.324
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0603    0.86373 0.000 0.000 0.980 0.004 0.016 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.4382    0.83911 0.000 0.000 0.720 0.000 0.156 0.124
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.4234    0.52797 0.000 0.000 0.000 0.644 0.032 0.324
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2378    0.72154 0.000 0.000 0.000 0.848 0.000 0.152
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     6  0.4666   -0.34600 0.420 0.000 0.000 0.000 0.044 0.536
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.4557    0.50410 0.040 0.000 0.000 0.220 0.032 0.708
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.4929    0.65221 0.000 0.280 0.000 0.052 0.644 0.024
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.4559    0.63458 0.000 0.096 0.000 0.184 0.712 0.008
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0820    0.79466 0.972 0.000 0.000 0.000 0.016 0.012
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.6067    0.01078 0.308 0.004 0.000 0.000 0.448 0.240
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0146    0.86927 0.000 0.000 0.996 0.000 0.004 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0603    0.79655 0.980 0.000 0.000 0.000 0.016 0.004
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.4382    0.83911 0.000 0.000 0.720 0.000 0.156 0.124
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.2711    0.74575 0.000 0.068 0.000 0.872 0.056 0.004
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4348    0.79430 0.000 0.000 0.732 0.004 0.160 0.104
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1549    0.87285 0.000 0.000 0.936 0.000 0.044 0.020
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1728    0.77870 0.000 0.064 0.000 0.924 0.004 0.008
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4387    0.83880 0.000 0.000 0.720 0.000 0.152 0.128
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0291    0.93122 0.000 0.992 0.000 0.000 0.004 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0891    0.91809 0.000 0.968 0.000 0.000 0.008 0.024
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4251    0.67493 0.716 0.000 0.000 0.000 0.076 0.208

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.525           0.883       0.925         0.5058 0.494   0.494
#> 3 3 0.865           0.912       0.960         0.3009 0.803   0.619
#> 4 4 1.000           0.966       0.984         0.1496 0.889   0.683
#> 5 5 0.935           0.861       0.931         0.0413 0.970   0.877
#> 6 6 0.864           0.741       0.869         0.0346 0.971   0.869

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 4

There is also optional best \(k\) = 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.000      0.851 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1   0.722      0.897 0.800 0.200
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.722      0.920 0.200 0.800
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.722      0.920 0.200 0.800
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1   0.722      0.897 0.800 0.200
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.722      0.920 0.200 0.800
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.000      0.825 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.722      0.920 0.200 0.800
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.000      0.825 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1   0.722      0.897 0.800 0.200
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.722      0.920 0.200 0.800
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1   0.722      0.897 0.800 0.200
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.000      0.825 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.000      0.851 1.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.722      0.920 0.200 0.800
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1   0.722      0.897 0.800 0.200
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.000      0.851 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.722      0.920 0.200 0.800
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.722      0.920 0.200 0.800
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.000      0.851 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000      0.851 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.000      0.851 1.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000      0.851 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.000      0.825 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1   0.722      0.897 0.800 0.200
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.722      0.920 0.200 0.800
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2   0.722      0.920 0.200 0.800
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2   0.730      0.918 0.204 0.796
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.000      0.851 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.000      0.851 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.000      0.851 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.000      0.825 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.000      0.851 1.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.722      0.920 0.200 0.800
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000      0.851 1.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1   0.722      0.897 0.800 0.200
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.722      0.920 0.200 0.800
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1   0.722      0.897 0.800 0.200
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.722      0.920 0.200 0.800
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1   0.722      0.897 0.800 0.200
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1   0.722      0.897 0.800 0.200
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.000      0.825 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1   0.722      0.897 0.800 0.200
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1   0.722      0.897 0.800 0.200
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.722      0.920 0.200 0.800
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.000      0.851 1.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.000      0.825 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1   0.722      0.897 0.800 0.200
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.722      0.920 0.200 0.800
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.722      0.897 0.800 0.200
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.722      0.920 0.200 0.800
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1   0.722      0.897 0.800 0.200
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.000      0.825 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.000      0.825 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.722      0.920 0.200 0.800
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.722      0.920 0.200 0.800
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.722      0.920 0.200 0.800
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.722      0.920 0.200 0.800
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.000      0.825 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1   0.722      0.897 0.800 0.200
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1   0.722      0.897 0.800 0.200
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2   0.000      0.825 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.000      0.825 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1   0.722      0.897 0.800 0.200
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1   0.000      0.851 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.722      0.920 0.200 0.800
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.722      0.920 0.200 0.800
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.000      0.851 1.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.738      0.914 0.208 0.792
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1   0.722      0.897 0.800 0.200
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.000      0.851 1.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1   0.722      0.897 0.800 0.200
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.000      0.825 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1   0.722      0.897 0.800 0.200
#> 976507F2-192B-4095-920A-3014889CD617     1   0.722      0.897 0.800 0.200
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.722      0.920 0.200 0.800
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1   0.722      0.897 0.800 0.200
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.722      0.920 0.200 0.800
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.722      0.920 0.200 0.800
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.000      0.851 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.972 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.5560      0.570 0.700 0.000 0.300
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.938 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.938 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.970 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.938 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.4555      0.780 0.000 0.800 0.200
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.938 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.4555      0.780 0.000 0.800 0.200
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.970 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2537      0.884 0.080 0.920 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.970 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.938 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.972 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.938 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.970 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.972 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.938 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.938 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.972 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.972 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.972 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.972 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.5785      0.580 0.000 0.668 0.332
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.970 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.938 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0237      0.968 0.996 0.004 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.1989      0.905 0.004 0.948 0.048
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.972 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.972 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.972 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.938 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.972 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.938 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.972 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.970 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.938 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.970 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.938 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.970 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.970 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.1860      0.909 0.000 0.948 0.052
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.0000      0.970 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.970 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.938 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.972 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.4605      0.775 0.000 0.796 0.204
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.970 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.938 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.4121      0.755 0.168 0.000 0.832
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.938 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.0000      0.970 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.5760      0.587 0.000 0.672 0.328
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.1860      0.909 0.000 0.948 0.052
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.938 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.938 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.938 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.972 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.5760      0.587 0.000 0.672 0.328
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.970 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.970 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.6008      0.308 0.000 0.372 0.628
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4555      0.780 0.000 0.800 0.200
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5291      0.643 0.732 0.000 0.268
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.972 1.000 0.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.1964      0.899 0.056 0.944 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.938 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.972 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      0.972 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.970 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.972 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.970 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.938 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.970 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.970 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.938 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.970 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.938 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.938 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.972 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.5538      0.519 0.644 0.000 0.036 0.320
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1022      0.976 0.000 0.032 0.000 0.968
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3837      0.708 0.776 0.224 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.1022      0.976 0.000 0.032 0.000 0.968
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.1022      0.976 0.000 0.032 0.000 0.968
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.1022      0.970 0.000 0.000 0.968 0.032
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0188      0.993 0.004 0.000 0.996 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.1022      0.970 0.000 0.000 0.968 0.032
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1022      0.976 0.000 0.032 0.000 0.968
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.986 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.4250      0.616 0.724 0.000 0.276 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.3444      0.773 0.816 0.000 0.000 0.184
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.949 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.1022      0.976 0.000 0.032 0.000 0.968
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1022      0.976 0.000 0.032 0.000 0.968
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.949 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     5  0.2616     0.6772 0.036 0.000 0.000 0.076 0.888
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0510     0.9642 0.000 0.984 0.000 0.016 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000     0.8934 0.000 0.000 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0290     0.9612 0.000 0.992 0.000 0.000 0.008
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.8934 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0162     0.9711 0.000 0.000 0.996 0.000 0.004
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0960     0.9609 0.004 0.972 0.000 0.016 0.008
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1638     0.8412 0.000 0.004 0.000 0.932 0.064
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3730     0.6258 0.712 0.000 0.000 0.000 0.288
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.1908     0.9293 0.000 0.908 0.000 0.000 0.092
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1270     0.8869 0.948 0.000 0.000 0.000 0.052
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0290     0.9113 0.992 0.000 0.000 0.000 0.008
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.4114     0.1832 0.000 0.000 0.000 0.624 0.376
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6410     0.2310 0.496 0.200 0.000 0.000 0.304
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.2392     0.9183 0.004 0.888 0.004 0.000 0.104
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0162     0.8929 0.000 0.004 0.000 0.996 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0404     0.9100 0.988 0.000 0.000 0.000 0.012
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.1908     0.9293 0.000 0.908 0.000 0.000 0.092
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.9129 1.000 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0671     0.8843 0.000 0.004 0.000 0.980 0.016
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0290     0.9685 0.000 0.000 0.992 0.000 0.008
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2046     0.9395 0.000 0.916 0.000 0.016 0.068
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0162     0.9711 0.000 0.000 0.996 0.000 0.004
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.8934 0.000 0.000 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.3203     0.7636 0.000 0.000 0.820 0.012 0.168
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0162     0.9711 0.000 0.000 0.996 0.000 0.004
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0404     0.9619 0.000 0.988 0.000 0.000 0.012
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0162     0.9135 0.996 0.000 0.000 0.000 0.004
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0955     0.8790 0.000 0.000 0.004 0.968 0.028
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0404     0.9605 0.000 0.988 0.000 0.000 0.012
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.4404     0.6030 0.032 0.000 0.704 0.000 0.264
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0404     0.9619 0.000 0.988 0.000 0.000 0.012
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.3650     0.5995 0.000 0.000 0.176 0.028 0.796
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3039     0.6750 0.000 0.000 0.000 0.808 0.192
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8934 0.000 0.000 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.2074     0.9235 0.000 0.896 0.000 0.000 0.104
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0162     0.8929 0.000 0.004 0.000 0.996 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0794     0.9035 0.972 0.000 0.000 0.000 0.028
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     5  0.4283     0.3096 0.000 0.000 0.000 0.456 0.544
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0162     0.9711 0.000 0.000 0.996 0.000 0.004
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     5  0.4273     0.3304 0.000 0.000 0.000 0.448 0.552
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3336     0.6102 0.000 0.000 0.000 0.772 0.228
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6762    -0.0383 0.376 0.000 0.356 0.000 0.268
#> EF1A102F-C206-4874-8F27-0BF069A613B8     5  0.2726     0.6722 0.052 0.000 0.000 0.064 0.884
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0880     0.9551 0.000 0.968 0.000 0.000 0.032
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.1965     0.9278 0.000 0.904 0.000 0.000 0.096
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0290     0.9105 0.992 0.000 0.000 0.000 0.008
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.1310     0.8890 0.956 0.020 0.000 0.000 0.024
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0404     0.9108 0.988 0.000 0.000 0.000 0.012
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0162     0.9711 0.000 0.000 0.996 0.000 0.004
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.1571     0.8454 0.000 0.004 0.000 0.936 0.060
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9720 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0162     0.8929 0.000 0.004 0.000 0.996 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0162     0.9711 0.000 0.000 0.996 0.000 0.004
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0671     0.9641 0.000 0.980 0.000 0.016 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0290     0.9112 0.992 0.000 0.000 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000   0.861199 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.2045   0.668434 0.016 0.000 0.000 0.016 0.052 0.916
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1204   0.787672 0.000 0.944 0.000 0.000 0.056 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0146   0.941239 0.000 0.000 0.996 0.000 0.004 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1387   0.780358 0.000 0.932 0.000 0.000 0.068 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0146   0.886706 0.000 0.000 0.000 0.996 0.004 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.2092   0.743251 0.000 0.876 0.000 0.000 0.124 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0260   0.886396 0.000 0.000 0.000 0.992 0.008 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.1320   0.932110 0.000 0.000 0.948 0.000 0.036 0.016
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2902   0.481925 0.000 0.800 0.000 0.000 0.196 0.004
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0146   0.941239 0.000 0.000 0.996 0.000 0.004 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1584   0.844722 0.000 0.008 0.000 0.928 0.064 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4569   0.527962 0.636 0.000 0.000 0.000 0.060 0.304
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0146   0.941496 0.000 0.000 0.996 0.000 0.004 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0260   0.860592 0.992 0.000 0.000 0.000 0.008 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.3867   0.368048 0.000 0.488 0.000 0.000 0.512 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1010   0.855384 0.960 0.000 0.000 0.000 0.036 0.004
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4393   0.739741 0.704 0.004 0.000 0.000 0.224 0.068
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0260   0.860592 0.992 0.000 0.000 0.000 0.008 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3364   0.785500 0.780 0.000 0.000 0.000 0.196 0.024
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3975  -0.062407 0.000 0.000 0.000 0.544 0.004 0.452
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000   0.941690 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.7718  -0.048965 0.232 0.264 0.000 0.000 0.276 0.228
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.3714   0.534678 0.004 0.340 0.000 0.000 0.656 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0632   0.858089 0.976 0.000 0.000 0.000 0.024 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000   0.861199 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000   0.861199 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0260   0.886965 0.000 0.008 0.000 0.992 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2988   0.811046 0.824 0.000 0.000 0.000 0.152 0.024
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3717   0.000101 0.000 0.616 0.000 0.000 0.384 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1245   0.855985 0.952 0.000 0.000 0.000 0.032 0.016
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0146   0.941239 0.000 0.000 0.996 0.000 0.004 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0622   0.884808 0.000 0.012 0.000 0.980 0.008 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1528   0.925630 0.000 0.000 0.936 0.000 0.048 0.016
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2948   0.584541 0.000 0.804 0.000 0.008 0.188 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.1320   0.932110 0.000 0.000 0.948 0.000 0.036 0.016
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000   0.941690 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000   0.886577 0.000 0.000 0.000 1.000 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.3813   0.683509 0.000 0.000 0.768 0.028 0.016 0.188
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1320   0.932110 0.000 0.000 0.948 0.000 0.036 0.016
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.2048   0.735327 0.000 0.880 0.000 0.000 0.120 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0260   0.860592 0.992 0.000 0.000 0.000 0.008 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1036   0.877284 0.000 0.000 0.008 0.964 0.024 0.004
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0146   0.941239 0.000 0.000 0.996 0.000 0.004 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.2854   0.634081 0.000 0.792 0.000 0.000 0.208 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.6584   0.330887 0.152 0.000 0.524 0.000 0.088 0.236
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2092   0.730986 0.000 0.876 0.000 0.000 0.124 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.2847   0.624556 0.000 0.000 0.120 0.016 0.012 0.852
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3023   0.652060 0.000 0.000 0.000 0.784 0.004 0.212
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000   0.886577 0.000 0.000 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.3634   0.533086 0.000 0.356 0.000 0.000 0.644 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0363   0.885994 0.000 0.012 0.000 0.988 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4432   0.733436 0.700 0.028 0.000 0.000 0.244 0.028
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     6  0.3881   0.394356 0.000 0.000 0.000 0.396 0.004 0.600
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0146   0.941239 0.000 0.000 0.996 0.000 0.004 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.1320   0.932110 0.000 0.000 0.948 0.000 0.036 0.016
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     6  0.3872   0.403139 0.000 0.000 0.000 0.392 0.004 0.604
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3189   0.608734 0.000 0.000 0.000 0.760 0.004 0.236
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.7103   0.063975 0.404 0.000 0.284 0.000 0.088 0.224
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.2039   0.665797 0.020 0.000 0.000 0.012 0.052 0.916
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.3647   0.233002 0.000 0.640 0.000 0.000 0.360 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.4083   0.427441 0.000 0.460 0.000 0.008 0.532 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0858   0.858386 0.968 0.000 0.000 0.000 0.028 0.004
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.5079   0.677988 0.652 0.076 0.000 0.000 0.248 0.024
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0146   0.941239 0.000 0.000 0.996 0.000 0.004 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0458   0.859905 0.984 0.000 0.000 0.000 0.016 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1320   0.932110 0.000 0.000 0.948 0.000 0.036 0.016
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.1196   0.868012 0.000 0.008 0.000 0.952 0.040 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0260   0.941115 0.000 0.000 0.992 0.000 0.008 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000   0.941690 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0632   0.878801 0.000 0.024 0.000 0.976 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1320   0.932110 0.000 0.000 0.948 0.000 0.036 0.016
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000   0.808433 0.000 1.000 0.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.2748   0.822430 0.848 0.000 0.000 0.000 0.128 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.274           0.571       0.732         0.4456 0.547   0.547
#> 3 3 0.889           0.918       0.965         0.4518 0.716   0.521
#> 4 4 0.908           0.908       0.960         0.1632 0.878   0.665
#> 5 5 0.806           0.671       0.851         0.0541 0.954   0.828
#> 6 6 0.833           0.803       0.824         0.0395 0.921   0.683

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.9963    -0.2996 0.536 0.464
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.0000     0.7295 0.000 1.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0376     0.7302 0.004 0.996
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0376     0.7302 0.004 0.996
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.8327     0.7453 0.736 0.264
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.5519     0.6890 0.128 0.872
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.3431     0.6855 0.064 0.936
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.8327     0.6116 0.264 0.736
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3431     0.6855 0.064 0.936
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.8327     0.7453 0.736 0.264
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.8327     0.6116 0.264 0.736
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.8327     0.7453 0.736 0.264
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.3431     0.6855 0.064 0.936
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.9998     0.3686 0.492 0.508
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0376     0.7302 0.004 0.996
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.8327     0.7453 0.736 0.264
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.9922    -0.2596 0.552 0.448
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.7950     0.6272 0.240 0.760
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0376     0.7302 0.004 0.996
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0376     0.5350 0.996 0.004
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.9998     0.3686 0.492 0.508
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.9998     0.3686 0.492 0.508
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.9998     0.3686 0.492 0.508
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.3431     0.6855 0.064 0.936
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.8327     0.7453 0.736 0.264
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0376     0.7302 0.004 0.996
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.8327     0.6116 0.264 0.736
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.9988    -0.3708 0.520 0.480
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.7453     0.3352 0.788 0.212
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.9460    -0.0213 0.636 0.364
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.9998     0.3686 0.492 0.508
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0938     0.7237 0.012 0.988
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.9993     0.3812 0.484 0.516
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000     0.7295 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.9998     0.3686 0.492 0.508
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.8327     0.7453 0.736 0.264
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0376     0.7280 0.004 0.996
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.7745     0.7229 0.772 0.228
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0376     0.7280 0.004 0.996
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.8327     0.7453 0.736 0.264
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.8327     0.7453 0.736 0.264
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.3431     0.6855 0.064 0.936
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.8608     0.3485 0.284 0.716
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.8327     0.7453 0.736 0.264
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5737     0.6857 0.136 0.864
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.9998     0.3686 0.492 0.508
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.3431     0.6855 0.064 0.936
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.8327     0.7453 0.736 0.264
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.8327     0.6116 0.264 0.736
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6531     0.5861 0.832 0.168
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0376     0.7302 0.004 0.996
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.3431     0.6855 0.064 0.936
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.3274     0.6891 0.060 0.940
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3431     0.6855 0.064 0.936
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.9977    -0.3437 0.528 0.472
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000     0.7295 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0376     0.7302 0.004 0.996
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.9993     0.3812 0.484 0.516
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0672     0.7259 0.008 0.992
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.8327     0.7453 0.736 0.264
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.8327     0.7453 0.736 0.264
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0672     0.7259 0.008 0.992
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3114     0.6924 0.056 0.944
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.7950     0.4290 0.240 0.760
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.0376     0.7302 0.004 0.996
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.8327     0.6116 0.264 0.736
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000     0.7295 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.9998     0.3686 0.492 0.508
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.9993     0.3812 0.484 0.516
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.8327     0.7453 0.736 0.264
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.9998     0.3686 0.492 0.508
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.8327     0.7453 0.736 0.264
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3431     0.6855 0.064 0.936
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.9608     0.5965 0.616 0.384
#> 976507F2-192B-4095-920A-3014889CD617     1  0.8327     0.7453 0.736 0.264
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000     0.7295 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.8327     0.7453 0.736 0.264
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.8327     0.6116 0.264 0.736
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.5737     0.6857 0.136 0.864
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.9286     0.0401 0.656 0.344

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.958 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.0000      0.950 0.000 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0237      0.948 0.004 0.996 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.950 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.987 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.950 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.950 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5254      0.674 0.264 0.736 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.950 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.987 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.4346      0.747 0.816 0.184 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.987 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.950 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.958 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.950 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.987 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.958 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4504      0.773 0.196 0.804 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0237      0.948 0.004 0.996 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.958 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.958 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.958 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.958 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000      0.950 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.987 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0237      0.948 0.004 0.996 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.958 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.0237      0.954 0.996 0.004 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.958 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.958 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.958 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.950 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.958 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.950 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.958 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.987 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.950 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.987 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.950 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.987 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.987 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.950 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.0000      0.950 0.000 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.987 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4555      0.769 0.200 0.800 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.958 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.950 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.987 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.6267      0.231 0.452 0.548 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.958 1.000 0.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2261      0.903 0.068 0.932 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.0000      0.950 0.000 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000      0.950 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.950 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.6299      0.112 0.524 0.476 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.950 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0237      0.948 0.004 0.996 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.958 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0000      0.950 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.987 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.987 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000      0.950 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.950 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6696      0.678 0.736 0.076 0.188
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.0000      0.950 0.000 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.0000      0.958 1.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.2448      0.895 0.076 0.924 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.958 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      0.958 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.987 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.958 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.987 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.950 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4605      0.753 0.000 0.204 0.796
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.987 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.950 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.987 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4555      0.769 0.200 0.800 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4555      0.769 0.200 0.800 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.958 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0188      0.957 0.000 0.996 0.000 0.004
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.4382      0.535 0.000 0.704 0.000 0.296
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0188      0.957 0.004 0.996 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.4054      0.752 0.016 0.188 0.000 0.796
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0188      0.932 0.996 0.004 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0188      0.932 0.996 0.004 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0188      0.932 0.996 0.004 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3444      0.745 0.816 0.184 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.4925      0.294 0.000 0.428 0.000 0.572
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1389      0.938 0.000 0.000 0.952 0.048
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.3311      0.785 0.000 0.172 0.000 0.828
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0336      0.955 0.008 0.992 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1302      0.899 0.956 0.000 0.000 0.044
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.7295      0.362 0.524 0.188 0.000 0.288
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0188      0.932 0.996 0.004 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5889      0.641 0.696 0.000 0.188 0.116
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.4855      0.368 0.600 0.400 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3668      0.763 0.004 0.188 0.000 0.808
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.3486      0.729 0.188 0.812 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.933 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3649      0.757 0.000 0.000 0.796 0.204
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.954 0.000 0.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0592      0.924 0.984 0.016 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8147 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3461     0.6629 0.000 0.772 0.000 0.004 0.224
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3727     0.6532 0.000 0.768 0.000 0.016 0.216
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4138     0.2740 0.000 0.000 0.000 0.616 0.384
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3398     0.6717 0.004 0.780 0.000 0.000 0.216
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.3003     0.8787 0.000 0.000 0.812 0.000 0.188
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2966     0.6566 0.000 0.816 0.000 0.000 0.184
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0162     0.6436 0.000 0.000 0.000 0.996 0.004
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3143     0.8378 0.796 0.000 0.000 0.000 0.204
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8147 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.6505    -0.2213 0.008 0.224 0.000 0.536 0.232
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0290     0.8148 0.000 0.992 0.000 0.000 0.008
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3366     0.8319 0.784 0.004 0.000 0.000 0.212
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3333     0.8345 0.788 0.004 0.000 0.000 0.208
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0290     0.8148 0.000 0.992 0.000 0.000 0.008
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3010     0.8475 0.824 0.004 0.000 0.000 0.172
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.4369     0.6397 0.740 0.208 0.000 0.000 0.052
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0510     0.8929 0.984 0.000 0.000 0.000 0.016
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.4138     0.2740 0.000 0.000 0.000 0.616 0.384
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3177     0.8362 0.792 0.000 0.000 0.000 0.208
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.6225    -0.1969 0.000 0.224 0.000 0.548 0.228
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0404     0.8935 0.988 0.000 0.000 0.000 0.012
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4138     0.2740 0.000 0.000 0.000 0.616 0.384
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.3488     0.8693 0.000 0.000 0.808 0.024 0.168
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.5931     0.0000 0.000 0.200 0.000 0.204 0.596
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3003     0.8787 0.000 0.000 0.812 0.000 0.188
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0162     0.6436 0.000 0.000 0.000 0.996 0.004
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.3003     0.8787 0.000 0.000 0.812 0.000 0.188
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0609     0.8103 0.000 0.980 0.000 0.000 0.020
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3519     0.6689 0.008 0.776 0.000 0.000 0.216
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.3051     0.7827 0.852 0.000 0.000 0.028 0.120
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0880     0.8065 0.000 0.968 0.000 0.000 0.032
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.2280     0.5367 0.000 0.000 0.000 0.880 0.120
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.4126     0.2776 0.000 0.000 0.000 0.620 0.380
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.8182    -0.2948 0.148 0.224 0.000 0.408 0.220
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4126     0.2776 0.000 0.000 0.000 0.620 0.380
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8147 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.5726     0.6628 0.636 0.004 0.000 0.148 0.212
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3003     0.8787 0.000 0.000 0.812 0.000 0.188
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.4126     0.2776 0.000 0.000 0.000 0.620 0.380
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.6621    -0.0978 0.348 0.000 0.000 0.428 0.224
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.0703     0.6299 0.000 0.000 0.000 0.976 0.024
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.6593     0.0891 0.352 0.432 0.000 0.000 0.216
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.5026     0.1722 0.000 0.064 0.000 0.656 0.280
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4129     0.5867 0.040 0.756 0.000 0.000 0.204
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.8946 1.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3003     0.8787 0.000 0.000 0.812 0.000 0.188
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.4138     0.2740 0.000 0.000 0.000 0.616 0.384
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.5375     0.6437 0.000 0.000 0.664 0.200 0.136
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9105 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.6455 0.000 0.000 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.3003     0.8787 0.000 0.000 0.812 0.000 0.188
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0290     0.8148 0.000 0.992 0.000 0.000 0.008
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.1410     0.7823 0.000 0.940 0.000 0.000 0.060
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3487     0.8296 0.780 0.008 0.000 0.000 0.212

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2996      0.873 0.000 0.772 0.000 0.000 0.228 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     5  0.1863      0.890 0.000 0.104 0.000 0.000 0.896 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.1910      0.887 0.000 0.108 0.000 0.000 0.892 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     6  0.3986      0.996 0.000 0.000 0.000 0.464 0.004 0.532
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.1863      0.890 0.000 0.104 0.000 0.000 0.896 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.3887      0.784 0.000 0.000 0.632 0.000 0.008 0.360
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.680 0.000 1.000 0.000 0.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0146      0.813 0.000 0.000 0.000 0.996 0.004 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6189      0.687 0.580 0.220 0.000 0.000 0.092 0.108
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.2996      0.873 0.000 0.772 0.000 0.000 0.228 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.1814      0.864 0.000 0.000 0.000 0.100 0.900 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2941      0.877 0.000 0.780 0.000 0.000 0.220 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.6231      0.682 0.572 0.228 0.000 0.000 0.092 0.108
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.6167      0.690 0.584 0.216 0.000 0.000 0.092 0.108
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2941      0.877 0.000 0.780 0.000 0.000 0.220 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3081      0.768 0.776 0.220 0.000 0.000 0.000 0.004
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3446      0.518 0.692 0.000 0.000 0.000 0.308 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1332      0.825 0.952 0.012 0.000 0.000 0.008 0.028
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     6  0.3986      0.996 0.000 0.000 0.000 0.464 0.004 0.532
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.6210      0.685 0.576 0.224 0.000 0.000 0.092 0.108
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.2001      0.864 0.000 0.004 0.000 0.092 0.900 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0508      0.830 0.984 0.012 0.000 0.000 0.000 0.004
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     6  0.3986      0.996 0.000 0.000 0.000 0.464 0.004 0.532
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.3699      0.790 0.000 0.000 0.660 0.004 0.000 0.336
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.3066      0.784 0.000 0.000 0.000 0.044 0.832 0.124
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3887      0.784 0.000 0.000 0.632 0.000 0.008 0.360
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1327      0.723 0.000 0.000 0.000 0.936 0.000 0.064
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0146      0.813 0.000 0.000 0.000 0.996 0.004 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.3887      0.784 0.000 0.000 0.632 0.000 0.008 0.360
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.2823      0.869 0.000 0.796 0.000 0.000 0.204 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.831 1.000 0.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1501      0.699 0.000 0.000 0.000 0.924 0.000 0.076
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.1863      0.890 0.000 0.104 0.000 0.000 0.896 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.2768      0.729 0.832 0.000 0.000 0.012 0.000 0.156
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.3266      0.817 0.000 0.728 0.000 0.000 0.272 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.2454      0.599 0.000 0.000 0.000 0.840 0.000 0.160
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     6  0.3857      0.994 0.000 0.000 0.000 0.468 0.000 0.532
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.1970      0.868 0.008 0.000 0.000 0.092 0.900 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     6  0.3857      0.994 0.000 0.000 0.000 0.468 0.000 0.532
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.2996      0.873 0.000 0.772 0.000 0.000 0.228 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.7676      0.589 0.476 0.228 0.000 0.096 0.092 0.108
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3887      0.784 0.000 0.000 0.632 0.000 0.008 0.360
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     6  0.3857      0.994 0.000 0.000 0.000 0.468 0.000 0.532
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.7815      0.214 0.088 0.204 0.000 0.464 0.092 0.152
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.1387      0.743 0.000 0.000 0.000 0.932 0.000 0.068
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.2237      0.879 0.036 0.068 0.000 0.000 0.896 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.5060      0.396 0.000 0.204 0.000 0.648 0.144 0.004
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0146      0.830 0.996 0.000 0.000 0.000 0.004 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.3072      0.525 0.000 0.840 0.000 0.000 0.084 0.076
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0146      0.830 0.996 0.000 0.000 0.000 0.004 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3887      0.784 0.000 0.000 0.632 0.000 0.008 0.360
#> 06DAE086-D960-4156-9DC8-D126338E2F29     6  0.3986      0.996 0.000 0.000 0.000 0.464 0.004 0.532
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.5252      0.640 0.000 0.000 0.624 0.200 0.004 0.172
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.846 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.816 0.000 0.000 0.000 1.000 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.3887      0.784 0.000 0.000 0.632 0.000 0.008 0.360
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2941      0.877 0.000 0.780 0.000 0.000 0.220 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2340      0.828 0.000 0.852 0.000 0.000 0.148 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.6231      0.682 0.572 0.228 0.000 0.000 0.092 0.108

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.334           0.880       0.895         0.4439 0.494   0.494
#> 3 3 0.624           0.877       0.910         0.3643 0.582   0.357
#> 4 4 0.727           0.855       0.910         0.2222 0.829   0.573
#> 5 5 0.702           0.766       0.817         0.0342 0.932   0.735
#> 6 6 0.763           0.734       0.852         0.0698 0.975   0.881

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.0000      0.857 0.000 1.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.6712      0.888 0.824 0.176
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.6712      0.899 0.176 0.824
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.6712      0.899 0.176 0.824
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.865 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.6712      0.899 0.176 0.824
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     1  0.6712      0.888 0.824 0.176
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.6712      0.899 0.176 0.824
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     1  0.6712      0.888 0.824 0.176
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.865 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.6712      0.899 0.176 0.824
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.865 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     1  0.6712      0.888 0.824 0.176
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.3431      0.875 0.064 0.936
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.6712      0.899 0.176 0.824
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.865 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.0000      0.857 0.000 1.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6712      0.899 0.176 0.824
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.6712      0.899 0.176 0.824
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     2  0.6712      0.899 0.176 0.824
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.1843      0.866 0.028 0.972
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.0000      0.857 0.000 1.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.0000      0.857 0.000 1.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.6712      0.888 0.824 0.176
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.865 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.6712      0.899 0.176 0.824
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.6712      0.899 0.176 0.824
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.6712      0.899 0.176 0.824
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.0000      0.857 0.000 1.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.0000      0.857 0.000 1.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.0000      0.857 0.000 1.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     1  0.6712      0.888 0.824 0.176
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000      0.857 0.000 1.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.6712      0.899 0.176 0.824
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.0000      0.857 0.000 1.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.865 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     1  0.6712      0.888 0.824 0.176
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.6712      0.888 0.824 0.176
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.6712      0.899 0.176 0.824
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.865 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.865 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     1  0.6712      0.888 0.824 0.176
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.6712      0.888 0.824 0.176
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.865 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.6712      0.899 0.176 0.824
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.0000      0.857 0.000 1.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.6712      0.888 0.824 0.176
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.865 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.6712      0.899 0.176 0.824
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6712      0.888 0.824 0.176
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.6712      0.899 0.176 0.824
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.6712      0.888 0.824 0.176
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.6712      0.888 0.824 0.176
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     1  0.6712      0.888 0.824 0.176
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.6712      0.899 0.176 0.824
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     1  0.6712      0.888 0.824 0.176
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.6712      0.899 0.176 0.824
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.6438      0.897 0.164 0.836
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.6712      0.888 0.824 0.176
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.865 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.865 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.6712      0.888 0.824 0.176
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     1  0.6712      0.888 0.824 0.176
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6712      0.888 0.824 0.176
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.6712      0.888 0.824 0.176
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.6712      0.899 0.176 0.824
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.6712      0.899 0.176 0.824
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.0000      0.857 0.000 1.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0672      0.860 0.008 0.992
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.865 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.0000      0.857 0.000 1.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.865 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     1  0.6712      0.888 0.824 0.176
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0376      0.865 0.996 0.004
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.865 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     1  0.6712      0.888 0.824 0.176
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.865 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.6712      0.899 0.176 0.824
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.6712      0.899 0.176 0.824
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.0000      0.857 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8988 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.3193     0.8752 0.100 0.896 0.004
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2537     0.9040 0.080 0.920 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.2537     0.9040 0.080 0.920 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9622 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.2537     0.9040 0.080 0.920 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.3482     0.8523 0.000 0.872 0.128
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.2537     0.9040 0.080 0.920 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3116     0.8583 0.000 0.892 0.108
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0237     0.9616 0.000 0.004 0.996
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2537     0.9040 0.080 0.920 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3619     0.8132 0.000 0.136 0.864
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.3551     0.8517 0.000 0.868 0.132
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6154     0.7210 0.752 0.204 0.044
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.2537     0.9040 0.080 0.920 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9622 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8988 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.2537     0.9040 0.080 0.920 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2537     0.9040 0.080 0.920 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3551     0.8029 0.868 0.132 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0747     0.8899 0.984 0.016 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8988 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000     0.8988 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.3193     0.8752 0.100 0.896 0.004
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9622 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2537     0.9040 0.080 0.920 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.4346     0.8697 0.184 0.816 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.2537     0.9040 0.080 0.920 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1753     0.8637 0.952 0.048 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8988 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8988 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.3694     0.8742 0.052 0.896 0.052
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000     0.8988 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3686     0.8893 0.140 0.860 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.8988 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9622 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.3193     0.8752 0.100 0.896 0.004
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4733     0.7412 0.004 0.196 0.800
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2537     0.9040 0.080 0.920 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0237     0.9616 0.000 0.004 0.996
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9622 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.3038     0.8592 0.000 0.896 0.104
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.3551     0.8517 0.000 0.868 0.132
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0237     0.9616 0.000 0.004 0.996
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.2537     0.9040 0.080 0.920 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.8988 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.3551     0.8517 0.000 0.868 0.132
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9622 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.2537     0.9040 0.080 0.920 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.7418     0.6477 0.672 0.248 0.080
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2537     0.9040 0.080 0.920 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.3038     0.8592 0.000 0.896 0.104
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.3193     0.8752 0.100 0.896 0.004
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3445     0.8764 0.088 0.896 0.016
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.2537     0.9040 0.080 0.920 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.3295     0.8758 0.096 0.896 0.008
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.2537     0.9040 0.080 0.920 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.4346     0.8697 0.184 0.816 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.3193     0.8752 0.100 0.896 0.004
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9622 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0237     0.9616 0.000 0.004 0.996
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.3193     0.8752 0.100 0.896 0.004
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3193     0.8752 0.100 0.896 0.004
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.7285     0.5375 0.632 0.320 0.048
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.3193     0.8752 0.100 0.896 0.004
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.2537     0.9040 0.080 0.920 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.2537     0.9040 0.080 0.920 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.8988 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.6267     0.0102 0.548 0.452 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9622 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.8988 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0237     0.9616 0.000 0.004 0.996
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3551     0.8517 0.000 0.868 0.132
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3412     0.8329 0.000 0.124 0.876
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9622 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.3193     0.8752 0.100 0.896 0.004
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0237     0.9616 0.000 0.004 0.996
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2537     0.9040 0.080 0.920 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2537     0.9040 0.080 0.920 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000     0.8988 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0188      0.963 0.004 0.000 0.000 0.996
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0592      0.965 0.000 0.000 0.984 0.016
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3706      0.829 0.040 0.848 0.000 0.112
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.1256      0.969 0.000 0.028 0.964 0.008
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4188      0.816 0.040 0.812 0.000 0.148
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2921      0.837 0.000 0.000 0.860 0.140
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3401      0.771 0.840 0.008 0.000 0.152
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6231      0.776 0.184 0.668 0.000 0.148
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1151      0.868 0.968 0.008 0.000 0.024
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1284      0.866 0.964 0.012 0.000 0.024
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0188      0.885 0.996 0.004 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.7365     -0.300 0.440 0.400 0.000 0.160
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.7212      0.591 0.324 0.516 0.000 0.160
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0188      0.885 0.996 0.004 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.6231      0.776 0.184 0.668 0.000 0.148
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0336      0.884 0.992 0.008 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.2921      0.821 0.000 0.140 0.000 0.860
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.2021      0.946 0.000 0.012 0.932 0.056
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2053      0.821 0.004 0.924 0.000 0.072
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.1256      0.969 0.000 0.028 0.964 0.008
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1256      0.969 0.000 0.028 0.964 0.008
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5950      0.792 0.156 0.696 0.000 0.148
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0336      0.884 0.992 0.008 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5950      0.792 0.156 0.696 0.000 0.148
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6944      0.490 0.588 0.000 0.216 0.196
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.6231      0.776 0.184 0.668 0.000 0.148
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.7212      0.591 0.324 0.516 0.000 0.160
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0817      0.959 0.000 0.024 0.000 0.976
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0921      0.818 0.000 0.972 0.000 0.028
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4152      0.699 0.808 0.032 0.000 0.160
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1474      0.947 0.000 0.000 0.948 0.052
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.1256      0.969 0.000 0.028 0.964 0.008
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.966 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0469      0.967 0.000 0.012 0.000 0.988
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5060      0.315 0.584 0.000 0.004 0.412
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.3219      0.775 0.164 0.000 0.000 0.836
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.7106      0.602 0.324 0.528 0.000 0.148
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.6231      0.776 0.184 0.668 0.000 0.148
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.2714      0.791 0.884 0.004 0.000 0.112
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.886 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1256      0.969 0.000 0.028 0.964 0.008
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0817      0.959 0.000 0.024 0.000 0.976
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.1792      0.936 0.000 0.000 0.932 0.068
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.970 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.2408      0.872 0.000 0.104 0.000 0.896
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1256      0.969 0.000 0.028 0.964 0.008
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2469      0.824 0.000 0.892 0.000 0.108
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2469      0.824 0.000 0.892 0.000 0.108
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0188      0.885 0.996 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.1893      0.884 0.000 0.024 0.000 0.928 0.048
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2921      0.713 0.000 0.020 0.856 0.124 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0794      0.901 0.000 0.028 0.000 0.972 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4446     -0.118 0.000 0.592 0.000 0.008 0.400
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0609      0.901 0.000 0.020 0.000 0.980 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.4262      0.704 0.000 0.000 0.560 0.000 0.440
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.6219      0.584 0.000 0.420 0.000 0.140 0.440
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2921      0.713 0.000 0.020 0.856 0.124 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.2653      0.824 0.000 0.096 0.000 0.880 0.024
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4551      0.738 0.788 0.048 0.000 0.112 0.052
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.6443      0.850 0.000 0.224 0.000 0.276 0.500
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.4665      0.503 0.692 0.048 0.000 0.260 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3567      0.757 0.832 0.052 0.000 0.112 0.004
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0290      0.894 0.000 0.000 0.000 0.992 0.008
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.7400      0.776 0.044 0.212 0.000 0.308 0.436
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.6568      0.849 0.004 0.220 0.000 0.276 0.500
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.1410      0.891 0.000 0.060 0.000 0.940 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.6443      0.850 0.000 0.224 0.000 0.276 0.500
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0510      0.898 0.984 0.016 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.2280      0.829 0.000 0.120 0.000 0.880 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.7250      0.439 0.080 0.016 0.520 0.308 0.076
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2648      0.598 0.000 0.848 0.000 0.152 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4262      0.704 0.000 0.000 0.560 0.000 0.440
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0609      0.901 0.000 0.020 0.000 0.980 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.1168      0.900 0.000 0.032 0.000 0.960 0.008
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4256      0.706 0.000 0.000 0.564 0.000 0.436
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.4747      0.317 0.000 0.484 0.000 0.016 0.500
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0162      0.905 0.996 0.004 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0880      0.900 0.000 0.032 0.000 0.968 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.4829      0.332 0.000 0.480 0.000 0.020 0.500
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.8336      0.206 0.212 0.036 0.380 0.316 0.056
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.6448      0.848 0.000 0.228 0.000 0.272 0.500
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0290      0.894 0.000 0.000 0.000 0.992 0.008
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0290      0.894 0.000 0.000 0.000 0.992 0.008
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.1121      0.898 0.000 0.044 0.000 0.956 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.6568      0.849 0.004 0.220 0.000 0.276 0.500
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1608      0.883 0.000 0.072 0.000 0.928 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.7369     -0.184 0.428 0.064 0.000 0.144 0.364
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0290      0.894 0.000 0.000 0.000 0.992 0.008
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.2921      0.713 0.000 0.020 0.856 0.124 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.4262      0.704 0.000 0.000 0.560 0.000 0.440
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0290      0.894 0.000 0.000 0.000 0.992 0.008
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0162      0.894 0.000 0.000 0.000 0.996 0.004
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.8437     -0.178 0.280 0.036 0.312 0.320 0.052
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.3365      0.818 0.052 0.028 0.000 0.864 0.056
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.6568      0.849 0.004 0.220 0.000 0.276 0.500
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.6443      0.850 0.000 0.224 0.000 0.276 0.500
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.2728      0.829 0.896 0.040 0.000 0.048 0.016
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.4256      0.706 0.000 0.000 0.564 0.000 0.436
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.2230      0.834 0.000 0.116 0.000 0.884 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4679      0.488 0.000 0.032 0.652 0.316 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.765 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1851      0.872 0.000 0.088 0.000 0.912 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4256      0.706 0.000 0.000 0.564 0.000 0.436
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0162      0.910 0.000 0.996 0.000 0.004 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.4707     0.7073 0.000 0.000 0.000 0.660 0.096 0.244
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8747 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.2631     0.7578 0.000 0.820 0.000 0.000 0.180 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.4818     0.7961 0.000 0.000 0.672 0.004 0.112 0.212
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.2631     0.7578 0.000 0.820 0.000 0.000 0.180 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.2092     0.7544 0.000 0.000 0.000 0.876 0.124 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.2883     0.7332 0.000 0.212 0.000 0.000 0.788 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0458     0.8028 0.000 0.000 0.000 0.984 0.016 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0363     0.7701 0.000 0.000 0.988 0.000 0.000 0.012
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4617     0.0436 0.020 0.540 0.000 0.012 0.428 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.4818     0.7961 0.000 0.000 0.672 0.004 0.112 0.212
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.2730     0.6996 0.000 0.000 0.000 0.808 0.192 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5820    -0.5314 0.456 0.000 0.000 0.144 0.008 0.392
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8747 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.0291     0.8467 0.000 0.004 0.000 0.004 0.992 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.8747 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3426     0.3289 0.720 0.000 0.000 0.004 0.276 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4480     0.1761 0.616 0.000 0.000 0.000 0.044 0.340
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3323     0.7286 0.000 0.000 0.000 0.752 0.008 0.240
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.8747 0.000 1.000 0.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.6503     0.2512 0.100 0.048 0.000 0.020 0.504 0.328
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.0508     0.8430 0.000 0.004 0.000 0.012 0.984 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0547     0.8036 0.000 0.000 0.000 0.980 0.020 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0291     0.8467 0.000 0.004 0.000 0.004 0.992 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3266     0.4507 0.728 0.000 0.000 0.000 0.000 0.272
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.1007     0.7986 0.000 0.000 0.000 0.956 0.044 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.5037     0.6294 0.004 0.000 0.720 0.108 0.116 0.052
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3136     0.7008 0.000 0.768 0.000 0.004 0.228 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0363     0.7701 0.000 0.000 0.988 0.000 0.000 0.012
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0458     0.8028 0.000 0.000 0.000 0.984 0.016 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.5080     0.6817 0.000 0.000 0.000 0.624 0.140 0.236
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.7757 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.2092     0.8277 0.000 0.124 0.000 0.000 0.876 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.2454     0.7303 0.000 0.000 0.000 0.840 0.160 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.2092     0.8277 0.000 0.124 0.000 0.000 0.876 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     6  0.7548     0.9660 0.260 0.000 0.020 0.176 0.120 0.424
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.1958     0.8479 0.000 0.100 0.000 0.004 0.896 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.4075     0.7251 0.000 0.000 0.000 0.712 0.048 0.240
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3323     0.7286 0.000 0.000 0.000 0.752 0.008 0.240
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0458     0.8028 0.000 0.000 0.000 0.984 0.016 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0405     0.8454 0.000 0.004 0.000 0.008 0.988 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0547     0.8036 0.000 0.000 0.000 0.980 0.020 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8747 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4452     0.1664 0.572 0.000 0.000 0.004 0.400 0.024
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.3323     0.7286 0.000 0.000 0.000 0.752 0.008 0.240
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.4818     0.7961 0.000 0.000 0.672 0.004 0.112 0.212
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0363     0.7701 0.000 0.000 0.988 0.000 0.000 0.012
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3323     0.7286 0.000 0.000 0.000 0.752 0.008 0.240
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0146     0.7948 0.000 0.000 0.000 0.996 0.004 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     6  0.7137     0.9654 0.276 0.000 0.000 0.176 0.120 0.428
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.5208     0.6758 0.008 0.000 0.000 0.624 0.120 0.248
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.1958     0.8479 0.000 0.100 0.000 0.004 0.896 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0935     0.8568 0.000 0.032 0.000 0.004 0.964 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3244     0.4703 0.732 0.000 0.000 0.000 0.268 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.7757 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.2664     0.7080 0.000 0.000 0.000 0.816 0.184 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.5323     0.6321 0.000 0.000 0.668 0.136 0.160 0.036
#> 976507F2-192B-4095-920A-3014889CD617     3  0.3531     0.8274 0.000 0.000 0.672 0.000 0.000 0.328
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0547     0.8036 0.000 0.000 0.000 0.980 0.020 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.7757 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0291     0.8724 0.000 0.992 0.000 0.004 0.004 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0146     0.8739 0.000 0.996 0.000 0.000 0.004 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000     0.8081 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.488           0.798       0.894         0.4824 0.532   0.532
#> 3 3 0.829           0.877       0.945         0.3859 0.701   0.485
#> 4 4 0.587           0.647       0.795         0.1144 0.820   0.522
#> 5 5 0.661           0.707       0.822         0.0727 0.894   0.615
#> 6 6 0.688           0.572       0.748         0.0416 0.941   0.719

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.7453     0.7892 0.788 0.212
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000     0.8600 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8899 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.8899 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0938     0.8553 0.988 0.012
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.8899 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     1  0.9815     0.0358 0.580 0.420
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.8899 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.9933     0.3708 0.452 0.548
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000     0.8600 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.1633     0.8718 0.024 0.976
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.1633     0.8489 0.976 0.024
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.7453     0.7598 0.212 0.788
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.7453     0.7892 0.788 0.212
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8899 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000     0.8600 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.7453     0.7892 0.788 0.212
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000     0.8899 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.8899 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.7453     0.7892 0.788 0.212
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.7453     0.7892 0.788 0.212
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.7453     0.7892 0.788 0.212
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.7528     0.7860 0.784 0.216
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.0376     0.8589 0.996 0.004
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000     0.8600 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.8899 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.7883     0.7682 0.764 0.236
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.9522     0.5507 0.628 0.372
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.7453     0.7892 0.788 0.212
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.7453     0.7892 0.788 0.212
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.7453     0.7892 0.788 0.212
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.7453     0.7598 0.212 0.788
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.9129     0.6564 0.672 0.328
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000     0.8899 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.7453     0.7892 0.788 0.212
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000     0.8600 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.7453     0.7598 0.212 0.788
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000     0.8600 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2423     0.8716 0.040 0.960
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000     0.8600 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000     0.8600 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.9933     0.3707 0.452 0.548
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.1633     0.8489 0.976 0.024
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000     0.8600 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.8899 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.7453     0.7892 0.788 0.212
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.3114     0.8258 0.944 0.056
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000     0.8600 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.8899 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000     0.8600 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.8899 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0376     0.8589 0.996 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.1414     0.8512 0.980 0.020
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.9129     0.6199 0.328 0.672
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000     0.8899 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.7453     0.7598 0.212 0.788
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8899 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.9909     0.4351 0.556 0.444
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.1633     0.8489 0.976 0.024
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0376     0.8589 0.996 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000     0.8600 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.0376     0.8589 0.996 0.004
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     1  0.6438     0.7025 0.836 0.164
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.2603     0.8508 0.956 0.044
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000     0.8600 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.2778     0.8519 0.048 0.952
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000     0.8899 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.9248     0.6382 0.660 0.340
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.9686     0.5400 0.604 0.396
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000     0.8600 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.7453     0.7892 0.788 0.212
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000     0.8600 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.7453     0.7598 0.212 0.788
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000     0.8600 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000     0.8600 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.7219     0.7692 0.200 0.800
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000     0.8600 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0376     0.8872 0.004 0.996
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.8899 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.7453     0.7892 0.788 0.212

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.929 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.4931      0.697 0.232 0.000 0.768
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.926 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.926 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.955 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.926 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.0000      0.955 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.926 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     3  0.0000      0.955 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0424      0.954 0.008 0.000 0.992
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.6154      0.431 0.592 0.408 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.955 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.6305      0.149 0.000 0.516 0.484
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.929 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.926 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0424      0.954 0.008 0.000 0.992
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.929 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.926 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.926 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.929 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.929 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0747      0.927 0.984 0.016 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1860      0.910 0.948 0.052 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3  0.0000      0.955 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.955 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.926 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4654      0.775 0.792 0.208 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.3459      0.837 0.096 0.892 0.012
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0424      0.929 0.992 0.008 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.929 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.929 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.4399      0.787 0.000 0.812 0.188
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1643      0.914 0.956 0.044 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.926 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.929 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0592      0.952 0.012 0.000 0.988
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.4121      0.809 0.000 0.832 0.168
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.6235      0.258 0.436 0.000 0.564
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.926 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0747      0.949 0.016 0.000 0.984
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0237      0.954 0.004 0.000 0.996
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3  0.0000      0.955 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.0000      0.955 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0424      0.954 0.008 0.000 0.992
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.926 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0237      0.929 0.996 0.004 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.0000      0.955 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0237      0.954 0.004 0.000 0.996
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.926 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0747      0.921 0.984 0.000 0.016
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.926 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.0000      0.955 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     3  0.0000      0.955 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     3  0.6215      0.141 0.000 0.428 0.572
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.926 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4452      0.782 0.000 0.808 0.192
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.926 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4062      0.823 0.836 0.164 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     3  0.0000      0.955 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.955 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0424      0.954 0.008 0.000 0.992
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.0000      0.955 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3  0.0000      0.955 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0892      0.919 0.980 0.000 0.020
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.2796      0.856 0.908 0.000 0.092
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.6111      0.459 0.604 0.396 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.926 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1163      0.922 0.972 0.028 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3941      0.831 0.844 0.156 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0424      0.954 0.008 0.000 0.992
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0237      0.929 0.996 0.004 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0892      0.946 0.020 0.000 0.980
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.4842      0.741 0.000 0.776 0.224
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0424      0.954 0.008 0.000 0.992
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0592      0.952 0.012 0.000 0.988
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.3412      0.845 0.000 0.876 0.124
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1964      0.915 0.056 0.000 0.944
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.1163      0.904 0.028 0.972 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0237      0.923 0.004 0.996 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0237      0.929 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0592    0.84716 0.984 0.000 0.000 0.016
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.5519    0.33420 0.264 0.000 0.052 0.684
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0592    0.83253 0.000 0.984 0.000 0.016
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.2345    0.81758 0.000 0.900 0.000 0.100
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0188    0.64952 0.000 0.000 0.996 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.2530    0.81731 0.000 0.888 0.000 0.112
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.4907    0.00965 0.000 0.000 0.580 0.420
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4100    0.83323 0.076 0.832 0.000 0.092
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.4647    0.41319 0.000 0.008 0.288 0.704
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.6795    0.42516 0.096 0.000 0.472 0.432
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4817    0.38304 0.388 0.612 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000    0.64599 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     3  0.7264    0.01543 0.000 0.320 0.512 0.168
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2408    0.80628 0.896 0.000 0.000 0.104
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.2081    0.81348 0.000 0.916 0.000 0.084
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.2611    0.71897 0.008 0.000 0.896 0.096
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0592    0.84716 0.984 0.000 0.000 0.016
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.3384    0.82544 0.024 0.860 0.000 0.116
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0817    0.83150 0.000 0.976 0.000 0.024
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1722    0.83611 0.944 0.000 0.048 0.008
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2706    0.82833 0.900 0.020 0.000 0.080
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1452    0.84115 0.956 0.036 0.000 0.008
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2081    0.81942 0.916 0.084 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3444    0.53152 0.000 0.000 0.184 0.816
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.3024    0.73196 0.000 0.000 0.852 0.148
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0707    0.83107 0.000 0.980 0.000 0.020
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.5204    0.74152 0.752 0.160 0.000 0.088
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     3  0.8347    0.15953 0.140 0.212 0.552 0.096
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1637    0.83293 0.940 0.000 0.000 0.060
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1118    0.84264 0.964 0.000 0.000 0.036
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0657    0.84642 0.984 0.012 0.000 0.004
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.5040    0.43024 0.000 0.364 0.008 0.628
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2589    0.79865 0.884 0.116 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3970    0.83431 0.084 0.840 0.000 0.076
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1388    0.84642 0.960 0.028 0.000 0.012
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.3991    0.72802 0.020 0.000 0.808 0.172
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4776    0.34453 0.000 0.376 0.000 0.624
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.6429    0.42183 0.588 0.000 0.088 0.324
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3545    0.76825 0.000 0.828 0.008 0.164
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.6510    0.51222 0.080 0.000 0.540 0.380
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.3494    0.73091 0.004 0.000 0.824 0.172
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4071    0.61902 0.000 0.104 0.064 0.832
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4948   -0.12729 0.000 0.000 0.440 0.560
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.6280    0.60607 0.084 0.000 0.612 0.304
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.1940    0.82727 0.076 0.924 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0336    0.84702 0.992 0.000 0.000 0.008
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.2921    0.72650 0.000 0.000 0.860 0.140
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.3808    0.72968 0.012 0.000 0.812 0.176
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4595    0.77158 0.184 0.776 0.000 0.040
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4576    0.63471 0.728 0.000 0.012 0.260
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2345    0.81953 0.100 0.900 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.3278    0.56395 0.020 0.000 0.116 0.864
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3123    0.56318 0.000 0.000 0.156 0.844
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.5008    0.60359 0.000 0.228 0.040 0.732
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.7722    0.62364 0.112 0.592 0.232 0.064
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4891    0.52701 0.000 0.308 0.012 0.680
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.1557    0.82342 0.000 0.944 0.000 0.056
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.3870    0.70044 0.788 0.208 0.000 0.004
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.2553    0.59994 0.016 0.008 0.060 0.916
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.2814    0.72994 0.000 0.000 0.868 0.132
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.6337    0.54596 0.072 0.000 0.568 0.360
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.2704    0.57814 0.000 0.000 0.124 0.876
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.4356    0.60194 0.000 0.064 0.124 0.812
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5026    0.55806 0.672 0.000 0.016 0.312
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.5376    0.41274 0.588 0.000 0.016 0.396
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5403    0.52563 0.348 0.628 0.000 0.024
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.3172    0.77336 0.000 0.840 0.000 0.160
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2921    0.77566 0.860 0.140 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4697    0.40475 0.644 0.356 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.2921    0.73190 0.000 0.000 0.860 0.140
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1302    0.83858 0.956 0.044 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.6362    0.61471 0.096 0.000 0.616 0.288
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.7793    0.15843 0.000 0.248 0.356 0.396
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3991    0.70676 0.020 0.000 0.808 0.172
#> 976507F2-192B-4095-920A-3014889CD617     3  0.3695    0.73343 0.016 0.000 0.828 0.156
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.5018    0.49918 0.000 0.332 0.012 0.656
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.7191    0.51153 0.156 0.000 0.516 0.328
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3024    0.79117 0.148 0.852 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2408    0.81798 0.104 0.896 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1637    0.83389 0.940 0.060 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2037      0.800 0.920 0.064 0.004 0.000 0.012
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.5909      0.541 0.212 0.012 0.144 0.632 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3011      0.717 0.000 0.844 0.000 0.016 0.140
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     5  0.3809      0.687 0.000 0.256 0.000 0.008 0.736
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2230      0.813 0.000 0.000 0.884 0.000 0.116
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.2439      0.754 0.000 0.120 0.000 0.004 0.876
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4863      0.573 0.000 0.000 0.272 0.672 0.056
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.4090      0.683 0.016 0.268 0.000 0.000 0.716
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.2575      0.820 0.000 0.012 0.100 0.884 0.004
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.5861      0.604 0.128 0.012 0.632 0.228 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.1493      0.782 0.024 0.948 0.000 0.000 0.028
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2891      0.771 0.000 0.000 0.824 0.000 0.176
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.4342      0.641 0.000 0.000 0.040 0.232 0.728
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3201      0.737 0.844 0.016 0.132 0.008 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4642      0.404 0.000 0.660 0.000 0.032 0.308
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.2322      0.845 0.008 0.012 0.912 0.004 0.064
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1725      0.800 0.936 0.044 0.000 0.000 0.020
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.3178      0.758 0.036 0.068 0.000 0.024 0.872
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2597      0.753 0.000 0.884 0.000 0.024 0.092
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1549      0.800 0.944 0.016 0.040 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4786      0.683 0.720 0.188 0.092 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.2104      0.798 0.916 0.060 0.000 0.000 0.024
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4570      0.529 0.632 0.348 0.020 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.2445      0.812 0.004 0.004 0.108 0.884 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1082      0.854 0.000 0.000 0.964 0.028 0.008
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2654      0.754 0.000 0.884 0.000 0.032 0.084
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3284      0.776 0.864 0.080 0.028 0.000 0.028
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.3133      0.707 0.080 0.004 0.052 0.000 0.864
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0162      0.797 0.996 0.000 0.004 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1569      0.802 0.944 0.044 0.004 0.000 0.008
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2270      0.795 0.904 0.076 0.000 0.000 0.020
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.2046      0.806 0.000 0.016 0.000 0.916 0.068
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4088      0.626 0.688 0.304 0.008 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.4747      0.528 0.008 0.376 0.012 0.000 0.604
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4138      0.753 0.776 0.160 0.064 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.2378      0.841 0.048 0.000 0.904 0.000 0.048
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4403      0.237 0.000 0.008 0.000 0.608 0.384
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.4405      0.635 0.752 0.012 0.200 0.036 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.4168      0.739 0.000 0.184 0.000 0.052 0.764
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4405      0.729 0.036 0.012 0.752 0.200 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0794      0.854 0.000 0.000 0.972 0.028 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0865      0.840 0.000 0.004 0.000 0.972 0.024
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.5075      0.745 0.020 0.012 0.120 0.756 0.092
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.3216      0.813 0.020 0.012 0.852 0.116 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.1704      0.775 0.004 0.928 0.000 0.000 0.068
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1901      0.799 0.932 0.040 0.000 0.004 0.024
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.4548      0.746 0.000 0.000 0.752 0.120 0.128
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0865      0.855 0.000 0.000 0.972 0.024 0.004
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.5381      0.356 0.056 0.428 0.000 0.000 0.516
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1764      0.786 0.940 0.012 0.036 0.012 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.1173      0.782 0.012 0.964 0.000 0.004 0.020
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.4145      0.686 0.028 0.012 0.188 0.772 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0794      0.843 0.000 0.000 0.028 0.972 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.1082      0.837 0.000 0.008 0.000 0.964 0.028
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.3451      0.668 0.012 0.024 0.128 0.000 0.836
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1168      0.835 0.000 0.008 0.000 0.960 0.032
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.4167      0.540 0.000 0.724 0.000 0.024 0.252
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.3398      0.599 0.216 0.780 0.000 0.000 0.004
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.1405      0.841 0.016 0.008 0.000 0.956 0.020
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1670      0.847 0.000 0.000 0.936 0.012 0.052
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3876      0.769 0.024 0.012 0.796 0.168 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.1571      0.834 0.000 0.004 0.060 0.936 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0671      0.843 0.000 0.004 0.016 0.980 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.3039      0.732 0.836 0.000 0.012 0.152 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.5925      0.478 0.624 0.012 0.132 0.232 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.6569      0.224 0.448 0.216 0.000 0.000 0.336
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.4742      0.725 0.008 0.084 0.000 0.164 0.744
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4717      0.460 0.584 0.396 0.000 0.000 0.020
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.2189      0.730 0.084 0.904 0.000 0.000 0.012
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0955      0.851 0.000 0.000 0.968 0.004 0.028
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3690      0.724 0.780 0.200 0.000 0.000 0.020
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3176      0.827 0.048 0.012 0.868 0.072 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.4716      0.681 0.000 0.016 0.056 0.184 0.744
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.6288      0.374 0.076 0.012 0.512 0.012 0.388
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1018      0.854 0.016 0.000 0.968 0.016 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1549      0.827 0.000 0.016 0.000 0.944 0.040
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4776      0.737 0.168 0.012 0.744 0.076 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.1661      0.766 0.024 0.940 0.000 0.000 0.036
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0566      0.778 0.012 0.984 0.000 0.000 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.5713     -0.189 0.416 0.500 0.084 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1858     0.6230 0.904 0.004 0.000 0.000 0.000 0.092
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.5929     0.0639 0.032 0.000 0.104 0.372 0.000 0.492
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.1285     0.7376 0.000 0.944 0.000 0.000 0.052 0.004
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     5  0.3357     0.6374 0.000 0.224 0.000 0.004 0.764 0.008
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2412     0.7413 0.000 0.000 0.880 0.000 0.028 0.092
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.1410     0.7286 0.000 0.044 0.000 0.008 0.944 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3984     0.4860 0.000 0.000 0.336 0.648 0.016 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.4163     0.6572 0.184 0.072 0.000 0.000 0.740 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1958     0.8187 0.000 0.004 0.100 0.896 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     6  0.5633    -0.2918 0.000 0.000 0.380 0.152 0.000 0.468
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3503     0.7124 0.068 0.816 0.000 0.000 0.008 0.108
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2510     0.7387 0.000 0.000 0.872 0.000 0.028 0.100
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.4560     0.5392 0.008 0.000 0.012 0.268 0.680 0.032
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.4945     0.3228 0.292 0.000 0.084 0.000 0.004 0.620
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3312     0.6257 0.000 0.792 0.000 0.000 0.180 0.028
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.3071     0.7812 0.000 0.000 0.804 0.000 0.016 0.180
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2597     0.5187 0.824 0.000 0.000 0.000 0.000 0.176
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.1980     0.7290 0.000 0.048 0.000 0.016 0.920 0.016
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.1901     0.7381 0.028 0.924 0.000 0.000 0.040 0.008
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     6  0.4687     0.1888 0.456 0.008 0.004 0.000 0.020 0.512
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     6  0.5930     0.2709 0.344 0.128 0.016 0.000 0.004 0.508
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1753     0.6233 0.912 0.000 0.000 0.000 0.004 0.084
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     6  0.6004     0.1609 0.404 0.152 0.008 0.000 0.004 0.432
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.2487     0.8194 0.000 0.004 0.076 0.888 0.004 0.028
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1908     0.7975 0.000 0.000 0.900 0.004 0.000 0.096
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2512     0.7247 0.000 0.880 0.000 0.000 0.060 0.060
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.6022     0.2906 0.312 0.096 0.004 0.000 0.044 0.544
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.2941     0.6940 0.124 0.000 0.012 0.004 0.848 0.012
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     6  0.4184     0.1651 0.484 0.000 0.000 0.000 0.012 0.504
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3636     0.2415 0.676 0.004 0.000 0.000 0.000 0.320
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.1075     0.6335 0.952 0.000 0.000 0.000 0.000 0.048
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.1367     0.8404 0.000 0.000 0.000 0.944 0.044 0.012
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.5616     0.2675 0.508 0.328 0.000 0.000 0.000 0.164
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.6437     0.2687 0.140 0.348 0.020 0.000 0.472 0.020
#> A4168812-C38E-4F15-9AF6-79F256279E72     6  0.5315     0.2370 0.416 0.064 0.016 0.000 0.000 0.504
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.3109     0.7711 0.004 0.000 0.812 0.000 0.016 0.168
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.3404     0.6224 0.000 0.000 0.000 0.760 0.224 0.016
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     6  0.4692     0.4071 0.240 0.000 0.068 0.012 0.000 0.680
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.2504     0.7219 0.000 0.088 0.000 0.028 0.880 0.004
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.5218     0.6508 0.000 0.004 0.628 0.120 0.004 0.244
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.1556     0.7981 0.000 0.000 0.920 0.000 0.000 0.080
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0603     0.8582 0.000 0.000 0.000 0.980 0.016 0.004
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4966     0.6629 0.000 0.000 0.040 0.708 0.100 0.152
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4172     0.7306 0.000 0.000 0.724 0.072 0.000 0.204
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3599     0.7376 0.076 0.824 0.000 0.000 0.028 0.072
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.2527     0.6106 0.868 0.000 0.000 0.000 0.024 0.108
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.3896     0.6788 0.000 0.000 0.784 0.136 0.012 0.068
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.2051     0.7983 0.000 0.000 0.896 0.004 0.004 0.096
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     1  0.5347     0.1030 0.572 0.120 0.000 0.000 0.304 0.004
#> AC1700D5-72E7-4C7F-A288-869DFC229252     6  0.4170     0.3594 0.328 0.000 0.020 0.004 0.000 0.648
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2201     0.7510 0.052 0.900 0.000 0.000 0.000 0.048
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.5069     0.4920 0.000 0.000 0.144 0.628 0.000 0.228
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0547     0.8579 0.000 0.000 0.020 0.980 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0547     0.8570 0.000 0.000 0.000 0.980 0.020 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.5910     0.3842 0.336 0.004 0.060 0.000 0.540 0.060
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0806     0.8546 0.000 0.000 0.000 0.972 0.020 0.008
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.2871     0.6983 0.024 0.852 0.000 0.000 0.116 0.008
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.3394     0.7022 0.052 0.804 0.000 0.000 0.000 0.144
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0993     0.8569 0.000 0.000 0.000 0.964 0.012 0.024
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.2199     0.7513 0.000 0.000 0.892 0.000 0.020 0.088
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.4820     0.7015 0.000 0.004 0.684 0.104 0.004 0.204
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.1225     0.8505 0.000 0.000 0.036 0.952 0.000 0.012
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0405     0.8590 0.000 0.000 0.008 0.988 0.000 0.004
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5947    -0.2620 0.408 0.000 0.004 0.184 0.000 0.404
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.5816     0.3930 0.184 0.000 0.048 0.152 0.000 0.616
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.2979     0.5708 0.852 0.056 0.000 0.000 0.088 0.004
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.5914     0.6103 0.024 0.120 0.000 0.072 0.664 0.120
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2234     0.5802 0.872 0.124 0.000 0.000 0.000 0.004
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4282     0.3633 0.420 0.560 0.000 0.000 0.000 0.020
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0993     0.7833 0.000 0.000 0.964 0.000 0.012 0.024
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1265     0.6217 0.948 0.044 0.000 0.000 0.008 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3586     0.7467 0.000 0.000 0.756 0.028 0.000 0.216
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.6530     0.4958 0.000 0.016 0.140 0.224 0.560 0.060
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.6217     0.1948 0.024 0.000 0.444 0.008 0.400 0.124
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1141     0.7953 0.000 0.000 0.948 0.000 0.000 0.052
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0993     0.8529 0.000 0.000 0.000 0.964 0.024 0.012
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4698     0.4240 0.000 0.000 0.504 0.044 0.000 0.452
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4496     0.5275 0.308 0.644 0.000 0.000 0.044 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2191     0.7282 0.120 0.876 0.000 0.000 0.000 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.6150     0.0748 0.288 0.424 0.004 0.000 0.000 0.284

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.388           0.812       0.865         0.2829 0.633   0.633
#> 3 3 0.475           0.664       0.827         0.5594 0.985   0.976
#> 4 4 0.499           0.831       0.844         0.3419 0.723   0.552
#> 5 5 0.489           0.762       0.814         0.1233 0.980   0.942
#> 6 6 0.535           0.611       0.731         0.0568 0.959   0.872

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.6887      0.767 0.184 0.816
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.4431      0.829 0.092 0.908
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.869 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.869 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.9552      0.828 0.624 0.376
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.869 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.869 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.869 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.869 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.9710      0.814 0.600 0.400
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.869 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.9552      0.828 0.624 0.376
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.869 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.6887      0.767 0.184 0.816
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.869 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.555 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.6887      0.767 0.184 0.816
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6148      0.791 0.152 0.848
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.869 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     2  0.6887      0.767 0.184 0.816
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.6887      0.767 0.184 0.816
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.6887      0.767 0.184 0.816
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.6887      0.767 0.184 0.816
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000      0.869 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.7056      0.682 0.808 0.192
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.869 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.6887      0.767 0.184 0.816
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.6801      0.771 0.180 0.820
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.6887      0.767 0.184 0.816
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.6887      0.767 0.184 0.816
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.6887      0.767 0.184 0.816
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.869 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.6887      0.767 0.184 0.816
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0672      0.861 0.008 0.992
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.6887      0.767 0.184 0.816
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.9552      0.828 0.624 0.376
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.869 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     2  0.6887      0.767 0.184 0.816
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.869 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.9710      0.814 0.600 0.400
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.9552      0.828 0.624 0.376
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.869 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.0000      0.869 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.9710      0.814 0.600 0.400
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.869 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.6801      0.771 0.180 0.820
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.869 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.9552      0.828 0.624 0.376
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.869 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     2  0.6887      0.767 0.184 0.816
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.869 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.9833      0.721 0.576 0.424
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000      0.869 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.869 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.7528      0.484 0.784 0.216
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.869 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.869 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.6887      0.767 0.184 0.816
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0000      0.869 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.9710      0.812 0.600 0.400
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.9710      0.814 0.600 0.400
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000      0.869 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.869 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.4431      0.829 0.092 0.908
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.4431      0.829 0.092 0.908
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.869 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.2778      0.811 0.048 0.952
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.6887      0.767 0.184 0.816
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.6887      0.767 0.184 0.816
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.9552      0.828 0.624 0.376
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.6887      0.767 0.184 0.816
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.9710      0.814 0.600 0.400
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.869 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.555 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.9552      0.828 0.624 0.376
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.869 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.9710      0.814 0.600 0.400
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.869 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.869 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.6887      0.767 0.184 0.816

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.6126    0.66213 0.400 0.600 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.3619    0.76392 0.136 0.864 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000    0.80377 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000    0.80377 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000    0.28462 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000    0.80377 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000    0.80377 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000    0.80377 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000    0.80377 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.5760    0.48113 0.000 0.328 0.672
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0747    0.80005 0.016 0.984 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000    0.28462 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000    0.80377 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.6483    0.65920 0.392 0.600 0.008
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000    0.80377 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.6126    0.71386 0.600 0.000 0.400
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.6126    0.66213 0.400 0.600 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.5785    0.68969 0.332 0.668 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000    0.80377 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     2  0.6126    0.66213 0.400 0.600 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.6126    0.66213 0.400 0.600 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.6126    0.66213 0.400 0.600 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.6126    0.66213 0.400 0.600 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000    0.80377 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.4346   -0.00144 0.184 0.000 0.816
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000    0.80377 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.6126    0.66213 0.400 0.600 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.5968    0.67787 0.364 0.636 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.6126    0.66213 0.400 0.600 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.6126    0.66213 0.400 0.600 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.6126    0.66213 0.400 0.600 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000    0.80377 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.6126    0.66213 0.400 0.600 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0475    0.79906 0.004 0.992 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.6126    0.66213 0.400 0.600 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000    0.28462 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000    0.80377 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     2  0.6126    0.66213 0.400 0.600 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000    0.80377 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.5760    0.48113 0.000 0.328 0.672
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000    0.28462 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000    0.80377 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.0000    0.80377 0.000 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.5760    0.47728 0.000 0.328 0.672
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000    0.80377 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.5968    0.67787 0.364 0.636 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000    0.80377 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000    0.28462 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000    0.80377 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     2  0.6126    0.66213 0.400 0.600 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000    0.80377 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.7517    0.31899 0.040 0.420 0.540
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000    0.80377 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000    0.80377 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.9333    0.45351 0.516 0.216 0.268
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000    0.80377 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000    0.80377 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.6126    0.66213 0.400 0.600 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0000    0.80377 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.5988    0.42065 0.000 0.368 0.632
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.5760    0.48113 0.000 0.328 0.672
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000    0.80377 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000    0.80377 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.3619    0.76392 0.136 0.864 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.3619    0.76392 0.136 0.864 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000    0.80377 0.000 1.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.1878    0.76161 0.044 0.952 0.004
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.6126    0.66213 0.400 0.600 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.6126    0.66213 0.400 0.600 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000    0.28462 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.6126    0.66213 0.400 0.600 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.5760    0.48113 0.000 0.328 0.672
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000    0.80377 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.6126    0.71386 0.600 0.000 0.400
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000    0.28462 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000    0.80377 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.5760    0.48113 0.000 0.328 0.672
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000    0.80377 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000    0.80377 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.6126    0.66213 0.400 0.600 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.3764      0.883 0.784 0.000 0.000 0.216
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.2921      0.748 0.140 0.000 0.000 0.860
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     4  0.1792      0.893 0.068 0.000 0.000 0.932
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     4  0.0336      0.921 0.008 0.000 0.000 0.992
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.0188      0.921 0.004 0.000 0.000 0.996
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1118      0.906 0.036 0.000 0.000 0.964
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.1389      0.906 0.048 0.000 0.000 0.952
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0188      0.920 0.004 0.000 0.000 0.996
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.5779      0.716 0.292 0.008 0.660 0.040
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.2081      0.878 0.084 0.000 0.000 0.916
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.2760      0.829 0.128 0.000 0.000 0.872
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4936      0.785 0.652 0.008 0.000 0.340
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     4  0.1474      0.904 0.052 0.000 0.000 0.948
#> AC78918E-1031-4AE6-B753-B0799171F0F0     2  0.0000      0.815 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.3726      0.880 0.788 0.000 0.000 0.212
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1  0.4972      0.664 0.544 0.000 0.000 0.456
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     4  0.1792      0.893 0.068 0.000 0.000 0.932
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3801      0.873 0.780 0.000 0.000 0.220
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4164      0.901 0.736 0.000 0.000 0.264
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3726      0.880 0.788 0.000 0.000 0.212
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4331      0.901 0.712 0.000 0.000 0.288
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.3444      0.658 0.000 0.184 0.816 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     4  0.1792      0.893 0.068 0.000 0.000 0.932
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4164      0.901 0.736 0.000 0.000 0.264
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.4948      0.701 0.560 0.000 0.000 0.440
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.3649      0.872 0.796 0.000 0.000 0.204
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3726      0.880 0.788 0.000 0.000 0.212
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3764      0.883 0.784 0.000 0.000 0.216
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4382      0.898 0.704 0.000 0.000 0.296
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.4086      0.686 0.216 0.008 0.000 0.776
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4331      0.901 0.712 0.000 0.000 0.288
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.2011      0.864 0.080 0.000 0.000 0.920
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.4134      0.838 0.740 0.000 0.000 0.260
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.2011      0.864 0.080 0.000 0.000 0.920
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.5779      0.716 0.292 0.008 0.660 0.040
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.2760      0.829 0.128 0.000 0.000 0.872
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.5466      0.717 0.292 0.000 0.668 0.040
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.0707      0.918 0.020 0.000 0.000 0.980
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.4907      0.720 0.580 0.000 0.000 0.420
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1302      0.901 0.044 0.000 0.000 0.956
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.0469      0.920 0.012 0.000 0.000 0.988
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4134      0.838 0.740 0.000 0.000 0.260
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.1716      0.896 0.064 0.000 0.000 0.936
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.8072      0.427 0.180 0.040 0.532 0.248
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.4011      0.635 0.008 0.784 0.000 0.208
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     4  0.1792      0.893 0.068 0.000 0.000 0.932
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4382      0.898 0.704 0.000 0.000 0.296
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.6058      0.453 0.072 0.000 0.632 0.296
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.5779      0.716 0.292 0.008 0.660 0.040
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.2921      0.748 0.140 0.000 0.000 0.860
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.2921      0.748 0.140 0.000 0.000 0.860
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.0469      0.920 0.012 0.000 0.000 0.988
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3266      0.827 0.084 0.040 0.000 0.876
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4356      0.900 0.708 0.000 0.000 0.292
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4382      0.898 0.704 0.000 0.000 0.296
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4356      0.900 0.708 0.000 0.000 0.292
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.5779      0.716 0.292 0.008 0.660 0.040
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.2216      0.858 0.092 0.000 0.000 0.908
#> 3353F579-77CA-4D0E-B794-37DE467CC065     2  0.0000      0.815 0.000 1.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.741 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.921 0.000 0.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.5779      0.716 0.292 0.008 0.660 0.040
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.1867      0.889 0.072 0.000 0.000 0.928
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.1792      0.893 0.068 0.000 0.000 0.932
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4382      0.898 0.704 0.000 0.000 0.296

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.3555     0.8431 0.824 0.052 0.000 0.124 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.2561     0.7281 0.144 0.000 0.000 0.856 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     4  0.2690     0.7674 0.156 0.000 0.000 0.844 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     4  0.0609     0.8419 0.020 0.000 0.000 0.980 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     2  0.4088     0.9786 0.000 0.632 0.368 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.0566     0.8427 0.012 0.000 0.004 0.984 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1582     0.8153 0.028 0.000 0.028 0.944 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.2280     0.7968 0.120 0.000 0.000 0.880 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0290     0.8419 0.008 0.000 0.000 0.992 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0798     0.6921 0.008 0.000 0.976 0.016 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.2852     0.7508 0.172 0.000 0.000 0.828 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     2  0.4088     0.9786 0.000 0.632 0.368 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.7592     0.4082 0.060 0.100 0.060 0.564 0.216
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6756     0.6906 0.536 0.044 0.120 0.300 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     4  0.2280     0.7971 0.120 0.000 0.000 0.880 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.3455     0.9096 0.000 0.208 0.008 0.000 0.784
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.3507     0.8408 0.828 0.052 0.000 0.120 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1  0.4607     0.6713 0.620 0.000 0.008 0.364 0.008
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     4  0.2690     0.7674 0.156 0.000 0.000 0.844 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3661     0.7966 0.836 0.056 0.012 0.096 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2763     0.8563 0.848 0.004 0.000 0.148 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3437     0.8422 0.832 0.048 0.000 0.120 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2852     0.8599 0.828 0.000 0.000 0.172 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.6038    -0.1176 0.000 0.240 0.576 0.000 0.184
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     4  0.2690     0.7674 0.156 0.000 0.000 0.844 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2763     0.8563 0.848 0.004 0.000 0.148 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.4403     0.6575 0.608 0.000 0.008 0.384 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.3102     0.8078 0.860 0.056 0.000 0.084 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3507     0.8408 0.828 0.052 0.000 0.120 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3485     0.8443 0.828 0.048 0.000 0.124 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3143     0.8624 0.796 0.000 0.000 0.204 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.6177     0.5983 0.140 0.012 0.116 0.680 0.052
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.2852     0.8599 0.828 0.000 0.000 0.172 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     2  0.4088     0.9786 0.000 0.632 0.368 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.5728     0.6055 0.060 0.100 0.004 0.712 0.124
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.5254     0.7022 0.684 0.052 0.024 0.240 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.5728     0.6055 0.060 0.100 0.004 0.712 0.124
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0798     0.6921 0.008 0.000 0.976 0.016 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     2  0.4114     0.9702 0.000 0.624 0.376 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.7592     0.4082 0.060 0.100 0.060 0.564 0.216
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.3879     0.3921 0.012 0.188 0.784 0.016 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.1410     0.8300 0.060 0.000 0.000 0.940 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3949     0.7093 0.668 0.000 0.000 0.332 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1869     0.8108 0.028 0.008 0.028 0.936 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     2  0.4242     0.8795 0.000 0.572 0.428 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.0880     0.8396 0.032 0.000 0.000 0.968 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.5254     0.7022 0.684 0.052 0.024 0.240 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.2648     0.7711 0.152 0.000 0.000 0.848 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.6221     0.4101 0.088 0.084 0.656 0.172 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0324     0.8154 0.000 0.004 0.004 0.000 0.992
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     4  0.2690     0.7674 0.156 0.000 0.000 0.844 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.3143     0.8624 0.796 0.000 0.000 0.204 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.7442     0.0944 0.052 0.224 0.460 0.264 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0798     0.6921 0.008 0.000 0.976 0.016 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.2561     0.7281 0.144 0.000 0.000 0.856 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.2561     0.7281 0.144 0.000 0.000 0.856 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.0880     0.8396 0.032 0.000 0.000 0.968 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.6387     0.5693 0.084 0.096 0.020 0.680 0.120
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.3109     0.8632 0.800 0.000 0.000 0.200 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3143     0.8624 0.796 0.000 0.000 0.204 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     2  0.4088     0.9786 0.000 0.632 0.368 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3109     0.8632 0.800 0.000 0.000 0.200 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0798     0.6921 0.008 0.000 0.976 0.016 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.6325     0.5745 0.056 0.100 0.032 0.688 0.124
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.3455     0.9096 0.000 0.208 0.008 0.000 0.784
#> 976507F2-192B-4095-920A-3014889CD617     2  0.4088     0.9786 0.000 0.632 0.368 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0162     0.8431 0.004 0.000 0.000 0.996 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0798     0.6921 0.008 0.000 0.976 0.016 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.2732     0.7630 0.160 0.000 0.000 0.840 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.2690     0.7674 0.156 0.000 0.000 0.844 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3143     0.8624 0.796 0.000 0.000 0.204 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.5100     0.3444 0.600 0.000 0.000 0.116 0.284 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.2538     0.6869 0.016 0.000 0.000 0.860 0.124 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     4  0.3150     0.7148 0.120 0.000 0.000 0.828 0.052 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     4  0.0820     0.8073 0.016 0.000 0.000 0.972 0.012 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2178     0.9436 0.000 0.000 0.868 0.000 0.000 0.132
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.0862     0.8081 0.008 0.000 0.000 0.972 0.016 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1562     0.7854 0.004 0.000 0.000 0.940 0.032 0.024
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.2509     0.7563 0.088 0.000 0.000 0.876 0.036 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0146     0.8077 0.000 0.000 0.000 0.996 0.004 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     6  0.0146     0.7508 0.000 0.000 0.000 0.004 0.000 0.996
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.3370     0.6983 0.124 0.000 0.000 0.812 0.064 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2178     0.9436 0.000 0.000 0.868 0.000 0.000 0.132
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.6318     0.2948 0.000 0.000 0.116 0.496 0.328 0.060
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     5  0.7158     0.2048 0.204 0.000 0.000 0.300 0.396 0.100
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     4  0.2697     0.7490 0.092 0.000 0.000 0.864 0.044 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     2  0.0000     0.9025 0.000 1.000 0.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.5025     0.3630 0.608 0.000 0.000 0.108 0.284 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.6418     0.3106 0.312 0.000 0.004 0.288 0.388 0.008
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     4  0.3150     0.7148 0.120 0.000 0.000 0.828 0.052 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1312     0.3591 0.956 0.000 0.012 0.004 0.008 0.020
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4828     0.1859 0.568 0.000 0.000 0.064 0.368 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.5160     0.3115 0.572 0.000 0.000 0.108 0.320 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.5478    -0.1570 0.452 0.000 0.000 0.124 0.424 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     6  0.5923     0.1202 0.000 0.184 0.312 0.000 0.008 0.496
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     4  0.3130     0.7157 0.124 0.000 0.000 0.828 0.048 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4923     0.1717 0.560 0.000 0.000 0.072 0.368 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.5834     0.4610 0.148 0.000 0.000 0.380 0.464 0.008
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0748     0.3685 0.976 0.000 0.016 0.004 0.004 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.5025     0.3630 0.608 0.000 0.000 0.108 0.284 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.5245     0.2794 0.560 0.000 0.000 0.116 0.324 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.5748     0.6123 0.316 0.000 0.000 0.192 0.492 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.5214     0.5371 0.008 0.000 0.028 0.680 0.196 0.088
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5478    -0.1570 0.452 0.000 0.000 0.124 0.424 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.2178     0.9436 0.000 0.000 0.868 0.000 0.000 0.132
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4355     0.5089 0.000 0.000 0.032 0.644 0.320 0.004
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.6009     0.3173 0.568 0.000 0.004 0.224 0.180 0.024
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.4355     0.5089 0.000 0.000 0.032 0.644 0.320 0.004
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     6  0.0146     0.7508 0.000 0.000 0.000 0.004 0.000 0.996
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.2730     0.8967 0.000 0.000 0.808 0.000 0.000 0.192
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.6318     0.2948 0.000 0.000 0.116 0.496 0.328 0.060
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     6  0.3536     0.4533 0.000 0.000 0.252 0.004 0.008 0.736
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.1700     0.7926 0.048 0.000 0.000 0.928 0.024 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     5  0.5852     0.5112 0.208 0.000 0.000 0.328 0.464 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1708     0.7803 0.004 0.000 0.000 0.932 0.040 0.024
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.3409     0.7296 0.000 0.000 0.700 0.000 0.000 0.300
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.1088     0.8047 0.024 0.000 0.000 0.960 0.016 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6009     0.3173 0.568 0.000 0.004 0.224 0.180 0.024
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.3088     0.7193 0.120 0.000 0.000 0.832 0.048 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.4426     0.5209 0.000 0.000 0.000 0.052 0.296 0.652
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.3834     0.8000 0.000 0.776 0.116 0.000 0.108 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     4  0.3150     0.7148 0.120 0.000 0.000 0.828 0.052 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.5748     0.6123 0.316 0.000 0.000 0.192 0.492 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     6  0.7371     0.0913 0.004 0.000 0.276 0.208 0.116 0.396
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     6  0.0146     0.7508 0.000 0.000 0.000 0.004 0.000 0.996
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.2538     0.6869 0.016 0.000 0.000 0.860 0.124 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.2538     0.6869 0.016 0.000 0.000 0.860 0.124 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.1088     0.8047 0.024 0.000 0.000 0.960 0.016 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4549     0.4191 0.000 0.000 0.028 0.552 0.416 0.004
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     5  0.5736     0.6007 0.320 0.000 0.000 0.188 0.492 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.5748     0.6123 0.316 0.000 0.000 0.192 0.492 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.2178     0.9436 0.000 0.000 0.868 0.000 0.000 0.132
#> D34B0BC6-9142-48AE-A113-5923192644A0     5  0.5736     0.6007 0.320 0.000 0.000 0.188 0.492 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     6  0.0146     0.7508 0.000 0.000 0.000 0.004 0.000 0.996
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.5191     0.4691 0.004 0.000 0.032 0.604 0.320 0.040
#> 3353F579-77CA-4D0E-B794-37DE467CC065     2  0.0000     0.9025 0.000 1.000 0.000 0.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.2513     0.9369 0.000 0.000 0.852 0.000 0.008 0.140
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.8088 0.000 0.000 0.000 1.000 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     6  0.0146     0.7508 0.000 0.000 0.000 0.004 0.000 0.996
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.3211     0.7099 0.120 0.000 0.000 0.824 0.056 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.3150     0.7148 0.120 0.000 0.000 0.828 0.052 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     5  0.5748     0.6123 0.316 0.000 0.000 0.192 0.492 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.705           0.898       0.954         0.4192 0.585   0.585
#> 3 3 0.506           0.796       0.826         0.4580 0.742   0.571
#> 4 4 0.565           0.588       0.747         0.1419 0.973   0.926
#> 5 5 0.555           0.691       0.755         0.0839 0.859   0.595
#> 6 6 0.642           0.549       0.693         0.0624 0.879   0.540

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.6438      0.827 0.164 0.836
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.1414      0.944 0.020 0.980
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.953 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.953 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.937 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.953 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.4690      0.866 0.100 0.900
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.953 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.953 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0376      0.936 0.996 0.004
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.953 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.937 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.953 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.6438      0.827 0.164 0.836
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.953 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.937 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.6438      0.827 0.164 0.836
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.953 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.953 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.9732      0.310 0.596 0.404
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.6343      0.832 0.160 0.840
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.6343      0.832 0.160 0.840
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.1414      0.944 0.020 0.980
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000      0.953 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.937 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.953 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.1414      0.944 0.020 0.980
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.6148      0.840 0.152 0.848
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.9732      0.348 0.404 0.596
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.6438      0.827 0.164 0.836
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.6438      0.827 0.164 0.836
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.953 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000      0.953 0.000 1.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.953 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.5408      0.867 0.124 0.876
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.937 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.953 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.9710      0.321 0.600 0.400
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.953 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0376      0.936 0.996 0.004
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.937 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.953 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.1414      0.925 0.980 0.020
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0376      0.936 0.996 0.004
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.953 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.1414      0.944 0.020 0.980
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.953 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.937 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.953 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.9732      0.310 0.596 0.404
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.953 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0376      0.936 0.996 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000      0.953 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.953 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.1184      0.927 0.984 0.016
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.953 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.953 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0000      0.953 0.000 1.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0000      0.953 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.937 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0376      0.936 0.996 0.004
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000      0.953 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.953 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.1414      0.944 0.020 0.980
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.1414      0.944 0.020 0.980
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.953 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.953 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.0000      0.953 0.000 1.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0000      0.953 0.000 1.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.937 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.5294      0.870 0.120 0.880
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.937 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.5737      0.823 0.136 0.864
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.937 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.937 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.953 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.937 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.953 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.953 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.5408      0.867 0.124 0.876

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4351    0.93548 0.828 0.168 0.004
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.6095   -0.06723 0.392 0.608 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4605    0.76641 0.204 0.796 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4346    0.77712 0.184 0.816 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2187    0.90182 0.028 0.024 0.948
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3816    0.79195 0.148 0.852 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.1636    0.77797 0.016 0.964 0.020
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4654    0.76584 0.208 0.792 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0237    0.79976 0.004 0.996 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.6625    0.84970 0.080 0.176 0.744
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4654    0.76295 0.208 0.792 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2187    0.90182 0.028 0.024 0.948
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0892    0.79003 0.020 0.980 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4351    0.93548 0.828 0.168 0.004
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4291    0.77704 0.180 0.820 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.3412    0.87457 0.124 0.000 0.876
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.4351    0.93548 0.828 0.168 0.004
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.5621    0.65545 0.308 0.692 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.4605    0.76641 0.204 0.796 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.4449    0.86583 0.860 0.100 0.040
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4351    0.93548 0.828 0.168 0.004
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4351    0.93548 0.828 0.168 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4178    0.93474 0.828 0.172 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0237    0.79976 0.004 0.996 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.3412    0.87457 0.124 0.000 0.876
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4605    0.76641 0.204 0.796 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4178    0.93474 0.828 0.172 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3879    0.92061 0.848 0.152 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.4136    0.88605 0.864 0.116 0.020
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.4351    0.93548 0.828 0.168 0.004
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.4351    0.93548 0.828 0.168 0.004
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0237    0.79976 0.004 0.996 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4178    0.93474 0.828 0.172 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.5360    0.75873 0.220 0.768 0.012
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4178    0.93474 0.828 0.172 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.2187    0.90182 0.028 0.024 0.948
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0892    0.79003 0.020 0.980 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.7181    0.61641 0.648 0.304 0.048
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2959    0.79873 0.100 0.900 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4953    0.86132 0.016 0.176 0.808
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.2187    0.90182 0.028 0.024 0.948
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0424    0.79486 0.008 0.992 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.7865    0.80271 0.124 0.216 0.660
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4953    0.86132 0.016 0.176 0.808
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4654    0.76584 0.208 0.792 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.4121    0.93374 0.832 0.168 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0424    0.79486 0.008 0.992 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.2187    0.90182 0.028 0.024 0.948
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4842    0.75043 0.224 0.776 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.7012    0.61996 0.652 0.308 0.040
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.4605    0.76641 0.204 0.796 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.7281    0.83505 0.140 0.148 0.712
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0237    0.79976 0.004 0.996 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0237    0.79976 0.004 0.996 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     3  0.4995    0.87028 0.144 0.032 0.824
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0237    0.79976 0.004 0.996 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.4605    0.76641 0.204 0.796 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.5760    0.63986 0.672 0.328 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0424    0.79486 0.008 0.992 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.2564    0.90181 0.028 0.036 0.936
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.4953    0.86132 0.016 0.176 0.808
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0237    0.79976 0.004 0.996 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0237    0.79976 0.004 0.996 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.6026    0.00153 0.376 0.624 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.6180   -0.11126 0.416 0.584 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5497    0.65372 0.292 0.708 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.5173    0.75188 0.148 0.816 0.036
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4178    0.93474 0.828 0.172 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.5431    0.66099 0.284 0.716 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.2187    0.90182 0.028 0.024 0.948
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4178    0.93474 0.828 0.172 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.4475    0.87702 0.016 0.144 0.840
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.2743    0.74476 0.020 0.928 0.052
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4810    0.87260 0.140 0.028 0.832
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1163    0.89282 0.028 0.000 0.972
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0237    0.79976 0.004 0.996 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1905    0.90172 0.016 0.028 0.956
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4605    0.76641 0.204 0.796 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4605    0.76641 0.204 0.796 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4178    0.93474 0.828 0.172 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2125      0.872 0.920 0.004 0.000 0.076
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.7254      0.356 0.300 0.524 0.000 0.176
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4304      0.543 0.284 0.716 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4807      0.560 0.248 0.728 0.000 0.024
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0188      0.667 0.000 0.000 0.996 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.5532      0.554 0.228 0.704 0.000 0.068
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.3907      0.588 0.000 0.768 0.000 0.232
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4988      0.529 0.288 0.692 0.000 0.020
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.7563      0.174 0.004 0.240 0.516 0.240
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4776      0.431 0.376 0.624 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0188      0.667 0.000 0.000 0.996 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.4454      0.550 0.000 0.692 0.000 0.308
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0469      0.871 0.988 0.012 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4040      0.564 0.248 0.752 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     4  0.4877      0.623 0.000 0.000 0.408 0.592
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2197      0.871 0.916 0.004 0.000 0.080
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6665      0.348 0.360 0.544 0.000 0.096
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.4304      0.543 0.284 0.716 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2676      0.863 0.896 0.012 0.000 0.092
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1182      0.871 0.968 0.016 0.000 0.016
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.2334      0.870 0.908 0.004 0.000 0.088
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1182      0.871 0.968 0.016 0.000 0.016
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     4  0.4877      0.623 0.000 0.000 0.408 0.592
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4304      0.543 0.284 0.716 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.1182      0.871 0.968 0.016 0.000 0.016
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3606      0.824 0.840 0.020 0.000 0.140
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2345      0.865 0.900 0.000 0.000 0.100
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2197      0.871 0.916 0.004 0.000 0.080
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2197      0.871 0.916 0.004 0.000 0.080
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0817      0.866 0.976 0.024 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.6195      0.498 0.100 0.648 0.000 0.252
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0592      0.869 0.984 0.016 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0188      0.667 0.000 0.000 0.996 0.004
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.4722      0.564 0.008 0.692 0.000 0.300
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.9010      0.147 0.448 0.284 0.164 0.104
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.4100      0.598 0.092 0.832 0.000 0.076
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.7195      0.304 0.004 0.232 0.572 0.192
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.667 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.6275      0.141 0.004 0.272 0.084 0.640
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.7195      0.304 0.004 0.232 0.572 0.192
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5157      0.533 0.284 0.688 0.000 0.028
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1978      0.874 0.928 0.004 0.000 0.068
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.3907      0.588 0.000 0.768 0.000 0.232
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.667 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5453      0.479 0.320 0.648 0.000 0.032
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6172      0.448 0.632 0.284 0.000 0.084
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.4304      0.543 0.284 0.716 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.6087      0.586 0.004 0.048 0.352 0.596
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.5184      0.598 0.000 0.024 0.304 0.672
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.4304      0.543 0.284 0.716 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4817      0.228 0.612 0.388 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.4262      0.594 0.008 0.756 0.000 0.236
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0524      0.663 0.000 0.008 0.988 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.7195      0.304 0.004 0.232 0.572 0.192
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.4262      0.594 0.008 0.756 0.000 0.236
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.7295      0.366 0.288 0.524 0.000 0.188
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.7254      0.356 0.300 0.524 0.000 0.176
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5950      0.294 0.416 0.544 0.000 0.040
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.5157      0.466 0.028 0.688 0.000 0.284
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.3271      0.756 0.856 0.132 0.000 0.012
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4998      0.156 0.488 0.512 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0188      0.667 0.000 0.000 0.996 0.004
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0657      0.871 0.984 0.004 0.000 0.012
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.6825      0.340 0.004 0.200 0.620 0.176
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.4382      0.556 0.000 0.704 0.000 0.296
#> 3353F579-77CA-4D0E-B794-37DE467CC065     4  0.5125      0.638 0.000 0.008 0.388 0.604
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0188      0.667 0.000 0.000 0.996 0.004
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.4228      0.596 0.008 0.760 0.000 0.232
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4128      0.477 0.004 0.020 0.808 0.168
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4382      0.529 0.296 0.704 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4304      0.543 0.284 0.716 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0817      0.866 0.976 0.024 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2370     0.7793 0.904 0.056 0.000 0.000 0.040
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.4201     0.6394 0.204 0.044 0.000 0.752 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.5878     0.8076 0.116 0.548 0.000 0.336 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.5768     0.7893 0.084 0.580 0.000 0.328 0.008
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.4888     0.6464 0.020 0.652 0.000 0.312 0.016
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0880     0.8545 0.000 0.032 0.000 0.968 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.6359     0.8067 0.152 0.532 0.000 0.308 0.008
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.8274     0.2551 0.000 0.220 0.372 0.144 0.264
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.6232     0.7206 0.208 0.568 0.000 0.220 0.004
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.3536     0.7366 0.000 0.156 0.000 0.812 0.032
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2798     0.7600 0.852 0.140 0.000 0.000 0.008
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.5182     0.7148 0.044 0.544 0.000 0.412 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.2179     0.8733 0.000 0.000 0.112 0.000 0.888
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2228     0.7749 0.912 0.048 0.000 0.000 0.040
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6622     0.6430 0.220 0.584 0.000 0.156 0.040
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.5927     0.8059 0.120 0.540 0.000 0.340 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3339     0.7671 0.840 0.112 0.000 0.000 0.048
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3474     0.7318 0.796 0.192 0.000 0.004 0.008
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.2300     0.7743 0.908 0.052 0.000 0.000 0.040
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3509     0.7281 0.792 0.196 0.000 0.004 0.008
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     5  0.2179     0.8733 0.000 0.000 0.112 0.000 0.888
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.5889     0.8057 0.116 0.544 0.000 0.340 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3509     0.7291 0.792 0.196 0.000 0.004 0.008
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.4509     0.6295 0.716 0.236 0.000 0.000 0.048
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2782     0.7616 0.880 0.072 0.000 0.000 0.048
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2228     0.7796 0.912 0.048 0.000 0.000 0.040
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2153     0.7796 0.916 0.044 0.000 0.000 0.040
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3582     0.7011 0.768 0.224 0.000 0.000 0.008
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.6520     0.6643 0.056 0.612 0.000 0.204 0.128
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3489     0.7151 0.784 0.208 0.000 0.004 0.004
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.3098     0.7587 0.000 0.148 0.000 0.836 0.016
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.9460    -0.1379 0.296 0.196 0.204 0.240 0.064
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.5324     0.6151 0.020 0.636 0.000 0.304 0.040
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.8116     0.3819 0.000 0.188 0.432 0.172 0.208
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0290     0.8647 0.000 0.008 0.000 0.992 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.6862    -0.0614 0.000 0.316 0.004 0.412 0.268
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.8118     0.3823 0.000 0.192 0.432 0.172 0.204
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.6017     0.8122 0.132 0.572 0.000 0.292 0.004
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1582     0.7808 0.944 0.028 0.000 0.000 0.028
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0880     0.8545 0.000 0.032 0.000 0.968 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.6555     0.7736 0.212 0.524 0.000 0.256 0.008
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6925     0.3867 0.560 0.188 0.000 0.200 0.052
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.5938     0.8120 0.128 0.552 0.000 0.320 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.5715     0.6543 0.000 0.204 0.080 0.040 0.676
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.2719     0.8013 0.000 0.068 0.048 0.000 0.884
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.5927     0.8059 0.120 0.540 0.000 0.340 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.5718     0.3698 0.380 0.544 0.000 0.068 0.008
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0290     0.8647 0.000 0.008 0.000 0.992 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0162     0.6814 0.000 0.004 0.996 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.8116     0.3819 0.000 0.188 0.432 0.172 0.208
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.4134     0.6500 0.196 0.044 0.000 0.760 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.4201     0.6394 0.204 0.044 0.000 0.752 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.6528     0.6002 0.344 0.496 0.000 0.148 0.012
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.6177     0.5303 0.000 0.556 0.000 0.232 0.212
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4201     0.4212 0.664 0.328 0.000 0.000 0.008
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.5946     0.4388 0.356 0.544 0.000 0.092 0.008
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1764     0.7719 0.928 0.064 0.000 0.000 0.008
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.7935     0.4014 0.000 0.188 0.460 0.144 0.208
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.2727     0.7846 0.000 0.116 0.000 0.868 0.016
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.2068     0.8736 0.000 0.004 0.092 0.000 0.904
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.6836 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.6240     0.4425 0.000 0.188 0.592 0.012 0.208
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.6009     0.8093 0.136 0.544 0.000 0.320 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.5987     0.8092 0.132 0.544 0.000 0.324 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3737     0.6973 0.764 0.224 0.000 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1908     0.7197 0.900 0.096 0.000 0.000 0.004 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.5510     0.5817 0.060 0.132 0.000 0.692 0.100 0.016
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2994     0.5432 0.000 0.788 0.000 0.208 0.004 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4877     0.2234 0.000 0.660 0.000 0.148 0.192 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9974 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.5837     0.6118 0.020 0.404 0.000 0.112 0.464 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0458     0.8296 0.000 0.000 0.000 0.984 0.016 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4760     0.4440 0.040 0.728 0.000 0.144 0.088 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     6  0.5794     0.5303 0.000 0.000 0.252 0.124 0.036 0.588
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2039     0.5253 0.000 0.904 0.000 0.076 0.020 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9974 0.000 0.000 1.000 0.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.4361     0.1425 0.000 0.024 0.000 0.552 0.424 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5913     0.3850 0.532 0.320 0.000 0.004 0.124 0.020
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3489     0.4303 0.000 0.708 0.000 0.288 0.004 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     6  0.5537     0.4651 0.048 0.020 0.036 0.000 0.272 0.624
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1531     0.7320 0.928 0.068 0.000 0.000 0.004 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.6049     0.6227 0.112 0.316 0.000 0.044 0.528 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3134     0.5443 0.004 0.784 0.000 0.208 0.004 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3738     0.5752 0.752 0.040 0.000 0.000 0.208 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.6396     0.1889 0.392 0.384 0.000 0.000 0.200 0.024
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1643     0.7318 0.924 0.068 0.000 0.000 0.008 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.6362    -0.2565 0.376 0.408 0.000 0.000 0.192 0.024
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     6  0.5520     0.4672 0.048 0.016 0.040 0.000 0.272 0.624
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2854     0.5439 0.000 0.792 0.000 0.208 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.6396    -0.2787 0.388 0.388 0.000 0.000 0.200 0.024
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.5289     0.2402 0.336 0.092 0.000 0.008 0.564 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.3062     0.6782 0.836 0.052 0.000 0.000 0.112 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1556     0.7305 0.920 0.080 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.1700     0.7299 0.916 0.080 0.000 0.000 0.004 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.5974    -0.0296 0.344 0.508 0.000 0.004 0.124 0.020
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.5436     0.6174 0.016 0.408 0.000 0.064 0.508 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.6127    -0.1240 0.376 0.468 0.000 0.004 0.128 0.024
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9974 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4453     0.1783 0.000 0.032 0.000 0.568 0.400 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.7851    -0.0512 0.372 0.008 0.068 0.276 0.036 0.240
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.5811     0.6572 0.020 0.360 0.000 0.116 0.504 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     6  0.5454     0.5165 0.000 0.000 0.292 0.156 0.000 0.552
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0146     0.9957 0.000 0.000 0.996 0.000 0.000 0.004
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0146     0.8381 0.000 0.000 0.000 0.996 0.004 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.6443     0.1425 0.000 0.024 0.000 0.320 0.428 0.228
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     6  0.5454     0.5165 0.000 0.000 0.292 0.156 0.000 0.552
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3698     0.4156 0.000 0.788 0.000 0.096 0.116 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.2852     0.7200 0.856 0.080 0.000 0.000 0.064 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0260     0.8359 0.000 0.000 0.000 0.992 0.008 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0146     0.9957 0.000 0.000 0.996 0.000 0.000 0.004
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5323     0.3782 0.096 0.692 0.000 0.120 0.092 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6079     0.3653 0.588 0.008 0.000 0.212 0.036 0.156
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2948     0.5408 0.000 0.804 0.000 0.188 0.008 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.3806     0.4972 0.000 0.000 0.024 0.040 0.144 0.792
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     6  0.5360     0.2805 0.048 0.016 0.008 0.000 0.428 0.500
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3134     0.5443 0.004 0.784 0.000 0.208 0.004 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.4294     0.4694 0.048 0.784 0.000 0.028 0.120 0.020
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0363     0.8374 0.000 0.000 0.000 0.988 0.012 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0146     0.9957 0.000 0.000 0.996 0.000 0.000 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     6  0.5454     0.5165 0.000 0.000 0.292 0.156 0.000 0.552
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0622     0.8403 0.000 0.012 0.000 0.980 0.008 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.5278     0.5995 0.044 0.132 0.000 0.708 0.100 0.016
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.5510     0.5817 0.060 0.132 0.000 0.692 0.100 0.016
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5071     0.3305 0.148 0.704 0.000 0.052 0.096 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.5607     0.6747 0.016 0.320 0.000 0.088 0.568 0.008
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.5688     0.0220 0.368 0.512 0.000 0.000 0.100 0.020
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4110     0.4820 0.036 0.800 0.000 0.036 0.108 0.020
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9974 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5136     0.5373 0.656 0.224 0.000 0.000 0.100 0.020
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     6  0.5244     0.4777 0.000 0.000 0.336 0.112 0.000 0.552
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.4047     0.4320 0.000 0.028 0.000 0.676 0.296 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     6  0.5490     0.4636 0.048 0.020 0.032 0.000 0.276 0.624
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9974 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0363     0.8432 0.000 0.012 0.000 0.988 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     6  0.4482     0.3429 0.000 0.000 0.416 0.032 0.000 0.552
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3074     0.5481 0.004 0.792 0.000 0.200 0.004 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2933     0.5488 0.004 0.796 0.000 0.200 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.5998    -0.0634 0.356 0.496 0.000 0.004 0.124 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.525           0.732       0.888         0.4835 0.539   0.539
#> 3 3 0.666           0.718       0.871         0.3592 0.696   0.489
#> 4 4 0.758           0.850       0.889         0.1427 0.852   0.598
#> 5 5 0.753           0.716       0.856         0.0666 0.910   0.658
#> 6 6 0.753           0.655       0.791         0.0348 0.981   0.905

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.9933     0.3233 0.452 0.548
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.7139     0.7174 0.196 0.804
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8365 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.8365 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000     0.9050 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.8365 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     1  0.9996     0.0561 0.512 0.488
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.8365 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.1633     0.8297 0.024 0.976
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000     0.9050 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000     0.8365 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000     0.9050 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     1  0.9933     0.1630 0.548 0.452
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.9954     0.3024 0.460 0.540
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8365 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000     0.9050 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.9933     0.3233 0.452 0.548
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000     0.8365 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.8365 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1184     0.8913 0.984 0.016
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.9933     0.3233 0.452 0.548
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.9933     0.3233 0.452 0.548
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.7219     0.7056 0.200 0.800
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.1184     0.8332 0.016 0.984
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000     0.9050 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.8365 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.7056     0.7133 0.192 0.808
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1633     0.8857 0.976 0.024
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.9710     0.1405 0.600 0.400
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.9933     0.3233 0.452 0.548
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.9933     0.3233 0.452 0.548
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.1184     0.8332 0.016 0.984
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000     0.8365 0.000 1.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.7376     0.6399 0.208 0.792
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.9710     0.4299 0.400 0.600
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000     0.9050 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.1843     0.8275 0.028 0.972
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000     0.9050 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.4815     0.7629 0.104 0.896
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000     0.9050 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000     0.9050 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.6148     0.7198 0.152 0.848
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000     0.9050 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000     0.9050 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.8365 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.8955     0.5701 0.312 0.688
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.9710     0.2571 0.400 0.600
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000     0.9050 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.8365 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6887     0.6632 0.816 0.184
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.8365 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0000     0.9050 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.1184     0.8332 0.016 0.984
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.1184     0.8332 0.016 0.984
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.0672     0.8984 0.992 0.008
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0938     0.8342 0.012 0.988
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8365 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0000     0.8365 0.000 1.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.1184     0.8332 0.016 0.984
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000     0.9050 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000     0.9050 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.1184     0.8332 0.016 0.984
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.1184     0.8332 0.016 0.984
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.7453     0.7020 0.212 0.788
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.5178     0.7762 0.116 0.884
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000     0.8365 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.8016     0.5845 0.244 0.756
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.0000     0.8365 0.000 1.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0000     0.8365 0.000 1.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000     0.9050 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.9710     0.4299 0.400 0.600
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000     0.9050 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     1  0.9933     0.1630 0.548 0.452
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000     0.9050 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000     0.9050 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0938     0.8342 0.012 0.988
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000     0.9050 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.8365 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.8365 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.9710     0.4299 0.400 0.600

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.000     0.8553 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2   0.624     0.0705 0.440 0.560 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.613     0.5610 0.400 0.600 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.588     0.5989 0.348 0.652 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3   0.000     0.9894 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.583     0.6039 0.340 0.660 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.369     0.6693 0.000 0.860 0.140
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.613     0.5610 0.400 0.600 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.000     0.7194 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3   0.000     0.9894 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.617     0.5425 0.412 0.588 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3   0.000     0.9894 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.319     0.6825 0.000 0.888 0.112
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.000     0.8553 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.000     0.7194 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3   0.000     0.9894 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.000     0.8553 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1   0.624    -0.2108 0.560 0.440 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.613     0.5610 0.400 0.600 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.622     0.1438 0.568 0.000 0.432
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000     0.8553 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.000     0.8553 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000     0.8553 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.000     0.7194 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3   0.000     0.9894 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.613     0.5610 0.400 0.600 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.000     0.8553 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1   0.631     0.0960 0.508 0.000 0.492
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.000     0.8553 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.000     0.8553 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.000     0.8553 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.000     0.7194 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.000     0.8553 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.633     0.5624 0.396 0.600 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000     0.8553 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3   0.000     0.9894 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.000     0.7194 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3   0.455     0.7672 0.000 0.200 0.800
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.493     0.6582 0.232 0.768 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3   0.000     0.9894 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3   0.000     0.9894 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.000     0.7194 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3   0.000     0.9894 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3   0.000     0.9894 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.613     0.5610 0.400 0.600 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.000     0.8553 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.000     0.7194 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3   0.000     0.9894 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.613     0.5610 0.400 0.600 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.956     0.0819 0.444 0.200 0.356
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.613     0.5610 0.400 0.600 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3   0.000     0.9894 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.000     0.7194 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.000     0.7194 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     3   0.000     0.9894 0.000 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.000     0.7194 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.613     0.5610 0.400 0.600 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1   0.000     0.8553 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.000     0.7194 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3   0.000     0.9894 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3   0.000     0.9894 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2   0.000     0.7194 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.000     0.7194 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2   0.623     0.0803 0.436 0.564 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2   0.624     0.0705 0.440 0.560 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1   0.613    -0.0842 0.600 0.400 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.744     0.6117 0.108 0.692 0.200
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.000     0.8553 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1   0.000     0.8553 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3   0.000     0.9894 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.000     0.8553 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3   0.000     0.9894 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.480     0.6217 0.000 0.780 0.220
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3   0.000     0.9894 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3   0.000     0.9894 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.000     0.7194 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3   0.000     0.9894 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.613     0.5610 0.400 0.600 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.613     0.5610 0.400 0.600 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.000     0.8553 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.4008      0.675 0.244 0.000 0.000 0.756
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3726      0.890 0.212 0.788 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0188      0.742 0.004 0.996 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3610      0.744 0.000 0.000 0.200 0.800
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3837      0.892 0.224 0.776 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.3569      0.852 0.000 0.196 0.804 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.4630      0.712 0.000 0.252 0.016 0.732
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4103      0.646 0.000 0.744 0.000 0.256
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.3726      0.844 0.000 0.212 0.788 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.3907      0.872 0.232 0.768 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.4155      0.654 0.756 0.004 0.240 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0336      0.912 0.992 0.008 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0188      0.912 0.996 0.004 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0469      0.910 0.988 0.012 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.3569      0.852 0.000 0.196 0.804 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0817      0.902 0.976 0.024 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.6792      0.495 0.588 0.272 0.140 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0469      0.908 0.988 0.012 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1022      0.895 0.968 0.032 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.739 0.000 1.000 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0336      0.912 0.992 0.008 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4008      0.734 0.000 0.244 0.000 0.756
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.3610      0.750 0.000 0.000 0.800 0.200
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.739 0.000 1.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.3801      0.840 0.000 0.220 0.780 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3873      0.892 0.228 0.772 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0188      0.912 0.996 0.004 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3837      0.892 0.224 0.776 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4669      0.628 0.764 0.000 0.036 0.200
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.4053      0.894 0.228 0.768 0.000 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.3764      0.842 0.000 0.216 0.784 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     3  0.4072      0.815 0.000 0.252 0.748 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.4193      0.869 0.268 0.732 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.3726      0.717 0.212 0.000 0.000 0.788
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.4072      0.663 0.252 0.000 0.000 0.748
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4193      0.864 0.268 0.732 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.739 0.000 1.000 0.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.3528      0.636 0.808 0.192 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4103      0.880 0.256 0.744 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.914 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.5558      0.544 0.000 0.036 0.324 0.640
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3801      0.840 0.000 0.220 0.780 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.899 0.000 0.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.916 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4741      0.894 0.228 0.744 0.000 0.028
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1022      0.895 0.968 0.032 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1121     0.8248 0.956 0.044 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.4509     0.6879 0.152 0.000 0.000 0.752 0.096
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.2376     0.8282 0.052 0.904 0.000 0.000 0.044
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.5046     0.0171 0.032 0.500 0.000 0.000 0.468
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3003     0.6910 0.000 0.000 0.188 0.812 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3081     0.7640 0.156 0.832 0.000 0.000 0.012
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.3690     0.6604 0.012 0.000 0.764 0.000 0.224
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0566     0.8693 0.004 0.984 0.000 0.000 0.012
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.3861     0.4501 0.004 0.000 0.000 0.284 0.712
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2595     0.8187 0.888 0.080 0.000 0.000 0.032
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0880     0.8517 0.000 0.968 0.000 0.032 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.4291     0.0677 0.000 0.000 0.464 0.000 0.536
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0510     0.8201 0.984 0.016 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.6724     0.0329 0.252 0.356 0.000 0.000 0.392
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3910     0.5981 0.720 0.000 0.272 0.000 0.008
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4876     0.7501 0.700 0.220 0.000 0.000 0.080
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0510     0.8201 0.984 0.016 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4822     0.7512 0.704 0.220 0.000 0.000 0.076
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.4227     0.2007 0.000 0.000 0.580 0.000 0.420
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4905     0.7467 0.696 0.224 0.000 0.000 0.080
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.5107     0.3854 0.332 0.004 0.044 0.000 0.620
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0671     0.8196 0.980 0.016 0.000 0.000 0.004
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0963     0.8254 0.964 0.036 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0703     0.8216 0.976 0.024 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.5441     0.6325 0.596 0.324 0.000 0.000 0.080
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.2773     0.5880 0.000 0.164 0.000 0.000 0.836
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4737     0.7538 0.708 0.224 0.000 0.000 0.068
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     5  0.4403     0.1557 0.004 0.000 0.000 0.436 0.560
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.5572     0.5771 0.084 0.000 0.692 0.188 0.036
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.3928     0.4289 0.004 0.296 0.000 0.000 0.700
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.1364     0.8975 0.012 0.000 0.952 0.000 0.036
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.2929     0.5591 0.000 0.000 0.180 0.000 0.820
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1281     0.8981 0.012 0.000 0.956 0.000 0.032
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.1117     0.8647 0.016 0.964 0.000 0.000 0.020
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0898     0.8161 0.972 0.020 0.000 0.000 0.008
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0404     0.8791 0.000 0.000 0.012 0.988 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3304     0.7507 0.168 0.816 0.000 0.000 0.016
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4074     0.6637 0.772 0.000 0.004 0.188 0.036
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.4262     0.1076 0.000 0.000 0.440 0.000 0.560
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.2230     0.6003 0.000 0.000 0.116 0.000 0.884
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.2017     0.8155 0.008 0.912 0.000 0.000 0.080
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.1364     0.8975 0.012 0.000 0.952 0.000 0.036
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.4469     0.6932 0.148 0.000 0.000 0.756 0.096
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.4509     0.6879 0.152 0.000 0.000 0.752 0.096
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.3789     0.6967 0.224 0.760 0.000 0.000 0.016
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.2648     0.5953 0.000 0.152 0.000 0.000 0.848
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.4807     0.2101 0.448 0.532 0.000 0.000 0.020
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0865     0.8638 0.004 0.972 0.000 0.000 0.024
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1408     0.8246 0.948 0.044 0.000 0.000 0.008
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1364     0.8975 0.012 0.000 0.952 0.000 0.036
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.6738    -0.0799 0.000 0.000 0.364 0.380 0.256
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.4161     0.2577 0.000 0.000 0.392 0.000 0.608
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.8870 0.000 0.000 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1364     0.8975 0.012 0.000 0.952 0.000 0.036
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0162     0.8739 0.004 0.996 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.5456     0.6259 0.592 0.328 0.000 0.000 0.080

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5 p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0603     0.7189 0.980 0.016 0.000 0.000 0.000 NA
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.5005     0.6573 0.060 0.000 0.020 0.692 0.016 NA
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0146     0.8500 0.000 0.996 0.000 0.000 0.000 NA
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4325     0.7252 0.044 0.768 0.000 0.000 0.064 NA
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.6005     0.1356 0.008 0.464 0.000 0.000 0.340 NA
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3908     0.6547 0.000 0.000 0.100 0.768 0.000 NA
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4428     0.6964 0.164 0.740 0.000 0.000 0.020 NA
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0146     0.8754 0.000 0.000 0.000 0.996 0.000 NA
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.2882     0.4339 0.000 0.000 0.812 0.000 0.180 NA
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.1387     0.8137 0.000 0.932 0.000 0.000 0.000 NA
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.5054     0.5454 0.004 0.004 0.004 0.184 0.676 NA
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4124     0.6724 0.764 0.068 0.004 0.000 0.008 NA
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0458     0.8440 0.000 0.984 0.000 0.016 0.000 NA
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.4524     0.2971 0.000 0.000 0.404 0.000 0.560 NA
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0260     0.7181 0.992 0.008 0.000 0.000 0.000 NA
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.7528     0.2259 0.168 0.208 0.000 0.000 0.348 NA
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.8498 0.000 1.000 0.000 0.000 0.000 NA
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.5198     0.4409 0.564 0.000 0.092 0.000 0.004 NA
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.5696     0.6254 0.564 0.200 0.000 0.000 0.008 NA
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0806     0.7156 0.972 0.008 0.000 0.000 0.000 NA
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.5577     0.6230 0.572 0.216 0.000 0.000 0.004 NA
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     5  0.5201     0.1395 0.000 0.000 0.408 0.000 0.500 NA
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0260     0.8490 0.000 0.992 0.000 0.000 0.000 NA
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.5837     0.6085 0.536 0.212 0.000 0.000 0.008 NA
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.5972     0.3309 0.240 0.000 0.004 0.000 0.484 NA
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1949     0.7004 0.904 0.004 0.000 0.000 0.004 NA
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0363     0.7195 0.988 0.012 0.000 0.000 0.000 NA
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0458     0.7191 0.984 0.016 0.000 0.000 0.000 NA
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.5916     0.4953 0.476 0.324 0.000 0.000 0.004 NA
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.2333     0.6295 0.000 0.092 0.000 0.000 0.884 NA
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5076     0.6304 0.636 0.236 0.000 0.000 0.004 NA
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     5  0.5984     0.2882 0.004 0.008 0.000 0.344 0.484 NA
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4741     0.4678 0.044 0.000 0.740 0.136 0.004 NA
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.5174     0.5258 0.004 0.152 0.000 0.008 0.660 NA
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0260     0.6923 0.000 0.000 0.992 0.000 0.008 NA
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0458     0.8696 0.000 0.000 0.000 0.984 0.000 NA
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.3649     0.5983 0.004 0.000 0.132 0.000 0.796 NA
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0405     0.6936 0.000 0.000 0.988 0.000 0.008 NA
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.2345     0.8211 0.020 0.900 0.000 0.000 0.020 NA
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.2001     0.6933 0.900 0.004 0.000 0.000 0.004 NA
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0603     0.8683 0.000 0.000 0.004 0.980 0.000 NA
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4668     0.6696 0.188 0.712 0.000 0.000 0.020 NA
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6771     0.3102 0.496 0.000 0.276 0.128 0.004 NA
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0405     0.8492 0.000 0.988 0.000 0.000 0.004 NA
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.3828     0.3153 0.000 0.000 0.440 0.000 0.560 NA
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0806     0.6265 0.000 0.000 0.020 0.000 0.972 NA
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8498 0.000 1.000 0.000 0.000 0.000 NA
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.3409     0.6714 0.024 0.788 0.000 0.000 0.004 NA
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0363     0.8731 0.000 0.000 0.000 0.988 0.000 NA
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0260     0.6923 0.000 0.000 0.992 0.000 0.008 NA
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0260     0.8742 0.000 0.000 0.000 0.992 0.000 NA
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.4863     0.6604 0.052 0.000 0.016 0.696 0.016 NA
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.5005     0.6573 0.060 0.000 0.020 0.692 0.016 NA
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4926     0.5984 0.252 0.660 0.000 0.000 0.020 NA
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.2384     0.6370 0.000 0.064 0.000 0.000 0.888 NA
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.5141     0.0482 0.504 0.420 0.000 0.000 0.004 NA
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.2006     0.7828 0.000 0.892 0.000 0.000 0.004 NA
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.3874     0.7674 0.000 0.000 0.636 0.000 0.008 NA
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1536     0.7150 0.940 0.016 0.000 0.000 0.004 NA
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0260     0.6923 0.000 0.000 0.992 0.000 0.008 NA
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.7526    -0.1328 0.000 0.000 0.184 0.328 0.180 NA
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.3887     0.4042 0.000 0.000 0.360 0.000 0.632 NA
#> 976507F2-192B-4095-920A-3014889CD617     3  0.3861     0.7669 0.000 0.000 0.640 0.000 0.008 NA
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.8765 0.000 0.000 0.000 1.000 0.000 NA
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0260     0.6923 0.000 0.000 0.992 0.000 0.008 NA
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.8498 0.000 1.000 0.000 0.000 0.000 NA
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.8498 0.000 1.000 0.000 0.000 0.000 NA
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.5907     0.5010 0.480 0.320 0.000 0.000 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.505           0.812       0.913         0.3809 0.633   0.633
#> 3 3 0.551           0.716       0.858         0.6220 0.692   0.533
#> 4 4 0.538           0.588       0.678         0.1311 0.760   0.488
#> 5 5 0.707           0.665       0.846         0.0952 0.871   0.617
#> 6 6 0.799           0.747       0.905         0.0317 0.970   0.871

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.0938      0.896 0.012 0.988
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.0000      0.902 0.000 1.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.902 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.902 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.860 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3114      0.884 0.056 0.944
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.6247      0.823 0.156 0.844
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.902 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.5946      0.834 0.144 0.856
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.7602      0.755 0.780 0.220
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.902 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.4298      0.833 0.912 0.088
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.5946      0.834 0.144 0.856
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.0000      0.902 0.000 1.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.902 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.860 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.8144      0.571 0.252 0.748
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.902 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.902 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.8955      0.643 0.688 0.312
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.0000      0.902 0.000 1.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.0000      0.902 0.000 1.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.0000      0.902 0.000 1.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.5946      0.834 0.144 0.856
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.860 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.902 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.0000      0.902 0.000 1.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.3879      0.876 0.076 0.924
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.9988     -0.180 0.480 0.520
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.7139      0.680 0.196 0.804
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.0000      0.902 0.000 1.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.5946      0.834 0.144 0.856
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000      0.902 0.000 1.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0938      0.899 0.012 0.988
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.0000      0.902 0.000 1.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.860 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.5946      0.834 0.144 0.856
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.8327      0.690 0.736 0.264
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3431      0.881 0.064 0.936
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.7602      0.755 0.780 0.220
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.860 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.5946      0.834 0.144 0.856
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.6247      0.823 0.156 0.844
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.7602      0.755 0.780 0.220
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.902 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.0000      0.902 0.000 1.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.6148      0.827 0.152 0.848
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.6531      0.783 0.832 0.168
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.902 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     2  0.9998     -0.202 0.492 0.508
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.902 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.9993      0.054 0.484 0.516
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.4431      0.867 0.092 0.908
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.5946      0.834 0.144 0.856
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.8661      0.647 0.288 0.712
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4431      0.868 0.092 0.908
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.902 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0000      0.902 0.000 1.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.5629      0.843 0.132 0.868
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.9815      0.270 0.580 0.420
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.4815      0.843 0.896 0.104
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.5946      0.834 0.144 0.856
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.5946      0.834 0.144 0.856
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.0672      0.900 0.008 0.992
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.0000      0.902 0.000 1.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.902 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.5842      0.837 0.140 0.860
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.0000      0.902 0.000 1.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0000      0.902 0.000 1.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.860 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.0000      0.902 0.000 1.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.3114      0.861 0.944 0.056
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.6247      0.823 0.156 0.844
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.3114      0.861 0.944 0.056
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.860 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0938      0.899 0.012 0.988
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.1633      0.863 0.976 0.024
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.902 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.902 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.0000      0.902 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8643 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.0000     0.7735 0.000 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.6126     0.5527 0.400 0.600 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.5098     0.6825 0.248 0.752 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.8452 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.4346     0.7176 0.184 0.816 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000     0.7735 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5254     0.6706 0.264 0.736 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000     0.7735 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.6140     0.6276 0.000 0.404 0.596
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.6126     0.5527 0.400 0.600 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.8452 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000     0.7735 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4062     0.7218 0.836 0.164 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.5859     0.6034 0.344 0.656 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.8452 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8643 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1  0.1964     0.8195 0.944 0.056 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.6126     0.5527 0.400 0.600 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1163     0.8471 0.972 0.028 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0237     0.8624 0.996 0.004 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8643 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000     0.8643 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000     0.7735 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.8452 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.6126     0.5527 0.400 0.600 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000     0.8643 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.5058     0.6187 0.756 0.244 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.8643 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8643 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8643 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000     0.7735 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.6192    -0.0922 0.580 0.420 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.4654     0.7019 0.208 0.792 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.8643 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.8452 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000     0.7735 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     2  0.8582     0.1185 0.308 0.568 0.124
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.4842     0.6962 0.224 0.776 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.6079     0.6499 0.000 0.388 0.612
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8452 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000     0.7735 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.0000     0.7735 0.000 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.6111     0.6399 0.000 0.396 0.604
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.6126     0.5527 0.400 0.600 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.8643 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000     0.7735 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.1643     0.8404 0.000 0.044 0.956
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.6126     0.5527 0.400 0.600 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6126     0.3603 0.600 0.400 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.6126     0.5527 0.400 0.600 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.0000     0.7735 0.000 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000     0.7735 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000     0.7735 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.8491     0.4038 0.572 0.312 0.116
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000     0.7735 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.6126     0.5527 0.400 0.600 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.6126     0.5527 0.400 0.600 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0000     0.7735 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.4702     0.8025 0.000 0.212 0.788
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.5178     0.7806 0.000 0.256 0.744
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000     0.7735 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000     0.7735 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.0000     0.7735 0.000 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.0000     0.7735 0.000 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.4974     0.5353 0.764 0.236 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.3816     0.7347 0.148 0.852 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.8643 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.6126     0.5527 0.400 0.600 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.8452 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.8643 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.4750     0.8025 0.000 0.216 0.784
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000     0.7735 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.7997     0.4611 0.644 0.120 0.236
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.8452 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000     0.7735 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4504     0.8104 0.000 0.196 0.804
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.6126     0.5527 0.400 0.600 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.6126     0.5527 0.400 0.600 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1289     0.8418 0.968 0.032 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.361    0.55312 0.800 0.200 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     4   0.802   -0.03018 0.232 0.016 0.272 0.480
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3   0.422    0.91096 0.000 0.272 0.728 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4   0.715    0.34464 0.176 0.016 0.196 0.612
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4   0.795    0.00876 0.248 0.016 0.240 0.496
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     2   0.661    0.55720 0.000 0.592 0.112 0.296
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3   0.422    0.91096 0.000 0.272 0.728 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.548    0.46650 0.736 0.128 0.000 0.136
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     1   0.787    0.45797 0.448 0.004 0.272 0.276
#> AC78918E-1031-4AE6-B753-B0799171F0F0     2   0.365    0.23708 0.000 0.796 0.204 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.361    0.55312 0.800 0.200 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1   0.507    0.55494 0.744 0.200 0.000 0.056
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.436    0.53418 0.784 0.188 0.000 0.028
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000    0.59212 1.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.361    0.55312 0.800 0.200 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000    0.59212 1.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     2   0.365    0.23708 0.000 0.796 0.204 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.000    0.59212 1.000 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1   0.676    0.33194 0.612 0.200 0.000 0.188
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.344    0.55555 0.816 0.184 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.344    0.55555 0.816 0.184 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.361    0.55312 0.800 0.200 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.683    0.57592 0.584 0.000 0.272 0.144
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4   0.530    0.51589 0.228 0.016 0.028 0.728
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000    0.59212 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3   0.422    0.91096 0.000 0.272 0.728 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     4   0.818   -0.19410 0.168 0.312 0.036 0.484
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4   0.436    0.57297 0.220 0.016 0.000 0.764
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     2   0.661    0.55720 0.000 0.592 0.112 0.296
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3   0.422    0.91096 0.000 0.272 0.728 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4   0.413    0.40514 0.000 0.260 0.000 0.740
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     2   0.663    0.55827 0.000 0.592 0.116 0.292
#> 43CD31CD-5FAE-418A-B235-49E54560590D     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.361    0.55312 0.800 0.200 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3   0.440    0.90431 0.000 0.272 0.724 0.004
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     1   0.805    0.53524 0.488 0.020 0.272 0.220
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.790   -0.27241 0.356 0.296 0.000 0.348
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     1   0.771    0.54102 0.504 0.008 0.272 0.216
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4   0.452    0.27046 0.000 0.320 0.000 0.680
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.613    0.30304 0.152 0.700 0.008 0.140
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3   0.768    0.22456 0.000 0.268 0.460 0.272
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     2   0.691    0.53571 0.000 0.592 0.188 0.220
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1   0.918    0.57864 0.428 0.196 0.272 0.104
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4   0.360    0.69502 0.148 0.016 0.000 0.836
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.729    0.57890 0.532 0.200 0.268 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3   0.422    0.91096 0.000 0.272 0.728 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.361    0.55312 0.800 0.200 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     2   0.691    0.53165 0.000 0.592 0.192 0.216
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     2   0.514    0.25334 0.264 0.708 0.020 0.008
#> 976507F2-192B-4095-920A-3014889CD617     3   0.422    0.91096 0.000 0.272 0.728 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4   0.000    0.83486 0.000 0.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     2   0.691    0.49322 0.000 0.592 0.216 0.192
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> E25C9578-9493-466E-A2CD-546DEB076B2D     1   0.741    0.54300 0.512 0.000 0.272 0.216
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.353    0.59955 0.836 0.000 0.152 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.5810     0.3621 0.124 0.580 0.000 0.296 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.6089     0.0315 0.124 0.408 0.000 0.468 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5902     0.3338 0.124 0.556 0.000 0.320 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.7346     0.6638 0.056 0.000 0.488 0.200 0.256
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4835     0.6151 0.724 0.156 0.000 0.120 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.2376     0.7219 0.044 0.904 0.000 0.052 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0794     0.5507 0.000 0.000 0.972 0.000 0.028
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1  0.2661     0.7831 0.888 0.056 0.000 0.056 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3241     0.7472 0.832 0.144 0.000 0.024 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.4262     0.1459 0.440 0.560 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.4262     0.1459 0.440 0.560 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0794     0.5507 0.000 0.000 0.972 0.000 0.028
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.4262     0.1459 0.440 0.560 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2891     0.7331 0.824 0.176 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2929     0.7284 0.820 0.180 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.5222     0.5328 0.124 0.196 0.000 0.680 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.4262     0.1459 0.440 0.560 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     4  0.7330    -0.3870 0.044 0.000 0.332 0.436 0.188
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.4593     0.6165 0.124 0.128 0.000 0.748 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.7346     0.6638 0.056 0.000 0.488 0.200 0.256
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4150     0.0945 0.000 0.000 0.388 0.612 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.7346     0.6638 0.056 0.000 0.488 0.200 0.256
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0510     0.7642 0.016 0.984 0.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.2629     0.6743 0.136 0.860 0.000 0.004 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6763    -0.1879 0.396 0.000 0.280 0.324 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.1792     0.7210 0.084 0.916 0.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.5403     0.3067 0.056 0.000 0.488 0.456 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     3  0.0794     0.5596 0.000 0.000 0.972 0.028 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     5  0.3796     0.4073 0.000 0.000 0.000 0.300 0.700
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.7323     0.6591 0.056 0.000 0.488 0.188 0.268
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4307    -0.0133 0.496 0.504 0.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3992     0.6820 0.124 0.080 0.000 0.796 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4306    -0.0662 0.508 0.492 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1341     0.8240 0.944 0.056 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.7314     0.6560 0.056 0.000 0.488 0.184 0.272
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000     0.5619 0.000 0.000 1.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     5  0.0000     0.9295 0.000 0.000 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.8781 0.000 0.000 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.7150     0.6010 0.056 0.000 0.488 0.140 0.316
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.7709 0.000 1.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.3109     0.5893 0.200 0.800 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4 p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0146     0.7942 0.996 0.004 0.000 0.000  0 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.5575     0.3011 0.172 0.532 0.000 0.296  0 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.5742    -0.0317 0.168 0.400 0.000 0.432  0 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5721     0.2221 0.176 0.480 0.000 0.344  0 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     6  0.0146     0.8951 0.000 0.000 0.000 0.004  0 0.996
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3869     0.6294 0.772 0.100 0.000 0.128  0 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.2190     0.7257 0.060 0.900 0.000 0.040  0 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.7953 1.000 0.000 0.000 0.000  0 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1  0.1204     0.7555 0.944 0.000 0.000 0.056  0 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2454     0.6979 0.840 0.160 0.000 0.000  0 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.3823     0.2026 0.436 0.564 0.000 0.000  0 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.7953 1.000 0.000 0.000 0.000  0 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.3823     0.2026 0.436 0.564 0.000 0.000  0 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.3823     0.2026 0.436 0.564 0.000 0.000  0 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.0000     0.7953 1.000 0.000 0.000 0.000  0 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2491     0.6883 0.836 0.164 0.000 0.000  0 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2562     0.6792 0.828 0.172 0.000 0.000  0 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.7953 1.000 0.000 0.000 0.000  0 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.4434     0.6413 0.172 0.116 0.000 0.712  0 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.3823     0.2026 0.436 0.564 0.000 0.000  0 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     6  0.3810     0.2517 0.000 0.000 0.000 0.428  0 0.572
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.4094     0.6793 0.168 0.088 0.000 0.744  0 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     6  0.0000     0.8995 0.000 0.000 0.000 0.000  0 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     6  0.0000     0.8995 0.000 0.000 0.000 0.000  0 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0547     0.7720 0.020 0.980 0.000 0.000  0 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.7953 1.000 0.000 0.000 0.000  0 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.2948     0.6179 0.188 0.804 0.000 0.008  0 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.3607     0.4368 0.652 0.000 0.000 0.348  0 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.1863     0.7112 0.104 0.896 0.000 0.000  0 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.0000     0.8995 0.000 0.000 0.000 0.000  0 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.3854     0.1245 0.000 0.000 0.536 0.464  0 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     6  0.0000     0.8995 0.000 0.000 0.000 0.000  0 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.3833     0.1077 0.556 0.444 0.000 0.000  0 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4187     0.6738 0.168 0.096 0.000 0.736  0 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.3823     0.1291 0.564 0.436 0.000 0.000  0 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.7953 1.000 0.000 0.000 0.000  0 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     6  0.0000     0.8995 0.000 0.000 0.000 0.000  0 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.8920 0.000 0.000 1.000 0.000  0 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000     0.9327 0.000 0.000 0.000 1.000  0 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     6  0.0000     0.8995 0.000 0.000 0.000 0.000  0 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.7811 0.000 1.000 0.000 0.000  0 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.2793     0.6025 0.200 0.800 0.000 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.404           0.697       0.855         0.4626 0.596   0.596
#> 3 3 0.451           0.738       0.822         0.3422 0.753   0.594
#> 4 4 0.491           0.566       0.762         0.1149 0.929   0.822
#> 5 5 0.556           0.631       0.742         0.0891 0.832   0.548
#> 6 6 0.629           0.588       0.765         0.0523 0.857   0.486

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.8763     0.6356 0.296 0.704
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.9170     0.6162 0.332 0.668
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.7696 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.8763     0.4910 0.296 0.704
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000     0.9385 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.9209     0.4466 0.336 0.664
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.8713     0.5381 0.292 0.708
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.7696 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.4431     0.7467 0.092 0.908
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000     0.9385 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0672     0.7696 0.008 0.992
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000     0.9385 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.9993     0.1115 0.484 0.516
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.9000     0.6257 0.316 0.684
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0938     0.7704 0.012 0.988
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0672     0.9336 0.992 0.008
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.8763     0.6356 0.296 0.704
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.5059     0.7261 0.112 0.888
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7696 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     2  1.0000     0.3048 0.496 0.504
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.8813     0.6343 0.300 0.700
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.8763     0.6356 0.296 0.704
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.8081     0.6758 0.248 0.752
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.2236     0.7698 0.036 0.964
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0672     0.9336 0.992 0.008
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.7696 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.7139     0.7098 0.196 0.804
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.9815    -0.0885 0.580 0.420
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.8861     0.6314 0.304 0.696
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.8763     0.6356 0.296 0.704
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.8763     0.6356 0.296 0.704
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2236     0.7698 0.036 0.964
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.6887     0.7163 0.184 0.816
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.9996     0.0998 0.488 0.512
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.8763     0.6356 0.296 0.704
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000     0.9385 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.9983     0.1343 0.476 0.524
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.9922    -0.1716 0.552 0.448
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.9881     0.2390 0.436 0.564
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000     0.9385 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000     0.9385 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.2236     0.7698 0.036 0.964
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.1414     0.9226 0.980 0.020
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000     0.9385 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4022     0.7410 0.080 0.920
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.8763     0.6356 0.296 0.704
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.8327     0.5778 0.264 0.736
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000     0.9385 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.7696 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     2  0.9170     0.6162 0.332 0.668
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.7696 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0672     0.9336 0.992 0.008
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.2236     0.7698 0.036 0.964
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.2236     0.7698 0.036 0.964
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.0672     0.9336 0.992 0.008
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.2236     0.7698 0.036 0.964
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7696 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0672     0.7696 0.008 0.992
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.4161     0.7520 0.084 0.916
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000     0.9385 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000     0.9385 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.2236     0.7698 0.036 0.964
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.2236     0.7698 0.036 0.964
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.7602     0.7115 0.220 0.780
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.8813     0.6525 0.300 0.700
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000     0.7696 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.9998     0.0869 0.492 0.508
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.6887     0.7163 0.184 0.816
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0672     0.7696 0.008 0.992
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000     0.9385 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.8763     0.6356 0.296 0.704
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000     0.9385 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.8713     0.5381 0.292 0.708
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0672     0.9336 0.992 0.008
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000     0.9385 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.2236     0.7698 0.036 0.964
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000     0.9385 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.7696 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.7696 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.8763     0.6356 0.296 0.704

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.175      0.888 0.952 0.048 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2   0.577      0.494 0.260 0.728 0.012
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.613      0.626 0.400 0.600 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.597      0.639 0.364 0.636 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3   0.000      0.906 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.840      0.657 0.220 0.620 0.160
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.286      0.706 0.004 0.912 0.084
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.613      0.626 0.400 0.600 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.103      0.717 0.024 0.976 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3   0.236      0.885 0.000 0.072 0.928
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.608      0.637 0.388 0.612 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3   0.000      0.906 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.656      0.630 0.040 0.708 0.252
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.531      0.767 0.816 0.048 0.136
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.412      0.733 0.108 0.868 0.024
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3   0.277      0.888 0.048 0.024 0.928
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.175      0.888 0.952 0.048 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.795      0.649 0.320 0.600 0.080
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.556      0.689 0.300 0.700 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.762      0.314 0.560 0.048 0.392
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.264      0.876 0.932 0.048 0.020
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.175      0.888 0.952 0.048 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.254      0.857 0.920 0.080 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.103      0.717 0.024 0.976 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3   0.277      0.888 0.048 0.024 0.928
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.571      0.681 0.320 0.680 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.288      0.836 0.904 0.096 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2   0.901      0.482 0.140 0.500 0.360
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.579      0.732 0.784 0.048 0.168
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.175      0.888 0.952 0.048 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.175      0.888 0.952 0.048 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.103      0.717 0.024 0.976 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.175      0.888 0.952 0.048 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.625      0.497 0.004 0.620 0.376
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.175      0.888 0.952 0.048 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3   0.000      0.906 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.748      0.675 0.132 0.696 0.172
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3   0.839      0.565 0.224 0.156 0.620
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.807      0.630 0.120 0.636 0.244
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3   0.327      0.861 0.000 0.116 0.884
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3   0.000      0.906 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.145      0.718 0.024 0.968 0.008
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3   0.606      0.537 0.004 0.340 0.656
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3   0.327      0.861 0.000 0.116 0.884
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.613      0.626 0.400 0.600 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.175      0.888 0.952 0.048 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.346      0.716 0.024 0.900 0.076
#> B76DB955-69B7-4D05-8166-2569ED44628C     3   0.000      0.906 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.613      0.626 0.400 0.600 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.832      0.520 0.628 0.160 0.212
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.613      0.700 0.268 0.712 0.020
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3   0.357      0.861 0.004 0.120 0.876
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.103      0.717 0.024 0.976 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.103      0.717 0.024 0.976 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     3   0.648      0.659 0.048 0.224 0.728
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.207      0.724 0.060 0.940 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.579      0.674 0.332 0.668 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.613      0.626 0.400 0.600 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.704      0.697 0.136 0.728 0.136
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3   0.000      0.906 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3   0.327      0.861 0.000 0.116 0.884
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2   0.103      0.717 0.024 0.976 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.103      0.717 0.024 0.976 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2   0.483      0.620 0.204 0.792 0.004
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2   0.558      0.511 0.256 0.736 0.008
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.613      0.626 0.400 0.600 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.625      0.497 0.004 0.620 0.376
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.450      0.644 0.804 0.196 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.613      0.626 0.400 0.600 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3   0.000      0.906 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.175      0.888 0.952 0.048 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3   0.236      0.885 0.000 0.072 0.928
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.327      0.699 0.000 0.884 0.116
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3   0.277      0.888 0.048 0.024 0.928
#> 976507F2-192B-4095-920A-3014889CD617     3   0.000      0.906 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.207      0.724 0.060 0.940 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3   0.000      0.906 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.610      0.634 0.392 0.608 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.568      0.682 0.316 0.684 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.175      0.888 0.952 0.048 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000    0.82762 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.5693    0.48644 0.240 0.704 0.024 0.032
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4790    0.48558 0.380 0.620 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.6261    0.52305 0.320 0.620 0.020 0.040
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.3219    0.58037 0.000 0.000 0.836 0.164
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.7685    0.50784 0.132 0.620 0.168 0.080
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.6922    0.54030 0.000 0.584 0.168 0.248
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4855    0.46163 0.400 0.600 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.4079    0.35174 0.000 0.020 0.800 0.180
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3801    0.62152 0.220 0.780 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3219    0.58037 0.000 0.000 0.836 0.164
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.7058    0.43208 0.000 0.560 0.168 0.272
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5053    0.52840 0.732 0.020 0.236 0.012
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3734    0.61772 0.020 0.852 0.116 0.012
#> AC78918E-1031-4AE6-B753-B0799171F0F0     4  0.4855    0.94376 0.000 0.000 0.400 0.600
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0188    0.82721 0.996 0.000 0.000 0.004
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6637    0.51125 0.292 0.608 0.092 0.008
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3726    0.62540 0.212 0.788 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.6109    0.22360 0.560 0.016 0.400 0.024
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2589    0.74303 0.884 0.000 0.116 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0188    0.82721 0.996 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0921    0.80829 0.972 0.028 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.4907   -0.53434 0.000 0.000 0.580 0.420
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3726    0.62540 0.212 0.788 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.1297    0.81594 0.964 0.020 0.016 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     3  0.8039   -0.18044 0.176 0.372 0.432 0.020
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.5497    0.32187 0.608 0.012 0.372 0.008
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0188    0.82721 0.996 0.000 0.000 0.004
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0188    0.82721 0.996 0.000 0.000 0.004
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0592    0.81974 0.984 0.016 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.7183    0.44355 0.020 0.616 0.168 0.196
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000    0.82762 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.3219    0.58037 0.000 0.000 0.836 0.164
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.7587    0.46416 0.040 0.600 0.168 0.192
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4639    0.51642 0.112 0.052 0.816 0.020
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.7004    0.44095 0.012 0.620 0.168 0.200
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.1174    0.69254 0.000 0.020 0.968 0.012
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0592    0.69418 0.000 0.000 0.984 0.016
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.4535    0.58858 0.000 0.744 0.016 0.240
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.7747   -0.00891 0.000 0.388 0.380 0.232
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1174    0.69254 0.000 0.020 0.968 0.012
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4855    0.46163 0.400 0.600 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000    0.82762 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.6823    0.54666 0.000 0.596 0.160 0.244
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0592    0.69418 0.000 0.000 0.984 0.016
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4855    0.46163 0.400 0.600 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6612    0.25239 0.560 0.048 0.372 0.020
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.3870    0.62706 0.208 0.788 0.000 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.4327    0.24062 0.000 0.016 0.768 0.216
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.5428    0.97266 0.000 0.020 0.380 0.600
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.3764    0.59708 0.000 0.784 0.000 0.216
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3764    0.62363 0.216 0.784 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4961   -0.28017 0.552 0.448 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.7307    0.42791 0.000 0.468 0.156 0.376
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1059    0.69569 0.000 0.016 0.972 0.012
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.1174    0.69254 0.000 0.020 0.968 0.012
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.5192    0.54453 0.204 0.748 0.020 0.028
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.5530    0.51801 0.220 0.724 0.024 0.032
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4855    0.46163 0.400 0.600 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.6702    0.42925 0.000 0.616 0.168 0.216
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2281    0.72017 0.904 0.096 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4948    0.42069 0.440 0.560 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.3219    0.58037 0.000 0.000 0.836 0.164
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000    0.82762 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1174    0.69254 0.000 0.020 0.968 0.012
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.5470    0.57611 0.000 0.732 0.168 0.100
#> 3353F579-77CA-4D0E-B794-37DE467CC065     4  0.5428    0.97266 0.000 0.020 0.380 0.600
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0707    0.69146 0.000 0.000 0.980 0.020
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.3942    0.58763 0.000 0.764 0.000 0.236
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0592    0.69626 0.000 0.016 0.984 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3975    0.60965 0.240 0.760 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3726    0.62540 0.212 0.788 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000    0.82762 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.507     0.7892 0.696 0.188 0.000 0.000 0.116
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4   0.344     0.6327 0.008 0.188 0.004 0.800 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.468     0.6616 0.072 0.720 0.000 0.208 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.479     0.5656 0.212 0.728 0.000 0.028 0.032
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3   0.000     0.6553 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.533     0.5042 0.240 0.680 0.000 0.028 0.052
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4   0.474     0.5559 0.296 0.004 0.000 0.668 0.032
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.459     0.6598 0.068 0.728 0.000 0.204 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3   0.532     0.6417 0.296 0.000 0.624 0.000 0.080
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.372     0.6825 0.004 0.776 0.000 0.208 0.012
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3   0.000     0.6553 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4   0.801     0.1863 0.296 0.208 0.000 0.392 0.104
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.340     0.5756 0.840 0.096 0.064 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.621     0.4881 0.184 0.540 0.000 0.276 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5   0.247     0.8291 0.136 0.000 0.000 0.000 0.864
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.509     0.7881 0.696 0.180 0.000 0.000 0.124
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.374     0.5939 0.064 0.848 0.060 0.020 0.008
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.356     0.6828 0.000 0.780 0.000 0.208 0.012
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.241     0.3769 0.896 0.004 0.088 0.000 0.012
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.501     0.7742 0.644 0.300 0.056 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.509     0.7881 0.696 0.180 0.000 0.000 0.124
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.411     0.7902 0.684 0.308 0.000 0.000 0.008
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     5   0.631     0.0961 0.136 0.004 0.392 0.000 0.468
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.356     0.6828 0.000 0.780 0.000 0.208 0.012
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.391     0.7823 0.676 0.324 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2   0.602     0.1868 0.364 0.536 0.088 0.000 0.012
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.210     0.4135 0.916 0.004 0.068 0.000 0.012
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.509     0.7881 0.696 0.180 0.000 0.000 0.124
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.509     0.7881 0.696 0.180 0.000 0.000 0.124
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.389     0.7824 0.680 0.320 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.565     0.2883 0.304 0.600 0.000 0.004 0.092
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.384     0.7908 0.692 0.308 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3   0.000     0.6553 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.588     0.3229 0.320 0.584 0.000 0.016 0.080
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3   0.450     0.7280 0.304 0.004 0.676 0.004 0.012
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.562     0.2907 0.308 0.600 0.000 0.004 0.088
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3   0.415     0.7417 0.296 0.000 0.692 0.000 0.012
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3   0.104     0.6831 0.040 0.000 0.960 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4   0.212     0.7134 0.096 0.000 0.000 0.900 0.004
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4   0.798     0.1930 0.296 0.208 0.000 0.396 0.100
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3   0.415     0.7417 0.296 0.000 0.692 0.000 0.012
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.251     0.5910 0.080 0.892 0.000 0.028 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.410     0.7937 0.692 0.300 0.004 0.000 0.004
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4   0.416     0.5827 0.280 0.000 0.000 0.704 0.016
#> B76DB955-69B7-4D05-8166-2569ED44628C     3   0.252     0.7163 0.108 0.000 0.880 0.000 0.012
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.359     0.6286 0.080 0.828 0.000 0.092 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.257     0.3802 0.892 0.004 0.088 0.004 0.012
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.361     0.6810 0.008 0.780 0.004 0.208 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4   0.914     0.0463 0.296 0.208 0.072 0.324 0.100
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5   0.263     0.8269 0.136 0.004 0.000 0.000 0.860
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.356     0.6828 0.000 0.780 0.000 0.208 0.012
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.488     0.6278 0.108 0.716 0.000 0.176 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4   0.636     0.5382 0.256 0.060 0.000 0.604 0.080
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3   0.415     0.7417 0.296 0.000 0.692 0.000 0.012
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3   0.415     0.7417 0.296 0.000 0.692 0.000 0.012
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4   0.407     0.6292 0.036 0.188 0.004 0.772 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4   0.344     0.6327 0.008 0.188 0.004 0.800 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.309     0.6027 0.088 0.860 0.000 0.052 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.571     0.2774 0.296 0.600 0.000 0.004 0.100
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.473     0.6453 0.580 0.400 0.000 0.000 0.020
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.476     0.6507 0.080 0.716 0.000 0.204 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3   0.000     0.6553 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.442     0.7966 0.692 0.280 0.000 0.000 0.028
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3   0.413     0.7434 0.292 0.000 0.696 0.000 0.012
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4   0.531     0.5346 0.296 0.028 0.000 0.644 0.032
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5   0.247     0.8291 0.136 0.000 0.000 0.000 0.864
#> 976507F2-192B-4095-920A-3014889CD617     3   0.247     0.7156 0.104 0.000 0.884 0.000 0.012
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4   0.000     0.7445 0.000 0.000 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3   0.404     0.7461 0.276 0.000 0.712 0.000 0.012
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.356     0.6828 0.000 0.780 0.000 0.208 0.012
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.356     0.6828 0.000 0.780 0.000 0.208 0.012
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.384     0.7908 0.692 0.308 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.3790     0.6537 0.772 0.024 0.000 0.000 0.020 0.184
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.5873     0.3206 0.432 0.200 0.000 0.368 0.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2106     0.7815 0.032 0.904 0.000 0.000 0.064 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     5  0.3789     0.0522 0.000 0.416 0.000 0.000 0.584 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0291     0.5941 0.000 0.000 0.992 0.000 0.004 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.3050     0.4732 0.000 0.236 0.000 0.000 0.764 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3866    -0.0509 0.000 0.000 0.000 0.516 0.484 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4222     0.7151 0.088 0.728 0.000 0.000 0.184 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.3756     0.5905 0.000 0.000 0.600 0.000 0.400 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2473     0.6964 0.136 0.856 0.000 0.000 0.008 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0291     0.5941 0.000 0.000 0.992 0.000 0.004 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.2092     0.6566 0.000 0.000 0.000 0.124 0.876 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3265     0.5373 0.748 0.000 0.000 0.000 0.248 0.004
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3440     0.5582 0.000 0.776 0.000 0.028 0.196 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     6  0.2664     0.8202 0.000 0.000 0.000 0.000 0.184 0.816
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.3189     0.6428 0.796 0.000 0.000 0.000 0.020 0.184
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.2325     0.6401 0.048 0.060 0.000 0.000 0.892 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7998 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.4101     0.2942 0.580 0.000 0.000 0.000 0.408 0.012
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2003     0.6859 0.884 0.116 0.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3088     0.6481 0.808 0.000 0.000 0.000 0.020 0.172
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1765     0.6904 0.904 0.096 0.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     6  0.5915     0.1922 0.000 0.000 0.360 0.000 0.212 0.428
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.7998 0.000 1.000 0.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2340     0.6699 0.852 0.148 0.000 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.2009     0.6543 0.068 0.024 0.000 0.000 0.908 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.4101     0.3277 0.580 0.000 0.000 0.000 0.408 0.012
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3189     0.6428 0.796 0.000 0.000 0.000 0.020 0.184
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3189     0.6428 0.796 0.000 0.000 0.000 0.020 0.184
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2135     0.6805 0.872 0.128 0.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0937     0.6873 0.000 0.040 0.000 0.000 0.960 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.2048     0.6850 0.880 0.120 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.5973 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     5  0.1219     0.6894 0.000 0.048 0.000 0.004 0.948 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     5  0.5839    -0.2783 0.188 0.000 0.404 0.000 0.408 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.1141     0.6880 0.000 0.052 0.000 0.000 0.948 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3756     0.5905 0.000 0.000 0.600 0.000 0.400 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.5973 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.2260     0.7101 0.000 0.000 0.000 0.860 0.140 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.2234     0.6534 0.000 0.000 0.000 0.124 0.872 0.004
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.3756     0.5905 0.000 0.000 0.600 0.000 0.400 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5228     0.4394 0.096 0.504 0.000 0.000 0.400 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.2358     0.6892 0.876 0.108 0.000 0.000 0.016 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.3717     0.2303 0.000 0.000 0.000 0.616 0.384 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.1910     0.6241 0.000 0.000 0.892 0.000 0.108 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5144     0.5215 0.100 0.560 0.000 0.000 0.340 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4010     0.2964 0.584 0.000 0.000 0.000 0.408 0.008
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.3693     0.7514 0.092 0.788 0.000 0.000 0.120 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.4414     0.0795 0.000 0.000 0.336 0.032 0.628 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     6  0.2994     0.8118 0.000 0.004 0.000 0.000 0.208 0.788
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1007     0.8243 0.000 0.044 0.000 0.956 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7998 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.3684     0.4097 0.628 0.372 0.000 0.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     5  0.4911     0.2547 0.000 0.068 0.000 0.384 0.548 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.3907     0.5784 0.000 0.000 0.588 0.000 0.408 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3756     0.5905 0.000 0.000 0.600 0.000 0.400 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.8523 0.000 0.000 0.000 1.000 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6631     0.3275 0.428 0.200 0.000 0.328 0.044 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.5873     0.3206 0.432 0.200 0.000 0.368 0.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.5940     0.0606 0.456 0.248 0.000 0.000 0.296 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0937     0.6873 0.000 0.040 0.000 0.000 0.960 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1327     0.6896 0.936 0.064 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3995     0.1793 0.516 0.480 0.000 0.000 0.004 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.5973 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0632     0.6899 0.976 0.024 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3672     0.6155 0.000 0.000 0.632 0.000 0.368 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.2631     0.6160 0.000 0.000 0.000 0.180 0.820 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     6  0.2664     0.8202 0.000 0.000 0.000 0.000 0.184 0.816
#> 976507F2-192B-4095-920A-3014889CD617     3  0.2070     0.6215 0.000 0.000 0.892 0.000 0.100 0.008
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1007     0.8243 0.000 0.044 0.000 0.956 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.3428     0.6337 0.000 0.000 0.696 0.000 0.304 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.7998 0.000 1.000 0.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.7998 0.000 1.000 0.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.2003     0.6859 0.884 0.116 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.921           0.923       0.969         0.5060 0.494   0.494
#> 3 3 0.630           0.672       0.843         0.3133 0.740   0.520
#> 4 4 0.566           0.472       0.748         0.1117 0.686   0.302
#> 5 5 0.780           0.741       0.876         0.0783 0.855   0.520
#> 6 6 0.750           0.644       0.796         0.0448 0.863   0.466

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2  0.0000      0.953 0.000 1.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.9323      0.429 0.652 0.348
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.953 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4431      0.873 0.092 0.908
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.980 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.8016      0.686 0.244 0.756
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     1  0.0000      0.980 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.953 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     1  0.0000      0.980 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.980 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.953 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.980 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     1  0.0000      0.980 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2  0.0000      0.953 0.000 1.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.953 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.980 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2  0.0000      0.953 0.000 1.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.953 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.953 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     2  0.3584      0.897 0.068 0.932
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.0000      0.953 0.000 1.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.0000      0.953 0.000 1.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.0000      0.953 0.000 1.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.0000      0.980 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.980 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.953 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.0000      0.953 0.000 1.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.0672      0.947 0.008 0.992
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2  0.0000      0.953 0.000 1.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2  0.0000      0.953 0.000 1.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2  0.0000      0.953 0.000 1.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     1  0.0000      0.980 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0000      0.953 0.000 1.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.8763      0.591 0.296 0.704
#> A4168812-C38E-4F15-9AF6-79F256279E72     2  0.0000      0.953 0.000 1.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.980 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     1  0.0000      0.980 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0376      0.976 0.996 0.004
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     1  0.9661      0.314 0.608 0.392
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.980 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.980 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     1  0.0000      0.980 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000      0.980 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.980 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.953 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.0000      0.953 0.000 1.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.0000      0.980 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.980 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.953 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     2  0.9358      0.478 0.352 0.648
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.953 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0000      0.980 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.0000      0.980 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     1  0.0000      0.980 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.0000      0.980 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     1  0.0000      0.980 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.953 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0000      0.953 0.000 1.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.0000      0.980 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.980 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.980 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.0000      0.980 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     1  0.0000      0.980 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.9850      0.280 0.428 0.572
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.8499      0.629 0.276 0.724
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.953 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     1  0.0000      0.980 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.0000      0.953 0.000 1.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0000      0.953 0.000 1.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.980 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.0000      0.953 0.000 1.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.980 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     1  0.0000      0.980 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.980 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.980 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     1  0.0000      0.980 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.980 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.953 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.953 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.0000      0.953 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.6095     0.8911 0.608 0.392 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.6299     0.0285 0.476 0.000 0.524
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2537     0.6112 0.080 0.920 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.6062     0.6597 0.384 0.616 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.8654 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.6095     0.6565 0.392 0.608 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.0000     0.8654 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0424     0.5642 0.008 0.992 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     3  0.0237     0.8636 0.000 0.004 0.996
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.4346     0.7435 0.184 0.000 0.816
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.6305     0.7899 0.516 0.484 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.8654 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.8447     0.5737 0.392 0.516 0.092
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6095     0.8911 0.608 0.392 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0592     0.5676 0.012 0.988 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.6632     0.5107 0.392 0.012 0.596
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.6095     0.8911 0.608 0.392 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0592     0.5790 0.012 0.988 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2537     0.4384 0.080 0.920 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.8550     0.6394 0.608 0.176 0.216
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.6095     0.8911 0.608 0.392 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.6095     0.8911 0.608 0.392 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.6140     0.8839 0.596 0.404 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3  0.0000     0.8654 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.5158     0.7013 0.232 0.004 0.764
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0424     0.5642 0.008 0.992 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6095     0.8911 0.608 0.392 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.0848     0.5670 0.008 0.984 0.008
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.6095     0.8911 0.608 0.392 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.6095     0.8911 0.608 0.392 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.6095     0.8911 0.608 0.392 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.9320     0.3625 0.184 0.496 0.320
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.6154     0.8806 0.592 0.408 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.6095     0.6565 0.392 0.608 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.6095     0.8911 0.608 0.392 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.8654 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.6769     0.6454 0.392 0.592 0.016
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4291     0.6931 0.180 0.000 0.820
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.6095     0.6565 0.392 0.608 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.8654 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8654 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3  0.5896     0.6334 0.292 0.008 0.700
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.8991     0.2850 0.392 0.132 0.476
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.8654 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4346     0.6416 0.184 0.816 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.6111     0.8890 0.604 0.396 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.0000     0.8654 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.8654 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0424     0.5642 0.008 0.992 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6839     0.3943 0.624 0.024 0.352
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0424     0.5642 0.008 0.992 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.6483     0.5159 0.392 0.008 0.600
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     3  0.0237     0.8642 0.004 0.000 0.996
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     3  0.0237     0.8642 0.004 0.000 0.996
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.6314     0.6540 0.392 0.604 0.004
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.8756     0.5747 0.332 0.540 0.128
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0424     0.5642 0.008 0.992 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.6299     0.8019 0.524 0.476 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     3  0.9392     0.1854 0.392 0.172 0.436
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.8654 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.8654 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.0237     0.8642 0.004 0.000 0.996
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3  0.0237     0.8642 0.004 0.000 0.996
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.8297     0.6129 0.632 0.200 0.168
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.7222     0.3397 0.580 0.032 0.388
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5254    -0.1476 0.264 0.736 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.6095     0.6565 0.392 0.608 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.6140     0.8839 0.596 0.404 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.6280     0.8234 0.540 0.460 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.8654 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.6095     0.8911 0.608 0.392 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.8654 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3  0.7059     0.0295 0.020 0.460 0.520
#> 3353F579-77CA-4D0E-B794-37DE467CC065     2  0.9574     0.4226 0.392 0.412 0.196
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.8654 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.8920     0.3754 0.144 0.532 0.324
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0424     0.8605 0.008 0.000 0.992
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.5138    -0.1016 0.252 0.748 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.5497    -0.2512 0.292 0.708 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.6095     0.8911 0.608 0.392 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4989    -0.1147 0.528 0.472 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.1975     0.4148 0.936 0.000 0.048 0.016
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3710     0.7215 0.004 0.804 0.000 0.192
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.5396     0.2379 0.012 0.524 0.000 0.464
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.4866    -0.0485 0.000 0.404 0.000 0.596
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.0895     0.8563 0.004 0.000 0.976 0.020
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4171     0.7617 0.060 0.824 0.000 0.116
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     1  0.7431    -0.1877 0.448 0.000 0.172 0.380
#> F2995599-3F21-4F33-92BB-7D70A4735938     4  0.6452     0.2529 0.460 0.000 0.068 0.472
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0188     0.7573 0.004 0.996 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1191     0.6823 0.004 0.004 0.024 0.968
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4948    -0.0568 0.560 0.440 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3448     0.7373 0.004 0.828 0.000 0.168
#> AC78918E-1031-4AE6-B753-B0799171F0F0     4  0.3505     0.6540 0.048 0.000 0.088 0.864
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.4985    -0.1128 0.532 0.468 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4501     0.7273 0.024 0.764 0.000 0.212
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2859     0.7643 0.008 0.880 0.000 0.112
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.6715     0.3714 0.252 0.144 0.604 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2  0.4790     0.3516 0.380 0.620 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2  0.4948     0.2868 0.440 0.560 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.2647     0.7021 0.120 0.880 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.7338    -0.1709 0.464 0.000 0.160 0.376
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.5894     0.1901 0.036 0.000 0.536 0.428
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2773     0.7614 0.004 0.880 0.000 0.116
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.4250     0.5323 0.276 0.724 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.7281     0.6315 0.052 0.644 0.144 0.160
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.4989    -0.1149 0.528 0.472 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.4985    -0.1128 0.532 0.468 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.4985    -0.1128 0.532 0.468 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.7254     0.3675 0.316 0.012 0.124 0.548
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.2589     0.7125 0.116 0.884 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.1389     0.6708 0.000 0.048 0.000 0.952
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4994    -0.1228 0.520 0.480 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0188     0.6851 0.004 0.000 0.000 0.996
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.3370     0.4281 0.872 0.048 0.080 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.2124     0.6573 0.008 0.068 0.000 0.924
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.4452     0.3584 0.796 0.000 0.156 0.048
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.6600     0.3450 0.396 0.000 0.084 0.520
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.3108     0.6599 0.112 0.000 0.016 0.872
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4948     0.2081 0.440 0.000 0.560 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4690     0.6126 0.012 0.712 0.000 0.276
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.4643     0.4722 0.344 0.656 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.0657     0.8612 0.004 0.000 0.984 0.012
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4206     0.7572 0.048 0.816 0.000 0.136
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.2651     0.4228 0.896 0.096 0.004 0.004
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2714     0.7625 0.004 0.884 0.000 0.112
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.4420     0.5747 0.240 0.000 0.012 0.748
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.7171    -0.1953 0.464 0.000 0.136 0.400
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     1  0.7171    -0.1953 0.464 0.000 0.136 0.400
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.1724     0.6744 0.000 0.032 0.020 0.948
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.6388     0.5664 0.188 0.048 0.064 0.700
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3448     0.7401 0.004 0.828 0.000 0.168
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0336     0.7555 0.008 0.992 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.5853     0.3100 0.460 0.000 0.032 0.508
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.5497     0.2664 0.672 0.000 0.284 0.044
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.7171    -0.1953 0.464 0.000 0.136 0.400
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     1  0.7171    -0.1953 0.464 0.000 0.136 0.400
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.3242     0.3755 0.884 0.016 0.016 0.084
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.1247     0.4204 0.968 0.016 0.012 0.004
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.3088     0.7630 0.060 0.888 0.000 0.052
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.1109     0.6798 0.000 0.028 0.004 0.968
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.2530     0.7173 0.112 0.888 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0469     0.7550 0.012 0.988 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.4877     0.3564 0.408 0.592 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.4699     0.2259 0.676 0.000 0.320 0.004
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3  0.3182     0.7509 0.004 0.004 0.860 0.132
#> 3353F579-77CA-4D0E-B794-37DE467CC065     4  0.2521     0.6795 0.064 0.000 0.024 0.912
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.8693 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.7522     0.3379 0.348 0.020 0.120 0.512
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.3688     0.3670 0.792 0.000 0.208 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2271     0.7688 0.008 0.916 0.000 0.076
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.1661     0.7679 0.004 0.944 0.000 0.052
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.4250     0.5287 0.276 0.724 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0324     0.8091 0.992 0.004 0.000 0.004 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.3480     0.6161 0.248 0.000 0.000 0.752 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0290     0.8227 0.008 0.992 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4356     0.4061 0.000 0.648 0.000 0.012 0.340
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.0854     0.9241 0.008 0.004 0.000 0.012 0.976
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.3461     0.6805 0.000 0.000 0.772 0.224 0.004
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3671     0.7491 0.236 0.756 0.000 0.008 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0981     0.8764 0.000 0.008 0.012 0.972 0.008
#> F2995599-3F21-4F33-92BB-7D70A4735938     4  0.0807     0.8711 0.012 0.000 0.012 0.976 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.1410     0.8409 0.060 0.940 0.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.1522     0.9155 0.000 0.044 0.000 0.012 0.944
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.1485     0.7938 0.948 0.032 0.000 0.020 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0404     0.8250 0.012 0.988 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0162     0.8092 0.996 0.004 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4458     0.7212 0.108 0.780 0.000 0.012 0.100
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.1410     0.8412 0.060 0.940 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.3774     0.5264 0.296 0.000 0.704 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4504     0.1658 0.564 0.428 0.000 0.008 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0162     0.8092 0.996 0.004 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.3395     0.7064 0.236 0.764 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0854     0.8766 0.000 0.004 0.012 0.976 0.008
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     5  0.4294     0.1047 0.000 0.000 0.468 0.000 0.532
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.1341     0.8407 0.056 0.944 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4561    -0.0683 0.504 0.488 0.000 0.008 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.8715     0.2276 0.264 0.344 0.184 0.012 0.196
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0162     0.8092 0.996 0.004 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0324     0.8091 0.992 0.004 0.000 0.004 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0162     0.8092 0.996 0.004 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0807     0.8719 0.000 0.012 0.000 0.976 0.012
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.2690     0.8040 0.156 0.844 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1697     0.7782 0.932 0.060 0.000 0.008 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     5  0.1670     0.9114 0.000 0.052 0.000 0.012 0.936
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.4321     0.2716 0.600 0.000 0.004 0.396 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.1740     0.9094 0.000 0.056 0.000 0.012 0.932
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     4  0.0566     0.8737 0.004 0.000 0.012 0.984 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.2069     0.8553 0.000 0.052 0.012 0.924 0.012
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.0880     0.9233 0.000 0.032 0.000 0.000 0.968
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4321     0.2576 0.004 0.000 0.600 0.396 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0404     0.8143 0.000 0.988 0.000 0.012 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0162     0.8092 0.996 0.004 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.0162     0.8943 0.000 0.004 0.996 0.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3737     0.7573 0.224 0.764 0.000 0.008 0.004
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.3274     0.6108 0.780 0.000 0.000 0.220 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.1121     0.8383 0.044 0.956 0.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.4294     0.1182 0.000 0.000 0.000 0.532 0.468
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0854     0.8766 0.000 0.004 0.012 0.976 0.008
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0867     0.8762 0.000 0.008 0.008 0.976 0.008
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.2006     0.8370 0.000 0.072 0.000 0.916 0.012
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.1341     0.8409 0.056 0.944 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.1478     0.8408 0.064 0.936 0.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0566     0.8739 0.000 0.004 0.000 0.984 0.012
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     4  0.0566     0.8737 0.004 0.000 0.012 0.984 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0693     0.8763 0.000 0.000 0.012 0.980 0.008
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0693     0.8763 0.000 0.000 0.012 0.980 0.008
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.3730     0.7160 0.168 0.028 0.004 0.800 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.4302     0.0246 0.520 0.000 0.000 0.480 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4118     0.6373 0.336 0.660 0.000 0.004 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.4171     0.5362 0.396 0.604 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.1544     0.8399 0.068 0.932 0.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0609     0.8012 0.980 0.020 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     4  0.6053     0.4570 0.196 0.000 0.228 0.576 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3  0.2772     0.8311 0.000 0.052 0.892 0.044 0.012
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.8966 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1168     0.8652 0.000 0.032 0.000 0.960 0.008
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     4  0.5952     0.3597 0.304 0.000 0.136 0.560 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.1732     0.8377 0.080 0.920 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.1410     0.8412 0.060 0.940 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.3895     0.5511 0.320 0.680 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2790     0.6749 0.840 0.020 0.000 0.000 0.000 0.140
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.4131     0.6445 0.020 0.000 0.000 0.624 0.000 0.356
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0547     0.9324 0.000 0.980 0.000 0.000 0.000 0.020
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     6  0.5097     0.4198 0.004 0.092 0.000 0.004 0.276 0.624
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     6  0.5423     0.2781 0.120 0.000 0.000 0.000 0.392 0.488
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.4707     0.5288 0.000 0.000 0.656 0.252 0.000 0.092
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     1  0.5758     0.1379 0.504 0.212 0.000 0.000 0.000 0.284
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1285     0.7049 0.000 0.004 0.000 0.944 0.000 0.052
#> F2995599-3F21-4F33-92BB-7D70A4735938     4  0.3217     0.7045 0.008 0.000 0.000 0.768 0.000 0.224
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0603     0.9366 0.004 0.980 0.000 0.000 0.000 0.016
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     6  0.4739     0.2345 0.000 0.000 0.000 0.048 0.436 0.516
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.7312    -0.2805 0.304 0.268 0.000 0.016 0.056 0.356
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.1753     0.8715 0.000 0.912 0.000 0.004 0.000 0.084
#> AC78918E-1031-4AE6-B753-B0799171F0F0     5  0.0000     0.8729 0.000 0.000 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0972     0.7014 0.964 0.008 0.000 0.000 0.000 0.028
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     6  0.5294     0.1082 0.416 0.016 0.000 0.008 0.044 0.516
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3730     0.6097 0.772 0.000 0.168 0.000 0.000 0.060
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.5483     0.4993 0.560 0.296 0.000 0.004 0.000 0.140
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0405     0.6983 0.988 0.008 0.000 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4455     0.5928 0.688 0.232 0.000 0.000 0.000 0.080
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0790     0.7164 0.000 0.000 0.000 0.968 0.000 0.032
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     5  0.3138     0.7346 0.000 0.000 0.108 0.000 0.832 0.060
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0935     0.9227 0.004 0.964 0.000 0.000 0.000 0.032
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4979     0.5770 0.640 0.224 0.000 0.000 0.000 0.136
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3675     0.4690 0.732 0.004 0.008 0.000 0.004 0.252
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0972     0.7016 0.964 0.008 0.000 0.000 0.000 0.028
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2706     0.6672 0.832 0.008 0.000 0.000 0.000 0.160
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0725     0.7007 0.976 0.012 0.000 0.000 0.000 0.012
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.2454     0.6116 0.000 0.000 0.000 0.840 0.000 0.160
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0000     0.8729 0.000 0.000 0.000 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5482     0.5017 0.548 0.292 0.000 0.000 0.000 0.160
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     6  0.4957     0.3804 0.000 0.000 0.000 0.084 0.332 0.584
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     4  0.6047     0.3453 0.260 0.000 0.000 0.400 0.000 0.340
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     6  0.3717     0.3372 0.000 0.000 0.000 0.000 0.384 0.616
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     4  0.2902     0.7113 0.004 0.000 0.000 0.800 0.000 0.196
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.3428     0.3854 0.000 0.000 0.000 0.696 0.000 0.304
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.2631     0.6644 0.000 0.000 0.000 0.000 0.820 0.180
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     4  0.6127     0.4175 0.008 0.000 0.292 0.460 0.000 0.240
#> 43CD31CD-5FAE-418A-B235-49E54560590D     6  0.4567     0.3324 0.052 0.332 0.000 0.000 0.000 0.616
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0806     0.6917 0.972 0.008 0.000 0.000 0.000 0.020
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.3215     0.7707 0.000 0.000 0.828 0.072 0.000 0.100
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0713     0.9064 0.000 0.000 0.972 0.000 0.000 0.028
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     1  0.6010    -0.0959 0.400 0.240 0.000 0.000 0.000 0.360
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.5278     0.4305 0.604 0.000 0.000 0.192 0.000 0.204
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0865     0.9219 0.000 0.964 0.000 0.000 0.000 0.036
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.4104     0.6069 0.000 0.000 0.000 0.148 0.748 0.104
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0146     0.7242 0.000 0.000 0.000 0.996 0.000 0.004
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.1501     0.6901 0.000 0.000 0.000 0.924 0.000 0.076
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0000     0.8729 0.000 0.000 0.000 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     6  0.3996     0.0826 0.000 0.004 0.000 0.484 0.000 0.512
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0291     0.9405 0.004 0.992 0.000 0.000 0.000 0.004
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0972     0.7200 0.008 0.000 0.000 0.964 0.000 0.028
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     4  0.2902     0.7113 0.004 0.000 0.000 0.800 0.000 0.196
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0713     0.7273 0.000 0.000 0.000 0.972 0.000 0.028
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0260     0.7238 0.000 0.000 0.000 0.992 0.000 0.008
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.4054     0.6587 0.072 0.000 0.000 0.740 0.000 0.188
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.5166     0.5798 0.096 0.000 0.000 0.540 0.000 0.364
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.4008     0.5126 0.740 0.064 0.000 0.000 0.000 0.196
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0777     0.8557 0.004 0.000 0.000 0.000 0.972 0.024
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.3823     0.1388 0.436 0.564 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.2350     0.6883 0.880 0.100 0.000 0.000 0.000 0.020
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     4  0.5181     0.6083 0.012 0.000 0.068 0.560 0.000 0.360
#> 06DAE086-D960-4156-9DC8-D126338E2F29     6  0.5586     0.1230 0.000 0.004 0.372 0.128 0.000 0.496
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.0000     0.8729 0.000 0.000 0.000 0.000 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1387     0.8745 0.000 0.000 0.932 0.000 0.000 0.068
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.2902     0.5603 0.000 0.004 0.000 0.800 0.000 0.196
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     4  0.5275     0.6064 0.024 0.000 0.056 0.556 0.000 0.364
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.0146     0.9415 0.004 0.996 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.873           0.935       0.968         0.5011 0.494   0.494
#> 3 3 0.625           0.725       0.782         0.2644 0.893   0.783
#> 4 4 0.727           0.780       0.868         0.1660 0.837   0.591
#> 5 5 0.735           0.589       0.751         0.0638 0.912   0.675
#> 6 6 0.808           0.726       0.847         0.0497 0.879   0.506

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.984 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.984 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.946 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.946 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.984 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.946 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0938      0.943 0.012 0.988
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.946 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3114      0.916 0.056 0.944
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.984 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0938      0.942 0.012 0.988
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.984 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0376      0.945 0.004 0.996
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.984 1.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.946 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.984 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.984 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.946 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.946 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.984 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.984 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.984 1.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.984 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.7883      0.739 0.236 0.764
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.984 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.946 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0672      0.977 0.992 0.008
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.6887      0.801 0.184 0.816
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.984 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.984 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.984 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.946 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1184      0.969 0.984 0.016
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.1843      0.934 0.028 0.972
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.984 1.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.984 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.946 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.984 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.946 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.984 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.984 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0938      0.943 0.012 0.988
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.8327      0.698 0.264 0.736
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.984 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.946 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.984 1.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.1843      0.935 0.028 0.972
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.984 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.946 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.984 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.946 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.8861      0.632 0.304 0.696
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.7745      0.749 0.228 0.772
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0376      0.945 0.004 0.996
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.2236      0.928 0.036 0.964
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.946 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.946 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.8661      0.561 0.712 0.288
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.7883      0.739 0.236 0.764
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.984 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.984 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.7883      0.739 0.236 0.764
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4298      0.892 0.088 0.912
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0000      0.984 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.984 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0672      0.944 0.008 0.992
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.946 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.984 1.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.8267      0.618 0.740 0.260
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.984 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.984 1.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.984 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.946 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.984 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.984 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.946 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.984 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.946 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.946 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.823 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.1529      0.814 0.960 0.000 0.040
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.800 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.800 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.5835      0.774 0.660 0.000 0.340
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.800 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.6026      0.606 0.000 0.376 0.624
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5497      0.533 0.000 0.708 0.292
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     3  0.5785      0.667 0.000 0.332 0.668
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.5835      0.774 0.660 0.000 0.340
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3293      0.781 0.012 0.900 0.088
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.5835      0.774 0.660 0.000 0.340
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.2537      0.797 0.000 0.920 0.080
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.1529      0.814 0.960 0.000 0.040
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.800 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.5835      0.774 0.660 0.000 0.340
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.823 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6154      0.215 0.000 0.592 0.408
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.800 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0237      0.824 0.996 0.000 0.004
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1163      0.810 0.972 0.000 0.028
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.823 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0424      0.820 0.992 0.000 0.008
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3  0.7042      0.764 0.140 0.132 0.728
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.5835      0.774 0.660 0.000 0.340
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0747      0.803 0.000 0.984 0.016
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.1411      0.805 0.964 0.000 0.036
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     3  0.8423      0.697 0.156 0.228 0.616
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0237      0.824 0.996 0.000 0.004
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.823 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.823 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2165      0.804 0.000 0.936 0.064
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1015      0.816 0.980 0.008 0.012
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     3  0.6126      0.518 0.000 0.400 0.600
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.823 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.5835      0.774 0.660 0.000 0.340
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.2165      0.804 0.000 0.936 0.064
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.1031      0.824 0.976 0.000 0.024
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.800 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.5835      0.774 0.660 0.000 0.340
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.5835      0.774 0.660 0.000 0.340
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3  0.6026      0.606 0.000 0.376 0.624
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.6037      0.723 0.100 0.112 0.788
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.5835      0.774 0.660 0.000 0.340
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5621      0.507 0.000 0.692 0.308
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0237      0.822 0.996 0.000 0.004
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.6307     -0.161 0.000 0.512 0.488
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.5835      0.774 0.660 0.000 0.340
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5621      0.507 0.000 0.692 0.308
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1031      0.824 0.976 0.000 0.024
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.5621      0.507 0.000 0.692 0.308
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.7248      0.700 0.184 0.108 0.708
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     3  0.7164      0.764 0.140 0.140 0.720
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.2261      0.802 0.000 0.932 0.068
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     3  0.6490      0.611 0.012 0.360 0.628
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.2165      0.804 0.000 0.936 0.064
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.800 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.6018      0.374 0.684 0.008 0.308
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     3  0.7042      0.764 0.140 0.132 0.728
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.5835      0.774 0.660 0.000 0.340
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.5835      0.774 0.660 0.000 0.340
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.7042      0.764 0.140 0.132 0.728
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3  0.5497      0.695 0.000 0.292 0.708
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.1031      0.824 0.976 0.000 0.024
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.1529      0.814 0.960 0.000 0.040
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5882      0.431 0.000 0.652 0.348
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.6168      0.198 0.000 0.588 0.412
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.823 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.5797      0.443 0.712 0.008 0.280
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.5835      0.774 0.660 0.000 0.340
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.823 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.5835      0.774 0.660 0.000 0.340
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.2165      0.804 0.000 0.936 0.064
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.5835      0.774 0.660 0.000 0.340
#> 976507F2-192B-4095-920A-3014889CD617     1  0.5835      0.774 0.660 0.000 0.340
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.2165      0.804 0.000 0.936 0.064
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.5835      0.774 0.660 0.000 0.340
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0424      0.801 0.000 0.992 0.008
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0424      0.801 0.000 0.992 0.008
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.823 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1637     0.8827 0.940 0.000 0.060 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.3208     0.8665 0.848 0.000 0.004 0.148
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.7897 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.7897 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.7897 0.000 1.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3975     0.6732 0.000 0.240 0.000 0.760
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4454     0.4894 0.000 0.692 0.000 0.308
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.3569     0.6989 0.000 0.196 0.000 0.804
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2805     0.7724 0.012 0.888 0.000 0.100
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.3726     0.7284 0.000 0.788 0.000 0.212
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3208     0.8665 0.848 0.000 0.004 0.148
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.7897 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1637     0.8827 0.940 0.000 0.060 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.4989     0.1042 0.000 0.472 0.000 0.528
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7897 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2011     0.8756 0.920 0.000 0.080 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2760     0.8702 0.872 0.000 0.000 0.128
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1637     0.8827 0.940 0.000 0.060 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3931     0.8869 0.832 0.000 0.040 0.128
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0336     0.7132 0.008 0.000 0.000 0.992
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0921     0.7922 0.000 0.972 0.000 0.028
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2868     0.8683 0.864 0.000 0.000 0.136
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     4  0.5375     0.6773 0.116 0.140 0.000 0.744
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2011     0.8756 0.920 0.000 0.080 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1637     0.8827 0.940 0.000 0.060 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.1637     0.8827 0.940 0.000 0.060 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.3569     0.7425 0.000 0.804 0.000 0.196
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4439     0.8858 0.808 0.004 0.048 0.140
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.5206     0.5931 0.024 0.308 0.000 0.668
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3991     0.8902 0.832 0.000 0.048 0.120
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.3172     0.7664 0.000 0.840 0.000 0.160
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.2987     0.8616 0.880 0.000 0.104 0.016
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0336     0.7917 0.000 0.992 0.000 0.008
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4008     0.6700 0.000 0.244 0.000 0.756
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.2345     0.6773 0.000 0.000 0.100 0.900
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4843     0.3408 0.000 0.604 0.000 0.396
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3398     0.8913 0.872 0.000 0.060 0.068
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.4776     0.4030 0.000 0.376 0.000 0.624
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4855     0.3306 0.000 0.600 0.000 0.400
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.2987     0.8616 0.880 0.000 0.104 0.016
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.4843     0.3408 0.000 0.604 0.000 0.396
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.2053     0.6721 0.072 0.000 0.004 0.924
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0672     0.7153 0.008 0.008 0.000 0.984
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3649     0.7362 0.000 0.796 0.000 0.204
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.5282     0.6389 0.036 0.276 0.000 0.688
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.3172     0.7664 0.000 0.840 0.000 0.160
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7897 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.5060     0.5086 0.584 0.004 0.000 0.412
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0336     0.7132 0.008 0.000 0.000 0.992
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0336     0.7132 0.008 0.000 0.000 0.992
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3123     0.7104 0.000 0.156 0.000 0.844
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.2987     0.8616 0.880 0.000 0.104 0.016
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.3208     0.8665 0.848 0.000 0.004 0.148
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5236     0.2128 0.008 0.560 0.000 0.432
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4999     0.0424 0.000 0.492 0.000 0.508
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4046     0.8895 0.828 0.000 0.048 0.124
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4978     0.5664 0.612 0.004 0.000 0.384
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4046     0.8895 0.828 0.000 0.048 0.124
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3569     0.7425 0.000 0.804 0.000 0.196
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0188     0.9961 0.000 0.000 0.996 0.004
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.3172     0.7664 0.000 0.840 0.000 0.160
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9998 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0336     0.7901 0.000 0.992 0.000 0.008
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0336     0.7901 0.000 0.992 0.000 0.008
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4046     0.8895 0.828 0.000 0.048 0.124

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0510     0.6909 0.984 0.000 0.016 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     5  0.4367     0.5129 0.416 0.000 0.000 0.004 0.580
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0703     0.7415 0.000 0.976 0.000 0.000 0.024
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1830     0.7448 0.000 0.932 0.000 0.028 0.040
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1830     0.7448 0.000 0.932 0.000 0.028 0.040
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.5570     0.5572 0.000 0.104 0.000 0.608 0.288
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4830     0.3151 0.004 0.560 0.000 0.420 0.016
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.5308     0.5658 0.000 0.076 0.000 0.620 0.304
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3264     0.7000 0.004 0.836 0.000 0.140 0.020
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.4663     0.5395 0.000 0.604 0.000 0.376 0.020
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     5  0.4367     0.5129 0.416 0.000 0.000 0.004 0.580
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.1043     0.7329 0.000 0.960 0.000 0.000 0.040
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0510     0.6909 0.984 0.000 0.016 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.3835     0.2687 0.000 0.260 0.000 0.732 0.008
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7481 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1753     0.6753 0.936 0.000 0.032 0.000 0.032
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     5  0.4273     0.4692 0.448 0.000 0.000 0.000 0.552
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0510     0.6909 0.984 0.000 0.016 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4582    -0.0502 0.572 0.000 0.012 0.000 0.416
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.4294     0.4373 0.000 0.000 0.000 0.532 0.468
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.1544     0.7421 0.000 0.932 0.000 0.068 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.4522     0.4810 0.440 0.000 0.000 0.008 0.552
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     4  0.4573     0.4496 0.012 0.032 0.000 0.724 0.232
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1753     0.6753 0.936 0.000 0.032 0.000 0.032
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0510     0.6909 0.984 0.000 0.016 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0510     0.6909 0.984 0.000 0.016 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.4613     0.5600 0.000 0.620 0.000 0.360 0.020
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.5047     0.0662 0.588 0.000 0.016 0.016 0.380
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.4194     0.4658 0.004 0.128 0.000 0.788 0.080
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4511     0.1787 0.628 0.000 0.016 0.000 0.356
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.4437     0.6109 0.000 0.664 0.000 0.316 0.020
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.2661     0.6476 0.888 0.000 0.056 0.000 0.056
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2077     0.7456 0.000 0.920 0.000 0.040 0.040
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.5613     0.5557 0.000 0.108 0.000 0.604 0.288
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.5849     0.4275 0.000 0.000 0.100 0.508 0.392
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.4779    -0.0439 0.004 0.396 0.000 0.584 0.016
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3098     0.5721 0.836 0.000 0.016 0.000 0.148
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.5980     0.4647 0.000 0.176 0.000 0.584 0.240
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.4769    -0.0336 0.004 0.392 0.000 0.588 0.016
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.2661     0.6476 0.888 0.000 0.056 0.000 0.056
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.4779    -0.0439 0.004 0.396 0.000 0.584 0.016
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.4655    -0.4556 0.012 0.000 0.000 0.476 0.512
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.4273     0.4461 0.000 0.000 0.000 0.552 0.448
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.4709     0.5505 0.000 0.612 0.000 0.364 0.024
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.4191     0.4905 0.008 0.108 0.000 0.796 0.088
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4437     0.6109 0.000 0.664 0.000 0.316 0.020
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.1043     0.7329 0.000 0.960 0.000 0.000 0.040
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.6618     0.4399 0.304 0.000 0.000 0.244 0.452
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.4283     0.4389 0.000 0.000 0.000 0.544 0.456
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.4294     0.4373 0.000 0.000 0.000 0.532 0.468
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.5129     0.5680 0.000 0.056 0.000 0.616 0.328
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.2661     0.6476 0.888 0.000 0.056 0.000 0.056
#> EF1A102F-C206-4874-8F27-0BF069A613B8     5  0.4367     0.5129 0.416 0.000 0.000 0.004 0.580
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.4972     0.0607 0.004 0.352 0.000 0.612 0.032
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3980     0.2381 0.000 0.284 0.000 0.708 0.008
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4564     0.1422 0.612 0.000 0.016 0.000 0.372
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.6561     0.4483 0.332 0.000 0.000 0.216 0.452
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4564     0.1422 0.612 0.000 0.016 0.000 0.372
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.4613     0.5600 0.000 0.620 0.000 0.360 0.020
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0162     0.9959 0.000 0.000 0.996 0.000 0.004
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.4437     0.6109 0.000 0.664 0.000 0.316 0.020
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0671     0.7478 0.000 0.980 0.000 0.016 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0451     0.7471 0.000 0.988 0.000 0.008 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4564     0.1422 0.612 0.000 0.016 0.000 0.372

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1267     0.9171 0.940 0.000 0.000 0.000 0.000 0.060
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.0405     0.7355 0.004 0.000 0.000 0.008 0.000 0.988
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0937     0.8380 0.000 0.960 0.000 0.000 0.040 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1444     0.8167 0.000 0.928 0.000 0.000 0.072 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1444     0.8167 0.000 0.928 0.000 0.000 0.072 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4236     0.5507 0.000 0.036 0.000 0.656 0.308 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.3468     0.2940 0.000 0.284 0.000 0.000 0.712 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.3834     0.6709 0.000 0.036 0.000 0.732 0.232 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4181     0.4488 0.000 0.600 0.000 0.004 0.384 0.012
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.4703     0.4563 0.000 0.312 0.000 0.068 0.620 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.0405     0.7355 0.004 0.000 0.000 0.008 0.000 0.988
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8235 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1267     0.9171 0.940 0.000 0.000 0.000 0.000 0.060
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.3139     0.5318 0.000 0.028 0.000 0.160 0.812 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.1957     0.8298 0.000 0.888 0.000 0.000 0.112 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000     0.9102 1.000 0.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     6  0.0937     0.7417 0.040 0.000 0.000 0.000 0.000 0.960
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1267     0.9171 0.940 0.000 0.000 0.000 0.000 0.060
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     6  0.3309     0.6978 0.280 0.000 0.000 0.000 0.000 0.720
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0891     0.8059 0.000 0.000 0.000 0.968 0.024 0.008
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3428     0.5948 0.000 0.696 0.000 0.000 0.304 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.1049     0.7420 0.032 0.000 0.000 0.000 0.008 0.960
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.5713    -0.0168 0.004 0.000 0.000 0.336 0.504 0.156
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.9102 1.000 0.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1267     0.9171 0.940 0.000 0.000 0.000 0.000 0.060
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.1267     0.9171 0.940 0.000 0.000 0.000 0.000 0.060
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     5  0.4646     0.4450 0.000 0.324 0.000 0.060 0.616 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     6  0.4008     0.6744 0.308 0.000 0.000 0.004 0.016 0.672
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.4035     0.2620 0.000 0.020 0.000 0.296 0.680 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     6  0.3756     0.5956 0.400 0.000 0.000 0.000 0.000 0.600
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     5  0.4779     0.3953 0.000 0.368 0.000 0.060 0.572 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.1261     0.8931 0.952 0.000 0.024 0.000 0.000 0.024
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1700     0.8070 0.000 0.916 0.000 0.004 0.080 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4285     0.5304 0.000 0.036 0.000 0.644 0.320 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.2860     0.7487 0.000 0.000 0.100 0.852 0.048 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.2009     0.5756 0.000 0.084 0.000 0.008 0.904 0.004
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3290     0.6202 0.744 0.000 0.000 0.000 0.004 0.252
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     5  0.3862    -0.1156 0.000 0.000 0.000 0.476 0.524 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.2009     0.5760 0.000 0.084 0.000 0.008 0.904 0.004
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1261     0.8931 0.952 0.000 0.024 0.000 0.000 0.024
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.2009     0.5756 0.000 0.084 0.000 0.008 0.904 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.1501     0.7607 0.000 0.000 0.000 0.924 0.000 0.076
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.1462     0.8042 0.000 0.000 0.000 0.936 0.056 0.008
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     5  0.4918     0.4409 0.000 0.320 0.000 0.084 0.596 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.4695     0.1835 0.000 0.032 0.000 0.336 0.616 0.016
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     5  0.4779     0.3953 0.000 0.368 0.000 0.060 0.572 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8235 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     6  0.5304     0.6045 0.028 0.000 0.000 0.180 0.132 0.660
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.1124     0.8026 0.000 0.000 0.000 0.956 0.036 0.008
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0891     0.8059 0.000 0.000 0.000 0.968 0.024 0.008
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3062     0.7459 0.000 0.032 0.000 0.824 0.144 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.1261     0.8931 0.952 0.000 0.024 0.000 0.000 0.024
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.0405     0.7355 0.004 0.000 0.000 0.008 0.000 0.988
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.2078     0.5886 0.000 0.044 0.000 0.040 0.912 0.004
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.3566     0.5437 0.000 0.056 0.000 0.156 0.788 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     6  0.3706     0.6215 0.380 0.000 0.000 0.000 0.000 0.620
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     6  0.5031     0.6305 0.028 0.000 0.000 0.180 0.104 0.688
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     6  0.3706     0.6215 0.380 0.000 0.000 0.000 0.000 0.620
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.4646     0.4450 0.000 0.324 0.000 0.060 0.616 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0146     0.9957 0.000 0.000 0.996 0.004 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     5  0.4779     0.3953 0.000 0.368 0.000 0.060 0.572 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9997 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2219     0.8210 0.000 0.864 0.000 0.000 0.136 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2135     0.8249 0.000 0.872 0.000 0.000 0.128 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     6  0.3706     0.6215 0.380 0.000 0.000 0.000 0.000 0.620

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.992           0.934       0.965         0.4988 0.494   0.494
#> 3 3 0.680           0.879       0.875         0.3046 0.821   0.649
#> 4 4 0.833           0.802       0.907         0.1567 0.868   0.636
#> 5 5 0.759           0.716       0.826         0.0587 0.920   0.689
#> 6 6 0.782           0.697       0.790         0.0396 0.922   0.651

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4161      0.940 0.916 0.084
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.3879      0.941 0.924 0.076
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.962 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.962 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0376      0.961 0.996 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.962 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0672      0.958 0.008 0.992
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.962 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0672      0.958 0.008 0.992
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0376      0.961 0.996 0.004
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0376      0.960 0.004 0.996
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0376      0.961 0.996 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.962 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4161      0.940 0.916 0.084
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.962 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0376      0.961 0.996 0.004
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.4161      0.940 0.916 0.084
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.962 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.962 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.960 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4161      0.940 0.916 0.084
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4161      0.940 0.916 0.084
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4431      0.934 0.908 0.092
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0672      0.958 0.008 0.992
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0376      0.961 0.996 0.004
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.962 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.8813      0.570 0.300 0.700
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.9044      0.525 0.320 0.680
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0672      0.959 0.992 0.008
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.4161      0.940 0.916 0.084
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.4161      0.940 0.916 0.084
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.962 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4431      0.934 0.908 0.092
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.962 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4161      0.940 0.916 0.084
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0376      0.961 0.996 0.004
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.962 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.960 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.962 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0376      0.961 0.996 0.004
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0376      0.961 0.996 0.004
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.962 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0376      0.961 0.996 0.004
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0376      0.961 0.996 0.004
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.962 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.4161      0.940 0.916 0.084
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0672      0.958 0.008 0.992
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0376      0.961 0.996 0.004
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.962 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.960 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.962 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0376      0.961 0.996 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0672      0.958 0.008 0.992
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.962 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.962 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.962 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.962 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.9000      0.538 0.316 0.684
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0672      0.958 0.008 0.992
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0376      0.961 0.996 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0376      0.961 0.996 0.004
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0938      0.956 0.012 0.988
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0672      0.958 0.008 0.992
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0000      0.960 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.4431      0.934 0.908 0.092
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0376      0.960 0.004 0.996
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.962 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4562      0.930 0.904 0.096
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.9323      0.466 0.348 0.652
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0376      0.961 0.996 0.004
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4431      0.934 0.908 0.092
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0376      0.961 0.996 0.004
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.962 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0376      0.961 0.996 0.004
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0376      0.961 0.996 0.004
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.962 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0376      0.961 0.996 0.004
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0376      0.960 0.004 0.996
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0376      0.960 0.004 0.996
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4161      0.940 0.916 0.084

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1031      0.911 0.976 0.000 0.024
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.4602      0.816 0.852 0.040 0.108
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3947      0.882 0.040 0.884 0.076
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3947      0.882 0.040 0.884 0.076
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.4842      0.947 0.224 0.000 0.776
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3947      0.882 0.040 0.884 0.076
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.3752      0.876 0.000 0.856 0.144
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3947      0.882 0.040 0.884 0.076
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3816      0.875 0.000 0.852 0.148
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.4842      0.947 0.224 0.000 0.776
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4289      0.891 0.040 0.868 0.092
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3686      0.852 0.140 0.000 0.860
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.3816      0.875 0.000 0.852 0.148
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.1031      0.911 0.976 0.000 0.024
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3947      0.882 0.040 0.884 0.076
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.4842      0.947 0.224 0.000 0.776
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1031      0.911 0.976 0.000 0.024
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4289      0.886 0.040 0.868 0.092
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3947      0.882 0.040 0.884 0.076
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1529      0.894 0.960 0.000 0.040
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.915 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.915 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.915 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.3816      0.875 0.000 0.852 0.148
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.4842      0.947 0.224 0.000 0.776
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3947      0.882 0.040 0.884 0.076
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6234      0.723 0.776 0.096 0.128
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.8902      0.253 0.396 0.480 0.124
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1031      0.911 0.976 0.000 0.024
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1031      0.911 0.976 0.000 0.024
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0237      0.915 0.996 0.000 0.004
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.1860      0.892 0.000 0.948 0.052
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0592      0.909 0.988 0.000 0.012
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.4289      0.886 0.040 0.868 0.092
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1031      0.911 0.976 0.000 0.024
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.4842      0.947 0.224 0.000 0.776
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.1643      0.893 0.000 0.956 0.044
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4842      0.947 0.224 0.000 0.776
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3461      0.883 0.024 0.900 0.076
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4842      0.947 0.224 0.000 0.776
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.4842      0.947 0.224 0.000 0.776
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.3752      0.876 0.000 0.856 0.144
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.3267      0.653 0.000 0.116 0.884
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.4842      0.947 0.224 0.000 0.776
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3472      0.886 0.040 0.904 0.056
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.915 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.3816      0.875 0.000 0.852 0.148
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.4842      0.947 0.224 0.000 0.776
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3764      0.884 0.040 0.892 0.068
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.5948      0.755 0.360 0.000 0.640
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2926      0.890 0.040 0.924 0.036
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.3267      0.653 0.000 0.116 0.884
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.3816      0.875 0.000 0.852 0.148
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.1964      0.890 0.000 0.944 0.056
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.4369      0.886 0.040 0.864 0.096
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.1643      0.893 0.000 0.956 0.044
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3947      0.882 0.040 0.884 0.076
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.6184      0.729 0.780 0.108 0.112
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.3816      0.875 0.000 0.852 0.148
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.4842      0.947 0.224 0.000 0.776
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.4842      0.947 0.224 0.000 0.776
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.3816      0.875 0.000 0.852 0.148
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3816      0.875 0.000 0.852 0.148
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.1529      0.894 0.960 0.000 0.040
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.5237      0.788 0.824 0.056 0.120
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4676      0.886 0.040 0.848 0.112
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.4636      0.885 0.036 0.848 0.116
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.915 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.6111      0.735 0.784 0.104 0.112
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.4842      0.947 0.224 0.000 0.776
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.915 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.4842      0.947 0.224 0.000 0.776
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.1643      0.893 0.000 0.956 0.044
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4842      0.947 0.224 0.000 0.776
#> 976507F2-192B-4095-920A-3014889CD617     3  0.4842      0.947 0.224 0.000 0.776
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.1643      0.893 0.000 0.956 0.044
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4842      0.947 0.224 0.000 0.776
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3947      0.882 0.040 0.884 0.076
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3947      0.882 0.040 0.884 0.076
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1031      0.911 0.976 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0188      0.936 0.996 0.000 0.000 0.004
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.4964      0.507 0.616 0.004 0.000 0.380
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1940      0.783 0.000 0.076 0.000 0.924
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1716      0.785 0.000 0.064 0.000 0.936
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0469      0.974 0.000 0.000 0.988 0.012
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2973      0.747 0.000 0.856 0.000 0.144
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1716      0.785 0.000 0.064 0.000 0.936
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0188      0.936 0.996 0.004 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0188      0.936 0.996 0.000 0.000 0.004
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4898      0.278 0.000 0.584 0.000 0.416
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0469      0.933 0.988 0.000 0.000 0.012
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0188      0.936 0.996 0.004 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0188      0.936 0.996 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0188      0.936 0.996 0.004 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0921      0.787 0.000 0.028 0.000 0.972
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4632      0.623 0.688 0.004 0.000 0.308
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     4  0.5527      0.565 0.104 0.168 0.000 0.728
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0469      0.933 0.988 0.000 0.000 0.012
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0188      0.936 0.996 0.000 0.000 0.004
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0188      0.936 0.996 0.000 0.000 0.004
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.4972      0.379 0.000 0.456 0.000 0.544
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0188      0.936 0.996 0.004 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.4898      0.278 0.000 0.584 0.000 0.416
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4972      0.379 0.000 0.456 0.000 0.544
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0817      0.971 0.000 0.000 0.976 0.024
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0469      0.974 0.000 0.000 0.988 0.012
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1940      0.783 0.000 0.076 0.000 0.924
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0921      0.766 0.000 0.000 0.028 0.972
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0469      0.974 0.000 0.000 0.988 0.012
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.1022      0.852 0.000 0.968 0.000 0.032
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0188      0.936 0.996 0.000 0.000 0.004
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0921      0.787 0.000 0.028 0.000 0.972
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0817      0.857 0.000 0.976 0.000 0.024
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.5231      0.542 0.296 0.000 0.676 0.028
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2408      0.799 0.000 0.896 0.000 0.104
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0817      0.761 0.000 0.000 0.024 0.976
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0921      0.787 0.000 0.028 0.000 0.972
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.4277      0.622 0.000 0.280 0.000 0.720
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.4985      0.122 0.000 0.532 0.000 0.468
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4972      0.379 0.000 0.456 0.000 0.544
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0188      0.864 0.000 0.996 0.000 0.004
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.3355      0.797 0.836 0.004 0.000 0.160
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0921      0.787 0.000 0.028 0.000 0.972
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0469      0.974 0.000 0.000 0.988 0.012
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0921      0.787 0.000 0.028 0.000 0.972
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0921      0.787 0.000 0.028 0.000 0.972
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0336      0.934 0.992 0.000 0.000 0.008
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.4964      0.507 0.616 0.004 0.000 0.380
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.4454      0.521 0.000 0.692 0.000 0.308
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4817      0.352 0.000 0.388 0.000 0.612
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0188      0.936 0.996 0.004 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0657      0.930 0.984 0.004 0.000 0.012
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0188      0.936 0.996 0.004 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0469      0.974 0.000 0.000 0.988 0.012
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.4967      0.387 0.000 0.452 0.000 0.548
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0188      0.976 0.000 0.000 0.996 0.004
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.4948      0.402 0.000 0.440 0.000 0.560
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0469      0.974 0.000 0.000 0.988 0.012
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.862 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.862 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0188      0.936 0.996 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000    0.88524 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     5  0.6661    0.17798 0.272 0.000 0.000 0.284 0.444
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2127    0.93821 0.000 0.000 0.892 0.000 0.108
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0880    0.73324 0.000 0.032 0.000 0.968 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0290    0.82953 0.000 0.992 0.000 0.000 0.008
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0794    0.73228 0.000 0.028 0.000 0.972 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.1205    0.93790 0.000 0.000 0.956 0.004 0.040
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.5658    0.14040 0.000 0.512 0.000 0.080 0.408
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.2127    0.93821 0.000 0.000 0.892 0.000 0.108
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1082    0.73056 0.000 0.028 0.000 0.964 0.008
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3452    0.77619 0.756 0.000 0.000 0.000 0.244
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.1908    0.94231 0.000 0.000 0.908 0.000 0.092
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0162    0.88488 0.996 0.000 0.000 0.000 0.004
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.6618    0.33743 0.000 0.304 0.000 0.244 0.452
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0880    0.87423 0.968 0.000 0.000 0.000 0.032
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2732    0.85026 0.840 0.000 0.000 0.000 0.160
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0162    0.88488 0.996 0.000 0.000 0.000 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2179    0.87236 0.888 0.000 0.000 0.000 0.112
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3109    0.68003 0.000 0.000 0.000 0.800 0.200
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0404    0.94316 0.000 0.000 0.988 0.000 0.012
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.5153    0.41677 0.204 0.000 0.000 0.112 0.684
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.5538    0.42221 0.000 0.088 0.000 0.324 0.588
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0880    0.87423 0.968 0.000 0.000 0.000 0.032
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000    0.88524 1.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000    0.88524 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.4046    0.59042 0.000 0.296 0.000 0.696 0.008
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2648    0.84726 0.848 0.000 0.000 0.000 0.152
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.6597    0.35157 0.000 0.296 0.000 0.244 0.460
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1608    0.88365 0.928 0.000 0.000 0.000 0.072
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.2020    0.94112 0.000 0.000 0.900 0.000 0.100
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4046    0.59042 0.000 0.296 0.000 0.696 0.008
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.2629    0.93108 0.000 0.000 0.860 0.004 0.136
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0992    0.80276 0.000 0.968 0.000 0.024 0.008
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.1124    0.93859 0.000 0.000 0.960 0.004 0.036
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000    0.94327 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0880    0.73324 0.000 0.032 0.000 0.968 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.3430    0.66505 0.000 0.000 0.004 0.776 0.220
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1124    0.93859 0.000 0.000 0.960 0.004 0.036
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5002    0.36357 0.000 0.596 0.000 0.040 0.364
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0510    0.88483 0.984 0.000 0.000 0.000 0.016
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.2286    0.70267 0.000 0.004 0.000 0.888 0.108
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.1908    0.94231 0.000 0.000 0.908 0.000 0.092
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5068    0.35536 0.000 0.592 0.000 0.044 0.364
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6581    0.28709 0.500 0.000 0.264 0.004 0.232
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.5708    0.20479 0.000 0.528 0.000 0.088 0.384
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.3949    0.53959 0.000 0.000 0.000 0.668 0.332
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3231    0.68247 0.000 0.004 0.000 0.800 0.196
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.2813    0.68078 0.000 0.168 0.000 0.832 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.6460    0.41109 0.000 0.252 0.000 0.248 0.500
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4046    0.59042 0.000 0.296 0.000 0.696 0.008
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000    0.83234 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.4988    0.35302 0.284 0.000 0.000 0.060 0.656
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.3266    0.67948 0.000 0.004 0.000 0.796 0.200
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.2127    0.93821 0.000 0.000 0.892 0.000 0.108
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.1124    0.93859 0.000 0.000 0.960 0.004 0.036
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3109    0.68003 0.000 0.000 0.000 0.800 0.200
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2011    0.71822 0.000 0.004 0.000 0.908 0.088
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.3586    0.76742 0.736 0.000 0.000 0.000 0.264
#> EF1A102F-C206-4874-8F27-0BF069A613B8     5  0.6661    0.17798 0.272 0.000 0.000 0.284 0.444
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.6281    0.25070 0.000 0.352 0.000 0.160 0.488
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.6468    0.38603 0.000 0.188 0.000 0.360 0.452
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2020    0.87532 0.900 0.000 0.000 0.000 0.100
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.4420   -0.00385 0.448 0.000 0.000 0.004 0.548
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.1908    0.94231 0.000 0.000 0.908 0.000 0.092
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1965    0.87646 0.904 0.000 0.000 0.000 0.096
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1124    0.93859 0.000 0.000 0.960 0.004 0.036
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.3980    0.60107 0.000 0.284 0.000 0.708 0.008
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.2230    0.93565 0.000 0.000 0.884 0.000 0.116
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0404    0.94262 0.000 0.000 0.988 0.000 0.012
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.3957    0.59962 0.000 0.280 0.000 0.712 0.008
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1205    0.93790 0.000 0.000 0.956 0.004 0.040
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0162    0.83109 0.000 0.996 0.000 0.000 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0162    0.83109 0.000 0.996 0.000 0.000 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1908    0.87871 0.908 0.000 0.000 0.000 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8736 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.5487     0.3790 0.040 0.000 0.000 0.300 0.068 0.592
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.9664 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0725     0.9608 0.000 0.976 0.000 0.012 0.012 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.1364     0.8712 0.000 0.000 0.944 0.004 0.048 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0725     0.9608 0.000 0.976 0.000 0.012 0.012 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     6  0.4848    -0.7431 0.000 0.012 0.000 0.468 0.032 0.488
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.2669     0.7857 0.000 0.836 0.000 0.008 0.156 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     6  0.4821    -0.7359 0.000 0.008 0.000 0.468 0.036 0.488
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.3252     0.8871 0.000 0.000 0.824 0.108 0.068 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.4382     0.6667 0.000 0.332 0.000 0.020 0.636 0.012
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1364     0.8712 0.000 0.000 0.944 0.004 0.048 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.5174     0.7351 0.000 0.008 0.000 0.472 0.064 0.456
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5378     0.6890 0.576 0.000 0.000 0.304 0.112 0.008
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0146     0.9657 0.000 0.996 0.000 0.004 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0260     0.8864 0.000 0.000 0.992 0.000 0.008 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8736 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.4571     0.8032 0.000 0.136 0.000 0.036 0.744 0.084
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0260     0.9658 0.000 0.992 0.000 0.008 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1701     0.8538 0.920 0.000 0.000 0.072 0.008 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4512     0.8051 0.708 0.000 0.000 0.192 0.096 0.004
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8736 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3956     0.8303 0.760 0.000 0.000 0.152 0.088 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     6  0.0405     0.4530 0.000 0.000 0.000 0.004 0.008 0.988
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.2088     0.8930 0.000 0.000 0.904 0.068 0.028 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0260     0.9658 0.000 0.992 0.000 0.008 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.7041     0.0285 0.068 0.000 0.000 0.264 0.292 0.376
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.3845     0.7600 0.000 0.048 0.000 0.032 0.800 0.120
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1701     0.8538 0.920 0.000 0.000 0.072 0.008 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8736 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8736 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.6257     0.9257 0.000 0.112 0.000 0.472 0.052 0.364
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4036     0.8242 0.756 0.000 0.000 0.136 0.108 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.4453     0.8046 0.000 0.136 0.000 0.032 0.752 0.080
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3439     0.8496 0.808 0.000 0.000 0.120 0.072 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0520     0.8860 0.000 0.000 0.984 0.008 0.008 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.6251     0.9234 0.000 0.112 0.000 0.476 0.052 0.360
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.3150     0.8685 0.000 0.000 0.828 0.120 0.052 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1391     0.9371 0.000 0.944 0.000 0.016 0.040 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3159     0.8884 0.000 0.000 0.832 0.100 0.068 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.2563     0.8929 0.000 0.000 0.876 0.072 0.052 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     6  0.4848    -0.7431 0.000 0.012 0.000 0.468 0.032 0.488
#> 7338D61C-77D6-4095-8847-7FD9967B7646     6  0.1285     0.4539 0.000 0.000 0.004 0.000 0.052 0.944
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.3159     0.8884 0.000 0.000 0.832 0.100 0.068 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.3534     0.7321 0.000 0.276 0.000 0.008 0.716 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0146     0.8731 0.996 0.000 0.000 0.000 0.004 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     6  0.4170    -0.3138 0.000 0.000 0.000 0.308 0.032 0.660
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0146     0.8872 0.000 0.000 0.996 0.000 0.004 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.3309     0.7300 0.000 0.280 0.000 0.000 0.720 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.7029     0.0284 0.336 0.000 0.372 0.236 0.048 0.008
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.3838     0.7653 0.000 0.240 0.000 0.008 0.732 0.020
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.3487     0.4433 0.000 0.000 0.000 0.168 0.044 0.788
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     6  0.0405     0.4530 0.000 0.000 0.000 0.004 0.008 0.988
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.5598     0.8370 0.000 0.064 0.000 0.472 0.032 0.432
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.4032     0.7924 0.000 0.084 0.000 0.032 0.792 0.092
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.6257     0.9257 0.000 0.112 0.000 0.472 0.052 0.364
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0146     0.9657 0.000 0.996 0.000 0.004 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.5425     0.4906 0.148 0.000 0.000 0.152 0.660 0.040
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     6  0.0363     0.4569 0.000 0.000 0.000 0.000 0.012 0.988
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1364     0.8712 0.000 0.000 0.944 0.004 0.048 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3159     0.8884 0.000 0.000 0.832 0.100 0.068 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     6  0.0260     0.4555 0.000 0.000 0.000 0.000 0.008 0.992
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     6  0.3862    -0.4699 0.000 0.000 0.000 0.388 0.004 0.608
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5844     0.6795 0.544 0.000 0.028 0.340 0.076 0.012
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.5487     0.3790 0.040 0.000 0.000 0.300 0.068 0.592
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.3860     0.8008 0.000 0.164 0.000 0.000 0.764 0.072
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.4680     0.7796 0.000 0.092 0.000 0.044 0.740 0.124
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1789     0.8721 0.924 0.000 0.000 0.032 0.044 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.5042     0.4139 0.212 0.000 0.000 0.136 0.648 0.004
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0146     0.8872 0.000 0.000 0.996 0.000 0.004 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1720     0.8726 0.928 0.000 0.000 0.032 0.040 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3159     0.8884 0.000 0.000 0.832 0.100 0.068 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.6251     0.9234 0.000 0.112 0.000 0.476 0.052 0.360
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.1578     0.8698 0.000 0.000 0.936 0.012 0.048 0.004
#> 976507F2-192B-4095-920A-3014889CD617     3  0.2837     0.8917 0.000 0.000 0.856 0.088 0.056 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.6203     0.9221 0.000 0.104 0.000 0.472 0.052 0.372
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.3252     0.8871 0.000 0.000 0.824 0.108 0.068 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0405     0.9648 0.000 0.988 0.000 0.008 0.004 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0405     0.9648 0.000 0.988 0.000 0.008 0.004 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3757     0.8368 0.780 0.000 0.000 0.136 0.084 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.5067 0.494   0.494
#> 3 3 1.000           0.961       0.985         0.2902 0.806   0.625
#> 4 4 1.000           0.976       0.988         0.1555 0.888   0.682
#> 5 5 0.959           0.913       0.957         0.0393 0.969   0.876
#> 6 6 0.887           0.780       0.895         0.0312 0.982   0.916

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette   p1   p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.000      1.000 1.00 0.00
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1   0.000      1.000 1.00 0.00
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.000      0.992 0.00 1.00
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.000      0.992 0.00 1.00
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1   0.000      1.000 1.00 0.00
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.000      0.992 0.00 1.00
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.000      0.992 0.00 1.00
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.000      0.992 0.00 1.00
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.000      0.992 0.00 1.00
#> F2995599-3F21-4F33-92BB-7D70A4735938     1   0.000      1.000 1.00 0.00
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.000      0.992 0.00 1.00
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1   0.000      1.000 1.00 0.00
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.000      0.992 0.00 1.00
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.000      1.000 1.00 0.00
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.000      0.992 0.00 1.00
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1   0.000      1.000 1.00 0.00
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.000      1.000 1.00 0.00
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.000      0.992 0.00 1.00
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.000      0.992 0.00 1.00
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.000      1.000 1.00 0.00
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000      1.000 1.00 0.00
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.000      1.000 1.00 0.00
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000      1.000 1.00 0.00
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.000      0.992 0.00 1.00
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1   0.000      1.000 1.00 0.00
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.000      0.992 0.00 1.00
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2   0.000      0.992 0.00 1.00
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2   0.529      0.866 0.12 0.88
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.000      1.000 1.00 0.00
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.000      1.000 1.00 0.00
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.000      1.000 1.00 0.00
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.000      0.992 0.00 1.00
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.000      1.000 1.00 0.00
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.000      0.992 0.00 1.00
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000      1.000 1.00 0.00
#> DB676839-02AA-42A7-962F-89D6AD892008     1   0.000      1.000 1.00 0.00
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.000      0.992 0.00 1.00
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1   0.000      1.000 1.00 0.00
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.000      0.992 0.00 1.00
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1   0.000      1.000 1.00 0.00
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1   0.000      1.000 1.00 0.00
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.000      0.992 0.00 1.00
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1   0.000      1.000 1.00 0.00
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1   0.000      1.000 1.00 0.00
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.000      0.992 0.00 1.00
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.000      1.000 1.00 0.00
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.000      0.992 0.00 1.00
#> B76DB955-69B7-4D05-8166-2569ED44628C     1   0.000      1.000 1.00 0.00
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.000      0.992 0.00 1.00
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.000      1.000 1.00 0.00
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.000      0.992 0.00 1.00
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1   0.000      1.000 1.00 0.00
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.000      0.992 0.00 1.00
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.000      0.992 0.00 1.00
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.000      0.992 0.00 1.00
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.000      0.992 0.00 1.00
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.000      0.992 0.00 1.00
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.000      0.992 0.00 1.00
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.000      0.992 0.00 1.00
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1   0.000      1.000 1.00 0.00
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1   0.000      1.000 1.00 0.00
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2   0.000      0.992 0.00 1.00
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.000      0.992 0.00 1.00
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1   0.000      1.000 1.00 0.00
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1   0.000      1.000 1.00 0.00
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.000      0.992 0.00 1.00
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.000      0.992 0.00 1.00
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.000      1.000 1.00 0.00
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.680      0.785 0.18 0.82
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1   0.000      1.000 1.00 0.00
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.000      1.000 1.00 0.00
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1   0.000      1.000 1.00 0.00
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.000      0.992 0.00 1.00
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1   0.000      1.000 1.00 0.00
#> 976507F2-192B-4095-920A-3014889CD617     1   0.000      1.000 1.00 0.00
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.000      0.992 0.00 1.00
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1   0.000      1.000 1.00 0.00
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.000      0.992 0.00 1.00
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.000      0.992 0.00 1.00
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.000      1.000 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      1.000 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.3482      0.832 0.128 0.000 0.872
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.990 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.990 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.958 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.990 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.990 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.990 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.990 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.958 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.990 0.000 1.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.958 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.990 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      1.000 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.990 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.958 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      1.000 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.990 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.990 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      1.000 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      1.000 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      1.000 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      1.000 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0892      0.972 0.000 0.980 0.020
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.958 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.990 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      1.000 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.5621      0.552 0.308 0.692 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      1.000 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      1.000 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      1.000 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.990 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      1.000 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.990 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      1.000 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.958 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.990 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.958 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.990 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.958 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.958 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.990 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.0000      0.958 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.958 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.990 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      1.000 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.990 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.958 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.990 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.958 0.000 0.000 1.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.990 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.0000      0.958 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0592      0.979 0.000 0.988 0.012
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.990 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.990 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.990 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.990 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      1.000 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0424      0.983 0.000 0.992 0.008
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.958 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.958 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.6244      0.211 0.000 0.440 0.560
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.990 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.5678      0.534 0.316 0.000 0.684
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0237      0.996 0.996 0.000 0.004
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.990 0.000 1.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.990 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      1.000 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      1.000 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.958 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      1.000 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.958 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.990 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.958 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.958 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.990 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.958 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.990 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.990 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.5343      0.530 0.316 0.000 0.656 0.028
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0592      0.987 0.000 0.016 0.000 0.984
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0592      0.987 0.000 0.016 0.000 0.984
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0921      0.984 0.000 0.028 0.000 0.972
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.983 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.0469      0.986 0.012 0.988 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0921      0.984 0.000 0.028 0.000 0.972
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.1022      0.982 0.000 0.032 0.000 0.968
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0592      0.987 0.000 0.016 0.000 0.984
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.1118      0.941 0.000 0.000 0.964 0.036
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.983 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.1022      0.945 0.000 0.000 0.968 0.032
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.983 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0592      0.987 0.000 0.016 0.000 0.984
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1022      0.982 0.000 0.032 0.000 0.968
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.983 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.983 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.983 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.4406      0.587 0.300 0.000 0.700 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0921      0.974 0.972 0.000 0.000 0.028
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0921      0.984 0.000 0.028 0.000 0.972
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1022      0.982 0.000 0.032 0.000 0.968
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.967 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.999 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     5  0.1597      0.703 0.048 0.000 0.012 0.000 0.940
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0451      0.988 0.000 0.988 0.000 0.008 0.004
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0290      0.988 0.000 0.992 0.000 0.008 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0290      0.988 0.000 0.992 0.000 0.008 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0162      0.987 0.000 0.996 0.000 0.004 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0671      0.981 0.000 0.980 0.000 0.004 0.016
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3983      0.570 0.660 0.000 0.000 0.000 0.340
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0451      0.988 0.000 0.988 0.000 0.008 0.004
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0671      0.981 0.000 0.980 0.000 0.004 0.016
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0451      0.988 0.000 0.988 0.000 0.008 0.004
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1671      0.913 0.924 0.000 0.000 0.000 0.076
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0510      0.945 0.984 0.000 0.000 0.000 0.016
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.2852      0.745 0.000 0.000 0.000 0.828 0.172
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0451      0.988 0.000 0.988 0.000 0.008 0.004
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3999      0.590 0.656 0.000 0.000 0.000 0.344
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.1522      0.952 0.012 0.944 0.000 0.000 0.044
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0703      0.943 0.976 0.000 0.000 0.000 0.024
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0290      0.984 0.000 0.992 0.000 0.000 0.008
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0290      0.988 0.000 0.992 0.000 0.008 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.4584      0.466 0.000 0.000 0.660 0.028 0.312
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0324      0.987 0.000 0.992 0.000 0.004 0.004
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.949 1.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.986 0.000 1.000 0.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.2597      0.850 0.024 0.000 0.884 0.000 0.092
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0324      0.987 0.000 0.992 0.000 0.004 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.2648      0.651 0.000 0.000 0.152 0.000 0.848
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0404      0.965 0.000 0.000 0.000 0.988 0.012
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.1043      0.965 0.000 0.960 0.000 0.000 0.040
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0451      0.988 0.000 0.988 0.000 0.008 0.004
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.1768      0.917 0.924 0.004 0.000 0.000 0.072
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     5  0.4273      0.331 0.000 0.000 0.000 0.448 0.552
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     5  0.4256      0.358 0.000 0.000 0.000 0.436 0.564
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.1410      0.914 0.000 0.000 0.000 0.940 0.060
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.5039      0.581 0.184 0.000 0.700 0.000 0.116
#> EF1A102F-C206-4874-8F27-0BF069A613B8     5  0.1410      0.698 0.060 0.000 0.000 0.000 0.940
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.1043      0.965 0.000 0.960 0.000 0.000 0.040
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0671      0.982 0.000 0.980 0.000 0.004 0.016
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0880      0.937 0.968 0.000 0.000 0.000 0.032
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.1357      0.928 0.948 0.004 0.000 0.000 0.048
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0162      0.948 0.996 0.000 0.000 0.000 0.004
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.976 0.000 0.000 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.959 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0451      0.988 0.000 0.988 0.000 0.008 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0324      0.987 0.000 0.992 0.000 0.004 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0404      0.947 0.988 0.000 0.000 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8643 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.1753     0.6804 0.004 0.000 0.000 0.000 0.084 0.912
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0260     0.8626 0.000 0.992 0.000 0.000 0.008 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0713     0.8567 0.000 0.972 0.000 0.000 0.028 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0713     0.8567 0.000 0.972 0.000 0.000 0.028 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000     0.9522 0.000 0.000 0.000 1.000 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.1204     0.8444 0.000 0.944 0.000 0.000 0.056 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0146     0.9512 0.000 0.000 0.000 0.996 0.000 0.004
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2631     0.6177 0.000 0.820 0.000 0.000 0.180 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0260     0.9355 0.000 0.000 0.992 0.000 0.008 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000     0.9522 0.000 0.000 0.000 1.000 0.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4918     0.5704 0.644 0.000 0.000 0.000 0.124 0.232
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0260     0.8626 0.000 0.992 0.000 0.000 0.008 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0146     0.8641 0.996 0.000 0.000 0.000 0.004 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.3426     0.5487 0.000 0.720 0.000 0.000 0.276 0.004
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0260     0.8626 0.000 0.992 0.000 0.000 0.008 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0458     0.8620 0.984 0.000 0.000 0.000 0.016 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4313     0.6831 0.668 0.000 0.000 0.000 0.284 0.048
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0146     0.8641 0.996 0.000 0.000 0.000 0.004 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3221     0.7431 0.736 0.000 0.000 0.000 0.264 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3566     0.6522 0.000 0.000 0.000 0.752 0.024 0.224
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0260     0.8626 0.000 0.992 0.000 0.000 0.008 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.6780    -0.3697 0.328 0.044 0.000 0.000 0.384 0.244
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.4625     0.1038 0.032 0.424 0.000 0.000 0.540 0.004
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0458     0.8620 0.984 0.000 0.000 0.000 0.016 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8643 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0146     0.8641 0.996 0.000 0.000 0.000 0.004 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0146     0.9509 0.000 0.004 0.000 0.996 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2912     0.7826 0.784 0.000 0.000 0.000 0.216 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3023     0.6706 0.000 0.784 0.000 0.000 0.212 0.004
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0458     0.8638 0.984 0.000 0.000 0.000 0.016 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0458     0.9443 0.000 0.016 0.000 0.984 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0146     0.9381 0.000 0.000 0.996 0.000 0.004 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1219     0.8477 0.000 0.948 0.000 0.000 0.048 0.004
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000     0.9522 0.000 0.000 0.000 1.000 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.5285     0.0594 0.000 0.000 0.512 0.036 0.036 0.416
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0458     0.8606 0.000 0.984 0.000 0.000 0.016 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0146     0.8641 0.996 0.000 0.000 0.000 0.004 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0508     0.9463 0.000 0.000 0.000 0.984 0.012 0.004
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.2300     0.7632 0.000 0.856 0.000 0.000 0.144 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.3505     0.7680 0.092 0.000 0.824 0.000 0.016 0.068
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0865     0.8543 0.000 0.964 0.000 0.000 0.036 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.1753     0.6646 0.000 0.000 0.084 0.004 0.000 0.912
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2066     0.8801 0.000 0.000 0.000 0.904 0.024 0.072
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.9522 0.000 0.000 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.3995    -0.0522 0.000 0.480 0.000 0.000 0.516 0.004
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0458     0.9443 0.000 0.016 0.000 0.984 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0260     0.8626 0.000 0.992 0.000 0.000 0.008 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4754     0.5730 0.568 0.032 0.000 0.000 0.388 0.012
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     6  0.4193     0.4941 0.000 0.000 0.000 0.352 0.024 0.624
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     6  0.4078     0.5509 0.000 0.000 0.000 0.320 0.024 0.656
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2121     0.8651 0.000 0.000 0.000 0.892 0.012 0.096
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.5587     0.3677 0.312 0.000 0.572 0.000 0.032 0.084
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.1753     0.6804 0.004 0.000 0.000 0.000 0.084 0.912
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.3717     0.1911 0.000 0.616 0.000 0.000 0.384 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.3583     0.5507 0.000 0.728 0.000 0.008 0.260 0.004
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1267     0.8534 0.940 0.000 0.000 0.000 0.060 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4429     0.5406 0.548 0.028 0.000 0.000 0.424 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0937     0.8578 0.960 0.000 0.000 0.000 0.040 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000     0.9522 0.000 0.000 0.000 1.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0146     0.9382 0.000 0.000 0.996 0.000 0.004 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0458     0.9443 0.000 0.016 0.000 0.984 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0260     0.8626 0.000 0.992 0.000 0.000 0.008 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0363     0.8604 0.000 0.988 0.000 0.000 0.012 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.2491     0.8140 0.836 0.000 0.000 0.000 0.164 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.495           0.853       0.890         0.4888 0.499   0.499
#> 3 3 0.947           0.955       0.981         0.3157 0.807   0.634
#> 4 4 0.915           0.910       0.963         0.1768 0.860   0.625
#> 5 5 0.868           0.752       0.852         0.0526 0.925   0.710
#> 6 6 0.853           0.806       0.859         0.0385 0.929   0.681

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.5737      0.847 0.864 0.136
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.3584      0.901 0.068 0.932
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.924 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.924 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.3584      0.880 0.932 0.068
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.924 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.5178      0.844 0.116 0.884
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.2043      0.910 0.032 0.968
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.3733      0.898 0.072 0.928
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.3584      0.880 0.932 0.068
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3584      0.888 0.068 0.932
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.3584      0.880 0.932 0.068
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.2236      0.913 0.036 0.964
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5737      0.847 0.864 0.136
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.924 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.3584      0.880 0.932 0.068
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.5737      0.847 0.864 0.136
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.3431      0.895 0.064 0.936
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.924 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.4161      0.861 0.916 0.084
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.5842      0.845 0.860 0.140
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.5842      0.845 0.860 0.140
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.8813      0.639 0.700 0.300
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.3431      0.903 0.064 0.936
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.3584      0.880 0.932 0.068
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.924 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.3584      0.888 0.068 0.932
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.9427      0.468 0.360 0.640
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.5519      0.850 0.872 0.128
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.5737      0.847 0.864 0.136
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.5842      0.845 0.860 0.140
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0376      0.924 0.004 0.996
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.9977      0.156 0.528 0.472
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.924 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5294      0.852 0.880 0.120
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.3584      0.880 0.932 0.068
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0376      0.924 0.004 0.996
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.861 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0376      0.924 0.004 0.996
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.3584      0.880 0.932 0.068
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.3584      0.880 0.932 0.068
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.1414      0.920 0.020 0.980
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.8813      0.633 0.300 0.700
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.3584      0.880 0.932 0.068
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.924 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.5842      0.845 0.860 0.140
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.6148      0.818 0.152 0.848
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.3584      0.880 0.932 0.068
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3584      0.888 0.068 0.932
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.861 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.924 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.8661      0.651 0.288 0.712
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.3733      0.899 0.072 0.928
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.1633      0.918 0.024 0.976
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.6247      0.810 0.156 0.844
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0376      0.924 0.004 0.996
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.924 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.7299      0.763 0.204 0.796
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.3879      0.896 0.076 0.924
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.3584      0.880 0.932 0.068
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.3584      0.880 0.932 0.068
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.3733      0.898 0.072 0.928
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4022      0.892 0.080 0.920
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6247      0.856 0.844 0.156
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.1843      0.916 0.028 0.972
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.3584      0.888 0.068 0.932
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.924 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.9129      0.598 0.672 0.328
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.7299      0.763 0.204 0.796
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.3584      0.880 0.932 0.068
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.9129      0.598 0.672 0.328
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.3584      0.880 0.932 0.068
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.2236      0.913 0.036 0.964
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.3584      0.880 0.932 0.068
#> 976507F2-192B-4095-920A-3014889CD617     1  0.3584      0.880 0.932 0.068
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.924 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.3584      0.880 0.932 0.068
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3584      0.888 0.068 0.932
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3431      0.891 0.064 0.936
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.5737      0.847 0.864 0.136

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.000      0.979 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2   0.327      0.863 0.116 0.884 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.000      0.969 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.000      0.969 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3   0.000      1.000 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.000      0.969 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.000      0.969 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.000      0.969 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.000      0.969 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3   0.000      1.000 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.593      0.459 0.356 0.644 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3   0.000      1.000 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.000      0.969 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.000      0.979 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.000      0.969 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3   0.000      1.000 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.000      0.979 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.000      0.969 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.000      0.969 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.000      0.979 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000      0.979 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.000      0.979 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000      0.979 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.000      0.969 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3   0.000      1.000 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.000      0.969 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.000      0.979 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1   0.000      0.979 1.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.000      0.979 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.000      0.979 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.000      0.979 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.000      0.969 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.000      0.979 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.000      0.969 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000      0.979 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3   0.000      1.000 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.000      0.969 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3   0.000      1.000 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.000      0.969 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3   0.000      1.000 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3   0.000      1.000 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.000      0.969 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2   0.000      0.969 0.000 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3   0.000      1.000 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.000      0.969 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.000      0.979 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.000      0.969 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3   0.000      1.000 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.455      0.750 0.200 0.800 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.565      0.552 0.688 0.000 0.312
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.000      0.969 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2   0.000      0.969 0.000 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.000      0.969 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.000      0.969 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.571      0.550 0.320 0.680 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.000      0.969 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.000      0.969 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1   0.000      0.979 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.000      0.969 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3   0.000      1.000 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3   0.000      1.000 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2   0.000      0.969 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.000      0.969 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1   0.355      0.841 0.868 0.000 0.132
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2   0.334      0.859 0.120 0.880 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1   0.000      0.979 1.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.000      0.969 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.000      0.979 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1   0.000      0.979 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3   0.000      1.000 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.000      0.979 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3   0.000      1.000 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.000      0.969 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3   0.000      1.000 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3   0.000      1.000 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.000      0.969 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3   0.000      1.000 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.000      0.969 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.000      0.969 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.000      0.979 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.2589      0.828 0.116 0.000 0.000 0.884
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0469      0.928 0.000 0.988 0.000 0.012
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.4843      0.371 0.000 0.396 0.000 0.604
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1474      0.920 0.948 0.052 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3486      0.718 0.000 0.812 0.000 0.188
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.4843      0.371 0.000 0.396 0.000 0.604
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4477      0.552 0.688 0.000 0.312 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.7004      0.473 0.220 0.580 0.000 0.200
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.3895      0.814 0.832 0.000 0.132 0.036
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.2647      0.824 0.120 0.000 0.000 0.880
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4804      0.399 0.000 0.384 0.000 0.616
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4843      0.299 0.396 0.604 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0921      0.969 0.000 0.000 0.972 0.028
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.930 0.000 0.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.998 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.972 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1544     0.8595 0.000 0.932 0.000 0.000 0.068
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1478     0.8615 0.000 0.936 0.000 0.000 0.064
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.1478     0.8615 0.000 0.936 0.000 0.000 0.064
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3999     0.5638 0.000 0.656 0.000 0.000 0.344
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1410     0.6771 0.000 0.000 0.000 0.940 0.060
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4161     0.6813 0.608 0.000 0.000 0.000 0.392
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6102    -0.1387 0.000 0.440 0.000 0.436 0.124
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4161     0.6813 0.608 0.000 0.000 0.000 0.392
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3966     0.7108 0.664 0.000 0.000 0.000 0.336
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2329     0.8121 0.876 0.000 0.000 0.000 0.124
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1270     0.8240 0.948 0.052 0.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0880     0.8442 0.968 0.000 0.000 0.000 0.032
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4161     0.6813 0.608 0.000 0.000 0.000 0.392
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.5505     0.0347 0.000 0.452 0.000 0.484 0.064
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.5393    -0.1433 0.000 0.440 0.000 0.056 0.504
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1792     0.6383 0.000 0.000 0.000 0.916 0.084
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.8771 0.000 1.000 0.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0404     0.7334 0.000 0.000 0.000 0.988 0.012
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.1478     0.8615 0.000 0.936 0.000 0.000 0.064
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.3857     0.4966 0.688 0.000 0.312 0.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.8771 0.000 1.000 0.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.5942     0.0346 0.008 0.440 0.000 0.472 0.080
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.6746    -0.3673 0.344 0.000 0.000 0.264 0.392
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000     0.7436 0.000 0.000 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6749     0.5782 0.528 0.000 0.132 0.036 0.304
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.3730     0.3981 0.000 0.000 0.000 0.712 0.288
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.1478     0.8615 0.000 0.936 0.000 0.000 0.064
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.5740     0.3403 0.000 0.272 0.000 0.600 0.128
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.5708     0.3475 0.084 0.504 0.000 0.000 0.412
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.8504 1.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.4300     0.6829 0.000 0.000 0.000 0.476 0.524
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0794     0.9657 0.000 0.000 0.972 0.028 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1410     0.6771 0.000 0.000 0.000 0.940 0.060
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9980 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0609     0.8785 0.000 0.980 0.000 0.000 0.020
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4161     0.6813 0.608 0.000 0.000 0.000 0.392

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4155      0.693 0.000 0.616 0.000 0.000 0.364 0.020
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0363      0.676 0.000 0.988 0.000 0.000 0.000 0.012
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.677 0.000 1.000 0.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.677 0.000 1.000 0.000 0.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0458      0.985 0.000 0.000 0.984 0.000 0.000 0.016
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.3684     -0.384 0.000 0.372 0.000 0.000 0.628 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0790      0.861 0.000 0.000 0.000 0.968 0.000 0.032
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     5  0.4963      0.824 0.124 0.000 0.000 0.000 0.636 0.240
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4230      0.692 0.000 0.612 0.000 0.000 0.364 0.024
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.4181      0.268 0.000 0.644 0.000 0.328 0.000 0.028
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.4230      0.692 0.000 0.612 0.000 0.000 0.364 0.024
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     5  0.4999      0.822 0.128 0.000 0.000 0.000 0.632 0.240
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     5  0.5565      0.750 0.208 0.000 0.000 0.000 0.552 0.240
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4230      0.692 0.000 0.612 0.000 0.000 0.364 0.024
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2595      0.746 0.836 0.000 0.000 0.000 0.160 0.004
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1204      0.876 0.944 0.056 0.000 0.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0632      0.914 0.976 0.000 0.000 0.000 0.024 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.4963      0.824 0.124 0.000 0.000 0.000 0.636 0.240
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.3634      0.254 0.000 0.644 0.000 0.356 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0363      0.986 0.000 0.000 0.988 0.000 0.000 0.012
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3737      0.217 0.000 0.608 0.000 0.000 0.000 0.392
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0458      0.985 0.000 0.000 0.984 0.000 0.000 0.016
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1814      0.786 0.000 0.000 0.000 0.900 0.000 0.100
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0458      0.985 0.000 0.000 0.984 0.000 0.000 0.016
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3446      0.703 0.000 0.692 0.000 0.000 0.308 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.2730      0.613 0.000 0.000 0.000 0.808 0.000 0.192
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.677 0.000 1.000 0.000 0.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.4057      0.335 0.600 0.000 0.388 0.000 0.000 0.012
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.3351      0.703 0.000 0.712 0.000 0.000 0.288 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0363      0.873 0.000 0.000 0.000 0.988 0.000 0.012
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.3634      0.254 0.000 0.644 0.000 0.356 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.4230      0.692 0.000 0.612 0.000 0.000 0.364 0.024
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.5303      0.816 0.100 0.000 0.000 0.024 0.636 0.240
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0458      0.985 0.000 0.000 0.984 0.000 0.000 0.016
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     5  0.7799      0.658 0.128 0.000 0.052 0.156 0.448 0.216
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.4134      0.515 0.000 0.000 0.000 0.708 0.052 0.240
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.677 0.000 1.000 0.000 0.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.5208      0.440 0.000 0.248 0.000 0.604 0.148 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.3050      0.734 0.000 0.000 0.000 0.000 0.764 0.236
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.933 1.000 0.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0458      0.985 0.000 0.000 0.984 0.000 0.000 0.016
#> 06DAE086-D960-4156-9DC8-D126338E2F29     6  0.3309      1.000 0.000 0.000 0.000 0.280 0.000 0.720
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.2121      0.885 0.000 0.000 0.892 0.096 0.000 0.012
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0790      0.861 0.000 0.000 0.000 0.968 0.000 0.032
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0458      0.985 0.000 0.000 0.984 0.000 0.000 0.016
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3659      0.696 0.000 0.636 0.000 0.000 0.364 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3992      0.693 0.000 0.624 0.000 0.000 0.364 0.012
#> EA35E230-DE50-45AB-A737-D5C430652A90     5  0.4963      0.824 0.124 0.000 0.000 0.000 0.636 0.240

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.585           0.856       0.883         0.4386 0.494   0.494
#> 3 3 0.938           0.894       0.963         0.3347 0.576   0.354
#> 4 4 0.827           0.868       0.928         0.2658 0.810   0.541
#> 5 5 0.941           0.893       0.941         0.0713 0.925   0.709
#> 6 6 0.898           0.868       0.913         0.0376 0.956   0.793

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     2   0.973      1.000 0.404 0.596
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1   0.000      0.707 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.973      1.000 0.404 0.596
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.973      1.000 0.404 0.596
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1   0.966      0.720 0.608 0.392
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.973      1.000 0.404 0.596
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     1   0.000      0.707 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.973      1.000 0.404 0.596
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     1   0.000      0.707 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1   0.973      0.719 0.596 0.404
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.973      1.000 0.404 0.596
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1   0.966      0.720 0.608 0.392
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     1   0.000      0.707 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     2   0.973      1.000 0.404 0.596
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.973      1.000 0.404 0.596
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1   0.973      0.719 0.596 0.404
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     2   0.973      1.000 0.404 0.596
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.973      1.000 0.404 0.596
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.973      1.000 0.404 0.596
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     2   0.973      1.000 0.404 0.596
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     2   0.973      1.000 0.404 0.596
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     2   0.973      1.000 0.404 0.596
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2   0.973      1.000 0.404 0.596
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1   0.000      0.707 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1   0.973      0.719 0.596 0.404
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.973      1.000 0.404 0.596
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2   0.973      1.000 0.404 0.596
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2   0.973      1.000 0.404 0.596
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     2   0.973      1.000 0.404 0.596
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     2   0.973      1.000 0.404 0.596
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     2   0.973      1.000 0.404 0.596
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     1   0.000      0.707 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2   0.973      1.000 0.404 0.596
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.973      1.000 0.404 0.596
#> A4168812-C38E-4F15-9AF6-79F256279E72     2   0.973      1.000 0.404 0.596
#> DB676839-02AA-42A7-962F-89D6AD892008     1   0.973      0.719 0.596 0.404
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     1   0.000      0.707 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1   0.000      0.707 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.973      1.000 0.404 0.596
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1   0.973      0.719 0.596 0.404
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1   0.973      0.719 0.596 0.404
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     1   0.000      0.707 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1   0.000      0.707 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1   0.973      0.719 0.596 0.404
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.973      1.000 0.404 0.596
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2   0.973      1.000 0.404 0.596
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1   0.000      0.707 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1   0.973      0.719 0.596 0.404
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.973      1.000 0.404 0.596
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.000      0.707 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.973      1.000 0.404 0.596
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1   0.000      0.707 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1   0.000      0.707 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     1   0.000      0.707 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.973      1.000 0.404 0.596
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     1   0.000      0.707 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.973      1.000 0.404 0.596
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.973      1.000 0.404 0.596
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1   0.000      0.707 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1   0.966      0.720 0.608 0.392
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1   0.973      0.719 0.596 0.404
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1   0.000      0.707 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     1   0.000      0.707 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1   0.000      0.707 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1   0.000      0.707 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.973      1.000 0.404 0.596
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.973      1.000 0.404 0.596
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2   0.973      1.000 0.404 0.596
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.973      1.000 0.404 0.596
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1   0.973      0.719 0.596 0.404
#> D34B0BC6-9142-48AE-A113-5923192644A0     2   0.973      1.000 0.404 0.596
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1   0.973      0.719 0.596 0.404
#> 06DAE086-D960-4156-9DC8-D126338E2F29     1   0.000      0.707 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1   0.966      0.720 0.608 0.392
#> 976507F2-192B-4095-920A-3014889CD617     1   0.973      0.719 0.596 0.404
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     1   0.000      0.707 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1   0.973      0.719 0.596 0.404
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.973      1.000 0.404 0.596
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.973      1.000 0.404 0.596
#> EA35E230-DE50-45AB-A737-D5C430652A90     2   0.973      1.000 0.404 0.596

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8584 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     2  0.0000     0.9869 0.000 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.9869 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.9869 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9468 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.9869 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000     0.9869 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.9869 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000     0.9869 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9468 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000     0.9869 0.000 1.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     2  0.6307    -0.0123 0.000 0.512 0.488
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000     0.9869 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6225     0.3366 0.568 0.432 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.9869 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9468 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8584 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000     0.9869 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.9869 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000     0.8584 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000     0.8584 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.8584 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000     0.8584 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000     0.9869 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9468 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.9869 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2  0.0000     0.9869 0.000 1.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.0000     0.9869 0.000 1.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.8584 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8584 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8584 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000     0.9869 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000     0.8584 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000     0.9869 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.8584 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9468 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000     0.9869 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.6225     0.2228 0.000 0.432 0.568
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     0.9869 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9468 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9468 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000     0.9869 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.0000     0.9869 0.000 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9468 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.9869 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.8584 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000     0.9869 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9468 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.9869 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.7256     0.2960 0.532 0.440 0.028
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.9869 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     2  0.0000     0.9869 0.000 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000     0.9869 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000     0.9869 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000     0.9869 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000     0.9869 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.9869 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.0592     0.9738 0.012 0.988 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0000     0.9869 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9468 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9468 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000     0.9869 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000     0.9869 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6307     0.1781 0.512 0.488 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     2  0.0000     0.9869 0.000 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000     0.9869 0.000 1.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000     0.9869 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.8584 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.6267     0.2877 0.548 0.452 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9468 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.8584 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9468 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000     0.9869 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4178     0.7261 0.000 0.172 0.828
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9468 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000     0.9869 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9468 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.9869 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.9869 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000     0.8584 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.2814      0.813 0.132 0.000 0.000 0.868
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0657      0.817 0.012 0.984 0.000 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4546      0.802 0.012 0.732 0.000 0.256
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0707      0.963 0.000 0.000 0.980 0.020
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4343      0.621 0.732 0.004 0.000 0.264
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0657      0.817 0.012 0.984 0.000 0.004
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0188      0.901 0.996 0.004 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6567      0.497 0.616 0.128 0.000 0.256
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.1970      0.789 0.060 0.932 0.000 0.008
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0469      0.815 0.012 0.988 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0188      0.901 0.996 0.004 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0188      0.958 0.000 0.004 0.000 0.996
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4193      0.565 0.000 0.000 0.732 0.268
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.4164      0.799 0.000 0.736 0.000 0.264
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0657      0.817 0.012 0.984 0.000 0.004
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0657      0.817 0.012 0.984 0.000 0.004
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.7037      0.460 0.564 0.000 0.168 0.268
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0657      0.817 0.012 0.984 0.000 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.1743      0.793 0.056 0.940 0.000 0.004
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4661      0.621 0.728 0.016 0.000 0.256
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0592      0.966 0.000 0.000 0.984 0.016
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.6316      0.493 0.612 0.000 0.088 0.300
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.4941      0.119 0.436 0.000 0.000 0.564
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.1743      0.793 0.056 0.940 0.000 0.004
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0469      0.815 0.012 0.988 0.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000      0.962 0.000 0.000 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0592      0.966 0.000 0.000 0.984 0.016
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0336      0.954 0.000 0.008 0.000 0.992
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.977 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4103      0.806 0.000 0.744 0.000 0.256
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.903 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     4  0.3489     0.7911 0.144 0.036 0.000 0.820 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.1430     0.9230 0.000 0.052 0.944 0.000 0.004
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0162     0.9690 0.000 0.004 0.000 0.996 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.2439     0.7469 0.000 0.120 0.000 0.004 0.876
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0162     0.9690 0.000 0.004 0.000 0.996 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0451     0.9436 0.000 0.004 0.988 0.000 0.008
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4997     0.2156 0.008 0.508 0.000 0.016 0.468
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1591     0.9208 0.000 0.052 0.940 0.004 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0404     0.9642 0.000 0.000 0.000 0.988 0.012
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4968     0.6930 0.748 0.032 0.000 0.148 0.072
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9441 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.0404     0.8679 0.000 0.000 0.000 0.012 0.988
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1121     0.9412 0.956 0.000 0.000 0.000 0.044
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0162     0.9676 0.000 0.004 0.000 0.996 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9441 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.6847     0.3129 0.292 0.012 0.000 0.224 0.472
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.0510     0.8671 0.000 0.000 0.000 0.016 0.984
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0290     0.9684 0.000 0.008 0.000 0.992 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0963     0.9491 0.964 0.000 0.000 0.000 0.036
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0404     0.8679 0.000 0.000 0.000 0.012 0.988
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9441 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0290     0.9684 0.000 0.008 0.000 0.992 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0981     0.9363 0.008 0.012 0.972 0.000 0.008
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2900     0.9114 0.000 0.864 0.000 0.028 0.108
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0451     0.9436 0.000 0.004 0.988 0.000 0.008
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9441 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0162     0.9690 0.000 0.004 0.000 0.996 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.1774     0.9235 0.000 0.052 0.016 0.932 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0451     0.9436 0.000 0.004 0.988 0.000 0.008
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.0451     0.8634 0.000 0.008 0.000 0.004 0.988
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0162     0.9690 0.000 0.004 0.000 0.996 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9441 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.0451     0.8634 0.000 0.008 0.000 0.004 0.988
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.4607     0.7245 0.164 0.036 0.764 0.036 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.0451     0.8663 0.000 0.004 0.000 0.008 0.988
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.0404     0.9633 0.000 0.012 0.000 0.988 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0162     0.9676 0.000 0.004 0.000 0.996 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0290     0.9684 0.000 0.008 0.000 0.992 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0510     0.8671 0.000 0.000 0.000 0.016 0.984
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0290     0.9684 0.000 0.008 0.000 0.992 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.2077     0.9476 0.000 0.908 0.000 0.008 0.084
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.4700     0.0968 0.472 0.004 0.000 0.008 0.516
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0162     0.9676 0.000 0.004 0.000 0.996 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1430     0.9230 0.000 0.052 0.944 0.000 0.004
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0451     0.9436 0.000 0.004 0.988 0.000 0.008
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0404     0.9633 0.000 0.012 0.000 0.988 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000     0.9682 0.000 0.000 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.6182     0.0862 0.432 0.032 0.476 0.060 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     4  0.3810     0.7476 0.176 0.036 0.000 0.788 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.0510     0.8671 0.000 0.000 0.000 0.016 0.984
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0404     0.8679 0.000 0.000 0.000 0.012 0.988
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.1082     0.9497 0.964 0.000 0.000 0.008 0.028
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9441 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0451     0.9436 0.000 0.004 0.988 0.000 0.008
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0290     0.9684 0.000 0.008 0.000 0.992 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.1430     0.9230 0.000 0.052 0.944 0.000 0.004
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0162     0.9441 0.000 0.004 0.996 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0290     0.9684 0.000 0.008 0.000 0.992 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0451     0.9436 0.000 0.004 0.988 0.000 0.008
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2189     0.9450 0.000 0.904 0.000 0.012 0.084
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2189     0.9450 0.000 0.904 0.000 0.012 0.084
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000     0.9756 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.3927      0.620 0.072 0.000 0.000 0.172 0.000 0.756
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1806      0.891 0.000 0.908 0.000 0.004 0.088 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.1588      0.921 0.000 0.000 0.924 0.000 0.004 0.072
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1610      0.895 0.000 0.916 0.000 0.000 0.084 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.3601      0.499 0.000 0.312 0.000 0.004 0.684 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.1501      0.941 0.000 0.000 0.924 0.000 0.000 0.076
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.3767      0.613 0.016 0.720 0.000 0.004 0.260 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1588      0.921 0.000 0.000 0.924 0.000 0.004 0.072
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0508      0.885 0.000 0.004 0.000 0.984 0.012 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.4470      0.566 0.356 0.000 0.000 0.040 0.000 0.604
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.954 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0937      0.889 0.960 0.000 0.000 0.000 0.040 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2340      0.776 0.852 0.000 0.000 0.000 0.000 0.148
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3126      0.765 0.000 0.000 0.000 0.752 0.000 0.248
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.954 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.4552      0.655 0.180 0.000 0.000 0.004 0.108 0.708
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1814      0.837 0.900 0.000 0.000 0.000 0.000 0.100
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.954 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1850      0.916 0.008 0.000 0.924 0.052 0.000 0.016
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2234      0.861 0.000 0.872 0.000 0.004 0.124 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.1501      0.941 0.000 0.000 0.924 0.000 0.000 0.076
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.954 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4323      0.662 0.000 0.004 0.032 0.652 0.000 0.312
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1075      0.948 0.000 0.000 0.952 0.000 0.000 0.048
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.954 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5  0.0291      0.954 0.000 0.004 0.000 0.004 0.992 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     6  0.5741      0.576 0.104 0.000 0.232 0.052 0.000 0.612
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.3126      0.765 0.000 0.000 0.000 0.752 0.000 0.248
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3126      0.765 0.000 0.000 0.000 0.752 0.000 0.248
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4559      0.482 0.664 0.000 0.000 0.004 0.272 0.060
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.3126      0.765 0.000 0.000 0.000 0.752 0.000 0.248
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1588      0.921 0.000 0.000 0.924 0.000 0.004 0.072
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.1501      0.941 0.000 0.000 0.924 0.000 0.000 0.076
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3126      0.765 0.000 0.000 0.000 0.752 0.000 0.248
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0260      0.891 0.000 0.000 0.000 0.992 0.000 0.008
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     6  0.4606      0.587 0.344 0.000 0.000 0.052 0.000 0.604
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.3912      0.632 0.076 0.000 0.000 0.164 0.000 0.760
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0146      0.957 0.000 0.000 0.000 0.004 0.996 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.2912      0.647 0.784 0.000 0.000 0.000 0.216 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.954 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1501      0.941 0.000 0.000 0.924 0.000 0.000 0.076
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0291      0.892 0.000 0.004 0.000 0.992 0.004 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.2437      0.902 0.000 0.000 0.888 0.036 0.004 0.072
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0146      0.954 0.000 0.000 0.996 0.000 0.000 0.004
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1501      0.941 0.000 0.000 0.924 0.000 0.000 0.076
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0146      0.931 0.000 0.996 0.000 0.004 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0146      0.931 0.000 0.996 0.000 0.004 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.929 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.876           0.926       0.961         0.4793 0.519   0.519
#> 3 3 0.748           0.786       0.912         0.3955 0.665   0.436
#> 4 4 0.512           0.507       0.654         0.1148 0.853   0.595
#> 5 5 0.616           0.599       0.775         0.0671 0.883   0.580
#> 6 6 0.644           0.496       0.691         0.0381 0.916   0.627

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1633      0.963 0.976 0.024
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.965 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.947 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.947 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.1843      0.953 0.972 0.028
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.947 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.5737      0.858 0.136 0.864
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.947 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.5294      0.873 0.120 0.880
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.965 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.5842      0.835 0.140 0.860
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.3733      0.918 0.928 0.072
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.1633      0.941 0.024 0.976
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.1633      0.963 0.976 0.024
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.947 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.965 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.1633      0.963 0.976 0.024
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.947 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.947 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1633      0.963 0.976 0.024
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1633      0.963 0.976 0.024
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1633      0.963 0.976 0.024
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1633      0.963 0.976 0.024
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.2778      0.938 0.952 0.048
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.965 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.947 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.1633      0.963 0.976 0.024
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.7376      0.773 0.792 0.208
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.1633      0.963 0.976 0.024
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1633      0.963 0.976 0.024
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.1633      0.963 0.976 0.024
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.1633      0.941 0.024 0.976
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1633      0.963 0.976 0.024
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0376      0.947 0.004 0.996
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1633      0.963 0.976 0.024
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.965 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.1633      0.941 0.024 0.976
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.965 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1633      0.941 0.024 0.976
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.965 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.965 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.6148      0.840 0.152 0.848
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.3733      0.918 0.928 0.072
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.965 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.947 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1633      0.963 0.976 0.024
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.9044      0.512 0.680 0.320
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.965 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.947 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.965 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.947 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0376      0.964 0.996 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.3733      0.918 0.928 0.072
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3114      0.925 0.056 0.944
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.2948      0.916 0.052 0.948
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.1633      0.941 0.024 0.976
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.947 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4939      0.891 0.892 0.108
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.3733      0.918 0.928 0.072
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.1843      0.953 0.972 0.028
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.965 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.1414      0.958 0.980 0.020
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.9866      0.285 0.432 0.568
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0000      0.965 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.965 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.8661      0.592 0.288 0.712
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.947 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1633      0.963 0.976 0.024
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4815      0.895 0.896 0.104
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.965 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1633      0.963 0.976 0.024
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.965 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.1633      0.941 0.024 0.976
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0938      0.961 0.988 0.012
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.965 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.1633      0.941 0.024 0.976
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.965 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.947 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.947 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1633      0.963 0.976 0.024

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.9369 1.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.5882     0.3966 0.652 0.000 0.348
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.9026 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.9026 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.8668 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.9026 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.0000     0.8668 0.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.9026 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     3  0.0000     0.8668 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.4346     0.7497 0.184 0.000 0.816
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.5291     0.5827 0.268 0.732 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0000     0.8668 0.000 0.000 1.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     3  0.3412     0.7682 0.000 0.124 0.876
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000     0.9369 1.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.9026 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.2261     0.8437 0.068 0.000 0.932
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.9369 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000     0.9026 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.9026 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000     0.9369 1.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000     0.9369 1.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.9369 1.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000     0.9369 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3  0.0000     0.8668 0.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0237     0.8666 0.004 0.000 0.996
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.9026 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2625     0.8747 0.916 0.084 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.6783     0.2925 0.396 0.588 0.016
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.9369 1.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.9369 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.9369 1.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.6252     0.1458 0.000 0.556 0.444
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2261     0.8894 0.932 0.068 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000     0.9026 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.9369 1.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.5016     0.6785 0.240 0.000 0.760
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     3  0.6309    -0.0128 0.000 0.500 0.500
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.3038     0.8450 0.896 0.000 0.104
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0424     0.8966 0.000 0.992 0.008
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4750     0.7125 0.216 0.000 0.784
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0237     0.8666 0.004 0.000 0.996
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3  0.0000     0.8668 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.0000     0.8668 0.000 0.000 1.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.2625     0.8340 0.084 0.000 0.916
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.9026 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000     0.9369 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.0000     0.8668 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0592     0.8650 0.012 0.000 0.988
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.9026 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0592     0.9305 0.988 0.000 0.012
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.9026 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.0000     0.8668 0.000 0.000 1.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     3  0.0000     0.8668 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     3  0.5497     0.5327 0.000 0.292 0.708
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000     0.9026 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     3  0.6267     0.1544 0.000 0.452 0.548
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.9026 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.5650     0.5337 0.688 0.312 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     3  0.0000     0.8668 0.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0237     0.8666 0.004 0.000 0.996
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.2796     0.8287 0.092 0.000 0.908
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.0000     0.8668 0.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3  0.0000     0.8668 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0892     0.9254 0.980 0.000 0.020
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.1753     0.9035 0.952 0.000 0.048
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5785     0.4601 0.332 0.668 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000     0.9026 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1529     0.9120 0.960 0.040 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.5016     0.6675 0.760 0.240 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.1031     0.8615 0.024 0.000 0.976
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000     0.9369 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.5905     0.4835 0.352 0.000 0.648
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3  0.6307     0.0321 0.000 0.488 0.512
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.2066     0.8477 0.060 0.000 0.940
#> 976507F2-192B-4095-920A-3014889CD617     3  0.4235     0.7569 0.176 0.000 0.824
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.6274     0.1019 0.000 0.544 0.456
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.6252     0.2515 0.444 0.000 0.556
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.9026 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.9026 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000     0.9369 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4250      0.764 0.724 0.000 0.276 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.7249     -0.515 0.412 0.000 0.444 0.144
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.1854      0.708 0.048 0.940 0.012 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.2032      0.678 0.000 0.936 0.028 0.036
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.4955      0.359 0.000 0.000 0.556 0.444
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.4508      0.622 0.012 0.820 0.108 0.060
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3123      0.359 0.000 0.000 0.156 0.844
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5568      0.723 0.248 0.704 0.024 0.024
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.3710      0.346 0.000 0.004 0.192 0.804
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.5298      0.433 0.048 0.000 0.708 0.244
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.5353      0.491 0.432 0.556 0.012 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.4981      0.334 0.000 0.000 0.536 0.464
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.7407      0.196 0.000 0.204 0.288 0.508
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4804      0.700 0.616 0.000 0.384 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.1302      0.677 0.000 0.956 0.000 0.044
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.6966      0.553 0.128 0.000 0.532 0.340
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.4040      0.766 0.752 0.000 0.248 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6176      0.606 0.064 0.736 0.124 0.076
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.1388      0.703 0.028 0.960 0.012 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3837      0.766 0.776 0.000 0.224 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4477      0.733 0.688 0.000 0.312 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3052      0.754 0.860 0.004 0.136 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1824      0.733 0.936 0.004 0.060 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3688      0.383 0.000 0.000 0.208 0.792
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.6145      0.459 0.048 0.000 0.492 0.460
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2040      0.706 0.048 0.936 0.012 0.004
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6173      0.722 0.588 0.052 0.356 0.004
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     3  0.8851     -0.314 0.332 0.252 0.368 0.048
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.4605      0.738 0.664 0.000 0.336 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.4522      0.748 0.680 0.000 0.320 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2081      0.742 0.916 0.000 0.084 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.5119      0.347 0.000 0.440 0.004 0.556
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3474      0.669 0.868 0.064 0.068 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.6125      0.704 0.300 0.636 0.056 0.008
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3764      0.758 0.784 0.000 0.216 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.4289      0.365 0.172 0.000 0.796 0.032
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.5517      0.341 0.000 0.412 0.020 0.568
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.4925     -0.433 0.428 0.000 0.572 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.5051      0.548 0.000 0.768 0.132 0.100
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.5723      0.469 0.032 0.000 0.580 0.388
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.6727      0.547 0.096 0.000 0.520 0.384
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.5184      0.542 0.000 0.204 0.060 0.736
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4356      0.160 0.000 0.000 0.292 0.708
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.6850      0.555 0.108 0.000 0.516 0.376
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5186      0.698 0.344 0.640 0.016 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.2814      0.753 0.868 0.000 0.132 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.5000     -0.370 0.000 0.000 0.500 0.500
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.6875      0.547 0.108 0.000 0.504 0.388
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.5482      0.678 0.368 0.608 0.024 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.5070      0.664 0.580 0.000 0.416 0.004
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.5189      0.674 0.372 0.616 0.012 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.5237      0.314 0.016 0.000 0.356 0.628
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2868      0.441 0.000 0.000 0.136 0.864
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.2944      0.539 0.000 0.128 0.004 0.868
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.8422      0.562 0.392 0.400 0.164 0.044
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4898      0.388 0.000 0.416 0.000 0.584
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0469      0.691 0.000 0.988 0.000 0.012
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.6595      0.398 0.604 0.276 0.120 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.5210      0.356 0.008 0.008 0.332 0.652
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.6268      0.465 0.056 0.000 0.496 0.448
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.5724      0.455 0.028 0.000 0.548 0.424
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3626      0.428 0.004 0.000 0.184 0.812
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2799      0.469 0.000 0.008 0.108 0.884
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5244      0.633 0.556 0.000 0.436 0.008
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.6130      0.592 0.512 0.000 0.440 0.048
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5760      0.585 0.448 0.524 0.028 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.4627      0.602 0.036 0.808 0.020 0.136
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1356      0.646 0.960 0.032 0.008 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4576      0.150 0.728 0.260 0.012 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.6941      0.560 0.120 0.000 0.520 0.360
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0895      0.701 0.976 0.004 0.020 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.6248      0.524 0.120 0.000 0.656 0.224
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.6823      0.412 0.000 0.244 0.160 0.596
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.7059      0.456 0.140 0.000 0.528 0.332
#> 976507F2-192B-4095-920A-3014889CD617     3  0.6904      0.563 0.132 0.000 0.556 0.312
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.4941      0.359 0.000 0.436 0.000 0.564
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4446      0.292 0.196 0.000 0.776 0.028
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.5174      0.677 0.368 0.620 0.012 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.5018      0.692 0.332 0.656 0.012 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.2345      0.742 0.900 0.000 0.100 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.1728     0.7891 0.940 0.020 0.004 0.000 0.036
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.5295     0.4768 0.636 0.000 0.068 0.292 0.004
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.4619     0.3847 0.000 0.720 0.000 0.064 0.216
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     5  0.5631     0.4745 0.000 0.292 0.000 0.108 0.600
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0963     0.8013 0.000 0.000 0.964 0.000 0.036
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.3477     0.6438 0.000 0.112 0.000 0.056 0.832
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4604     0.4181 0.000 0.000 0.428 0.560 0.012
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.3855     0.5026 0.008 0.240 0.000 0.004 0.748
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.4182     0.4782 0.000 0.000 0.400 0.600 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.6086     0.5344 0.320 0.000 0.548 0.128 0.004
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.1701     0.5939 0.028 0.944 0.000 0.016 0.012
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1732     0.7820 0.000 0.000 0.920 0.000 0.080
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.5404     0.5451 0.000 0.000 0.152 0.184 0.664
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2237     0.7525 0.904 0.000 0.084 0.008 0.004
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.5831    -0.1079 0.000 0.496 0.000 0.096 0.408
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.2813     0.8168 0.108 0.000 0.868 0.000 0.024
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2349     0.7758 0.900 0.012 0.004 0.000 0.084
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.3113     0.6470 0.012 0.068 0.000 0.048 0.872
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.4737     0.3637 0.000 0.708 0.000 0.068 0.224
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2264     0.7897 0.920 0.008 0.024 0.004 0.044
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3766     0.7608 0.840 0.076 0.052 0.032 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3146     0.7483 0.844 0.028 0.000 0.000 0.128
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4861     0.4419 0.596 0.380 0.012 0.012 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3689     0.6716 0.000 0.004 0.256 0.740 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.2110     0.8180 0.016 0.000 0.912 0.072 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4159     0.4578 0.000 0.776 0.000 0.068 0.156
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2122     0.7884 0.928 0.008 0.016 0.040 0.008
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.3968     0.5365 0.088 0.016 0.076 0.000 0.820
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0566     0.7882 0.984 0.000 0.004 0.000 0.012
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0968     0.7905 0.972 0.012 0.004 0.000 0.012
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3759     0.7346 0.816 0.092 0.000 0.000 0.092
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.2536     0.6561 0.000 0.004 0.000 0.868 0.128
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4410     0.3365 0.556 0.440 0.004 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.5139     0.2661 0.004 0.384 0.036 0.000 0.576
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5057     0.6183 0.684 0.252 0.052 0.012 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.4721     0.5858 0.348 0.000 0.628 0.004 0.020
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4046     0.3521 0.000 0.008 0.000 0.696 0.296
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.2877     0.6885 0.848 0.000 0.144 0.004 0.004
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.5426     0.6024 0.000 0.168 0.008 0.140 0.684
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3595     0.7714 0.044 0.000 0.816 0.140 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.1830     0.8277 0.028 0.000 0.932 0.040 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.2554     0.7390 0.000 0.000 0.036 0.892 0.072
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.6038     0.5949 0.028 0.000 0.276 0.608 0.088
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.2153     0.8289 0.044 0.000 0.916 0.040 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0566     0.5954 0.000 0.984 0.000 0.004 0.012
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3500     0.7232 0.808 0.016 0.004 0.000 0.172
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.3555     0.6985 0.000 0.000 0.824 0.052 0.124
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.1618     0.8307 0.040 0.000 0.944 0.008 0.008
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4760     0.1434 0.020 0.564 0.000 0.000 0.416
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1026     0.7834 0.968 0.000 0.024 0.004 0.004
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0579     0.5987 0.008 0.984 0.000 0.000 0.008
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.4801     0.6607 0.092 0.000 0.172 0.732 0.004
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2648     0.7511 0.000 0.000 0.152 0.848 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.2728     0.7390 0.000 0.004 0.040 0.888 0.068
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.5953     0.3424 0.008 0.164 0.208 0.000 0.620
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.1638     0.7178 0.000 0.004 0.000 0.932 0.064
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.5652     0.0413 0.000 0.552 0.000 0.088 0.360
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.4735     0.1801 0.352 0.624 0.000 0.020 0.004
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.2673     0.7444 0.048 0.000 0.028 0.900 0.024
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1483     0.8169 0.008 0.000 0.952 0.028 0.012
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.2969     0.7868 0.020 0.000 0.852 0.128 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.2886     0.7534 0.016 0.000 0.116 0.864 0.004
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2068     0.7590 0.000 0.000 0.092 0.904 0.004
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.1442     0.7887 0.952 0.004 0.012 0.032 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.3216     0.7454 0.856 0.000 0.044 0.096 0.004
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.6771     0.1915 0.232 0.432 0.004 0.000 0.332
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.5956     0.5586 0.020 0.084 0.000 0.304 0.592
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.5807    -0.1577 0.424 0.484 0.000 0.000 0.092
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.2922     0.5620 0.072 0.872 0.000 0.000 0.056
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.1591     0.8318 0.052 0.000 0.940 0.004 0.004
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5672     0.4630 0.584 0.312 0.000 0.000 0.104
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.3134     0.8133 0.120 0.000 0.848 0.032 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.6157     0.4888 0.000 0.012 0.124 0.292 0.572
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.5830     0.6466 0.228 0.000 0.620 0.004 0.148
#> 976507F2-192B-4095-920A-3014889CD617     3  0.2046     0.8326 0.068 0.000 0.916 0.016 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.1768     0.7107 0.000 0.004 0.000 0.924 0.072
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.5024     0.3977 0.440 0.000 0.532 0.024 0.004
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2077     0.5776 0.008 0.908 0.000 0.000 0.084
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0451     0.5978 0.004 0.988 0.000 0.000 0.008
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.5780     0.3305 0.508 0.420 0.060 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4086      0.157 0.528 0.000 0.008 0.000 0.000 0.464
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.5882      0.261 0.004 0.000 0.156 0.312 0.008 0.520
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.2787      0.470 0.044 0.872 0.000 0.012 0.072 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4412     -0.188 0.008 0.572 0.000 0.016 0.404 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.3185      0.757 0.016 0.000 0.848 0.000 0.076 0.060
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     5  0.3681      0.562 0.004 0.272 0.000 0.004 0.716 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4109      0.388 0.004 0.000 0.392 0.596 0.008 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5  0.5567      0.414 0.192 0.232 0.000 0.000 0.572 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.4261      0.370 0.000 0.004 0.400 0.584 0.004 0.008
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.5456      0.339 0.004 0.000 0.496 0.092 0.004 0.404
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4870      0.294 0.412 0.548 0.020 0.008 0.008 0.004
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3537      0.744 0.016 0.000 0.796 0.000 0.164 0.024
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.4671      0.307 0.012 0.000 0.024 0.356 0.604 0.004
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.3829      0.536 0.068 0.004 0.136 0.004 0.000 0.788
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3156      0.323 0.000 0.800 0.000 0.020 0.180 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.3677      0.795 0.008 0.000 0.808 0.004 0.064 0.116
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     6  0.4124      0.305 0.332 0.000 0.008 0.000 0.012 0.648
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.3651      0.572 0.004 0.248 0.000 0.004 0.736 0.008
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.2535      0.491 0.064 0.888 0.000 0.012 0.036 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     6  0.5245      0.440 0.296 0.020 0.040 0.000 0.020 0.624
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     6  0.7208      0.109 0.368 0.144 0.072 0.004 0.016 0.396
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4748      0.161 0.504 0.000 0.000 0.000 0.048 0.448
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.6504      0.152 0.532 0.156 0.040 0.004 0.008 0.260
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.4711      0.647 0.032 0.016 0.224 0.708 0.016 0.004
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1425      0.811 0.008 0.000 0.952 0.012 0.008 0.020
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2377      0.487 0.076 0.892 0.000 0.008 0.024 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.6923      0.350 0.276 0.120 0.044 0.012 0.028 0.520
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.4456      0.499 0.076 0.040 0.008 0.000 0.772 0.104
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     6  0.3301      0.530 0.216 0.000 0.004 0.000 0.008 0.772
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     6  0.3445      0.458 0.260 0.000 0.008 0.000 0.000 0.732
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3795      0.363 0.632 0.000 0.000 0.000 0.004 0.364
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.1257      0.784 0.000 0.028 0.000 0.952 0.020 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.5298      0.443 0.604 0.140 0.004 0.000 0.000 0.252
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.5974      0.222 0.268 0.528 0.016 0.000 0.188 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.6896     -0.137 0.420 0.104 0.080 0.000 0.016 0.380
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.4713      0.495 0.008 0.000 0.580 0.004 0.028 0.380
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.3280      0.620 0.000 0.028 0.000 0.808 0.160 0.004
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     6  0.2821      0.553 0.016 0.000 0.152 0.000 0.000 0.832
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     5  0.4449      0.359 0.000 0.440 0.000 0.028 0.532 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3099      0.793 0.012 0.000 0.864 0.056 0.012 0.056
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0976      0.814 0.008 0.000 0.968 0.008 0.000 0.016
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1180      0.811 0.000 0.000 0.016 0.960 0.012 0.012
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.3999      0.726 0.000 0.000 0.104 0.796 0.048 0.052
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.2462      0.810 0.000 0.000 0.892 0.032 0.012 0.064
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.3652      0.481 0.324 0.672 0.000 0.000 0.004 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.5479      0.279 0.500 0.000 0.000 0.000 0.132 0.368
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.5693      0.641 0.020 0.000 0.672 0.116 0.144 0.048
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.2364      0.816 0.004 0.000 0.904 0.012 0.036 0.044
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     1  0.5010      0.187 0.644 0.184 0.000 0.000 0.172 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     6  0.2594      0.577 0.040 0.000 0.068 0.004 0.004 0.884
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.3878      0.450 0.348 0.644 0.000 0.000 0.004 0.004
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.5031      0.585 0.004 0.000 0.212 0.672 0.012 0.100
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.1340      0.813 0.000 0.000 0.040 0.948 0.004 0.008
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0837      0.809 0.000 0.004 0.020 0.972 0.004 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.6225      0.186 0.512 0.004 0.084 0.000 0.336 0.064
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0692      0.800 0.004 0.020 0.000 0.976 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3415      0.375 0.028 0.808 0.000 0.012 0.152 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.5467      0.121 0.444 0.464 0.000 0.004 0.008 0.080
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.1708      0.805 0.000 0.000 0.024 0.932 0.004 0.040
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.3878      0.761 0.016 0.000 0.816 0.024 0.092 0.052
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.2982      0.795 0.012 0.004 0.876 0.056 0.012 0.040
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.2178      0.803 0.008 0.000 0.056 0.912 0.012 0.012
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.1036      0.812 0.000 0.000 0.024 0.964 0.008 0.004
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     6  0.4416      0.526 0.232 0.000 0.020 0.032 0.004 0.712
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.4350      0.513 0.004 0.000 0.116 0.120 0.008 0.752
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.4278      0.522 0.780 0.060 0.000 0.000 0.076 0.084
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.8064     -0.169 0.204 0.304 0.000 0.252 0.220 0.020
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2420      0.531 0.884 0.040 0.000 0.000 0.000 0.076
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3536      0.234 0.736 0.252 0.004 0.000 0.000 0.008
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.2294      0.812 0.000 0.000 0.892 0.000 0.036 0.072
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3073      0.504 0.788 0.000 0.000 0.000 0.008 0.204
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.2342      0.806 0.004 0.000 0.888 0.020 0.000 0.088
#> 06DAE086-D960-4156-9DC8-D126338E2F29     5  0.7096      0.411 0.004 0.132 0.060 0.276 0.496 0.032
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.5695      0.624 0.012 0.000 0.604 0.008 0.160 0.216
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1606      0.812 0.004 0.000 0.932 0.000 0.008 0.056
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0260      0.804 0.000 0.008 0.000 0.992 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.4508      0.344 0.000 0.000 0.536 0.024 0.004 0.436
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4491      0.381 0.388 0.576 0.000 0.000 0.036 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3810      0.373 0.428 0.572 0.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.6264      0.349 0.584 0.148 0.048 0.000 0.012 0.208

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.510           0.783       0.902         0.4720 0.514   0.514
#> 3 3 0.543           0.710       0.860         0.3812 0.746   0.536
#> 4 4 0.685           0.680       0.848         0.1333 0.826   0.535
#> 5 5 0.710           0.595       0.791         0.0738 0.881   0.582
#> 6 6 0.755           0.578       0.767         0.0363 0.912   0.627

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.857 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.8763      0.645 0.704 0.296
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.910 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.910 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.857 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.910 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.910 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.910 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.4298      0.841 0.088 0.912
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.857 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.7883      0.652 0.236 0.764
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.8763      0.645 0.704 0.296
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.5842      0.786 0.140 0.860
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6887      0.759 0.816 0.184
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.910 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.857 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.857 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.3733      0.856 0.072 0.928
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.910 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.857 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.857 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0376      0.855 0.996 0.004
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.857 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.9850      0.387 0.572 0.428
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.857 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.910 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.9087      0.607 0.676 0.324
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.9044      0.613 0.680 0.320
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.857 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.857 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.857 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.910 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.9044      0.613 0.680 0.320
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.7883      0.652 0.236 0.764
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.857 1.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.857 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.910 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.857 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.910 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.857 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.857 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.910 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.9833      0.397 0.576 0.424
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.857 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.910 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.6887      0.759 0.816 0.184
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.9427      0.380 0.360 0.640
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.857 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.910 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.857 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.910 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.9087      0.607 0.676 0.324
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.9896      0.352 0.560 0.440
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.910 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.9393      0.392 0.356 0.644
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.910 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.910 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.9044      0.613 0.680 0.320
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.9850      0.387 0.572 0.428
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.3431      0.829 0.936 0.064
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.857 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.9850      0.387 0.572 0.428
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.910 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0000      0.857 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.7056      0.753 0.808 0.192
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.9393      0.392 0.356 0.644
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.9393      0.392 0.356 0.644
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.6887      0.759 0.816 0.184
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.9044      0.613 0.680 0.320
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.857 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.6887      0.759 0.816 0.184
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.857 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.910 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.857 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.857 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.910 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.857 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.910 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.910 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.857 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.0000      0.826 0.000 0.000 1.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.3879      0.730 0.848 0.000 0.152
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.869 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.869 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.6168      0.416 0.412 0.000 0.588
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.869 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.4654      0.828 0.208 0.792 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3267      0.875 0.116 0.884 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.5948      0.607 0.360 0.640 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.826 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.6274     -0.141 0.544 0.456 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.3941      0.727 0.844 0.000 0.156
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.6204      0.467 0.424 0.576 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5363      0.574 0.724 0.000 0.276
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.869 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.826 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.0000      0.826 0.000 0.000 1.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.5431      0.738 0.284 0.716 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.869 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.0000      0.826 0.000 0.000 1.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     3  0.6252      0.346 0.444 0.000 0.556
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     3  0.5785      0.543 0.332 0.000 0.668
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     3  0.6252      0.346 0.444 0.000 0.556
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.0237      0.762 0.996 0.004 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.826 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.869 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2959      0.762 0.900 0.000 0.100
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3038      0.762 0.896 0.000 0.104
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.0000      0.826 0.000 0.000 1.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.0000      0.826 0.000 0.000 1.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.5591      0.576 0.304 0.000 0.696
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.869 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3038      0.762 0.896 0.000 0.104
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     1  0.6274     -0.141 0.544 0.456 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     3  0.6252      0.346 0.444 0.000 0.556
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.826 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.3267      0.875 0.116 0.884 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.826 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.869 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.826 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.826 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.4654      0.828 0.208 0.792 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000      0.761 1.000 0.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.826 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4931      0.799 0.232 0.768 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.5138      0.616 0.748 0.000 0.252
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.4750      0.546 0.784 0.216 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.826 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3482      0.871 0.128 0.872 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.826 0.000 0.000 1.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.5016      0.794 0.240 0.760 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.2959      0.762 0.900 0.000 0.100
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.0747      0.759 0.984 0.016 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.869 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.4796      0.540 0.780 0.220 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.3267      0.875 0.116 0.884 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.869 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.3038      0.762 0.896 0.000 0.104
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.0237      0.762 0.996 0.004 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.6307      0.194 0.488 0.000 0.512
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.826 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.0237      0.762 0.996 0.004 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4654      0.828 0.208 0.792 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.6154      0.424 0.408 0.000 0.592
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.5291      0.589 0.732 0.000 0.268
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.4796      0.540 0.780 0.220 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     1  0.4796      0.540 0.780 0.220 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.5138      0.616 0.748 0.000 0.252
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3038      0.762 0.896 0.000 0.104
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.826 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5138      0.616 0.748 0.000 0.252
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.826 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.869 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.6154      0.424 0.408 0.000 0.592
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.826 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.3941      0.862 0.156 0.844 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.826 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3267      0.875 0.116 0.884 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3267      0.875 0.116 0.884 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     3  0.6252      0.346 0.444 0.000 0.556

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.2589     0.6617 0.884 0.000 0.000 0.116
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.4697     0.5451 0.644 0.000 0.356 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.4925     0.4696 0.000 0.572 0.000 0.428
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.3219     0.7656 0.000 0.836 0.000 0.164
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.4907    -0.0812 0.000 0.420 0.000 0.580
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0188     0.9658 0.004 0.000 0.996 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.3942     0.4330 0.000 0.236 0.000 0.764
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.2773     0.6641 0.880 0.000 0.004 0.116
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.4697     0.1482 0.000 0.356 0.000 0.644
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0336     0.6912 0.992 0.000 0.008 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.5000    -0.3334 0.000 0.496 0.000 0.504
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4543     0.5913 0.676 0.000 0.324 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4977     0.3188 0.540 0.000 0.460 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4543     0.5913 0.676 0.000 0.324 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3764     0.5344 0.216 0.000 0.000 0.784
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0336     0.9626 0.008 0.000 0.992 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0336     0.7961 0.000 0.992 0.000 0.008
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3873     0.5930 0.772 0.000 0.000 0.228
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.4040     0.5708 0.752 0.000 0.000 0.248
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.4985    -0.1769 0.468 0.000 0.532 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0336     0.7961 0.000 0.992 0.000 0.008
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4072     0.5670 0.748 0.000 0.000 0.252
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.3942     0.4330 0.000 0.236 0.000 0.764
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4543     0.5913 0.676 0.000 0.324 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.3074     0.7697 0.000 0.848 0.000 0.152
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.4925     0.4696 0.000 0.572 0.000 0.428
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4500     0.3744 0.316 0.000 0.000 0.684
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0336     0.9626 0.008 0.000 0.992 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.4888     0.4946 0.000 0.588 0.000 0.412
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1151     0.6930 0.968 0.000 0.008 0.024
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0188     0.6720 0.004 0.000 0.000 0.996
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0336     0.9626 0.008 0.000 0.992 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.4431     0.6509 0.000 0.696 0.000 0.304
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.4907     0.4781 0.000 0.580 0.000 0.420
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.3649     0.6106 0.796 0.000 0.000 0.204
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3649     0.5475 0.204 0.000 0.000 0.796
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0336     0.7961 0.000 0.992 0.000 0.008
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.0000     0.6715 0.000 0.000 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.3074     0.7697 0.000 0.848 0.000 0.152
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.7942 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4072     0.5670 0.748 0.000 0.000 0.252
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.3764     0.5344 0.216 0.000 0.000 0.784
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.4277     0.6273 0.720 0.000 0.280 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3764     0.5344 0.216 0.000 0.000 0.784
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4925     0.4696 0.000 0.572 0.000 0.428
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.4713     0.5392 0.640 0.000 0.360 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0672     0.6925 0.984 0.000 0.008 0.008
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.0000     0.6715 0.000 0.000 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.0000     0.6715 0.000 0.000 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1151     0.6930 0.968 0.000 0.008 0.024
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4072     0.5670 0.748 0.000 0.000 0.252
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.1151     0.6930 0.968 0.000 0.008 0.024
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0336     0.7961 0.000 0.992 0.000 0.008
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.4713     0.5392 0.640 0.000 0.360 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.4761     0.5701 0.000 0.628 0.000 0.372
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9687 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.3219     0.7656 0.000 0.836 0.000 0.164
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.3219     0.7656 0.000 0.836 0.000 0.164
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4543     0.5913 0.676 0.000 0.324 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.3949     0.6124 0.000 0.000 0.668 0.000 0.332
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.3684     0.6112 0.720 0.000 0.000 0.000 0.280
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     5  0.4990     0.6009 0.048 0.000 0.324 0.000 0.628
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4777     0.3503 0.000 0.292 0.000 0.664 0.044
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5133     0.3946 0.000 0.568 0.000 0.388 0.044
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.3595     0.5050 0.000 0.140 0.000 0.816 0.044
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0290     0.8812 0.000 0.000 0.992 0.000 0.008
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.0000     0.5704 0.000 0.000 0.000 1.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.3796     0.5998 0.700 0.000 0.000 0.000 0.300
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.2280     0.5313 0.000 0.120 0.000 0.880 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4273     0.4117 0.552 0.000 0.000 0.000 0.448
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.3949     0.6124 0.000 0.000 0.668 0.000 0.332
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.3561     0.4158 0.000 0.260 0.000 0.740 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.3949     0.6124 0.000 0.000 0.668 0.000 0.332
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     5  0.1831     0.6546 0.076 0.000 0.004 0.000 0.920
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     5  0.2723     0.6502 0.012 0.000 0.124 0.000 0.864
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     5  0.1831     0.6546 0.076 0.000 0.004 0.000 0.920
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.4294     0.2343 0.468 0.000 0.000 0.532 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0703     0.8739 0.000 0.000 0.976 0.000 0.024
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.1270     0.7892 0.000 0.948 0.000 0.052 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2653     0.6551 0.880 0.000 0.000 0.024 0.096
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1704     0.6682 0.928 0.000 0.000 0.004 0.068
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.3949     0.6124 0.000 0.000 0.668 0.000 0.332
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.3949     0.6124 0.000 0.000 0.668 0.000 0.332
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     5  0.3160     0.6011 0.004 0.000 0.188 0.000 0.808
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.1270     0.7892 0.000 0.948 0.000 0.052 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.1764     0.6674 0.928 0.000 0.000 0.008 0.064
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.0000     0.5704 0.000 0.000 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     5  0.1831     0.6546 0.076 0.000 0.004 0.000 0.920
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.5102     0.4168 0.000 0.580 0.000 0.376 0.044
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0510     0.8806 0.000 0.000 0.984 0.000 0.016
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4777     0.3503 0.000 0.292 0.000 0.664 0.044
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.4249    -0.1138 0.568 0.000 0.000 0.432 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0510     0.8758 0.000 0.000 0.984 0.000 0.016
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.4854     0.3159 0.000 0.308 0.000 0.648 0.044
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.4300     0.3049 0.524 0.000 0.000 0.000 0.476
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.3452     0.5023 0.244 0.000 0.000 0.756 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0703     0.8739 0.000 0.000 0.976 0.000 0.024
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.5188     0.0108 0.000 0.416 0.000 0.540 0.044
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0794     0.8756 0.000 0.000 0.972 0.000 0.028
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.4817     0.3332 0.000 0.300 0.000 0.656 0.044
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.1965     0.6611 0.904 0.000 0.000 0.000 0.096
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.4283     0.2518 0.456 0.000 0.000 0.544 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.1270     0.7892 0.000 0.948 0.000 0.052 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.3424     0.5053 0.240 0.000 0.000 0.760 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.5102     0.4168 0.000 0.580 0.000 0.376 0.044
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.1764     0.6674 0.928 0.000 0.000 0.008 0.064
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.4294     0.2343 0.468 0.000 0.000 0.532 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     5  0.5572     0.5577 0.124 0.000 0.248 0.000 0.628
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.4294     0.2343 0.468 0.000 0.000 0.532 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.4777     0.3503 0.000 0.292 0.000 0.664 0.044
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     5  0.4925     0.6046 0.044 0.000 0.324 0.000 0.632
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.4262     0.4269 0.560 0.000 0.000 0.000 0.440
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.3424     0.5053 0.240 0.000 0.000 0.760 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3424     0.5053 0.240 0.000 0.000 0.760 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4300     0.3049 0.524 0.000 0.000 0.000 0.476
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.1764     0.6674 0.928 0.000 0.000 0.008 0.064
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4300     0.3049 0.524 0.000 0.000 0.000 0.476
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.1270     0.7892 0.000 0.948 0.000 0.052 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.4925     0.6046 0.044 0.000 0.324 0.000 0.632
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.5016     0.2123 0.000 0.348 0.000 0.608 0.044
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.8851 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.5133     0.3946 0.000 0.568 0.000 0.388 0.044
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.5133     0.3946 0.000 0.568 0.000 0.388 0.044
#> EA35E230-DE50-45AB-A737-D5C430652A90     5  0.1831     0.6546 0.076 0.000 0.004 0.000 0.920

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.4002    0.50912 0.404 0.000 0.588 0.000 0.000 0.008
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.5634    0.75913 0.164 0.000 0.000 0.000 0.336 0.500
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.5377    0.53535 0.584 0.000 0.316 0.000 0.076 0.024
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1714    0.66122 0.000 0.092 0.000 0.908 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.4392    0.41546 0.000 0.332 0.000 0.628 0.000 0.040
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1398    0.61064 0.000 0.000 0.000 0.940 0.008 0.052
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0458    0.85232 0.000 0.000 0.984 0.000 0.000 0.016
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.3933    0.47342 0.000 0.000 0.000 0.716 0.036 0.248
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     6  0.5736    0.75263 0.180 0.000 0.000 0.000 0.340 0.480
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.2312    0.58097 0.000 0.000 0.000 0.876 0.012 0.112
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     6  0.6102    0.64898 0.332 0.000 0.000 0.000 0.292 0.376
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0146    0.85787 0.000 0.000 0.996 0.000 0.000 0.004
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.4002    0.50912 0.404 0.000 0.588 0.000 0.000 0.008
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.3525    0.64726 0.000 0.096 0.000 0.816 0.008 0.080
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.4002    0.50912 0.404 0.000 0.588 0.000 0.000 0.008
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1765    0.62589 0.904 0.000 0.000 0.000 0.096 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1523    0.58554 0.940 0.000 0.044 0.000 0.008 0.008
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.1765    0.62589 0.904 0.000 0.000 0.000 0.096 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     5  0.5844    0.34215 0.000 0.000 0.000 0.200 0.456 0.344
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0909    0.84622 0.012 0.000 0.968 0.000 0.000 0.020
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.2066    0.91204 0.000 0.904 0.000 0.072 0.000 0.024
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.3899    0.63674 0.004 0.000 0.000 0.000 0.404 0.592
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.0865    0.19448 0.036 0.000 0.000 0.000 0.964 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.4002    0.50912 0.404 0.000 0.588 0.000 0.000 0.008
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.4002    0.50912 0.404 0.000 0.588 0.000 0.000 0.008
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2308    0.54058 0.880 0.000 0.108 0.000 0.004 0.008
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2066    0.91204 0.000 0.904 0.000 0.072 0.000 0.024
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.0972    0.19939 0.028 0.000 0.000 0.000 0.964 0.008
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.3933    0.47342 0.000 0.000 0.000 0.716 0.036 0.248
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1765    0.62589 0.904 0.000 0.000 0.000 0.096 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0146    0.85787 0.000 0.000 0.996 0.000 0.000 0.004
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4636    0.20287 0.000 0.444 0.000 0.516 0.000 0.040
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0508    0.85395 0.012 0.000 0.984 0.000 0.000 0.004
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000    0.85861 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000    0.85861 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.1714    0.66122 0.000 0.092 0.000 0.908 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.5339    0.39041 0.000 0.000 0.000 0.108 0.488 0.404
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0692    0.84748 0.004 0.000 0.976 0.000 0.000 0.020
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.2966    0.65260 0.000 0.076 0.000 0.848 0.000 0.076
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     5  0.4949   -0.32120 0.380 0.000 0.000 0.000 0.548 0.072
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.5979   -0.00687 0.000 0.000 0.000 0.416 0.232 0.352
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0909    0.84622 0.012 0.000 0.968 0.000 0.000 0.020
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.3523    0.58870 0.000 0.180 0.000 0.780 0.000 0.040
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.1196    0.83774 0.040 0.000 0.952 0.000 0.000 0.008
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.2856    0.65222 0.000 0.068 0.000 0.856 0.000 0.076
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.3944    0.64914 0.004 0.000 0.000 0.000 0.428 0.568
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     5  0.5969    0.23453 0.000 0.000 0.000 0.292 0.448 0.260
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.2066    0.91204 0.000 0.904 0.000 0.072 0.000 0.024
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.5881    0.10720 0.000 0.000 0.000 0.472 0.232 0.296
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.4636    0.20287 0.000 0.444 0.000 0.516 0.000 0.040
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000    0.95271 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.0972    0.19939 0.028 0.000 0.000 0.000 0.964 0.008
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     5  0.5844    0.34215 0.000 0.000 0.000 0.200 0.456 0.344
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.6051    0.49982 0.584 0.000 0.240 0.000 0.084 0.092
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000    0.85861 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     5  0.5844    0.34215 0.000 0.000 0.000 0.200 0.456 0.344
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.1714    0.66122 0.000 0.092 0.000 0.908 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5331    0.53962 0.588 0.000 0.316 0.000 0.072 0.024
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.6095    0.66132 0.324 0.000 0.000 0.000 0.292 0.384
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.5881    0.10720 0.000 0.000 0.000 0.472 0.232 0.296
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.5881    0.10720 0.000 0.000 0.000 0.472 0.232 0.296
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     5  0.4949   -0.32120 0.380 0.000 0.000 0.000 0.548 0.072
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.0972    0.19939 0.028 0.000 0.000 0.000 0.964 0.008
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0146    0.85787 0.000 0.000 0.996 0.000 0.000 0.004
#> D34B0BC6-9142-48AE-A113-5923192644A0     5  0.4949   -0.32120 0.380 0.000 0.000 0.000 0.548 0.072
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000    0.85861 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.2066    0.91204 0.000 0.904 0.000 0.072 0.000 0.024
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.5331    0.53962 0.588 0.000 0.316 0.000 0.072 0.024
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000    0.85861 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.2911    0.62914 0.000 0.144 0.000 0.832 0.000 0.024
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000    0.85861 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.4392    0.41546 0.000 0.332 0.000 0.628 0.000 0.040
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.4392    0.41546 0.000 0.332 0.000 0.628 0.000 0.040
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1765    0.62589 0.904 0.000 0.000 0.000 0.096 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.982       0.992         0.5027 0.499   0.499
#> 3 3 1.000           0.975       0.989         0.3415 0.736   0.515
#> 4 4 0.749           0.803       0.894         0.1164 0.806   0.492
#> 5 5 0.749           0.616       0.778         0.0624 0.966   0.862
#> 6 6 0.748           0.571       0.704         0.0385 0.885   0.545

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.986 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.986 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.999 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.999 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000      0.986 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.999 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.999 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.999 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.999 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000      0.986 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.999 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.986 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.999 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.986 1.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.999 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000      0.986 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.986 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.999 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.999 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.986 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.986 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.986 1.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.986 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000      0.999 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000      0.986 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.999 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2043      0.957 0.968 0.032
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.2423      0.950 0.960 0.040
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.986 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.986 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.986 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.999 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.986 1.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.999 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000      0.986 1.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.986 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.999 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.986 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.999 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000      0.986 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000      0.986 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.999 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000      0.986 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000      0.986 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.999 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.986 1.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.999 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000      0.986 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.999 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.986 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.999 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0000      0.986 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000      0.999 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.999 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.999 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.999 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.999 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.8443      0.638 0.728 0.272
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.1843      0.971 0.028 0.972
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.986 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000      0.986 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0938      0.987 0.012 0.988
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.999 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.0000      0.986 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.986 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.999 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.999 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.986 1.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.8267      0.660 0.740 0.260
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.986 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.986 1.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.986 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.999 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.0000      0.986 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.986 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.999 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.986 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.999 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.999 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0000      0.986 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.0000      0.992 0.000 0.000 1.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.978 1.000 0.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.993 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.993 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.992 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.993 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.993 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.993 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.993 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.992 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.4702      0.736 0.788 0.212 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.978 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.993 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2625      0.897 0.916 0.000 0.084
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.993 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.992 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.0000      0.992 0.000 0.000 1.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.993 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.993 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.0000      0.992 0.000 0.000 1.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     3  0.0000      0.992 0.000 0.000 1.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     3  0.4702      0.732 0.212 0.000 0.788
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.978 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.0000      0.978 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.992 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.993 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.978 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.0000      0.978 1.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.0000      0.992 0.000 0.000 1.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.0000      0.992 0.000 0.000 1.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.0000      0.992 0.000 0.000 1.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.993 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.978 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.4346      0.766 0.184 0.816 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     3  0.0000      0.992 0.000 0.000 1.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.992 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.993 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.992 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.993 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.992 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.992 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.993 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000      0.978 1.000 0.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.992 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.993 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.978 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.0237      0.975 0.996 0.004 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.992 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.993 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.992 0.000 0.000 1.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.993 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0000      0.978 1.000 0.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.0000      0.978 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.993 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.0000      0.978 1.000 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.993 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.993 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.978 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.0000      0.978 1.000 0.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0892      0.962 0.980 0.000 0.020
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.992 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.0000      0.978 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.993 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.0000      0.992 0.000 0.000 1.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.978 1.000 0.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.0237      0.975 0.996 0.004 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     1  0.4399      0.772 0.812 0.188 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.978 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      0.978 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.992 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.978 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.992 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.993 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.992 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.992 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.993 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.992 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.993 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.993 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     3  0.0000      0.992 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.3266     0.8306 0.168 0.000 0.832 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.3311     0.7813 0.828 0.000 0.000 0.172
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.4746     0.3949 0.368 0.000 0.632 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4277     0.7115 0.000 0.280 0.000 0.720
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0188     0.9966 0.000 0.996 0.000 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.3311     0.7903 0.000 0.172 0.000 0.828
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.0000     0.8107 0.000 0.000 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.3356     0.7801 0.824 0.000 0.000 0.176
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0921     0.8170 0.000 0.028 0.000 0.972
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000     0.7803 1.000 0.000 0.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.3266     0.8306 0.168 0.000 0.832 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.3266     0.7921 0.000 0.168 0.000 0.832
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.3219     0.8333 0.164 0.000 0.836 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3486     0.5844 0.812 0.000 0.188 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.7803 1.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0336     0.7824 0.992 0.000 0.000 0.008
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.1022     0.7880 0.032 0.000 0.000 0.968
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4134     0.7314 0.740 0.000 0.000 0.260
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.4250     0.7169 0.724 0.000 0.000 0.276
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.3219     0.8333 0.164 0.000 0.836 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.3266     0.8306 0.168 0.000 0.832 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.3764     0.7863 0.216 0.000 0.784 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.3726     0.7640 0.788 0.000 0.000 0.212
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.0817     0.8166 0.000 0.024 0.000 0.976
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4817     0.1389 0.612 0.000 0.388 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0188     0.9966 0.000 0.996 0.000 0.004
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000     0.9088 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4250     0.7163 0.000 0.276 0.000 0.724
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.3942     0.7491 0.764 0.000 0.000 0.236
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.4776     0.5642 0.000 0.376 0.000 0.624
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0469     0.7831 0.988 0.000 0.000 0.012
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000     0.8107 0.000 0.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.4250     0.7163 0.000 0.276 0.000 0.724
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000     0.9088 0.000 0.000 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.4193     0.7238 0.000 0.268 0.000 0.732
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.3356     0.7801 0.824 0.000 0.000 0.176
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.8107 0.000 0.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.0188     0.8081 0.004 0.000 0.000 0.996
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0188     0.9966 0.000 0.996 0.000 0.004
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4277     0.7126 0.720 0.000 0.000 0.280
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.3837     0.5401 0.224 0.000 0.000 0.776
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.2149     0.7640 0.912 0.000 0.088 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.3837     0.5401 0.224 0.000 0.000 0.776
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3311     0.7903 0.000 0.172 0.000 0.828
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.4898     0.0393 0.584 0.000 0.416 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.3311     0.7813 0.828 0.000 0.000 0.172
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.0000     0.8107 0.000 0.000 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.0000     0.8107 0.000 0.000 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1022     0.7872 0.968 0.000 0.000 0.032
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4277     0.7126 0.720 0.000 0.000 0.280
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0469     0.9112 0.012 0.000 0.988 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0921     0.7865 0.972 0.000 0.000 0.028
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9088 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000     0.9984 0.000 1.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.4643     0.5255 0.344 0.000 0.656 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9088 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.4250     0.7163 0.000 0.276 0.000 0.724
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9088 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0188     0.9966 0.000 0.996 0.000 0.004
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0188     0.9966 0.000 0.996 0.000 0.004
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4817     0.1389 0.612 0.000 0.388 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.4637    0.48011 0.012 0.000 0.536 0.000 0.452
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.2130    0.57334 0.908 0.000 0.000 0.012 0.080
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.6785   -0.40696 0.312 0.000 0.388 0.000 0.300
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.4527    0.71723 0.000 0.036 0.000 0.692 0.272
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.5117    0.73051 0.000 0.652 0.000 0.072 0.276
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.3863    0.73971 0.000 0.012 0.000 0.740 0.248
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0290    0.78261 0.008 0.000 0.992 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.1981    0.72250 0.016 0.000 0.000 0.920 0.064
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.2017    0.57049 0.912 0.000 0.000 0.008 0.080
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.3480    0.74292 0.000 0.000 0.000 0.752 0.248
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3913   -0.07939 0.676 0.000 0.000 0.000 0.324
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0162    0.78323 0.004 0.000 0.996 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.4637    0.48011 0.012 0.000 0.536 0.000 0.452
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.3916    0.73862 0.000 0.012 0.000 0.732 0.256
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.4273    0.50260 0.000 0.000 0.552 0.000 0.448
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     5  0.4942    0.81145 0.432 0.000 0.028 0.000 0.540
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     5  0.4291    0.75040 0.464 0.000 0.000 0.000 0.536
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4126   -0.33319 0.620 0.000 0.000 0.000 0.380
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.3969    0.37553 0.304 0.000 0.000 0.692 0.004
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.2953    0.67287 0.012 0.000 0.844 0.000 0.144
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0404    0.83792 0.000 0.988 0.000 0.000 0.012
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.2891    0.59649 0.824 0.000 0.000 0.176 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.3424    0.57383 0.760 0.000 0.000 0.240 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.4273    0.50260 0.000 0.000 0.552 0.000 0.448
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.4637    0.48011 0.012 0.000 0.536 0.000 0.452
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     5  0.5045    0.59141 0.196 0.000 0.108 0.000 0.696
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2519    0.82689 0.000 0.884 0.000 0.016 0.100
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2813    0.59793 0.832 0.000 0.000 0.168 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.2813    0.74223 0.000 0.000 0.000 0.832 0.168
#> A4168812-C38E-4F15-9AF6-79F256279E72     5  0.5394    0.83433 0.400 0.000 0.060 0.000 0.540
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0162    0.78323 0.004 0.000 0.996 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.5224    0.72400 0.000 0.644 0.000 0.080 0.276
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1121    0.77800 0.000 0.000 0.956 0.000 0.044
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0162    0.78323 0.004 0.000 0.996 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0162    0.78323 0.004 0.000 0.996 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4503    0.71943 0.000 0.036 0.000 0.696 0.268
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.3885    0.55818 0.724 0.000 0.000 0.268 0.008
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0451    0.78131 0.008 0.000 0.988 0.000 0.004
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.4756    0.70318 0.000 0.044 0.000 0.668 0.288
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3857   -0.01989 0.688 0.000 0.000 0.000 0.312
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0771    0.69657 0.020 0.000 0.000 0.976 0.004
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.2997    0.66858 0.012 0.000 0.840 0.000 0.148
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.4616    0.71079 0.000 0.036 0.000 0.676 0.288
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.3274    0.69595 0.000 0.000 0.780 0.000 0.220
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.4475    0.72145 0.000 0.032 0.000 0.692 0.276
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0693    0.59296 0.980 0.000 0.000 0.012 0.008
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2674    0.60406 0.140 0.000 0.000 0.856 0.004
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.4168    0.79586 0.000 0.764 0.000 0.052 0.184
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.2953    0.60047 0.144 0.000 0.000 0.844 0.012
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.5224    0.72400 0.000 0.644 0.000 0.080 0.276
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000    0.83826 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.3684    0.55074 0.720 0.000 0.000 0.280 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.4430   -0.00209 0.456 0.000 0.000 0.540 0.004
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.4106    0.14527 0.724 0.000 0.020 0.000 0.256
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0162    0.78323 0.004 0.000 0.996 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.4430   -0.00209 0.456 0.000 0.000 0.540 0.004
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.3863    0.73971 0.000 0.012 0.000 0.740 0.248
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     5  0.5733    0.75899 0.440 0.000 0.084 0.000 0.476
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.2130    0.57334 0.908 0.000 0.000 0.012 0.080
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.1670    0.67235 0.052 0.000 0.000 0.936 0.012
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.1469    0.71110 0.016 0.000 0.000 0.948 0.036
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2304    0.54370 0.892 0.000 0.000 0.008 0.100
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.3684    0.55074 0.720 0.000 0.000 0.280 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0162    0.78323 0.004 0.000 0.996 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.2732    0.43604 0.840 0.000 0.000 0.000 0.160
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1043    0.77894 0.000 0.000 0.960 0.000 0.040
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.4133    0.79746 0.000 0.768 0.000 0.052 0.180
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.6657   -0.32091 0.232 0.000 0.416 0.000 0.352
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1043    0.77894 0.000 0.000 0.960 0.000 0.040
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.4479    0.71953 0.000 0.036 0.000 0.700 0.264
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1043    0.77894 0.000 0.000 0.960 0.000 0.040
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.5224    0.72400 0.000 0.644 0.000 0.080 0.276
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.5224    0.72400 0.000 0.644 0.000 0.080 0.276
#> EA35E230-DE50-45AB-A737-D5C430652A90     5  0.5394    0.83433 0.400 0.000 0.060 0.000 0.540

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     6  0.3867     0.8440 0.012 0.000 0.328 0.000 0.000 0.660
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.4254     0.3263 0.680 0.000 0.000 0.000 0.272 0.048
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.6882     0.2231 0.440 0.000 0.300 0.000 0.080 0.180
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.1078     0.7551 0.000 0.008 0.000 0.964 0.012 0.016
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4254     0.6083 0.000 0.576 0.000 0.404 0.000 0.020
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.1082     0.7702 0.000 0.000 0.000 0.956 0.040 0.004
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0790     0.8586 0.000 0.000 0.968 0.000 0.032 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.4131     0.5254 0.000 0.000 0.000 0.624 0.356 0.020
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.4350     0.3225 0.660 0.000 0.000 0.000 0.292 0.048
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.3253     0.7035 0.000 0.000 0.000 0.788 0.192 0.020
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.2997     0.5505 0.844 0.000 0.000 0.000 0.060 0.096
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0790     0.8586 0.000 0.000 0.968 0.000 0.032 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     6  0.3867     0.8440 0.012 0.000 0.328 0.000 0.000 0.660
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.2030     0.7616 0.000 0.000 0.000 0.908 0.064 0.028
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     6  0.3807     0.8058 0.000 0.000 0.368 0.000 0.004 0.628
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3860     0.3111 0.528 0.000 0.000 0.000 0.000 0.472
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3872     0.3891 0.604 0.000 0.000 0.000 0.004 0.392
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2706     0.5628 0.832 0.000 0.000 0.000 0.008 0.160
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     5  0.3323     0.3775 0.000 0.000 0.000 0.240 0.752 0.008
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.4244     0.6226 0.024 0.000 0.760 0.000 0.064 0.152
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0146     0.7288 0.000 0.996 0.000 0.000 0.000 0.004
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4700    -0.1221 0.500 0.000 0.000 0.000 0.456 0.044
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.4136     0.3207 0.428 0.000 0.000 0.000 0.560 0.012
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     6  0.3782     0.8036 0.000 0.000 0.360 0.000 0.004 0.636
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     6  0.3867     0.8440 0.012 0.000 0.328 0.000 0.000 0.660
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     6  0.3440     0.3114 0.196 0.000 0.028 0.000 0.000 0.776
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.3071     0.7115 0.000 0.804 0.000 0.180 0.000 0.016
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.4184    -0.2683 0.500 0.000 0.000 0.000 0.488 0.012
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.3936     0.6078 0.000 0.000 0.000 0.688 0.288 0.024
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4177     0.2951 0.520 0.000 0.012 0.000 0.000 0.468
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0790     0.8586 0.000 0.000 0.968 0.000 0.032 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.4192     0.6056 0.000 0.572 0.000 0.412 0.000 0.016
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1285     0.8355 0.000 0.000 0.944 0.000 0.004 0.052
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0405     0.8577 0.000 0.000 0.988 0.000 0.004 0.008
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.8601 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0767     0.7608 0.000 0.004 0.000 0.976 0.012 0.008
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.3729     0.4473 0.296 0.000 0.000 0.000 0.692 0.012
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.2138     0.8117 0.004 0.000 0.908 0.000 0.036 0.052
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.2384     0.6952 0.000 0.084 0.000 0.884 0.000 0.032
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.2826     0.5559 0.844 0.000 0.000 0.000 0.028 0.128
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.4161     0.3962 0.000 0.000 0.000 0.540 0.448 0.012
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.4759     0.5769 0.048 0.000 0.728 0.000 0.072 0.152
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.1575     0.7443 0.000 0.032 0.000 0.936 0.000 0.032
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.3923    -0.2350 0.000 0.000 0.580 0.000 0.004 0.416
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.1176     0.7685 0.000 0.000 0.000 0.956 0.024 0.020
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.4682     0.0823 0.556 0.000 0.000 0.000 0.396 0.048
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     5  0.3874     0.0824 0.000 0.000 0.000 0.356 0.636 0.008
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3953     0.6655 0.000 0.656 0.000 0.328 0.000 0.016
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.4131     0.0961 0.000 0.000 0.000 0.356 0.624 0.020
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4192     0.6056 0.000 0.572 0.000 0.412 0.000 0.016
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.1814     0.7300 0.000 0.900 0.000 0.000 0.000 0.100
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.3979     0.4398 0.360 0.000 0.000 0.000 0.628 0.012
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     5  0.3423     0.6058 0.088 0.000 0.000 0.100 0.812 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.4157     0.5545 0.772 0.000 0.020 0.000 0.084 0.124
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.8601 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     5  0.3327     0.6044 0.088 0.000 0.000 0.092 0.820 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.1082     0.7702 0.000 0.000 0.000 0.956 0.040 0.004
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.5780     0.4204 0.572 0.000 0.052 0.000 0.080 0.296
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.4254     0.3263 0.680 0.000 0.000 0.000 0.272 0.048
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.4276     0.4236 0.000 0.000 0.000 0.564 0.416 0.020
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4219     0.4772 0.000 0.000 0.000 0.592 0.388 0.020
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.2632     0.4332 0.832 0.000 0.000 0.000 0.164 0.004
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.4037     0.4180 0.380 0.000 0.000 0.000 0.608 0.012
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0790     0.8586 0.000 0.000 0.968 0.000 0.032 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.2815     0.4680 0.848 0.000 0.000 0.000 0.120 0.032
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1152     0.8427 0.000 0.000 0.952 0.000 0.004 0.044
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3938     0.6675 0.000 0.660 0.000 0.324 0.000 0.016
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.7085     0.1499 0.392 0.000 0.292 0.000 0.080 0.236
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1152     0.8427 0.000 0.000 0.952 0.000 0.004 0.044
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0291     0.7631 0.000 0.000 0.000 0.992 0.004 0.004
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1152     0.8427 0.000 0.000 0.952 0.000 0.004 0.044
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.4261     0.6036 0.000 0.572 0.000 0.408 0.000 0.020
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4261     0.6036 0.000 0.572 0.000 0.408 0.000 0.020
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4177     0.2951 0.520 0.000 0.012 0.000 0.000 0.468

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.997         0.5058 0.495   0.495
#> 3 3 0.840           0.796       0.922         0.1975 0.895   0.790
#> 4 4 0.788           0.755       0.886         0.0739 0.947   0.869
#> 5 5 0.831           0.810       0.856         0.0621 0.887   0.693
#> 6 6 0.885           0.922       0.926         0.0424 0.966   0.881

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.000      0.993 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1   0.000      0.993 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.000      1.000 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.000      1.000 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1   0.000      0.993 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.000      1.000 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.000      1.000 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.000      1.000 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.000      1.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1   0.000      0.993 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.000      1.000 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1   0.000      0.993 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.000      1.000 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.000      0.993 1.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.000      1.000 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1   0.000      0.993 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.000      0.993 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.000      1.000 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.000      1.000 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.000      0.993 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000      0.993 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.000      0.993 1.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000      0.993 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.000      1.000 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1   0.000      0.993 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.000      1.000 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.388      0.916 0.924 0.076
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1   0.722      0.754 0.800 0.200
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.000      0.993 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.000      0.993 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.000      0.993 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.000      1.000 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.000      0.993 1.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.000      1.000 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000      0.993 1.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1   0.000      0.993 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.000      1.000 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1   0.000      0.993 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.000      1.000 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1   0.000      0.993 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1   0.000      0.993 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.000      1.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1   0.000      0.993 1.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1   0.000      0.993 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.000      1.000 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.000      0.993 1.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.000      1.000 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1   0.000      0.993 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.000      1.000 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.000      0.993 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.000      1.000 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1   0.000      0.993 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.000      1.000 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.000      1.000 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.000      1.000 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.000      1.000 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.000      1.000 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.000      1.000 0.000 1.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.000      1.000 0.000 1.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1   0.000      0.993 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1   0.000      0.993 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2   0.000      1.000 0.000 1.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.000      1.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1   0.000      0.993 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1   0.000      0.993 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.000      1.000 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.000      1.000 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.000      0.993 1.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.000      1.000 0.000 1.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1   0.000      0.993 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.000      0.993 1.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1   0.000      0.993 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.000      1.000 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1   0.000      0.993 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1   0.000      0.993 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.000      1.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1   0.000      0.993 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.000      1.000 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.000      1.000 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.000      0.993 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.6111      0.290 0.396 0.000 0.604
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.0237      0.807 0.004 0.000 0.996
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.999 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.999 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.809 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.999 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.999 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.999 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.999 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.809 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.999 0.000 1.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.0237      0.807 0.004 0.000 0.996
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.999 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     3  0.6062      0.314 0.384 0.000 0.616
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.999 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.809 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.6111      0.290 0.396 0.000 0.604
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.999 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.999 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.6095      0.299 0.392 0.000 0.608
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     3  0.6111      0.290 0.396 0.000 0.604
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     3  0.6111      0.290 0.396 0.000 0.604
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.6154      0.413 0.592 0.000 0.408
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.0000      0.999 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.809 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.999 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3116      0.670 0.892 0.000 0.108
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.0237      0.704 0.996 0.000 0.004
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.6095      0.299 0.392 0.000 0.608
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.6111      0.290 0.396 0.000 0.604
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.6111      0.290 0.396 0.000 0.604
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.999 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0237      0.704 0.996 0.000 0.004
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.999 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     3  0.6111      0.290 0.396 0.000 0.604
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.809 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.999 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.809 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.999 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.809 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.809 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.999 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.0424      0.803 0.008 0.000 0.992
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.809 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.999 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.6154      0.413 0.592 0.000 0.408
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.999 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.809 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.999 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.809 0.000 0.000 1.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.999 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.0237      0.807 0.004 0.000 0.996
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0000      0.999 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.999 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.999 0.000 1.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.999 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.999 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0747      0.696 0.984 0.016 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.0892      0.981 0.020 0.980 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.809 0.000 0.000 1.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.809 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.0000      0.999 0.000 1.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.999 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.0000      0.809 0.000 0.000 1.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     3  0.0237      0.807 0.004 0.000 0.996
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.999 0.000 1.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.999 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.6140      0.419 0.596 0.000 0.404
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0237      0.703 0.996 0.004 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.809 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.6180      0.389 0.584 0.000 0.416
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.809 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.999 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.809 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.809 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.999 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.809 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.999 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.999 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     3  0.6111      0.290 0.396 0.000 0.604

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.4328      0.555 0.008 0.000 0.748 0.244
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1302      0.747 0.000 0.000 0.956 0.044
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     3  0.5941      0.452 0.276 0.000 0.652 0.072
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.5070      0.389 0.372 0.000 0.620 0.008
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4907      0.304 0.580 0.000 0.420 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.4477      0.790 0.000 0.312 0.000 0.688
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6974      0.475 0.564 0.000 0.152 0.284
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.1474      0.536 0.948 0.000 0.000 0.052
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.5070      0.389 0.372 0.000 0.620 0.008
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2197      0.533 0.916 0.000 0.004 0.080
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     3  0.5085      0.383 0.376 0.000 0.616 0.008
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.4220      0.303 0.004 0.000 0.248 0.748
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.5172      0.355 0.588 0.000 0.404 0.008
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.2704      0.800 0.000 0.876 0.000 0.124
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0336      0.779 0.000 0.000 0.992 0.008
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.3801      0.577 0.000 0.000 0.780 0.220
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.4855      0.661 0.000 0.400 0.000 0.600
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.2868      0.471 0.864 0.000 0.000 0.136
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.5833      0.726 0.096 0.212 0.000 0.692
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.4608      0.791 0.004 0.304 0.000 0.692
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     3  0.4453      0.552 0.012 0.000 0.744 0.244
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.5150      0.369 0.596 0.000 0.396 0.008
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.2266      0.524 0.912 0.004 0.000 0.084
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5172      0.340 0.588 0.000 0.404 0.008
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.783 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     3  0.5085      0.383 0.376 0.000 0.616 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.6856    -0.1063 0.536 0.000 0.272 0.040 0.152
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3003     0.6124 0.188 0.000 0.812 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     3  0.5949    -0.1930 0.280 0.000 0.604 0.016 0.100
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4451     0.6077 0.504 0.000 0.492 0.000 0.004
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.6132     0.5827 0.480 0.000 0.388 0.000 0.132
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.1410     0.8504 0.000 0.060 0.000 0.940 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.5024    -0.3810 0.628 0.000 0.004 0.040 0.328
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.4147     0.7266 0.316 0.000 0.000 0.008 0.676
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.2561     0.8716 0.144 0.000 0.000 0.000 0.856
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.4307     0.6067 0.504 0.000 0.496 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.1251     0.7946 0.008 0.000 0.036 0.956 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.6498     0.5226 0.452 0.000 0.352 0.000 0.196
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.2471     0.8273 0.000 0.864 0.000 0.136 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0609     0.9172 0.020 0.000 0.980 0.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.6874    -0.0776 0.468 0.000 0.372 0.040 0.120
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3395     0.6005 0.000 0.236 0.000 0.764 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0510     0.9794 0.000 0.984 0.000 0.000 0.016
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.2172     0.8222 0.076 0.000 0.000 0.016 0.908
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.1168     0.8534 0.000 0.032 0.000 0.960 0.008
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.1043     0.8586 0.000 0.040 0.000 0.960 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.6746    -0.1194 0.564 0.000 0.236 0.040 0.160
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0510     0.9794 0.000 0.984 0.000 0.000 0.016
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.6572     0.4719 0.452 0.000 0.328 0.000 0.220
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.2280     0.8719 0.120 0.000 0.000 0.000 0.880
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5996     0.5852 0.512 0.000 0.368 0.000 0.120
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9488 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.9941 0.000 1.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4451     0.6077 0.504 0.000 0.492 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.3371      0.869 0.708 0.000 0.292 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.1492      0.948 0.036 0.000 0.024 0.000 0.000 0.940
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0146      0.991 0.000 0.996 0.000 0.000 0.004 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.1765      0.861 0.000 0.000 0.904 0.000 0.000 0.096
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5871      0.631 0.468 0.000 0.312 0.000 0.000 0.220
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.3371      0.869 0.708 0.000 0.292 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.3515      0.842 0.676 0.000 0.324 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.3390      0.868 0.704 0.000 0.296 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3371      0.869 0.708 0.000 0.292 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3690      0.865 0.700 0.000 0.288 0.000 0.012 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0937      0.878 0.000 0.040 0.000 0.960 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.1528      0.920 0.048 0.000 0.000 0.000 0.016 0.936
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.5097     -0.543 0.472 0.000 0.000 0.016 0.468 0.044
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.3482      0.851 0.684 0.000 0.316 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.3371      0.869 0.708 0.000 0.292 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3371      0.869 0.708 0.000 0.292 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.0713      0.970 0.028 0.000 0.000 0.000 0.972 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0146      0.991 0.000 0.996 0.000 0.000 0.004 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3409      0.865 0.700 0.000 0.300 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.2437      0.841 0.068 0.000 0.020 0.896 0.008 0.008
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3988      0.689 0.784 0.000 0.140 0.000 0.040 0.036
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.2135      0.847 0.000 0.872 0.000 0.128 0.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0790      0.947 0.032 0.000 0.968 0.000 0.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.1267      0.902 0.000 0.000 0.060 0.000 0.000 0.940
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.2219      0.731 0.000 0.136 0.000 0.864 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0862      0.970 0.000 0.972 0.000 0.008 0.016 0.004
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.0146      0.981 0.004 0.000 0.000 0.000 0.996 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0779      0.886 0.008 0.008 0.000 0.976 0.008 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0260      0.886 0.000 0.008 0.000 0.992 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.1480      0.946 0.040 0.000 0.020 0.000 0.000 0.940
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0862      0.970 0.000 0.972 0.000 0.008 0.016 0.004
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0291      0.988 0.000 0.992 0.000 0.000 0.004 0.004
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.4069      0.677 0.780 0.000 0.136 0.000 0.052 0.032
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.0363      0.982 0.012 0.000 0.000 0.000 0.988 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.2988      0.726 0.828 0.000 0.144 0.000 0.000 0.028
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3390      0.868 0.704 0.000 0.296 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.898           0.927       0.971         0.5026 0.495   0.495
#> 3 3 1.000           0.978       0.991         0.3428 0.736   0.513
#> 4 4 0.690           0.702       0.829         0.0978 0.828   0.544
#> 5 5 0.745           0.740       0.840         0.0685 0.934   0.752
#> 6 6 0.878           0.795       0.920         0.0477 0.925   0.669

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.000      0.979 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1   0.000      0.979 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.000      0.958 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.000      0.958 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1   0.000      0.979 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.000      0.958 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2   0.000      0.958 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2   0.000      0.958 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2   0.000      0.958 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1   0.000      0.979 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2   0.000      0.958 0.000 1.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1   0.000      0.979 1.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2   0.000      0.958 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.000      0.979 1.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.000      0.958 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1   0.000      0.979 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.000      0.979 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.000      0.958 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2   0.000      0.958 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.000      0.979 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1   0.000      0.979 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.000      0.979 1.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1   0.000      0.979 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2   0.000      0.958 0.000 1.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1   0.000      0.979 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2   0.000      0.958 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     2   0.999      0.071 0.484 0.516
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1   0.775      0.698 0.772 0.228
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.000      0.979 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.000      0.979 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.000      0.979 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2   0.000      0.958 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1   0.584      0.829 0.860 0.140
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2   0.000      0.958 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.000      0.979 1.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     1   0.000      0.979 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2   0.000      0.958 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1   0.000      0.979 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2   0.000      0.958 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1   0.000      0.979 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1   0.000      0.979 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2   0.000      0.958 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1   0.584      0.829 0.860 0.140
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1   0.000      0.979 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2   0.000      0.958 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1   0.000      0.979 1.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2   0.000      0.958 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1   0.000      0.979 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2   0.000      0.958 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.000      0.979 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2   0.000      0.958 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1   0.000      0.979 1.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2   0.000      0.958 0.000 1.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2   0.000      0.958 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2   0.000      0.958 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2   0.000      0.958 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.000      0.958 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2   0.980      0.296 0.416 0.584
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2   0.904      0.529 0.320 0.680
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1   0.000      0.979 1.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1   0.000      0.979 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1   0.900      0.530 0.684 0.316
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2   0.000      0.958 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1   0.000      0.979 1.000 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1   0.000      0.979 1.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2   0.000      0.958 0.000 1.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2   0.000      0.958 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1   0.000      0.979 1.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2   0.833      0.635 0.264 0.736
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1   0.000      0.979 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1   0.000      0.979 1.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1   0.000      0.979 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2   0.000      0.958 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1   0.000      0.979 1.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     1   0.000      0.979 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2   0.000      0.958 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1   0.000      0.979 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2   0.000      0.958 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2   0.000      0.958 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1   0.000      0.979 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.0000      0.988 0.000 0.000 1.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.998 1.000 0.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.985 0.000 1.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.985 0.000 1.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.988 0.000 0.000 1.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.985 0.000 1.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.985 0.000 1.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.985 0.000 1.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.985 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.988 0.000 0.000 1.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.4654      0.742 0.208 0.792 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0000      0.998 1.000 0.000 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.4555      0.751 0.200 0.800 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0592      0.988 0.988 0.000 0.012
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.985 0.000 1.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.988 0.000 0.000 1.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.0000      0.988 0.000 0.000 1.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.985 0.000 1.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.985 0.000 1.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.0000      0.988 0.000 0.000 1.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     3  0.5497      0.585 0.292 0.000 0.708
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0592      0.988 0.988 0.000 0.012
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.0000      0.998 1.000 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.0000      0.998 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.988 0.000 0.000 1.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.985 0.000 1.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.998 1.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.0000      0.998 1.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.0000      0.988 0.000 0.000 1.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.0000      0.988 0.000 0.000 1.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.0000      0.988 0.000 0.000 1.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.985 0.000 1.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0000      0.998 1.000 0.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.985 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     3  0.0237      0.985 0.004 0.000 0.996
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.988 0.000 0.000 1.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.985 0.000 1.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.988 0.000 0.000 1.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.985 0.000 1.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.988 0.000 0.000 1.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.988 0.000 0.000 1.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.0000      0.985 0.000 1.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.0000      0.998 1.000 0.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.988 0.000 0.000 1.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.985 0.000 1.000 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.998 1.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     1  0.0000      0.998 1.000 0.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.988 0.000 0.000 1.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.985 0.000 1.000 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.988 0.000 0.000 1.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.985 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0000      0.998 1.000 0.000 0.000
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     1  0.0000      0.998 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.985 0.000 1.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.0000      0.998 1.000 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.985 0.000 1.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.985 0.000 1.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.0000      0.998 1.000 0.000 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.0000      0.998 1.000 0.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.0000      0.998 1.000 0.000 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.988 0.000 0.000 1.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.0000      0.998 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.985 0.000 1.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.0000      0.988 0.000 0.000 1.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.998 1.000 0.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.0892      0.980 0.980 0.020 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     1  0.0424      0.991 0.992 0.008 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.998 1.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.0000      0.998 1.000 0.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.988 0.000 0.000 1.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.998 1.000 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.988 0.000 0.000 1.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.985 0.000 1.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.0000      0.988 0.000 0.000 1.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.988 0.000 0.000 1.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.985 0.000 1.000 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.988 0.000 0.000 1.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.985 0.000 1.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.985 0.000 1.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     3  0.0000      0.988 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.7354      0.210 0.388 0.160 0.452 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.708 1.000 0.000 0.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0592      0.880 0.000 0.016 0.000 0.984
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.3688      0.660 0.000 0.208 0.000 0.792
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.0921      0.873 0.028 0.000 0.000 0.972
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0336      0.706 0.992 0.000 0.008 0.000
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0188      0.885 0.004 0.000 0.000 0.996
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3625      0.630 0.828 0.160 0.012 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.7354      0.210 0.388 0.160 0.452 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.6429      0.556 0.192 0.160 0.648 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.7367     -0.140 0.436 0.160 0.404 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.3625      0.630 0.828 0.160 0.012 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2469      0.666 0.892 0.108 0.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     1  0.4941      0.184 0.564 0.000 0.000 0.436
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.708 1.000 0.000 0.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.0000      0.708 1.000 0.000 0.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.6463      0.550 0.196 0.160 0.644 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.7354      0.210 0.388 0.160 0.452 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.7367     -0.140 0.436 0.160 0.404 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.0188      0.708 0.996 0.000 0.000 0.004
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.7367     -0.140 0.436 0.160 0.404 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0592      0.880 0.000 0.016 0.000 0.984
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.4817      0.294 0.612 0.000 0.000 0.388
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.0592      0.880 0.000 0.016 0.000 0.984
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.0000      0.708 1.000 0.000 0.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.3172      0.767 0.160 0.000 0.000 0.840
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.0592      0.880 0.000 0.016 0.000 0.984
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.0592      0.705 0.984 0.000 0.000 0.016
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.3219      0.762 0.164 0.000 0.000 0.836
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3610      0.945 0.000 0.800 0.000 0.200
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.3219      0.762 0.164 0.000 0.000 0.836
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.3610      0.673 0.000 0.200 0.000 0.800
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3172      0.994 0.000 0.840 0.000 0.160
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.4817      0.294 0.612 0.000 0.000 0.388
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     1  0.4941      0.184 0.564 0.000 0.000 0.436
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.3975      0.512 0.760 0.000 0.240 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     1  0.4941      0.184 0.564 0.000 0.000 0.436
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.4164      0.628 0.264 0.000 0.736 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0000      0.708 1.000 0.000 0.000 0.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.3024      0.779 0.148 0.000 0.000 0.852
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3172      0.767 0.160 0.000 0.000 0.840
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.0000      0.708 1.000 0.000 0.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.4500      0.414 0.684 0.000 0.000 0.316
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3172      0.637 0.840 0.160 0.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3266      0.986 0.000 0.832 0.000 0.168
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.2868      0.753 0.136 0.000 0.864 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0000      0.886 0.000 0.000 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.3649      0.667 0.000 0.204 0.000 0.796
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.3649      0.667 0.000 0.204 0.000 0.796
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.7367     -0.140 0.436 0.160 0.404 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.6240      0.884 0.544 0.000 0.212 0.000 0.244
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     5  0.2020      0.659 0.100 0.000 0.000 0.000 0.900
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0162      0.923 0.004 0.000 0.996 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.3452      0.746 0.244 0.000 0.000 0.756 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.5929      0.546 0.432 0.104 0.000 0.464 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     5  0.0404      0.732 0.000 0.000 0.012 0.000 0.988
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.4504      0.595 0.564 0.000 0.008 0.000 0.428
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.6216      0.888 0.548 0.000 0.208 0.000 0.244
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.3452      0.746 0.244 0.000 0.000 0.756 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.6322     -0.360 0.324 0.000 0.500 0.000 0.176
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.6087      0.892 0.568 0.000 0.188 0.000 0.244
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4497      0.600 0.568 0.000 0.008 0.000 0.424
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     5  0.3305      0.441 0.224 0.000 0.000 0.000 0.776
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     5  0.3480      0.748 0.000 0.000 0.000 0.248 0.752
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4161      0.652 0.392 0.608 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     5  0.0794      0.715 0.028 0.000 0.000 0.000 0.972
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.0963      0.745 0.000 0.000 0.000 0.036 0.964
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.6409      0.654 0.468 0.000 0.352 0.000 0.180
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.6216      0.888 0.548 0.000 0.208 0.000 0.244
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.6087      0.892 0.568 0.000 0.188 0.000 0.244
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.4219      0.633 0.416 0.584 0.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.1908      0.755 0.000 0.000 0.000 0.092 0.908
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.6087      0.892 0.568 0.000 0.188 0.000 0.244
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.4249      0.660 0.432 0.000 0.000 0.568 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.3452      0.746 0.244 0.000 0.000 0.756 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     5  0.3480      0.748 0.000 0.000 0.000 0.248 0.752
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.4249      0.660 0.432 0.000 0.000 0.568 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     5  0.2230      0.639 0.116 0.000 0.000 0.000 0.884
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.4249      0.660 0.432 0.000 0.000 0.568 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0162      0.923 0.004 0.000 0.996 0.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.1341      0.756 0.056 0.000 0.000 0.944 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     5  0.3461      0.751 0.000 0.000 0.004 0.224 0.772
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.5542      0.504 0.432 0.500 0.000 0.068 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.3003      0.521 0.000 0.000 0.000 0.812 0.188
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.5492      0.597 0.432 0.064 0.000 0.504 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.829 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.3452      0.749 0.000 0.000 0.000 0.244 0.756
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     5  0.3480      0.748 0.000 0.000 0.000 0.248 0.752
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     5  0.3210      0.618 0.000 0.000 0.212 0.000 0.788
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     5  0.3480      0.748 0.000 0.000 0.000 0.248 0.752
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.2966      0.754 0.184 0.000 0.000 0.816 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.5273      0.372 0.160 0.000 0.680 0.000 0.160
#> EF1A102F-C206-4874-8F27-0BF069A613B8     5  0.0000      0.730 0.000 0.000 0.000 0.000 1.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.0000      0.752 0.000 0.000 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     5  0.1908      0.664 0.092 0.000 0.000 0.000 0.908
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.3452      0.749 0.000 0.000 0.000 0.244 0.756
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     5  0.3730      0.263 0.288 0.000 0.000 0.000 0.712
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.4249      0.617 0.432 0.568 0.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3687      0.662 0.180 0.000 0.792 0.000 0.028
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.3452      0.746 0.244 0.000 0.000 0.756 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.5929      0.546 0.432 0.104 0.000 0.464 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.5929      0.546 0.432 0.104 0.000 0.464 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.6108      0.890 0.564 0.000 0.188 0.000 0.248

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2854     0.6778 0.792 0.000 0.208 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.3737     0.3418 0.392 0.000 0.000 0.000 0.000 0.608
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2048     0.7934 0.120 0.000 0.880 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     5  0.3756     0.3564 0.000 0.000 0.000 0.400 0.600 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     6  0.0405     0.9086 0.008 0.000 0.004 0.000 0.000 0.988
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0146     0.7806 0.996 0.000 0.000 0.000 0.000 0.004
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2793     0.6862 0.800 0.000 0.200 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     5  0.0146     0.9091 0.000 0.000 0.000 0.004 0.996 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.3869    -0.1176 0.500 0.000 0.500 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000     0.7811 1.000 0.000 0.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000     0.7811 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.3607     0.3761 0.652 0.000 0.000 0.000 0.000 0.348
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     6  0.0146     0.9137 0.000 0.000 0.000 0.000 0.004 0.996
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     4  0.1663     0.8242 0.000 0.088 0.000 0.912 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.3050     0.6278 0.236 0.000 0.000 0.000 0.000 0.764
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     6  0.0000     0.9140 0.000 0.000 0.000 0.000 0.000 1.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.3607     0.4286 0.652 0.000 0.348 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2823     0.6824 0.796 0.000 0.204 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.7811 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     6  0.0000     0.9140 0.000 0.000 0.000 0.000 0.000 1.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0000     0.7811 1.000 0.000 0.000 0.000 0.000 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     5  0.3221     0.6166 0.000 0.000 0.000 0.264 0.736 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     6  0.0146     0.9137 0.000 0.000 0.000 0.000 0.004 0.996
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.3756     0.4062 0.000 0.000 0.000 0.600 0.400 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.3847     0.0495 0.544 0.000 0.000 0.000 0.000 0.456
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.3747     0.4145 0.000 0.000 0.000 0.604 0.396 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.0146     0.9137 0.000 0.000 0.000 0.000 0.004 0.996
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5  0.3747     0.3596 0.000 0.000 0.000 0.000 0.604 0.396
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     6  0.0000     0.9140 0.000 0.000 0.000 0.000 0.000 1.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     6  0.0146     0.9137 0.000 0.000 0.000 0.000 0.004 0.996
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     6  0.0146     0.9123 0.000 0.000 0.004 0.000 0.000 0.996
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     6  0.0146     0.9137 0.000 0.000 0.000 0.000 0.004 0.996
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     5  0.0146     0.9091 0.000 0.000 0.000 0.004 0.996 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.3881     0.3203 0.396 0.000 0.600 0.000 0.000 0.004
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.0000     0.9140 0.000 0.000 0.000 0.000 0.000 1.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     5  0.0000     0.9112 0.000 0.000 0.000 0.000 1.000 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     6  0.3607     0.4075 0.348 0.000 0.000 0.000 0.000 0.652
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     6  0.0000     0.9140 0.000 0.000 0.000 0.000 0.000 1.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3330     0.5030 0.716 0.000 0.000 0.000 0.000 0.284
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3727     0.3988 0.388 0.000 0.612 0.000 0.000 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     5  0.0146     0.9091 0.000 0.000 0.000 0.004 0.996 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9114 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     4  0.0000     0.8959 0.000 0.000 0.000 1.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.0146     0.7806 0.996 0.000 0.000 0.000 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.998           0.936       0.963         0.4915 0.509   0.509
#> 3 3 0.765           0.830       0.882         0.2889 0.741   0.542
#> 4 4 0.596           0.716       0.807         0.0856 0.726   0.392
#> 5 5 0.762           0.711       0.834         0.1439 0.915   0.694
#> 6 6 0.871           0.856       0.923         0.0452 0.938   0.723

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2948     0.9499 0.948 0.052
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.1184     0.9605 0.984 0.016
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.9598 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.9598 0.000 1.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.0000     0.9653 1.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000     0.9598 0.000 1.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.2778     0.9518 0.048 0.952
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000     0.9598 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.2778     0.9518 0.048 0.952
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.0000     0.9653 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.0672     0.9585 0.008 0.992
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.0376     0.9649 0.996 0.004
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.2778     0.9518 0.048 0.952
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.1414     0.9619 0.980 0.020
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.9598 0.000 1.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.0000     0.9653 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2948     0.9499 0.948 0.052
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000     0.9598 0.000 1.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.9598 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2948     0.9499 0.948 0.052
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.2948     0.9499 0.948 0.052
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.2948     0.9499 0.948 0.052
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.2236     0.9460 0.036 0.964
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.2778     0.9518 0.048 0.952
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.0000     0.9653 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000     0.9598 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.3431     0.9448 0.936 0.064
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.1633     0.9528 0.024 0.976
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2948     0.9499 0.948 0.052
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2948     0.9499 0.948 0.052
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2948     0.9499 0.948 0.052
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2778     0.9518 0.048 0.952
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.1633     0.9528 0.024 0.976
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000     0.9598 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.3879     0.9352 0.924 0.076
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0376     0.9649 0.996 0.004
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.2778     0.9518 0.048 0.952
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0376     0.9649 0.996 0.004
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     0.9598 0.000 1.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.0000     0.9653 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.0000     0.9653 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.2778     0.9518 0.048 0.952
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.3733     0.9417 0.072 0.928
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.0000     0.9653 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000     0.9598 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.2236     0.9460 0.036 0.964
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.2778     0.9518 0.048 0.952
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.0000     0.9653 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000     0.9598 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0376     0.9649 0.996 0.004
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000     0.9598 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.1184     0.9605 0.984 0.016
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.2778     0.9518 0.048 0.952
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.2778     0.9518 0.048 0.952
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.0000     0.9598 0.000 1.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.2778     0.9518 0.048 0.952
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.9598 0.000 1.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.1633     0.9528 0.024 0.976
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.2778     0.9518 0.048 0.952
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     2  0.4298     0.9309 0.088 0.912
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.0000     0.9653 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.3733     0.9417 0.072 0.928
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.2778     0.9518 0.048 0.952
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     2  0.6973     0.8158 0.188 0.812
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.1184     0.9605 0.984 0.016
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.0672     0.9585 0.008 0.992
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000     0.9598 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.1633     0.9528 0.024 0.976
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.1633     0.9528 0.024 0.976
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000     0.9653 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.9993    -0.0152 0.484 0.516
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000     0.9653 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.2778     0.9518 0.048 0.952
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.6343     0.8002 0.840 0.160
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000     0.9653 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.1843     0.9568 0.028 0.972
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000     0.9653 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000     0.9598 0.000 1.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000     0.9598 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.8955     0.5929 0.688 0.312

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.2569      0.846 0.936 0.032 0.032
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.7770      0.655 0.628 0.080 0.292
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.1289      0.947 0.032 0.968 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1289      0.947 0.032 0.968 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0424      0.789 0.008 0.000 0.992
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1163      0.948 0.028 0.972 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.1267      0.948 0.004 0.972 0.024
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.1289      0.948 0.032 0.968 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.2318      0.946 0.028 0.944 0.028
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0424      0.789 0.008 0.000 0.992
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.2796      0.930 0.092 0.908 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.7773      0.631 0.612 0.072 0.316
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.2318      0.946 0.028 0.944 0.028
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.5036      0.822 0.832 0.048 0.120
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.1289      0.947 0.032 0.968 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.1015      0.792 0.008 0.012 0.980
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2569      0.846 0.936 0.032 0.032
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.1163      0.948 0.028 0.972 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.1289      0.947 0.032 0.968 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.2689      0.846 0.932 0.032 0.036
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.4217      0.791 0.868 0.032 0.100
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.2569      0.846 0.936 0.032 0.032
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     3  0.7065      0.620 0.352 0.032 0.616
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.2569      0.943 0.032 0.936 0.032
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1832      0.793 0.008 0.036 0.956
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.1163      0.948 0.028 0.972 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.5042      0.823 0.836 0.060 0.104
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     3  0.8312      0.587 0.324 0.100 0.576
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2569      0.846 0.936 0.032 0.032
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.2569      0.846 0.936 0.032 0.032
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.2569      0.846 0.936 0.032 0.032
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.1267      0.948 0.004 0.972 0.024
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     3  0.7123      0.613 0.364 0.032 0.604
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.2537      0.926 0.080 0.920 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     3  0.7138      0.636 0.312 0.044 0.644
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.1877      0.791 0.012 0.032 0.956
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.1129      0.949 0.004 0.976 0.020
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.2689      0.788 0.036 0.032 0.932
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1289      0.947 0.032 0.968 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0424      0.789 0.008 0.000 0.992
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.1877      0.791 0.012 0.032 0.956
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.1453      0.947 0.008 0.968 0.024
#> 7338D61C-77D6-4095-8847-7FD9967B7646     2  0.5171      0.748 0.012 0.784 0.204
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0424      0.789 0.008 0.000 0.992
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.2537      0.926 0.080 0.920 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     3  0.7065      0.620 0.352 0.032 0.616
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.2318      0.946 0.028 0.944 0.028
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0424      0.789 0.008 0.000 0.992
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.3038      0.922 0.104 0.896 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.7190      0.566 0.636 0.044 0.320
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.2537      0.926 0.080 0.920 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.7773      0.631 0.612 0.072 0.316
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.2443      0.945 0.032 0.940 0.028
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.1267      0.948 0.004 0.972 0.024
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.2537      0.926 0.080 0.920 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.1267      0.948 0.004 0.972 0.024
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.1289      0.947 0.032 0.968 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     3  0.9162      0.439 0.368 0.152 0.480
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.2569      0.943 0.032 0.936 0.032
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.3805      0.754 0.024 0.092 0.884
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0424      0.789 0.008 0.000 0.992
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.2793      0.940 0.028 0.928 0.044
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.1453      0.947 0.008 0.968 0.024
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.4397      0.770 0.116 0.028 0.856
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.6518      0.779 0.752 0.080 0.168
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.3038      0.922 0.104 0.896 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.2537      0.926 0.080 0.920 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     3  0.7065      0.620 0.352 0.032 0.616
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     3  0.7794      0.582 0.368 0.060 0.572
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.1877      0.791 0.012 0.032 0.956
#> D34B0BC6-9142-48AE-A113-5923192644A0     3  0.7514      0.610 0.328 0.056 0.616
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.1620      0.793 0.012 0.024 0.964
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.1267      0.948 0.004 0.972 0.024
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.3921      0.780 0.080 0.036 0.884
#> 976507F2-192B-4095-920A-3014889CD617     3  0.1620      0.793 0.012 0.024 0.964
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.1832      0.947 0.036 0.956 0.008
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.1877      0.791 0.012 0.032 0.956
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.1163      0.948 0.028 0.972 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.1163      0.948 0.028 0.972 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     3  0.6859      0.620 0.356 0.024 0.620

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.5782      0.614 0.068 0.220 0.704 0.008
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0188      0.876 0.004 0.000 0.996 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.2198      0.936 0.000 0.920 0.008 0.072
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.2466      0.931 0.000 0.916 0.028 0.056
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.2402      0.935 0.000 0.912 0.012 0.076
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.4713      0.632 0.000 0.360 0.000 0.640
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.5340      0.634 0.044 0.220 0.728 0.008
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.6265      0.555 0.656 0.220 0.124 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.2342      0.933 0.000 0.912 0.008 0.080
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     4  0.0707      0.475 0.020 0.000 0.000 0.980
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.1978      0.936 0.000 0.928 0.004 0.068
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.6624      0.544 0.644 0.220 0.128 0.008
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     4  0.3972      0.607 0.008 0.204 0.000 0.788
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2466      0.931 0.000 0.916 0.028 0.056
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     4  0.0592      0.479 0.016 0.000 0.000 0.984
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.4955      0.619 0.000 0.444 0.000 0.556
#> A4168812-C38E-4F15-9AF6-79F256279E72     4  0.6658     -0.502 0.444 0.000 0.084 0.472
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0592      0.867 0.000 0.016 0.984 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.2466      0.931 0.000 0.916 0.028 0.056
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.5661      0.602 0.080 0.220 0.700 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0779      0.908 0.000 0.980 0.004 0.016
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.3127      0.921 0.016 0.896 0.028 0.060
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.6229      0.611 0.000 0.416 0.056 0.528
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.5097      0.615 0.000 0.428 0.004 0.568
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     4  0.0592      0.479 0.016 0.000 0.000 0.984
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.4925      0.615 0.000 0.428 0.000 0.572
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.6805      0.492 0.604 0.220 0.176 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.5663      0.612 0.000 0.440 0.024 0.536
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.5340      0.634 0.044 0.220 0.728 0.008
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.2466      0.931 0.000 0.916 0.028 0.056
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.4933      0.623 0.000 0.432 0.000 0.568
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.2466      0.931 0.000 0.916 0.028 0.056
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     4  0.0188      0.486 0.004 0.000 0.000 0.996
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     4  0.6819      0.603 0.012 0.284 0.100 0.604
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.6114      0.608 0.000 0.428 0.048 0.524
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3048      0.924 0.016 0.900 0.028 0.056
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.6193      0.597 0.012 0.224 0.084 0.680
#> EF1A102F-C206-4874-8F27-0BF069A613B8     3  0.7801      0.221 0.288 0.220 0.484 0.008
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.4679      0.633 0.000 0.352 0.000 0.648
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4907      0.620 0.000 0.420 0.000 0.580
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     4  0.0592      0.479 0.016 0.000 0.000 0.984
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     4  0.0188      0.486 0.004 0.000 0.000 0.996
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5286      0.517 0.604 0.008 0.004 0.384
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.2466      0.931 0.000 0.916 0.028 0.056
#> 3353F579-77CA-4D0E-B794-37DE467CC065     4  0.7711      0.484 0.012 0.220 0.244 0.524
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.5668      0.613 0.000 0.444 0.024 0.532
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.878 0.000 0.000 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.1978      0.936 0.000 0.928 0.004 0.068
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.2198      0.936 0.000 0.920 0.008 0.072
#> EA35E230-DE50-45AB-A737-D5C430652A90     4  0.4814     -0.169 0.316 0.000 0.008 0.676

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000     0.8097 1.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.6374     0.2813 0.208 0.000 0.512 0.000 0.280
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.1043     0.8353 0.000 0.960 0.000 0.040 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.4287     0.5521 0.000 0.540 0.000 0.460 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0963     0.8357 0.000 0.964 0.000 0.036 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000     0.7307 0.000 0.000 0.000 1.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.5505     0.2333 0.000 0.084 0.000 0.588 0.328
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.3684     0.6850 0.000 0.000 0.720 0.000 0.280
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.1892     0.7212 0.000 0.080 0.000 0.916 0.004
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3759     0.7573 0.808 0.000 0.056 0.000 0.136
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8097 1.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.1043     0.8353 0.000 0.960 0.000 0.040 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0162     0.8098 0.996 0.000 0.004 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.1121     0.8017 0.956 0.000 0.044 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.1043     0.8031 0.960 0.000 0.040 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000     0.7307 0.000 0.000 0.000 1.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0963     0.8357 0.000 0.964 0.000 0.036 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.5059     0.6787 0.660 0.000 0.056 0.004 0.280
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000     0.8097 1.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8097 1.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000     0.8097 1.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.3913     0.6843 0.000 0.676 0.000 0.324 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.3704     0.7012 0.000 0.088 0.000 0.820 0.092
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5820     0.1366 0.504 0.000 0.056 0.016 0.424
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0290     0.9058 0.000 0.000 0.992 0.000 0.008
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.3913     0.6843 0.000 0.676 0.000 0.324 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.3863     0.7344 0.000 0.740 0.000 0.248 0.012
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0510     0.7226 0.000 0.000 0.016 0.984 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.3416     0.7120 0.000 0.088 0.000 0.840 0.072
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000     0.7307 0.000 0.000 0.000 1.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.3962     0.6855 0.000 0.088 0.000 0.800 0.112
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.5394     0.6308 0.660 0.000 0.208 0.000 0.132
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.3226     0.7159 0.000 0.088 0.000 0.852 0.060
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.3684     0.6850 0.000 0.000 0.720 0.000 0.280
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000     0.7307 0.000 0.000 0.000 1.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.4126     0.6381 0.000 0.620 0.000 0.380 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.3696     0.5912 0.000 0.016 0.000 0.772 0.212
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4015     0.6671 0.000 0.652 0.000 0.348 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000     0.8276 0.000 1.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000     0.7307 0.000 0.000 0.000 1.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     4  0.6672    -0.1913 0.000 0.000 0.376 0.392 0.232
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0510     0.7228 0.000 0.000 0.016 0.984 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.4287     0.5521 0.000 0.540 0.000 0.460 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4  0.6746    -0.2229 0.000 0.000 0.360 0.380 0.260
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.6828     0.4490 0.480 0.000 0.228 0.012 0.280
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.5000     0.0679 0.000 0.036 0.000 0.576 0.388
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.4057     0.6774 0.000 0.088 0.000 0.792 0.120
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.4132     0.9176 0.020 0.000 0.000 0.260 0.720
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.5633     0.0391 0.476 0.000 0.036 0.020 0.468
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3983     0.6735 0.000 0.660 0.000 0.340 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.7621     0.0107 0.076 0.000 0.460 0.200 0.264
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.2848     0.7125 0.000 0.104 0.000 0.868 0.028
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000     0.9110 0.000 0.000 1.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0963     0.8357 0.000 0.964 0.000 0.036 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0963     0.8357 0.000 0.964 0.000 0.036 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     5  0.6147     0.3314 0.324 0.000 0.040 0.064 0.572

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     6  0.0000      0.876 0.000 0.000 0.000 0.000 0.000 1.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.3050      0.811 0.000 0.764 0.000 0.236 0.000 0.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 3EE533BD-5832-4007-8F1F-439166256EB0     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     6  0.2996      0.714 0.000 0.000 0.228 0.000 0.000 0.772
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3804      0.363 0.576 0.000 0.000 0.000 0.000 0.424
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     6  0.1327      0.850 0.064 0.000 0.000 0.000 0.000 0.936
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.2996      0.815 0.000 0.772 0.000 0.228 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     5  0.3592      0.433 0.344 0.000 0.000 0.000 0.656 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.2996      0.815 0.000 0.772 0.000 0.228 0.000 0.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1444      0.915 0.000 0.000 0.928 0.000 0.000 0.072
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.1501      0.872 0.000 0.924 0.000 0.076 0.000 0.000
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 43CD31CD-5FAE-418A-B235-49E54560590D     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.5335      0.422 0.576 0.000 0.148 0.000 0.000 0.276
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     6  0.1501      0.864 0.000 0.000 0.076 0.000 0.000 0.924
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.3050      0.811 0.000 0.764 0.000 0.236 0.000 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.3050      0.811 0.000 0.764 0.000 0.236 0.000 0.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     5  0.0146      0.863 0.000 0.000 0.000 0.004 0.996 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     5  0.4106      0.641 0.000 0.000 0.188 0.076 0.736 0.000
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.0000      0.842 0.000 0.000 0.000 1.000 0.000 0.000
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.3050      0.811 0.000 0.764 0.000 0.236 0.000 0.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     5  0.2420      0.790 0.000 0.000 0.040 0.076 0.884 0.000
#> EF1A102F-C206-4874-8F27-0BF069A613B8     6  0.0000      0.876 0.000 0.000 0.000 0.000 0.000 1.000
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.3050      0.816 0.000 0.000 0.000 0.764 0.236 0.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     5  0.0000      0.866 0.000 0.000 0.000 0.000 1.000 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     5  0.3050      0.653 0.236 0.000 0.000 0.000 0.764 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.3050      0.811 0.000 0.764 0.000 0.236 0.000 0.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5  0.4407      0.589 0.000 0.000 0.232 0.076 0.692 0.000
#> 976507F2-192B-4095-920A-3014889CD617     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.0405      0.841 0.000 0.004 0.000 0.988 0.008 0.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     5  0.0146      0.864 0.004 0.000 0.000 0.000 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16751 rows and 80 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.599           0.841       0.920         0.4852 0.509   0.509
#> 3 3 0.532           0.673       0.838         0.3785 0.669   0.433
#> 4 4 0.541           0.602       0.787         0.0921 0.727   0.370
#> 5 5 0.515           0.497       0.692         0.0643 0.909   0.700
#> 6 6 0.589           0.463       0.663         0.0496 0.881   0.568

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0000      0.898 1.000 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.0000      0.898 1.000 0.000
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0000      0.921 0.000 1.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.5946      0.805 0.144 0.856
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     1  0.6712      0.819 0.824 0.176
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     1  0.8813      0.520 0.700 0.300
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     2  0.0000      0.921 0.000 1.000
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0000      0.921 0.000 1.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.0000      0.921 0.000 1.000
#> F2995599-3F21-4F33-92BB-7D70A4735938     1  0.4022      0.881 0.920 0.080
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.9286      0.583 0.656 0.344
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     1  0.1414      0.898 0.980 0.020
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.0000      0.921 0.000 1.000
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.0000      0.898 1.000 0.000
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.4022      0.866 0.080 0.920
#> AC78918E-1031-4AE6-B753-B0799171F0F0     1  0.2043      0.897 0.968 0.032
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000      0.898 1.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     1  0.9988      0.176 0.520 0.480
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0000      0.921 0.000 1.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0000      0.898 1.000 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0000      0.898 1.000 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0000      0.898 1.000 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4022      0.881 0.920 0.080
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     2  0.8327      0.619 0.264 0.736
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     1  0.6712      0.819 0.824 0.176
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0000      0.921 0.000 1.000
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.0000      0.898 1.000 0.000
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.8661      0.687 0.712 0.288
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0000      0.898 1.000 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000      0.898 1.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0000      0.898 1.000 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.0000      0.921 0.000 1.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.7376      0.790 0.792 0.208
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0000      0.921 0.000 1.000
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.1633      0.898 0.976 0.024
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.0000      0.898 1.000 0.000
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.0000      0.921 0.000 1.000
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.0000      0.898 1.000 0.000
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.1184      0.912 0.016 0.984
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     1  0.2236      0.896 0.964 0.036
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     1  0.1184      0.898 0.984 0.016
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     2  0.8555      0.580 0.280 0.720
#> 7338D61C-77D6-4095-8847-7FD9967B7646     1  0.8955      0.646 0.688 0.312
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     1  0.4431      0.876 0.908 0.092
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0000      0.921 0.000 1.000
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.6801      0.816 0.820 0.180
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     2  0.0000      0.921 0.000 1.000
#> B76DB955-69B7-4D05-8166-2569ED44628C     1  0.4431      0.876 0.908 0.092
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0000      0.921 0.000 1.000
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.0000      0.898 1.000 0.000
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0000      0.921 0.000 1.000
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     1  0.3114      0.890 0.944 0.056
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.0672      0.917 0.008 0.992
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.0000      0.921 0.000 1.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.7883      0.672 0.236 0.764
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.0000      0.921 0.000 1.000
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3879      0.869 0.076 0.924
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.7950      0.754 0.760 0.240
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     2  0.7883      0.671 0.236 0.764
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     1  0.8555      0.699 0.720 0.280
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     1  0.2236      0.896 0.964 0.036
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     2  0.7219      0.725 0.200 0.800
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     2  0.0000      0.921 0.000 1.000
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.7453      0.786 0.788 0.212
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.0672      0.898 0.992 0.008
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.7883      0.672 0.236 0.764
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.0000      0.921 0.000 1.000
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.6973      0.809 0.812 0.188
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.7602      0.778 0.780 0.220
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     1  0.0000      0.898 1.000 0.000
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.0000      0.898 1.000 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.0000      0.898 1.000 0.000
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.0000      0.921 0.000 1.000
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.4431      0.876 0.908 0.092
#> 976507F2-192B-4095-920A-3014889CD617     1  0.0000      0.898 1.000 0.000
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.0000      0.921 0.000 1.000
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.0000      0.898 1.000 0.000
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.9286      0.423 0.344 0.656
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0000      0.921 0.000 1.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.1843      0.897 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.0237     0.8286 0.996 0.004 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.6291    -0.1656 0.532 0.000 0.468
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.0892     0.7964 0.020 0.980 0.000
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.1031     0.7961 0.024 0.976 0.000
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.1711     0.8065 0.032 0.008 0.960
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     1  0.5366     0.6336 0.776 0.208 0.016
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.1411     0.7821 0.000 0.036 0.964
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.0983     0.7988 0.016 0.980 0.004
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     2  0.6274     0.3352 0.000 0.544 0.456
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.2537     0.8065 0.080 0.000 0.920
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.6373     0.2277 0.408 0.588 0.004
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.4235     0.7682 0.176 0.000 0.824
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     2  0.4121     0.7529 0.000 0.832 0.168
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.1163     0.8212 0.972 0.000 0.028
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.1411     0.7955 0.036 0.964 0.000
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.5138     0.7105 0.252 0.000 0.748
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.0000     0.8286 1.000 0.000 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.5497     0.4990 0.292 0.708 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.0592     0.7989 0.012 0.988 0.000
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.0892     0.8238 0.980 0.000 0.020
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.0661     0.8289 0.988 0.004 0.008
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.0592     0.8277 0.988 0.012 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.4346     0.7213 0.816 0.184 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3  0.2625     0.7401 0.000 0.084 0.916
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1170     0.8035 0.016 0.008 0.976
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.0848     0.8011 0.008 0.984 0.008
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.1031     0.8213 0.976 0.000 0.024
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.6252     0.1055 0.444 0.556 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.0747     0.8254 0.984 0.000 0.016
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.0000     0.8286 1.000 0.000 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.0592     0.8280 0.988 0.012 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.4399     0.7342 0.000 0.812 0.188
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.5873     0.5403 0.684 0.312 0.004
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.0661     0.8012 0.004 0.988 0.008
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.0983     0.8277 0.980 0.004 0.016
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.6244     0.4332 0.440 0.000 0.560
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     2  0.4291     0.7397 0.000 0.820 0.180
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.3192     0.7522 0.888 0.000 0.112
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.4861     0.7358 0.012 0.808 0.180
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.4002     0.7781 0.160 0.000 0.840
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.3752     0.7851 0.144 0.000 0.856
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3  0.0829     0.8032 0.012 0.004 0.984
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.1031     0.7902 0.000 0.024 0.976
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.2796     0.8043 0.092 0.000 0.908
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.0592     0.8012 0.000 0.988 0.012
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.5497     0.5826 0.708 0.292 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.5529     0.3896 0.000 0.296 0.704
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.3030     0.8061 0.092 0.004 0.904
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0983     0.7988 0.016 0.980 0.004
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1964     0.8029 0.944 0.000 0.056
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.0592     0.8012 0.000 0.988 0.012
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.1860     0.8077 0.052 0.000 0.948
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     2  0.6267     0.3248 0.000 0.548 0.452
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     2  0.5560     0.6140 0.000 0.700 0.300
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.4861     0.6534 0.192 0.800 0.008
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     2  0.4887     0.6998 0.000 0.772 0.228
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.1411     0.7956 0.036 0.964 0.000
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.6516    -0.0243 0.480 0.516 0.004
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     3  0.6192     0.0600 0.000 0.420 0.580
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.1289     0.7876 0.000 0.032 0.968
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3619     0.7887 0.136 0.000 0.864
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.1289     0.7854 0.000 0.032 0.968
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3  0.0747     0.7936 0.000 0.016 0.984
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.6879     0.3721 0.360 0.024 0.616
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.3038     0.7605 0.896 0.000 0.104
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.5201     0.5941 0.236 0.760 0.004
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     2  0.2796     0.7867 0.000 0.908 0.092
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.5988     0.4406 0.632 0.368 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.6260     0.2230 0.552 0.448 0.000
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.4931     0.7271 0.232 0.000 0.768
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.3879     0.7511 0.848 0.152 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.5905     0.5886 0.352 0.000 0.648
#> 06DAE086-D960-4156-9DC8-D126338E2F29     2  0.5431     0.6362 0.000 0.716 0.284
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.3528     0.7781 0.892 0.016 0.092
#> 976507F2-192B-4095-920A-3014889CD617     3  0.6095     0.5275 0.392 0.000 0.608
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.3551     0.7687 0.000 0.868 0.132
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.6244     0.4245 0.440 0.000 0.560
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.2796     0.7546 0.092 0.908 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.0747     0.7977 0.016 0.984 0.000
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.4233     0.7469 0.836 0.160 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     3  0.5396     0.1695 0.464 0.012 0.524 0.000
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     3  0.3047     0.7281 0.000 0.012 0.872 0.116
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2  0.5543     0.3374 0.424 0.556 0.000 0.020
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2  0.4821     0.5648 0.236 0.740 0.008 0.016
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     4  0.1985     0.7789 0.004 0.016 0.040 0.940
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     3  0.5317     0.2584 0.004 0.460 0.532 0.004
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     4  0.0779     0.7752 0.004 0.016 0.000 0.980
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     1  0.4730     0.3702 0.636 0.364 0.000 0.000
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     4  0.2300     0.7549 0.028 0.048 0.000 0.924
#> F2995599-3F21-4F33-92BB-7D70A4735938     4  0.3377     0.7583 0.000 0.012 0.140 0.848
#> 3EE533BD-5832-4007-8F1F-439166256EB0     1  0.3080     0.7334 0.880 0.096 0.024 0.000
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     4  0.3982     0.7080 0.000 0.004 0.220 0.776
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.6775     0.2138 0.096 0.412 0.000 0.492
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     3  0.1486     0.7835 0.024 0.008 0.960 0.008
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2  0.5366     0.5900 0.152 0.760 0.012 0.076
#> AC78918E-1031-4AE6-B753-B0799171F0F0     4  0.5580     0.5028 0.016 0.012 0.336 0.636
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     3  0.2271     0.7758 0.076 0.008 0.916 0.000
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2  0.6568     0.2388 0.408 0.512 0.080 0.000
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     2  0.5882     0.4545 0.344 0.608 0.000 0.048
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     3  0.2944     0.7665 0.128 0.004 0.868 0.000
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     3  0.5269     0.4127 0.364 0.016 0.620 0.000
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     3  0.3161     0.7605 0.124 0.012 0.864 0.000
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     1  0.2987     0.7092 0.880 0.016 0.104 0.000
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     4  0.1510     0.7725 0.028 0.016 0.000 0.956
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     4  0.1584     0.7796 0.000 0.012 0.036 0.952
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     2  0.4836     0.3594 0.320 0.672 0.000 0.008
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     3  0.0967     0.7761 0.004 0.016 0.976 0.004
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     1  0.2399     0.7384 0.920 0.048 0.032 0.000
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     3  0.2676     0.7713 0.092 0.012 0.896 0.000
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     3  0.3172     0.7417 0.160 0.000 0.840 0.000
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     3  0.4722     0.5701 0.300 0.008 0.692 0.000
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     2  0.6430    -0.1875 0.068 0.504 0.000 0.428
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     1  0.2489     0.7293 0.912 0.020 0.068 0.000
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     1  0.4453     0.5474 0.744 0.244 0.000 0.012
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.5366     0.0865 0.548 0.012 0.440 0.000
#> DB676839-02AA-42A7-962F-89D6AD892008     3  0.3048     0.7436 0.000 0.016 0.876 0.108
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.6537     0.2552 0.076 0.424 0.000 0.500
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     3  0.1877     0.7816 0.020 0.020 0.948 0.012
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     2  0.2023     0.5640 0.028 0.940 0.004 0.028
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     4  0.4012     0.7310 0.000 0.016 0.184 0.800
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     4  0.3450     0.7516 0.000 0.008 0.156 0.836
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     4  0.4534     0.7415 0.000 0.132 0.068 0.800
#> 7338D61C-77D6-4095-8847-7FD9967B7646     4  0.1792     0.7741 0.000 0.068 0.000 0.932
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     4  0.2926     0.7711 0.004 0.012 0.096 0.888
#> 43CD31CD-5FAE-418A-B235-49E54560590D     1  0.5184     0.5582 0.732 0.212 0.000 0.056
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     1  0.1975     0.7325 0.936 0.016 0.048 0.000
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     4  0.1624     0.7704 0.028 0.020 0.000 0.952
#> B76DB955-69B7-4D05-8166-2569ED44628C     4  0.3679     0.7562 0.004 0.016 0.140 0.840
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     1  0.2775     0.7131 0.896 0.084 0.000 0.020
#> AC1700D5-72E7-4C7F-A288-869DFC229252     3  0.0376     0.7779 0.004 0.000 0.992 0.004
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     1  0.4562     0.6383 0.792 0.152 0.000 0.056
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     4  0.3142     0.7668 0.000 0.008 0.132 0.860
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4  0.5434     0.5989 0.084 0.188 0.000 0.728
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.5686     0.4260 0.032 0.376 0.000 0.592
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     1  0.1557     0.7305 0.944 0.056 0.000 0.000
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.6024     0.3278 0.044 0.416 0.000 0.540
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2  0.3842     0.5889 0.136 0.836 0.024 0.004
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     1  0.2563     0.7348 0.908 0.072 0.020 0.000
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4  0.5593     0.6038 0.080 0.212 0.000 0.708
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     4  0.2840     0.7664 0.044 0.056 0.000 0.900
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     4  0.3047     0.7664 0.000 0.012 0.116 0.872
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     4  0.1902     0.7737 0.004 0.064 0.000 0.932
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     4  0.0469     0.7759 0.000 0.012 0.000 0.988
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     1  0.8612     0.0834 0.460 0.108 0.100 0.332
#> EF1A102F-C206-4874-8F27-0BF069A613B8     3  0.1593     0.7737 0.004 0.016 0.956 0.024
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     1  0.2053     0.7303 0.924 0.072 0.004 0.000
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     1  0.5738     0.1520 0.540 0.432 0.000 0.028
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     1  0.1767     0.7372 0.944 0.012 0.044 0.000
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     1  0.2961     0.7339 0.904 0.044 0.040 0.012
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     4  0.5290     0.3685 0.000 0.012 0.404 0.584
#> D34B0BC6-9142-48AE-A113-5923192644A0     1  0.4098     0.6097 0.784 0.012 0.204 0.000
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3  0.5045     0.4816 0.004 0.012 0.680 0.304
#> 06DAE086-D960-4156-9DC8-D126338E2F29     4  0.3803     0.6917 0.032 0.132 0.000 0.836
#> 3353F579-77CA-4D0E-B794-37DE467CC065     3  0.6047     0.6925 0.208 0.016 0.700 0.076
#> 976507F2-192B-4095-920A-3014889CD617     3  0.4869     0.5649 0.004 0.016 0.720 0.260
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     2  0.7588     0.1263 0.216 0.464 0.000 0.320
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     3  0.3764     0.6885 0.000 0.012 0.816 0.172
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     1  0.3836     0.6563 0.816 0.168 0.016 0.000
#> E25C9578-9493-466E-A2CD-546DEB076B2D     1  0.3743     0.6543 0.824 0.160 0.000 0.016
#> EA35E230-DE50-45AB-A737-D5C430652A90     1  0.3208     0.6782 0.848 0.004 0.148 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4 p5
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1  0.4177   0.568962 0.760 0.200 0.000 0.004 NA
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1  0.5984   0.500817 0.484 0.000 0.096 0.004 NA
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     4  0.6138  -0.078919 0.000 0.420 0.004 0.464 NA
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     4  0.5173   0.287518 0.016 0.244 0.008 0.692 NA
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3  0.2229   0.735767 0.012 0.012 0.920 0.004 NA
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     4  0.6998  -0.073610 0.260 0.004 0.004 0.404 NA
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3  0.2177   0.735734 0.000 0.004 0.908 0.008 NA
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     2  0.4509   0.460219 0.000 0.716 0.000 0.236 NA
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     3  0.3736   0.696095 0.000 0.020 0.836 0.052 NA
#> F2995599-3F21-4F33-92BB-7D70A4735938     3  0.2561   0.739047 0.096 0.000 0.884 0.000 NA
#> 3EE533BD-5832-4007-8F1F-439166256EB0     2  0.6429   0.615541 0.100 0.548 0.000 0.032 NA
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3  0.4569   0.689778 0.104 0.000 0.748 0.000 NA
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4  0.6813   0.065221 0.000 0.048 0.412 0.444 NA
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1  0.3388   0.682452 0.792 0.000 0.008 0.000 NA
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     4  0.5806   0.319939 0.000 0.200 0.084 0.672 NA
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3  0.7361   0.113350 0.324 0.064 0.460 0.000 NA
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1  0.2464   0.700799 0.892 0.012 0.000 0.004 NA
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     4  0.7743   0.227896 0.108 0.196 0.000 0.476 NA
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     4  0.7299  -0.154678 0.000 0.364 0.028 0.376 NA
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1  0.1960   0.699853 0.928 0.020 0.000 0.004 NA
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     1  0.6023   0.399328 0.500 0.068 0.004 0.012 NA
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1  0.4199   0.668347 0.772 0.040 0.000 0.008 NA
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     2  0.6834   0.498112 0.256 0.460 0.000 0.008 NA
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3  0.4248   0.691573 0.000 0.012 0.760 0.028 NA
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3  0.1739   0.748063 0.032 0.000 0.940 0.004 NA
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     4  0.6170   0.076831 0.004 0.232 0.000 0.576 NA
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1  0.4562   0.521424 0.500 0.000 0.008 0.000 NA
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     2  0.2532   0.624862 0.008 0.892 0.000 0.012 NA
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1  0.2228   0.700852 0.912 0.008 0.000 0.012 NA
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1  0.1907   0.696227 0.928 0.028 0.000 0.000 NA
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1  0.3682   0.672070 0.832 0.096 0.000 0.008 NA
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4  0.5954   0.269620 0.000 0.012 0.292 0.592 NA
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     2  0.5685   0.647432 0.108 0.616 0.000 0.004 NA
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     2  0.4793   0.441392 0.000 0.692 0.004 0.256 NA
#> A4168812-C38E-4F15-9AF6-79F256279E72     1  0.6823   0.154877 0.492 0.220 0.004 0.008 NA
#> DB676839-02AA-42A7-962F-89D6AD892008     1  0.4982   0.565794 0.700 0.000 0.200 0.000 NA
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4  0.6395   0.152808 0.000 0.016 0.364 0.504 NA
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1  0.2610   0.689684 0.892 0.004 0.028 0.000 NA
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4  0.1497   0.429630 0.012 0.012 0.012 0.956 NA
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3  0.3772   0.693884 0.172 0.000 0.792 0.000 NA
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3  0.3112   0.736872 0.100 0.000 0.856 0.000 NA
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3  0.6104   0.545239 0.032 0.000 0.564 0.068 NA
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3  0.2894   0.726572 0.004 0.000 0.876 0.084 NA
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3  0.1568   0.745377 0.036 0.000 0.944 0.000 NA
#> 43CD31CD-5FAE-418A-B235-49E54560590D     2  0.5748   0.605592 0.000 0.680 0.032 0.116 NA
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     2  0.3694   0.626427 0.100 0.836 0.004 0.008 NA
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3  0.2984   0.720237 0.000 0.020 0.880 0.028 NA
#> B76DB955-69B7-4D05-8166-2569ED44628C     3  0.2769   0.737207 0.092 0.000 0.876 0.000 NA
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     2  0.0833   0.652835 0.000 0.976 0.004 0.016 NA
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1  0.1942   0.701456 0.920 0.000 0.012 0.000 NA
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     2  0.4729   0.647047 0.000 0.744 0.024 0.044 NA
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3  0.5602   0.638265 0.096 0.000 0.636 0.008 NA
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     3  0.6675   0.388630 0.000 0.052 0.588 0.220 NA
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4  0.5850   0.023104 0.000 0.000 0.428 0.476 NA
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     2  0.2938   0.616540 0.000 0.876 0.008 0.032 NA
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4  0.6104   0.086823 0.000 0.004 0.388 0.496 NA
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     4  0.4147   0.372238 0.040 0.128 0.000 0.804 NA
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     2  0.7147   0.589329 0.128 0.508 0.000 0.068 NA
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     3  0.6479   0.317040 0.000 0.028 0.564 0.280 NA
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3  0.2204   0.735167 0.000 0.016 0.920 0.048 NA
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3  0.3215   0.736057 0.092 0.000 0.852 0.000 NA
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3  0.4280   0.696356 0.000 0.000 0.772 0.088 NA
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3  0.3319   0.719944 0.000 0.000 0.820 0.020 NA
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     3  0.8915   0.169318 0.272 0.112 0.368 0.048 NA
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1  0.5307   0.531992 0.512 0.000 0.040 0.004 NA
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     2  0.2597   0.636217 0.004 0.896 0.000 0.060 NA
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4  0.6622   0.000691 0.000 0.344 0.008 0.472 NA
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     2  0.3735   0.681022 0.076 0.832 0.004 0.004 NA
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     2  0.4264   0.663169 0.012 0.732 0.008 0.004 NA
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3  0.5470   0.312351 0.364 0.000 0.564 0.000 NA
#> D34B0BC6-9142-48AE-A113-5923192644A0     2  0.4843   0.494074 0.276 0.676 0.000 0.004 NA
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     1  0.5010   0.231692 0.572 0.000 0.392 0.000 NA
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3  0.4229   0.654328 0.000 0.024 0.800 0.124 NA
#> 3353F579-77CA-4D0E-B794-37DE467CC065     1  0.7877   0.340589 0.460 0.260 0.104 0.004 NA
#> 976507F2-192B-4095-920A-3014889CD617     1  0.5202   0.325707 0.596 0.000 0.348 0.000 NA
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4  0.7536   0.350540 0.000 0.100 0.204 0.508 NA
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1  0.4054   0.564175 0.748 0.000 0.224 0.000 NA
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     2  0.5804   0.595372 0.012 0.628 0.004 0.088 NA
#> E25C9578-9493-466E-A2CD-546DEB076B2D     2  0.4983   0.623752 0.000 0.668 0.008 0.044 NA
#> EA35E230-DE50-45AB-A737-D5C430652A90     2  0.6896   0.384379 0.308 0.400 0.000 0.004 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> 71A0AB6A-CFC2-46F6-878C-6052C5B43D22     1   0.407   0.618600 0.784 0.004 0.004 0.008 0.120 0.080
#> EFC730EC-6385-4167-A65A-F2A3AAEDA2AC     1   0.749   0.380125 0.432 0.168 0.080 0.036 0.000 0.284
#> 14F2F39A-EA0F-4027-8877-FEEEEFF1F085     2   0.636   0.180580 0.000 0.420 0.012 0.004 0.344 0.220
#> 98B2A7F8-A7BD-4DA2-8541-950E44D9ACD7     2   0.628   0.564135 0.000 0.572 0.008 0.160 0.212 0.048
#> 9166F454-2068-46C2-B2EB-FB3BE4126536     3   0.219   0.743733 0.000 0.024 0.916 0.004 0.028 0.028
#> 83B2A0BB-CE24-4DCA-B03A-D20353304365     2   0.425   0.415529 0.164 0.764 0.012 0.004 0.008 0.048
#> D3FC3968-B263-4756-BF7F-1941F70B04DA     3   0.347   0.735320 0.000 0.024 0.840 0.048 0.008 0.080
#> D357AC5C-C2A0-4CC4-B016-4572400AF117     5   0.439   0.413426 0.000 0.084 0.000 0.168 0.736 0.012
#> 1055E951-5B93-4AD7-BE5C-4DF4F6AECEF3     3   0.396   0.709183 0.000 0.016 0.800 0.116 0.012 0.056
#> F2995599-3F21-4F33-92BB-7D70A4735938     3   0.349   0.742591 0.088 0.004 0.836 0.040 0.000 0.032
#> 3EE533BD-5832-4007-8F1F-439166256EB0     6   0.548   0.490749 0.068 0.008 0.000 0.032 0.272 0.620
#> EEC6DA0C-5C49-4EFE-976A-19F432DDAA58     3   0.489   0.694141 0.072 0.144 0.728 0.004 0.000 0.052
#> E6E08C1A-4C1B-4572-92DF-DA15BCBADF76     4   0.314   0.614219 0.000 0.012 0.080 0.860 0.028 0.020
#> BCFCBBAC-EB95-47EB-9EB0-2CB4AE283A75     1   0.453   0.605752 0.688 0.028 0.016 0.008 0.000 0.260
#> 0782D6D0-668B-4B83-8C91-8A35EA3BFF6D     2   0.755   0.557022 0.008 0.524 0.064 0.168 0.140 0.096
#> AC78918E-1031-4AE6-B753-B0799171F0F0     3   0.741   0.174547 0.264 0.032 0.444 0.004 0.200 0.056
#> 6B497CED-34DA-4CF8-8F8D-696105CB3D5F     1   0.197   0.674024 0.912 0.060 0.000 0.000 0.000 0.028
#> 2328D472-583B-43A9-81A4-A21DDEBB5B18     2   0.709   0.429193 0.148 0.548 0.000 0.060 0.176 0.068
#> A6930B33-D9B2-4318-807C-4A25EB4CCCDD     6   0.647   0.128088 0.000 0.252 0.012 0.008 0.288 0.440
#> C8C48AFD-4D8B-491E-993C-3506DC6DD00F     1   0.323   0.660898 0.848 0.004 0.008 0.008 0.032 0.100
#> 093FB845-7905-4064-8E8E-76E3587D8E7C     6   0.484  -0.200156 0.412 0.016 0.000 0.012 0.012 0.548
#> B216F996-CCD8-4F56-99B1-4EA9769B10B8     1   0.489   0.542572 0.692 0.220 0.000 0.004 0.048 0.036
#> CB35DED2-5FEA-43E2-AB42-B6B3A7444B66     6   0.619   0.450716 0.216 0.000 0.000 0.024 0.248 0.512
#> BA016F57-F58F-4A66-B85A-0B0F911EEA65     3   0.470   0.690847 0.000 0.020 0.724 0.068 0.008 0.180
#> 519DBD5F-66C0-4CEE-905C-799C855D28FB     3   0.132   0.751857 0.024 0.000 0.952 0.020 0.000 0.004
#> F5B9B89B-6821-43EE-BCFD-623689D03AF9     4   0.718  -0.077404 0.000 0.176 0.000 0.424 0.128 0.272
#> 55A39F92-CC88-4A2F-A7D3-7A59DEBEBB42     1   0.631   0.413576 0.448 0.184 0.012 0.008 0.000 0.348
#> 3DBBDEDA-F9FC-40DC-804F-45429EA47ED4     5   0.269   0.546692 0.012 0.032 0.004 0.004 0.888 0.060
#> BB948BE8-7D48-4AEB-A404-C27A79655D7E     1   0.323   0.649424 0.820 0.008 0.000 0.008 0.012 0.152
#> 9506723F-9193-4D8E-BD97-8A0062AB2F9C     1   0.274   0.658115 0.852 0.000 0.000 0.008 0.012 0.128
#> D0758A7A-9D0E-4EA4-8EE9-7143B398647D     1   0.410   0.636650 0.792 0.052 0.000 0.004 0.112 0.040
#> F400FD4D-72D7-4933-B145-64B7EE245FFC     4   0.146   0.614350 0.000 0.016 0.044 0.940 0.000 0.000
#> 3F87E9ED-3719-48E1-8B69-E352A03E982D     6   0.574   0.470719 0.104 0.000 0.004 0.020 0.320 0.552
#> D6365FEB-CC12-4337-BF8C-66236A585B5D     4   0.523  -0.006225 0.004 0.012 0.000 0.504 0.428 0.052
#> A4168812-C38E-4F15-9AF6-79F256279E72     1   0.564   0.141666 0.492 0.004 0.012 0.012 0.060 0.420
#> DB676839-02AA-42A7-962F-89D6AD892008     1   0.529   0.504751 0.664 0.032 0.232 0.000 0.016 0.056
#> 198D8E89-51FD-41DE-AD11-FB2F2FE49908     4   0.202   0.619133 0.000 0.020 0.048 0.920 0.004 0.008
#> 2BADCD01-27E8-49EC-B707-4FAE3D3CB489     1   0.358   0.645958 0.848 0.020 0.052 0.004 0.032 0.044
#> ABBD6EFE-079B-4BE3-95AB-36AF9197D684     4   0.399  -0.159736 0.000 0.476 0.000 0.520 0.000 0.004
#> 39D66B95-61C7-4B76-8E81-1F9F98024B69     3   0.419   0.670445 0.180 0.000 0.752 0.024 0.000 0.044
#> 7A920210-CF3D-4458-B6D5-D9B2ADACA469     3   0.194   0.753777 0.036 0.000 0.920 0.004 0.000 0.040
#> 0CE61CDC-3257-4F03-951B-CC2CFCF675AE     3   0.760   0.395752 0.020 0.252 0.440 0.160 0.004 0.124
#> 7338D61C-77D6-4095-8847-7FD9967B7646     3   0.353   0.685557 0.000 0.008 0.776 0.196 0.000 0.020
#> 0D36FAD5-BA81-4FED-9E2A-DB016F2EF18C     3   0.118   0.750042 0.016 0.000 0.960 0.012 0.000 0.012
#> 43CD31CD-5FAE-418A-B235-49E54560590D     5   0.639   0.059226 0.000 0.032 0.012 0.152 0.524 0.280
#> B6DD72B0-EEFA-41A9-B71D-22DE1343CD32     5   0.391   0.525035 0.096 0.036 0.004 0.000 0.808 0.056
#> 2B729CD9-71A5-4336-ACBA-922A30AF4949     3   0.460   0.699974 0.000 0.024 0.764 0.128 0.040 0.044
#> B76DB955-69B7-4D05-8166-2569ED44628C     3   0.249   0.741188 0.076 0.000 0.888 0.016 0.000 0.020
#> 09CBEE39-7141-4228-AFD3-4714E32A1FB5     5   0.330   0.497659 0.008 0.036 0.008 0.000 0.836 0.112
#> AC1700D5-72E7-4C7F-A288-869DFC229252     1   0.203   0.678992 0.920 0.032 0.016 0.000 0.000 0.032
#> 535A5E8E-8478-477F-87FF-ED6742AA5473     5   0.565  -0.000414 0.000 0.060 0.020 0.020 0.568 0.332
#> CFB8573C-9F36-4715-B6F1-6E5B543168A8     3   0.702   0.590997 0.080 0.088 0.564 0.084 0.000 0.184
#> 47A45491-6023-44BF-ABC2-9A470F7FC1F7     4   0.597   0.010429 0.000 0.016 0.392 0.484 0.016 0.092
#> 437C7AA7-98C0-48C7-97DA-86FF44D69B87     4   0.200   0.617176 0.000 0.004 0.092 0.900 0.004 0.000
#> 649ADE7E-6C06-4AB6-8E97-D8C2AAF79A7E     5   0.214   0.572461 0.016 0.008 0.012 0.028 0.924 0.012
#> DEA60B47-AD6A-4EBB-9402-6F97E9640E4E     4   0.259   0.612638 0.000 0.016 0.072 0.884 0.000 0.028
#> 76C574FF-26BF-49CD-9BCA-7BDDCBD06D5D     2   0.638   0.389823 0.036 0.520 0.000 0.328 0.084 0.032
#> 8B6E1F9B-1E90-4333-8E0C-EEDFF25D15C0     6   0.637   0.479882 0.128 0.004 0.000 0.068 0.248 0.552
#> A2473EE7-72D6-4D32-9DF7-5D4E444A6715     4   0.529   0.492178 0.008 0.024 0.216 0.684 0.028 0.040
#> E226C45E-5287-4D0F-A34B-CE251FA293CB     3   0.354   0.730337 0.012 0.020 0.840 0.096 0.016 0.016
#> A2C71C07-AF0C-4016-808C-DFEF458C91C7     3   0.249   0.753521 0.048 0.000 0.892 0.012 0.000 0.048
#> DA00D60F-4CF1-4003-BAF5-896EE2BEE2D4     3   0.508   0.597372 0.000 0.012 0.644 0.244 0.000 0.100
#> 1C17B65F-1930-4CF3-99B6-5D3AA9E99188     3   0.481   0.695517 0.000 0.024 0.724 0.116 0.004 0.132
#> B837D582-A0D3-46BE-8ECA-883F5396AE88     4   0.801  -0.098678 0.336 0.012 0.088 0.376 0.064 0.124
#> EF1A102F-C206-4874-8F27-0BF069A613B8     1   0.649   0.413501 0.456 0.092 0.024 0.040 0.000 0.388
#> BC761676-F64C-476A-8D9B-BD3E6149B2CD     5   0.301   0.560505 0.020 0.004 0.000 0.080 0.864 0.032
#> D8351E5C-DC1D-4B4D-83E6-735B2750D944     4   0.308   0.536375 0.000 0.012 0.000 0.844 0.112 0.032
#> 59F65F61-03D0-4909-99BD-4CCB53A088A5     5   0.443   0.355876 0.044 0.012 0.000 0.012 0.732 0.200
#> EFFCCF33-60E1-4550-B13C-14C54ADCF479     6   0.482   0.246170 0.000 0.036 0.000 0.008 0.460 0.496
#> C45EB423-CC14-4BDB-A0B4-447E5DB6DA9C     3   0.469   0.535749 0.268 0.012 0.672 0.000 0.008 0.040
#> D34B0BC6-9142-48AE-A113-5923192644A0     5   0.560   0.408839 0.216 0.048 0.004 0.004 0.648 0.080
#> 634672A6-C68E-479F-AAB5-CBAFF7758EA4     3   0.523   0.029927 0.460 0.016 0.476 0.004 0.000 0.044
#> 06DAE086-D960-4156-9DC8-D126338E2F29     3   0.599   0.448790 0.000 0.116 0.608 0.224 0.036 0.016
#> 3353F579-77CA-4D0E-B794-37DE467CC065     5   0.742  -0.037999 0.344 0.040 0.136 0.000 0.404 0.076
#> 976507F2-192B-4095-920A-3014889CD617     1   0.579   0.084198 0.496 0.020 0.412 0.004 0.020 0.048
#> 3FFF89D9-02F5-4D49-8631-099562BF99C7     4   0.210   0.601599 0.000 0.000 0.020 0.916 0.024 0.040
#> 8BC2213D-99DA-44E0-826F-EBF211EECFBF     1   0.391   0.615044 0.772 0.008 0.172 0.004 0.000 0.044
#> A7A16BF7-5E60-4E50-BE04-542EFC4DB472     6   0.573   0.265142 0.000 0.104 0.004 0.012 0.388 0.492
#> E25C9578-9493-466E-A2CD-546DEB076B2D     6   0.542   0.252273 0.000 0.076 0.004 0.008 0.428 0.484
#> EA35E230-DE50-45AB-A737-D5C430652A90     6   0.566   0.434977 0.268 0.000 0.000 0.004 0.180 0.548

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0