cola Report for recount2:TCGA_head_and_neck

Date: 2019-12-26 01:30:50 CET, cola version: 1.3.2


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = cores)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 17541   500

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:mclust 2 1.000 0.961 0.977 **
MAD:mclust 2 0.980 0.948 0.969 **
ATC:NMF 2 0.939 0.951 0.979 *
ATC:skmeans 6 0.914 0.855 0.940 * 2,4,5
ATC:pam 5 0.906 0.889 0.957 * 2,3
ATC:kmeans 2 0.878 0.949 0.976
MAD:skmeans 3 0.861 0.885 0.952
SD:skmeans 3 0.856 0.899 0.957
MAD:NMF 2 0.797 0.881 0.951
CV:kmeans 3 0.797 0.845 0.932
CV:NMF 2 0.781 0.896 0.950
CV:skmeans 3 0.777 0.832 0.932
ATC:mclust 4 0.696 0.646 0.843
MAD:kmeans 3 0.680 0.824 0.896
SD:NMF 2 0.673 0.871 0.935
SD:kmeans 3 0.622 0.812 0.885
MAD:pam 2 0.456 0.784 0.894
CV:pam 3 0.454 0.749 0.848
SD:pam 2 0.406 0.695 0.869
CV:mclust 2 0.346 0.743 0.855
CV:hclust 3 0.226 0.537 0.792
ATC:hclust 2 0.190 0.676 0.825
MAD:hclust 2 0.074 0.628 0.787
SD:hclust 2 0.046 0.484 0.733

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.6733           0.871       0.935          0.500 0.500   0.500
#> CV:NMF      2 0.7809           0.896       0.950          0.492 0.508   0.508
#> MAD:NMF     2 0.7975           0.881       0.951          0.498 0.502   0.502
#> ATC:NMF     2 0.9389           0.951       0.979          0.350 0.663   0.663
#> SD:skmeans  2 0.4833           0.590       0.814          0.498 0.507   0.507
#> CV:skmeans  2 0.7037           0.808       0.925          0.498 0.500   0.500
#> MAD:skmeans 2 0.8151           0.879       0.947          0.501 0.499   0.499
#> ATC:skmeans 2 0.9177           0.918       0.968          0.501 0.500   0.500
#> SD:mclust   2 1.0000           0.961       0.977          0.478 0.518   0.518
#> CV:mclust   2 0.3464           0.743       0.855          0.464 0.529   0.529
#> MAD:mclust  2 0.9797           0.948       0.969          0.480 0.521   0.521
#> ATC:mclust  2 0.8336           0.913       0.963          0.297 0.709   0.709
#> SD:kmeans   2 0.3966           0.641       0.845          0.493 0.499   0.499
#> CV:kmeans   2 0.3591           0.770       0.851          0.468 0.517   0.517
#> MAD:kmeans  2 0.4104           0.740       0.860          0.491 0.503   0.503
#> ATC:kmeans  2 0.8778           0.949       0.976          0.495 0.506   0.506
#> SD:pam      2 0.4057           0.695       0.869          0.481 0.506   0.506
#> CV:pam      2 0.2986           0.671       0.811          0.452 0.524   0.524
#> MAD:pam     2 0.4557           0.784       0.894          0.475 0.526   0.526
#> ATC:pam     2 0.9600           0.932       0.961          0.318 0.684   0.684
#> SD:hclust   2 0.0464           0.484       0.733          0.413 0.514   0.514
#> CV:hclust   2 0.3679           0.752       0.882          0.286 0.742   0.742
#> MAD:hclust  2 0.0736           0.628       0.787          0.407 0.596   0.596
#> ATC:hclust  2 0.1896           0.676       0.825          0.416 0.556   0.556

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0464           0.484       0.733         0.4127 0.514   0.514
#> 3 3 0.0674           0.379       0.652         0.2722 0.823   0.692
#> 4 4 0.1312           0.332       0.551         0.1901 0.683   0.448
#> 5 5 0.2142           0.341       0.564         0.1015 0.814   0.562
#> 6 6 0.2977           0.395       0.565         0.0769 0.877   0.619

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.9129    0.40639 0.328 0.672
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.2043    0.61573 0.968 0.032
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.4022    0.64291 0.080 0.920
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.9977    0.14408 0.528 0.472
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.9732    0.37911 0.596 0.404
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.6712    0.65516 0.176 0.824
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.9996    0.02244 0.488 0.512
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.9993    0.06515 0.516 0.484
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.7883    0.61082 0.236 0.764
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.7950    0.57125 0.240 0.760
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.7674    0.60425 0.224 0.776
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.9963    0.16297 0.464 0.536
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.9286    0.45580 0.344 0.656
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.9993    0.12755 0.484 0.516
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.7299    0.65604 0.796 0.204
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.9522    0.45000 0.372 0.628
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.2043    0.61573 0.968 0.032
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.9170    0.48382 0.332 0.668
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.9686    0.40311 0.604 0.396
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.3431    0.63286 0.064 0.936
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.5946    0.50357 0.144 0.856
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.9815    0.28555 0.420 0.580
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.2778    0.61955 0.952 0.048
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.2043    0.61570 0.032 0.968
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.4298    0.64977 0.912 0.088
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.2423    0.62403 0.040 0.960
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.8207    0.62551 0.256 0.744
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.9922    0.21386 0.552 0.448
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.8813    0.58412 0.700 0.300
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.9833    0.29606 0.576 0.424
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.9732    0.36260 0.404 0.596
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.3431    0.63286 0.064 0.936
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.3114    0.62992 0.944 0.056
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.9944    0.19560 0.456 0.544
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.9491    0.49933 0.368 0.632
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.7376    0.65071 0.792 0.208
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.7376    0.65421 0.792 0.208
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.9129    0.52004 0.328 0.672
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.3733    0.64234 0.928 0.072
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.2948    0.61823 0.948 0.052
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  1.0000    0.00936 0.504 0.496
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.9608    0.45670 0.616 0.384
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     1  0.9998    0.11357 0.508 0.492
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.3114    0.60841 0.944 0.056
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.7299    0.65398 0.796 0.204
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.4161    0.65033 0.084 0.916
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.5946    0.50357 0.144 0.856
#> 066B10C1-777F-4863-ACCA-6684310B913E     2  0.9998    0.05235 0.492 0.508
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  0.9795    0.39517 0.416 0.584
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.9988    0.03699 0.480 0.520
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     2  0.9944    0.19614 0.456 0.544
#> 4379559E-E467-49BD-9673-40A486146A3B     2  0.9983    0.09772 0.476 0.524
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.8207    0.54850 0.256 0.744
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.6531    0.65646 0.168 0.832
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.5842    0.66344 0.860 0.140
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.7602    0.65148 0.780 0.220
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.9580    0.37222 0.380 0.620
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.7674    0.64226 0.776 0.224
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.7745    0.63844 0.228 0.772
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.9909    0.15779 0.444 0.556
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.9170    0.54572 0.668 0.332
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     1  0.9661    0.43688 0.608 0.392
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.5946    0.66590 0.856 0.144
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.9491    0.46949 0.632 0.368
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     2  0.9815    0.37422 0.420 0.580
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.4298    0.65172 0.088 0.912
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.9170    0.40810 0.332 0.668
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.9087    0.55872 0.676 0.324
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.9933    0.21871 0.548 0.452
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.5519    0.65859 0.872 0.128
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  1.0000    0.01040 0.496 0.504
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.9580    0.19030 0.620 0.380
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.9000    0.51706 0.316 0.684
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.6148    0.51750 0.152 0.848
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.3431    0.64227 0.064 0.936
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.2948    0.61823 0.948 0.052
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.4815    0.65094 0.104 0.896
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9754    0.37561 0.408 0.592
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.5842    0.65165 0.140 0.860
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.2236    0.62788 0.036 0.964
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.9491    0.49441 0.632 0.368
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.3879    0.63299 0.076 0.924
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.7883    0.64357 0.764 0.236
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.7745    0.63691 0.228 0.772
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.4815    0.65762 0.896 0.104
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.9732    0.32743 0.404 0.596
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.5519    0.66111 0.872 0.128
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.2043    0.62516 0.032 0.968
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.9944    0.19542 0.544 0.456
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.9393    0.45723 0.356 0.644
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     2  0.9933    0.21292 0.452 0.548
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.9522    0.44749 0.372 0.628
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.8608    0.60708 0.716 0.284
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.3879    0.63465 0.076 0.924
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.9996    0.04899 0.512 0.488
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.7376    0.59944 0.208 0.792
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     1  0.9686    0.43474 0.604 0.396
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.4939    0.63640 0.108 0.892
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.2948    0.61823 0.948 0.052
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.8813    0.54146 0.300 0.700
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.9970    0.15143 0.468 0.532
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.9552    0.43777 0.624 0.376
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  1.0000    0.06487 0.504 0.496
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.1414    0.61833 0.020 0.980
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.9635    0.41589 0.612 0.388
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.9833    0.34495 0.424 0.576
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.7674    0.62152 0.224 0.776
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.9710    0.39220 0.400 0.600
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.9044    0.50550 0.320 0.680
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.3431    0.61001 0.936 0.064
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.9815    0.36347 0.580 0.420
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.8555    0.60257 0.720 0.280
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.9635    0.37143 0.388 0.612
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     2  0.9996    0.04797 0.488 0.512
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.9710    0.38744 0.600 0.400
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.9286    0.45845 0.344 0.656
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.9427    0.50884 0.360 0.640
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.9087    0.50146 0.324 0.676
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.7883    0.61082 0.236 0.764
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.6438    0.57122 0.836 0.164
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     2  0.9850    0.32705 0.428 0.572
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.5178    0.65987 0.884 0.116
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.9129    0.54833 0.672 0.328
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.9460    0.40298 0.364 0.636
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.5059    0.60396 0.112 0.888
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.2043    0.61573 0.968 0.032
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.9323    0.52734 0.652 0.348
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.9815    0.33585 0.580 0.420
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.7453    0.65219 0.788 0.212
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.4690    0.61768 0.900 0.100
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.9977    0.12483 0.472 0.528
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.8608    0.54324 0.284 0.716
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.8016    0.60558 0.244 0.756
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.9580    0.43086 0.380 0.620
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.7219    0.65902 0.800 0.200
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.2236    0.60439 0.036 0.964
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.2043    0.61573 0.968 0.032
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.9087    0.50146 0.324 0.676
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.8327    0.62086 0.736 0.264
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.3431    0.63286 0.064 0.936
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.4298    0.64627 0.088 0.912
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.9710    0.37756 0.400 0.600
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.7745    0.62140 0.228 0.772
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.9833    0.22665 0.424 0.576
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.9922    0.23049 0.448 0.552
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.5737    0.65156 0.136 0.864
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.3274    0.63083 0.060 0.940
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.6438    0.57122 0.836 0.164
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.4939    0.65602 0.108 0.892
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.3879    0.64459 0.924 0.076
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.2043    0.62005 0.032 0.968
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.2236    0.62831 0.036 0.964
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.7815    0.62944 0.232 0.768
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.2423    0.60191 0.960 0.040
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.9996    0.04797 0.488 0.512
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.3431    0.61001 0.936 0.064
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.9866    0.27783 0.568 0.432
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     2  0.9732    0.36351 0.404 0.596
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.9993    0.03993 0.484 0.516
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.9732    0.32743 0.404 0.596
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.9635    0.43294 0.612 0.388
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.3733    0.64234 0.928 0.072
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.9754    0.36882 0.592 0.408
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.3114    0.60841 0.944 0.056
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     2  0.9850    0.30179 0.428 0.572
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.8327    0.58469 0.264 0.736
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.9815    0.32291 0.420 0.580
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.9686    0.39377 0.396 0.604
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.9988    0.08940 0.520 0.480
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  1.0000    0.00112 0.504 0.496
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.2043    0.61573 0.968 0.032
#> C8820FA6-3531-4515-A102-19100775E767     1  0.8909    0.58425 0.692 0.308
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.7056    0.57076 0.808 0.192
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     1  0.9754    0.40814 0.592 0.408
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.2043    0.62541 0.032 0.968
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.3274    0.60877 0.940 0.060
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.9775    0.36275 0.588 0.412
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.8443    0.59607 0.272 0.728
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.1843    0.62315 0.028 0.972
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.9087    0.40280 0.324 0.676
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.6343    0.65097 0.160 0.840
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.7950    0.64244 0.760 0.240
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.7056    0.62445 0.808 0.192
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.9522    0.44513 0.372 0.628
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     2  0.9998    0.05318 0.492 0.508
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.7376    0.65071 0.792 0.208
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     1  0.9754    0.40814 0.592 0.408
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.3431    0.63286 0.064 0.936
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.9129    0.55404 0.672 0.328
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.9963    0.14293 0.464 0.536
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.8443    0.57495 0.272 0.728
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.9996    0.07007 0.488 0.512
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.9988    0.14470 0.480 0.520
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.7528    0.63577 0.216 0.784
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.9044    0.52919 0.320 0.680
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.9000    0.51148 0.316 0.684
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.7219    0.62477 0.200 0.800
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.3274    0.63748 0.060 0.940
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.9170    0.54679 0.668 0.332
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.6048    0.65082 0.148 0.852
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.4298    0.64916 0.912 0.088
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.0938    0.60645 0.012 0.988
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     2  0.9933    0.22986 0.452 0.548
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.5946    0.66127 0.856 0.144
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.8267    0.44557 0.740 0.260
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.2043    0.61573 0.968 0.032
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.5946    0.65214 0.144 0.856
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.6801    0.66530 0.820 0.180
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.8555    0.60777 0.720 0.280
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.9922    0.26179 0.448 0.552
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     1  0.9896    0.22976 0.560 0.440
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.9522    0.47599 0.628 0.372
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.9922    0.23234 0.448 0.552
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.9944    0.24729 0.544 0.456
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.9954    0.16104 0.540 0.460
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.9248    0.52877 0.340 0.660
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.9933    0.18210 0.452 0.548
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.9580    0.44332 0.380 0.620
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.2603    0.62248 0.044 0.956
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     1  0.9209    0.53376 0.664 0.336
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.7745    0.56254 0.228 0.772
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.7299    0.65153 0.796 0.204
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.6801    0.64411 0.180 0.820
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.3114    0.60841 0.944 0.056
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.0938    0.60645 0.012 0.988
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.2778    0.63280 0.048 0.952
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.9087    0.52424 0.676 0.324
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.8608    0.57034 0.284 0.716
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.9427    0.47448 0.360 0.640
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     2  0.9710    0.38548 0.400 0.600
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.9922    0.16758 0.448 0.552
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.8327    0.52904 0.264 0.736
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.9427    0.50890 0.360 0.640
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.8555    0.58662 0.280 0.720
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.3733    0.64234 0.928 0.072
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     2  0.9983    0.09847 0.476 0.524
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.9170    0.52904 0.332 0.668
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.3274    0.63083 0.060 0.940
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.9608    0.42498 0.384 0.616
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.9944    0.22876 0.456 0.544
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.6343    0.65051 0.160 0.840
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.3114    0.61828 0.944 0.056
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.9993    0.09612 0.516 0.484
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.9209    0.53548 0.336 0.664
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.9286    0.47902 0.344 0.656
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     1  0.9833    0.30955 0.576 0.424
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.9833    0.27144 0.424 0.576
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.5946    0.65877 0.144 0.856
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.8713    0.56515 0.292 0.708
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.4022    0.64291 0.080 0.920
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     2  0.9170    0.53355 0.332 0.668
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.4690    0.61768 0.900 0.100
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.0938    0.60645 0.012 0.988
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.7745    0.59145 0.228 0.772
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     2  0.9552    0.43831 0.376 0.624
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.9998    0.04790 0.492 0.508
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.9866    0.27740 0.432 0.568
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.8909    0.56239 0.308 0.692
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.9686    0.37090 0.396 0.604
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.9775    0.37225 0.588 0.412
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.2043    0.62005 0.032 0.968
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.9833    0.30564 0.576 0.424
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.9963    0.16255 0.464 0.536
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.9460    0.41356 0.364 0.636
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.9209    0.53169 0.664 0.336
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.4022    0.64881 0.080 0.920
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.9775    0.30169 0.412 0.588
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.9833    0.31092 0.424 0.576
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.5737    0.65901 0.864 0.136
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.8661    0.60109 0.712 0.288
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     1  0.9795    0.33254 0.584 0.416
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.2043    0.62516 0.032 0.968
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     1  0.9552    0.47681 0.624 0.376
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.5946    0.50357 0.144 0.856
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.5519    0.63876 0.128 0.872
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.9993    0.09612 0.516 0.484
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.6048    0.65669 0.148 0.852
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.9993   -0.16852 0.516 0.484
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.9996   -0.10260 0.512 0.488
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.6247    0.65030 0.156 0.844
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.2948    0.60571 0.948 0.052
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.6148    0.51750 0.152 0.848
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.8327    0.52904 0.264 0.736
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.2948    0.61823 0.948 0.052
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.7674    0.62152 0.224 0.776
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.9754    0.31860 0.408 0.592
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.9988    0.14671 0.480 0.520
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.8955    0.55534 0.312 0.688
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.6247    0.50571 0.156 0.844
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.2778    0.63531 0.048 0.952
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.9795    0.32373 0.584 0.416
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.8267    0.61486 0.260 0.740
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.2043    0.61573 0.968 0.032
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.2948    0.61823 0.948 0.052
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.8144    0.63004 0.748 0.252
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.9635    0.37143 0.388 0.612
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.8267    0.61486 0.260 0.740
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.9248    0.51440 0.340 0.660
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.9944    0.22973 0.544 0.456
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.6148    0.66280 0.848 0.152
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.9170    0.54397 0.668 0.332
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.7745    0.64190 0.772 0.228
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9393    0.38049 0.356 0.644
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.2236    0.62788 0.036 0.964
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.8763    0.57422 0.296 0.704
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.6247    0.65813 0.156 0.844
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.9993    0.07939 0.516 0.484
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.2778    0.63445 0.048 0.952
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     1  0.9460    0.49179 0.636 0.364
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.7376    0.65071 0.792 0.208
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.3114    0.63660 0.056 0.944
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.4939    0.65658 0.892 0.108
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.9970    0.11216 0.468 0.532
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.9170    0.54397 0.668 0.332
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.2043    0.61573 0.968 0.032
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.8909    0.42123 0.308 0.692
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.9954    0.18819 0.460 0.540
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.3274    0.63971 0.060 0.940
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.2948    0.62759 0.052 0.948
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.4939    0.64296 0.108 0.892
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.7745    0.63618 0.228 0.772
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.7674    0.64226 0.776 0.224
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.9580    0.46489 0.380 0.620
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.9129    0.51594 0.328 0.672
#> E1833486-2998-4804-A535-EBF25A992392     2  0.4939    0.65514 0.108 0.892
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.3114    0.63949 0.056 0.944
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     2  0.9922    0.23530 0.448 0.552
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.2236    0.58852 0.964 0.036
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.7602    0.59270 0.220 0.780
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.3733    0.63800 0.072 0.928
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.9635    0.38492 0.388 0.612
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.3733    0.64234 0.928 0.072
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.9993    0.06515 0.516 0.484
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.5408    0.65952 0.124 0.876
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.3274    0.64147 0.060 0.940
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.2778    0.63499 0.048 0.952
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.9323    0.46719 0.652 0.348
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.2043    0.62005 0.032 0.968
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.9635    0.43205 0.388 0.612
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.2948    0.61823 0.948 0.052
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.3274    0.64001 0.060 0.940
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.9209    0.52071 0.336 0.664
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.9686    0.40338 0.604 0.396
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.5737    0.65257 0.136 0.864
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.2236    0.62766 0.036 0.964
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.5178    0.65921 0.884 0.116
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.9993    0.08102 0.516 0.484
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.7528    0.62734 0.216 0.784
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.9970    0.11216 0.468 0.532
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.9993    0.06930 0.516 0.484
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.2236    0.61848 0.036 0.964
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.4298    0.63959 0.088 0.912
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.6247    0.65921 0.156 0.844
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.8144    0.63292 0.252 0.748
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.5946    0.65214 0.144 0.856
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.9129    0.52743 0.672 0.328
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.7883    0.61082 0.236 0.764
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.6048    0.65859 0.148 0.852
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.9393    0.51314 0.356 0.644
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     2  0.9970    0.15626 0.468 0.532
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.3274    0.63083 0.060 0.940
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.1414    0.60662 0.020 0.980
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.9996    0.03903 0.512 0.488
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.8327    0.52904 0.264 0.736
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.6247    0.65813 0.156 0.844
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.5178    0.65994 0.884 0.116
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.9286    0.45845 0.344 0.656
#> 457090A2-AE7F-4E68-85EA-032DE8411110     2  0.9983    0.11957 0.476 0.524
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.5408    0.65477 0.124 0.876
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.8443    0.61398 0.728 0.272
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.4022    0.63320 0.080 0.920
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.9833    0.31200 0.424 0.576
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.6531    0.56882 0.832 0.168
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.6148    0.65731 0.152 0.848
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.7056    0.62445 0.808 0.192
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.7376    0.59944 0.208 0.792
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.8661    0.55516 0.288 0.712
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.7883    0.61082 0.236 0.764
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.9710    0.41926 0.600 0.400
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  1.0000   -0.09164 0.496 0.504
#> E789661A-C027-405D-9F76-E6D52CE3018B     1  0.9522    0.47740 0.628 0.372
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.7815    0.64484 0.768 0.232
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.5408    0.65629 0.124 0.876
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.5178    0.65921 0.884 0.116
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.3733    0.64234 0.928 0.072
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.9988    0.06655 0.520 0.480
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.7883    0.64700 0.764 0.236
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.2043    0.62629 0.032 0.968
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     1  0.9608    0.45532 0.616 0.384
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.9896    0.26469 0.440 0.560
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.3584    0.63769 0.068 0.932
#> 80936433-AA91-4219-98F1-706C36298060     2  0.4562    0.64421 0.096 0.904
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.2043    0.61573 0.968 0.032
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.9909    0.27188 0.444 0.556
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.9833    0.31519 0.576 0.424
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.2778    0.60449 0.952 0.048
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.6148    0.51750 0.152 0.848
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.9896    0.26501 0.440 0.560
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.5178    0.65921 0.884 0.116
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.7602    0.65043 0.780 0.220
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.8608    0.60708 0.716 0.284
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.9686    0.40418 0.604 0.396
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.6343    0.65051 0.160 0.840
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.7883    0.61082 0.236 0.764
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.2043    0.61573 0.968 0.032
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.6712    0.66422 0.824 0.176
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.2423    0.60123 0.960 0.040
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.9635    0.37143 0.388 0.612
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.7139    0.66106 0.804 0.196
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.8608    0.58285 0.284 0.716
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.7139    0.64639 0.196 0.804
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.5946    0.66590 0.856 0.144
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.8763    0.56356 0.296 0.704
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.9909    0.27188 0.444 0.556
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.6531    0.66428 0.832 0.168
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.9170    0.54228 0.668 0.332
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.8608    0.61021 0.716 0.284
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.5178    0.65432 0.116 0.884
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.8813    0.54146 0.300 0.700
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.8555    0.61025 0.720 0.280
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.9710    0.34241 0.400 0.600
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.7602    0.64161 0.220 0.780
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.7528    0.62734 0.216 0.784
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.2423    0.60123 0.960 0.040
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.9710    0.31573 0.400 0.600
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.2043    0.61573 0.968 0.032
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.8081    0.63765 0.752 0.248
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.8386    0.60942 0.268 0.732
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.3114    0.62547 0.056 0.944
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.9815    0.36347 0.580 0.420
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.9732    0.36893 0.596 0.404
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.6247    0.65183 0.156 0.844
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     2  0.9909    0.24729 0.444 0.556
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.5946    0.66511 0.856 0.144
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.8386    0.57659 0.268 0.732
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.8443    0.56942 0.272 0.728
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.2043    0.61573 0.968 0.032
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.6438    0.65267 0.164 0.836
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  1.0000    0.03666 0.504 0.496
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.9427    0.50890 0.360 0.640
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.6247    0.65190 0.156 0.844
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.9608    0.45194 0.384 0.616
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.7453    0.64323 0.212 0.788
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.6247    0.65030 0.156 0.844
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     2  0.9661    0.40336 0.392 0.608
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.9833    0.31519 0.576 0.424
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.9963    0.14708 0.536 0.464
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.9209    0.53631 0.664 0.336
#> 816CF68B-8476-4960-9F05-FB959A686323     1  0.9983    0.12431 0.524 0.476
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.9686    0.39595 0.396 0.604
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.2603    0.63262 0.044 0.956
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.8763    0.58946 0.704 0.296
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.7219    0.60427 0.200 0.800
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.7883    0.61041 0.236 0.764
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.5178    0.65921 0.884 0.116
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.9393    0.48292 0.356 0.644
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.5178    0.65612 0.116 0.884
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.6343    0.66629 0.840 0.160
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     2  0.9754    0.37168 0.408 0.592
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.6712    0.63026 0.824 0.176
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.2948    0.63077 0.948 0.052
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.2948    0.63077 0.948 0.052
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.4939    0.65676 0.892 0.108
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9909    0.26784 0.556 0.444
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.6148    0.66323 0.848 0.152
#> C33059A9-A313-4806-B43B-0031365F3BE4     2  1.0000    0.05770 0.496 0.504
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.8443    0.59230 0.272 0.728
#> 1122039D-5785-4F70-9916-17C585453512     1  0.4690    0.61768 0.900 0.100
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.6801    0.57765 0.820 0.180
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.9580    0.47608 0.380 0.620
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  1.0000    0.01040 0.496 0.504
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9732    0.36175 0.404 0.596
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.9427    0.44926 0.360 0.640
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.9983    0.07366 0.524 0.476
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.4690    0.61768 0.900 0.100
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.9993    0.08274 0.516 0.484
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.9996    0.03371 0.512 0.488
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.3114    0.63807 0.056 0.944
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.9732    0.40015 0.596 0.404
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     1  0.9358    0.51482 0.648 0.352
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.5737    0.66347 0.864 0.136
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.9996    0.09344 0.512 0.488
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.4939    0.65501 0.108 0.892
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.9970    0.14228 0.532 0.468
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.9522    0.47840 0.372 0.628
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.6438    0.65703 0.164 0.836
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     1  0.9881    0.30964 0.564 0.436
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     2  0.9996    0.06374 0.488 0.512
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     2  0.9933    0.21768 0.452 0.548
#> EB7883EB-0079-4548-9132-169E94A698BA     2  0.9944    0.19721 0.456 0.544
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.9209    0.53115 0.664 0.336
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.2043    0.61573 0.968 0.032
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.8661    0.59926 0.712 0.288
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.3431    0.63904 0.064 0.936
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.2236    0.60439 0.036 0.964
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.6343    0.62787 0.160 0.840
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.9833    0.31519 0.576 0.424
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.9954    0.19263 0.460 0.540
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     2  0.9833    0.31107 0.424 0.576
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.7815    0.64489 0.768 0.232

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.397           0.641       0.845         0.4932 0.499   0.499
#> 3 3 0.622           0.812       0.885         0.3320 0.661   0.424
#> 4 4 0.593           0.693       0.818         0.0938 0.818   0.550
#> 5 5 0.642           0.641       0.777         0.0677 0.901   0.686
#> 6 6 0.682           0.624       0.745         0.0531 0.894   0.601

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0000     0.7476 0.000 1.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.8661     0.5659 0.712 0.288
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.8861     0.6115 0.304 0.696
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.8813     0.5500 0.700 0.300
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.9998    -0.1483 0.492 0.508
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.9732     0.5119 0.404 0.596
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.5294     0.6621 0.120 0.880
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000     0.8303 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.9522     0.5508 0.372 0.628
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.9710     0.5175 0.400 0.600
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0000     0.7476 0.000 1.000
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.5519     0.7012 0.872 0.128
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.3879     0.6917 0.076 0.924
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.8909     0.3449 0.692 0.308
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.8499     0.5802 0.724 0.276
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.9775     0.4991 0.412 0.588
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.8661     0.5659 0.712 0.288
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.7476 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.9710     0.1264 0.400 0.600
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.7476 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0672     0.7456 0.008 0.992
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.7476 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.8303 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.7476 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000     0.8303 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.7476 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.9754     0.5061 0.408 0.592
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0000     0.8303 1.000 0.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.1633     0.8118 0.976 0.024
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000     0.8303 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.7219     0.5891 0.800 0.200
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.7476 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.9170     0.5022 0.668 0.332
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000     0.8303 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.9775     0.4991 0.412 0.588
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.8661     0.5659 0.712 0.288
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.8327     0.5946 0.736 0.264
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000     0.8303 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.8303 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.9129     0.5092 0.672 0.328
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0376     0.8275 0.996 0.004
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000     0.8303 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.7476 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.8303 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.8555     0.5755 0.720 0.280
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.9732     0.5119 0.404 0.596
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.7476 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0000     0.8303 1.000 0.000
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  0.9954     0.3981 0.460 0.540
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.3431     0.7024 0.064 0.936
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.8303 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.6247     0.6639 0.844 0.156
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0000     0.7476 0.000 1.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.9754     0.5058 0.408 0.592
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.8303 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.2043     0.8096 0.968 0.032
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.7476 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.9754     0.3714 0.592 0.408
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.9710     0.5175 0.400 0.600
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.8861     0.3606 0.304 0.696
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000     0.8303 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.5519     0.6387 0.128 0.872
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000     0.8303 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.8303 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.8207     0.4772 0.744 0.256
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.9732     0.5119 0.404 0.596
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000     0.7476 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.8303 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000     0.8303 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.8303 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.7476 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.5408     0.7094 0.124 0.876
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.7476 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.7476 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.8861     0.6115 0.304 0.696
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.8661     0.5659 0.712 0.288
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.9732     0.5119 0.404 0.596
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0000     0.7476 0.000 1.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.9491     0.1513 0.632 0.368
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.8861     0.6115 0.304 0.696
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0000     0.8303 1.000 0.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.7476 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000     0.8303 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.8713     0.6194 0.292 0.708
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000     0.8303 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.7476 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.8303 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.9393     0.5674 0.356 0.644
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.8303 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.7476 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.8303 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.9954     0.3977 0.460 0.540
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000     0.8303 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.7476 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000     0.8303 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0000     0.7476 0.000 1.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.8763     0.3772 0.296 0.704
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000     0.7476 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.8661     0.5659 0.712 0.288
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.7476 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.8303 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.8303 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.7674     0.6615 0.224 0.776
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.7476 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000     0.8303 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.9710     0.5177 0.400 0.600
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.0000     0.8303 1.000 0.000
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.9552     0.1539 0.624 0.376
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000     0.7476 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.8303 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.9323     0.4752 0.652 0.348
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.9998    -0.1483 0.492 0.508
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000     0.7476 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.9044     0.3293 0.680 0.320
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.9732     0.3786 0.596 0.404
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.7476 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.9732     0.5119 0.404 0.596
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.7476 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.9754     0.5058 0.408 0.592
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.8303 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000     0.8303 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.8303 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.9988    -0.1152 0.480 0.520
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.9754     0.5057 0.408 0.592
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000     0.7476 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.8081     0.6115 0.752 0.248
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.9044     0.5209 0.680 0.320
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.9998     0.3140 0.492 0.508
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.8303 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.0672     0.7456 0.008 0.992
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.5519     0.7012 0.872 0.128
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.7476 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.9963     0.4023 0.464 0.536
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.9983     0.3575 0.476 0.524
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.8303 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.9170     0.5891 0.332 0.668
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.8661     0.5659 0.712 0.288
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0672     0.7432 0.008 0.992
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000     0.8303 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.7476 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.9522     0.5508 0.372 0.628
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.9775     0.4991 0.412 0.588
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.7476 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.7476 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000     0.8303 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.7476 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.7476 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.8303 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.9732     0.5119 0.404 0.596
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.8303 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.7476 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.9710     0.5175 0.400 0.600
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.9491     0.5552 0.368 0.632
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.8303 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.9710     0.5175 0.400 0.600
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.8303 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.8303 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.7299     0.5862 0.796 0.204
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.9580     0.4226 0.620 0.380
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.7476 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000     0.8303 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.8303 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.8303 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.8303 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000     0.8303 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.7476 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000     0.8303 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.9552     0.1539 0.624 0.376
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000     0.8303 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.8303 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.8763     0.5550 0.704 0.296
#> C8820FA6-3531-4515-A102-19100775E767     1  0.8386     0.5894 0.732 0.268
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.8303 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.7476 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.7476 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.8303 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.9833     0.3709 0.576 0.424
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.9775     0.4991 0.412 0.588
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.9427     0.5635 0.360 0.640
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0000     0.7476 0.000 1.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.9754     0.5058 0.408 0.592
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.8303 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.9775     0.3640 0.588 0.412
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.9427     0.1797 0.640 0.360
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.8303 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.9427     0.4567 0.640 0.360
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.7476 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.7476 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0376     0.8276 0.996 0.004
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.9552     0.1557 0.624 0.376
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.7476 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.9775     0.4991 0.412 0.588
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.8713     0.6194 0.292 0.708
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.9710     0.5175 0.400 0.600
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.9393     0.5674 0.356 0.644
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.7476 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.7476 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.7476 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.1633     0.8153 0.976 0.024
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.9000     0.6023 0.316 0.684
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000     0.8303 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.8499     0.6316 0.276 0.724
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.8303 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.7376     0.6528 0.792 0.208
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.5519     0.7012 0.872 0.128
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.8661     0.5659 0.712 0.288
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.7476 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.8303 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0000     0.8303 1.000 0.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.8713     0.4049 0.708 0.292
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000     0.7476 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.8555     0.4437 0.720 0.280
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.8813     0.3850 0.700 0.300
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.9427     0.4454 0.640 0.360
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.8303 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.9732     0.5119 0.404 0.596
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.9850     0.0437 0.428 0.572
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.9988    -0.2566 0.520 0.480
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.7476 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.8207     0.4549 0.256 0.744
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.0672     0.7456 0.008 0.992
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.8499     0.5802 0.724 0.276
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.8555     0.4279 0.720 0.280
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.8303 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.8661     0.6237 0.288 0.712
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.8713     0.6205 0.292 0.708
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.8303 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.7476 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.7745     0.5398 0.772 0.228
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000     0.8303 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.7476 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0000     0.7476 0.000 1.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.9775     0.4991 0.412 0.588
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.9775     0.4991 0.412 0.588
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.8303 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0000     0.8303 1.000 0.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.9732     0.0489 0.596 0.404
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.7476 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.6048     0.6945 0.148 0.852
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000     0.8303 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.9815     0.4867 0.420 0.580
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.8303 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.5408     0.7061 0.876 0.124
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.9710     0.5175 0.400 0.600
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.7476 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000     0.7476 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.7476 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.9732     0.5119 0.404 0.596
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.9775     0.4991 0.412 0.588
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.2948     0.7345 0.052 0.948
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.8327     0.4661 0.736 0.264
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.9393     0.4638 0.644 0.356
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.8016     0.6501 0.244 0.756
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000     0.7476 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.3431     0.7746 0.936 0.064
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  1.0000    -0.1584 0.496 0.504
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.5519     0.7013 0.872 0.128
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000     0.7476 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.7476 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000     0.8303 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0672     0.7462 0.008 0.992
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.0938     0.8232 0.988 0.012
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.8555     0.4330 0.720 0.280
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.7476 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.7139     0.6329 0.196 0.804
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.8713     0.6194 0.292 0.708
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0938     0.7454 0.012 0.988
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.6247     0.6640 0.844 0.156
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000     0.8303 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000     0.8303 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.4562     0.6730 0.096 0.904
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.9427     0.5635 0.360 0.640
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.5629     0.6343 0.132 0.868
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0672     0.7456 0.008 0.992
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.7476 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.9970     0.3780 0.468 0.532
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.8608     0.6251 0.284 0.716
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.9358     0.2337 0.648 0.352
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.0000     0.7476 0.000 1.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.9491     0.5552 0.368 0.632
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.8303 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000     0.7476 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.0000     0.7476 0.000 1.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.8661     0.5659 0.712 0.288
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.7376     0.6089 0.208 0.792
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.7476 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.1843     0.7414 0.028 0.972
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.9833     0.4766 0.424 0.576
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.9044     0.3255 0.320 0.680
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.1843     0.7414 0.028 0.972
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.8303 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.6623     0.6875 0.172 0.828
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.8661     0.5659 0.712 0.288
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.8909     0.5395 0.692 0.308
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.9988    -0.1152 0.480 0.520
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.7476 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.8081     0.6476 0.248 0.752
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.8713     0.4046 0.708 0.292
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.8267     0.4726 0.740 0.260
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000     0.8303 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.8303 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.9710     0.3859 0.600 0.400
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.3879     0.7266 0.076 0.924
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.7745     0.6590 0.228 0.772
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.7476 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.9393     0.5674 0.356 0.644
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000     0.8303 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.7674     0.6611 0.224 0.776
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0672     0.7430 0.008 0.992
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.8861     0.5440 0.696 0.304
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.8861     0.6115 0.304 0.696
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.8303 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.7476 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.8303 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.7950     0.6201 0.760 0.240
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000     0.7476 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000     0.8303 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.9427     0.5635 0.360 0.640
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.7476 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.8861     0.6115 0.304 0.696
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.9710     0.5175 0.400 0.600
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.9998    -0.1483 0.492 0.508
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.7453     0.5752 0.788 0.212
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.4022     0.7270 0.080 0.920
#> E1833486-2998-4804-A535-EBF25A992392     2  0.9710     0.5175 0.400 0.600
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.7476 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.8303 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.8661     0.5659 0.712 0.288
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000     0.7476 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000     0.7476 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.7476 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0672     0.8256 0.992 0.008
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.8303 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.9710     0.5175 0.400 0.600
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.7476 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.8713     0.6194 0.292 0.708
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.8303 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.7476 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.2603     0.7186 0.044 0.956
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.8661     0.5659 0.712 0.288
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.9580     0.5417 0.380 0.620
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.9754     0.5058 0.408 0.592
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0000     0.8303 1.000 0.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.9833     0.4809 0.424 0.576
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.8909     0.6085 0.308 0.692
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.8303 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.9491     0.5546 0.368 0.632
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.9954    -0.2062 0.540 0.460
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.7476 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0376     0.8276 0.996 0.004
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.7476 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.7476 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.8144     0.6452 0.252 0.748
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.9896    -0.0961 0.560 0.440
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.7476 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000     0.8303 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.9732     0.5119 0.404 0.596
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.9710     0.5175 0.400 0.600
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.9963    -0.1820 0.536 0.464
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000     0.8303 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.7476 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.7476 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000     0.8303 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.0000     0.7476 0.000 1.000
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.8861     0.6115 0.304 0.696
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.8303 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.7476 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.8303 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9795     0.4931 0.416 0.584
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.8303 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000     0.7476 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.1414     0.8150 0.980 0.020
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.8813     0.3833 0.700 0.300
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.8661     0.6223 0.288 0.712
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.9491     0.4436 0.632 0.368
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.0000     0.7476 0.000 1.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000     0.7476 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.9710     0.5175 0.400 0.600
#> A9195281-8CAE-45A8-8493-744E577907FA     2  1.0000    -0.1596 0.496 0.504
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.9977    -0.0918 0.472 0.528
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.9850     0.0435 0.428 0.572
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.8661     0.5659 0.712 0.288
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.7476 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.8303 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.8303 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0000     0.8303 1.000 0.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000     0.8303 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.8861     0.6115 0.304 0.696
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.9710     0.1262 0.400 0.600
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0000     0.7476 0.000 1.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.7476 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.7476 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.8661     0.5659 0.712 0.288
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.9815    -0.0164 0.580 0.420
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000     0.8303 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.8303 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.7476 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.1184     0.8183 0.984 0.016
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.8303 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.8303 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000     0.8303 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.8303 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.9754     0.5057 0.408 0.592
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.9732     0.5119 0.404 0.596
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.8661     0.5659 0.712 0.288
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.2043     0.8098 0.968 0.032
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.8303 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.7476 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000     0.8303 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.0000     0.8303 1.000 0.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.9775     0.4991 0.412 0.588
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000     0.8303 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000     0.8303 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.9635     0.1121 0.612 0.388
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000     0.8303 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.9754     0.3714 0.592 0.408
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.7950     0.6201 0.760 0.240
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000     0.7476 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.7476 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0000     0.8303 1.000 0.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.7476 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.9754     0.5058 0.408 0.592
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.9491     0.5563 0.368 0.632
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.8303 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.7476 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.8661     0.5659 0.712 0.288
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.8303 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.9000     0.3245 0.684 0.316
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.7476 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.9988    -0.1147 0.480 0.520
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.8303 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.9044     0.3297 0.680 0.320
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000     0.8303 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.8303 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.7476 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.7476 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.8713     0.5606 0.708 0.292
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.9775     0.4991 0.412 0.588
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.8303 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.9775     0.4991 0.412 0.588
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.9710     0.5175 0.400 0.600
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.8608     0.4241 0.716 0.284
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.9710     0.5175 0.400 0.600
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.9129     0.5925 0.328 0.672
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000     0.8303 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000     0.8303 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000     0.8303 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.9775     0.3640 0.588 0.412
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.7528     0.5898 0.216 0.784
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.9795     0.4920 0.416 0.584
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.7815     0.6568 0.232 0.768
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.8303 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000     0.7476 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.7476 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.8303 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.8713     0.4046 0.708 0.292
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.9754     0.5057 0.408 0.592
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.8303 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000     0.8303 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.9775     0.3640 0.588 0.412
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.7745     0.6325 0.772 0.228
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.8144     0.6071 0.748 0.252
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.8303 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9775     0.3640 0.588 0.412
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.8303 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.8303 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.9775     0.4991 0.412 0.588
#> 1122039D-5785-4F70-9916-17C585453512     1  0.8713     0.5614 0.708 0.292
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.4022     0.7579 0.920 0.080
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.9775     0.4991 0.412 0.588
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.9608     0.1682 0.384 0.616
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9754     0.1034 0.408 0.592
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0376     0.7455 0.004 0.996
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0000     0.8303 1.000 0.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.8713     0.5614 0.708 0.292
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000     0.8303 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.8303 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.9427     0.5635 0.360 0.640
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0376     0.8276 0.996 0.004
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.6887     0.5691 0.184 0.816
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.8303 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.9988    -0.1147 0.480 0.520
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.9710     0.0644 0.600 0.400
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.3274     0.7788 0.940 0.060
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.9795     0.4920 0.416 0.584
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.9732     0.5119 0.404 0.596
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.8909     0.3517 0.308 0.692
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.8303 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000     0.8303 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.8303 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.8303 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.8763     0.5550 0.704 0.296
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000     0.8303 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.7476 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.7950     0.6538 0.240 0.760
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.7476 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.8303 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0938     0.8231 0.988 0.012
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000     0.8303 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.8303 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.483           0.590       0.814         0.4981 0.507   0.507
#> 3 3 0.856           0.899       0.957         0.3412 0.701   0.474
#> 4 4 0.709           0.629       0.811         0.1166 0.845   0.582
#> 5 5 0.662           0.568       0.764         0.0630 0.874   0.568
#> 6 6 0.740           0.629       0.815         0.0425 0.886   0.535

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.9988     0.7655 0.480 0.520
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.0000     0.3742 0.000 1.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     1  0.4815     0.1700 0.896 0.104
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.0000     0.3742 0.000 1.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.2423     0.4156 0.040 0.960
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.0000     0.4101 1.000 0.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.9866     0.7409 0.432 0.568
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.9988     0.7357 0.520 0.480
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.0000     0.4101 1.000 0.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0000     0.4101 1.000 0.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.9988     0.7655 0.480 0.520
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.9635     0.7016 0.612 0.388
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.9881     0.7431 0.436 0.564
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.7602     0.5735 0.780 0.220
#> 5AB5396F-925B-469C-B240-FB37991004DD     2  0.0000     0.3742 0.000 1.000
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0000     0.4101 1.000 0.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0000     0.3742 0.000 1.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.9988     0.7655 0.480 0.520
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.9248     0.6853 0.340 0.660
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.9988     0.7655 0.480 0.520
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.9988     0.7655 0.480 0.520
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.9988     0.7655 0.480 0.520
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.9988     0.7357 0.520 0.480
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.9988     0.7655 0.480 0.520
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.9988     0.7357 0.520 0.480
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.9988     0.7655 0.480 0.520
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.0000     0.4101 1.000 0.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.9988     0.7357 0.520 0.480
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.9988     0.7357 0.520 0.480
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.9988     0.7357 0.520 0.480
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.9970     0.7317 0.532 0.468
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.9988     0.7655 0.480 0.520
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000     0.3742 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.9988     0.7357 0.520 0.480
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0000     0.4101 1.000 0.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.0000     0.3742 0.000 1.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000     0.3742 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.9988     0.7357 0.520 0.480
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.9988     0.7357 0.520 0.480
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.0000     0.3742 0.000 1.000
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.9988     0.7357 0.520 0.480
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.9988     0.7357 0.520 0.480
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.9988     0.7655 0.480 0.520
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.9988     0.7357 0.520 0.480
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.0000     0.3742 0.000 1.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.0000     0.4101 1.000 0.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.9988     0.7655 0.480 0.520
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.9988     0.7357 0.520 0.480
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.7299     0.5827 0.796 0.204
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.9988     0.7655 0.480 0.520
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.9988     0.7357 0.520 0.480
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.9635     0.7016 0.612 0.388
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.9988     0.7655 0.480 0.520
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0000     0.4101 1.000 0.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.9988     0.7357 0.520 0.480
#> 311D089C-33F1-4722-9118-F56427C5C128     2  0.7745    -0.2545 0.228 0.772
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.9988     0.7655 0.480 0.520
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0000     0.3742 0.000 1.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.0000     0.4101 1.000 0.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.9580     0.7110 0.380 0.620
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.9988     0.7357 0.520 0.480
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.9635     0.7156 0.388 0.612
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.9988     0.7357 0.520 0.480
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.9988     0.7357 0.520 0.480
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.9248     0.6695 0.660 0.340
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0000     0.4101 1.000 0.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.9988     0.7655 0.480 0.520
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.9988     0.7357 0.520 0.480
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.9988     0.7357 0.520 0.480
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.9988     0.7357 0.520 0.480
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.9988     0.7655 0.480 0.520
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.9963     0.7571 0.464 0.536
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.9988     0.7655 0.480 0.520
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.9988     0.7655 0.480 0.520
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.0000     0.4101 1.000 0.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.0000     0.3742 0.000 1.000
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0000     0.4101 1.000 0.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9988     0.7655 0.480 0.520
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.6048     0.5159 0.852 0.148
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.5519     0.0973 0.872 0.128
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.9988     0.7357 0.520 0.480
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.9988     0.7655 0.480 0.520
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.9988     0.7357 0.520 0.480
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.5629     0.0843 0.868 0.132
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.9988     0.7357 0.520 0.480
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.9988     0.7655 0.480 0.520
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.9988     0.7357 0.520 0.480
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     1  0.0000     0.4101 1.000 0.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.9988     0.7357 0.520 0.480
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.9988     0.7655 0.480 0.520
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.9988     0.7357 0.520 0.480
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.2778     0.4530 0.952 0.048
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.9988     0.7357 0.520 0.480
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.9988     0.7655 0.480 0.520
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.9988     0.7357 0.520 0.480
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.9988     0.7655 0.480 0.520
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.9580     0.7110 0.380 0.620
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.9988     0.7655 0.480 0.520
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.0000     0.3742 0.000 1.000
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.9988     0.7655 0.480 0.520
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.9988     0.7357 0.520 0.480
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.9988     0.7357 0.520 0.480
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.9993     0.7618 0.484 0.516
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.9988     0.7655 0.480 0.520
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.9988     0.7357 0.520 0.480
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.2948     0.3198 0.948 0.052
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.6801    -0.1168 0.180 0.820
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.9552     0.6963 0.624 0.376
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.9988     0.7655 0.480 0.520
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.9998     0.7255 0.508 0.492
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000     0.3742 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.4562     0.4727 0.096 0.904
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.9988     0.7655 0.480 0.520
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.9580     0.6980 0.620 0.380
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0000     0.3742 0.000 1.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.9988     0.7655 0.480 0.520
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000     0.4101 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.9988     0.7655 0.480 0.520
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.0000     0.4101 1.000 0.000
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.9988     0.7357 0.520 0.480
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.9988     0.7357 0.520 0.480
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.9988     0.7357 0.520 0.480
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.6801     0.5541 0.180 0.820
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0672     0.4175 0.992 0.008
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.9988     0.7655 0.480 0.520
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     2  0.3431     0.2380 0.064 0.936
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.0000     0.3742 0.000 1.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.9000     0.6632 0.684 0.316
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.9988     0.7357 0.520 0.480
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.9988     0.7655 0.480 0.520
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.9710     0.7067 0.600 0.400
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.9988     0.7655 0.480 0.520
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.3584     0.4505 0.932 0.068
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.8081     0.6180 0.752 0.248
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.9988     0.7357 0.520 0.480
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.2778     0.3130 0.952 0.048
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.0000     0.3742 0.000 1.000
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.9988     0.7655 0.480 0.520
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.9988     0.7357 0.520 0.480
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.9988     0.7655 0.480 0.520
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     1  0.0000     0.4101 1.000 0.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.0000     0.4101 1.000 0.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.9988     0.7655 0.480 0.520
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.9988     0.7655 0.480 0.520
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.9988     0.7357 0.520 0.480
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.9988     0.7655 0.480 0.520
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.9988     0.7655 0.480 0.520
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.9988     0.7357 0.520 0.480
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.0000     0.4101 1.000 0.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.9988     0.7357 0.520 0.480
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.9988     0.7655 0.480 0.520
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.0000     0.4101 1.000 0.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.0000     0.4101 1.000 0.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.9988     0.7357 0.520 0.480
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0000     0.4101 1.000 0.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.9988     0.7357 0.520 0.480
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.9988     0.7357 0.520 0.480
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.9988     0.7357 0.520 0.480
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0000     0.3742 0.000 1.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.9988     0.7655 0.480 0.520
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.9988     0.7357 0.520 0.480
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.9988     0.7357 0.520 0.480
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.9988     0.7357 0.520 0.480
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.9988     0.7357 0.520 0.480
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.9988     0.7357 0.520 0.480
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.9988     0.7655 0.480 0.520
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.9988     0.7357 0.520 0.480
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.9580     0.6980 0.620 0.380
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.9988     0.7357 0.520 0.480
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.9988     0.7357 0.520 0.480
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.0000     0.3742 0.000 1.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0000     0.3742 0.000 1.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.9988     0.7357 0.520 0.480
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.9988     0.7655 0.480 0.520
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.9988     0.7655 0.480 0.520
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.9988     0.7357 0.520 0.480
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.4431     0.4373 0.092 0.908
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.0000     0.4101 1.000 0.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0000     0.4101 1.000 0.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.9988     0.7655 0.480 0.520
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0000     0.4101 1.000 0.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.9988     0.7357 0.520 0.480
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0376     0.3785 0.004 0.996
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.6801     0.5454 0.820 0.180
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.9988     0.7357 0.520 0.480
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000     0.3742 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.9988     0.7655 0.480 0.520
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.9988     0.7655 0.480 0.520
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.9988     0.7357 0.520 0.480
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.9635     0.7020 0.612 0.388
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.9988     0.7655 0.480 0.520
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.0000     0.4101 1.000 0.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.6343    -0.0116 0.840 0.160
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     1  0.0000     0.4101 1.000 0.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     1  0.3114     0.2947 0.944 0.056
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.9988     0.7655 0.480 0.520
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.9988     0.7655 0.480 0.520
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.9988     0.7655 0.480 0.520
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.9775    -0.6192 0.412 0.588
#> 354669B6-34E9-44AA-91B2-882423F50B0A     1  0.6048     0.0294 0.852 0.148
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.9988     0.7357 0.520 0.480
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.9963    -0.7067 0.536 0.464
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.9988     0.7357 0.520 0.480
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.4161     0.1867 0.084 0.916
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.9635     0.7016 0.612 0.388
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.0000     0.3742 0.000 1.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.9988     0.7655 0.480 0.520
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.9988     0.7357 0.520 0.480
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.9988     0.7357 0.520 0.480
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.9608     0.6998 0.616 0.384
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.9988     0.7655 0.480 0.520
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.9044     0.5655 0.680 0.320
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.9635     0.7016 0.612 0.388
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.6973     0.5614 0.188 0.812
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.9988     0.7357 0.520 0.480
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.0000     0.4101 1.000 0.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.7745     0.5971 0.228 0.772
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.4022     0.4610 0.920 0.080
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.9988     0.7655 0.480 0.520
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.9580     0.7110 0.380 0.620
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.9988     0.7655 0.480 0.520
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.0000     0.3742 0.000 1.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.9209     0.3436 0.336 0.664
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.9988     0.7357 0.520 0.480
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.5842     0.0586 0.860 0.140
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     1  0.9087    -0.4769 0.676 0.324
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.9988     0.7357 0.520 0.480
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.9988     0.7655 0.480 0.520
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.9795     0.7112 0.584 0.416
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.9988     0.7357 0.520 0.480
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.9988     0.7655 0.480 0.520
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.9988     0.7655 0.480 0.520
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.1414     0.4283 0.980 0.020
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000     0.4101 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.9988     0.7357 0.520 0.480
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.9988     0.7357 0.520 0.480
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.9393     0.6859 0.644 0.356
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.9988     0.7655 0.480 0.520
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.9988     0.7655 0.480 0.520
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.9988     0.7357 0.520 0.480
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.0000     0.4101 1.000 0.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.9988     0.7357 0.520 0.480
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.9661     0.7033 0.608 0.392
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0000     0.4101 1.000 0.000
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.9988     0.7655 0.480 0.520
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.9988     0.7655 0.480 0.520
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.9988     0.7655 0.480 0.520
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.0000     0.4101 1.000 0.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0000     0.4101 1.000 0.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.9988     0.7655 0.480 0.520
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.9963     0.7308 0.536 0.464
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.0000     0.3742 0.000 1.000
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.9866    -0.6646 0.568 0.432
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.9988     0.7655 0.480 0.520
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.9988     0.7357 0.520 0.480
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.0938     0.3867 0.012 0.988
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.9635     0.7016 0.612 0.388
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.9988     0.7655 0.480 0.520
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.9988     0.7655 0.480 0.520
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.9988     0.7357 0.520 0.480
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.9988     0.7655 0.480 0.520
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.6148    -0.0245 0.152 0.848
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.9661     0.7033 0.608 0.392
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.9988     0.7655 0.480 0.520
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.9635     0.7156 0.388 0.612
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     1  0.5629     0.0843 0.868 0.132
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.9988     0.7655 0.480 0.520
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.9815     0.7147 0.580 0.420
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.9988     0.7357 0.520 0.480
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.9988     0.7357 0.520 0.480
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.9988     0.7655 0.480 0.520
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0000     0.4101 1.000 0.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.9635     0.7156 0.388 0.612
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.9988     0.7655 0.480 0.520
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.9988     0.7655 0.480 0.520
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.5059     0.5082 0.888 0.112
#> D249B589-22E5-4678-9757-FF6A7E4553E5     1  0.9323    -0.5251 0.652 0.348
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.9552     0.6962 0.624 0.376
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.9988     0.7655 0.480 0.520
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     1  0.0000     0.4101 1.000 0.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.9988     0.7357 0.520 0.480
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.9988     0.7655 0.480 0.520
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.9988     0.7655 0.480 0.520
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.0000     0.3742 0.000 1.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.9635     0.7156 0.388 0.612
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.9988     0.7655 0.480 0.520
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.9988     0.7655 0.480 0.520
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.0672     0.4176 0.992 0.008
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.5842     0.4848 0.140 0.860
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.9988     0.7655 0.480 0.520
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.9988     0.7357 0.520 0.480
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     1  0.9881    -0.6695 0.564 0.436
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.0000     0.3742 0.000 1.000
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.0000     0.3742 0.000 1.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.6712     0.5503 0.176 0.824
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.9988     0.7655 0.480 0.520
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     1  0.9710    -0.6163 0.600 0.400
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.9608     0.6998 0.616 0.384
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.9087     0.5437 0.676 0.324
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.9988     0.7357 0.520 0.480
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.9988     0.7357 0.520 0.480
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0000     0.3742 0.000 1.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9988     0.7655 0.480 0.520
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.9996     0.7579 0.488 0.512
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.9983     0.7637 0.476 0.524
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  0.0000     0.4101 1.000 0.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.9988     0.7357 0.520 0.480
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.9993     0.7618 0.484 0.516
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.9988     0.7655 0.480 0.520
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000     0.3742 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     1  0.2778     0.3130 0.952 0.048
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.9988     0.7357 0.520 0.480
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.9988     0.7655 0.480 0.520
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.9988     0.7357 0.520 0.480
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     2  0.3584     0.2282 0.068 0.932
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.9988     0.7655 0.480 0.520
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.9988     0.7357 0.520 0.480
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  0.0000     0.4101 1.000 0.000
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.9988     0.7655 0.480 0.520
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0000     0.4101 1.000 0.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.0000     0.4101 1.000 0.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.4562     0.4727 0.096 0.904
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.9881     0.7206 0.564 0.436
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.9983     0.7637 0.476 0.524
#> E1833486-2998-4804-A535-EBF25A992392     1  0.0000     0.4101 1.000 0.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.9988     0.7655 0.480 0.520
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.9988     0.7357 0.520 0.480
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.0000     0.3742 0.000 1.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.9988     0.7655 0.480 0.520
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.9988     0.7655 0.480 0.520
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.9988     0.7655 0.480 0.520
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     2  1.0000    -0.7205 0.500 0.500
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.9988     0.7357 0.520 0.480
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.0000     0.4101 1.000 0.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.9988     0.7655 0.480 0.520
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     1  0.4022     0.2358 0.920 0.080
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.9988     0.7357 0.520 0.480
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.9988     0.7655 0.480 0.520
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.9954     0.7558 0.460 0.540
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.0000     0.3742 0.000 1.000
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     1  0.0000     0.4101 1.000 0.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.0000     0.4101 1.000 0.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  1.0000     0.7219 0.504 0.496
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     1  0.0376     0.4126 0.996 0.004
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     1  0.0000     0.4101 1.000 0.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.9988     0.7357 0.520 0.480
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0376     0.4138 0.996 0.004
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.4562     0.4680 0.904 0.096
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.9988     0.7655 0.480 0.520
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.9988     0.7357 0.520 0.480
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.9988     0.7655 0.480 0.520
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.9988     0.7655 0.480 0.520
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     1  0.5629     0.0843 0.868 0.132
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.7950     0.6104 0.760 0.240
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.9988     0.7655 0.480 0.520
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.9988     0.7357 0.520 0.480
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.0000     0.4101 1.000 0.000
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0000     0.4101 1.000 0.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.8661     0.6443 0.712 0.288
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.9988     0.7357 0.520 0.480
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.9988     0.7655 0.480 0.520
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.9988     0.7655 0.480 0.520
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.9988     0.7357 0.520 0.480
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.9988     0.7655 0.480 0.520
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     1  0.0000     0.4101 1.000 0.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.9988     0.7357 0.520 0.480
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.9988     0.7655 0.480 0.520
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.9988     0.7357 0.520 0.480
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0000     0.4101 1.000 0.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.9988     0.7357 0.520 0.480
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.9988     0.7655 0.480 0.520
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.9988     0.7357 0.520 0.480
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.9608     0.6998 0.616 0.384
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     1  0.8144    -0.3047 0.748 0.252
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000     0.3742 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.9988     0.7655 0.480 0.520
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.9988     0.7655 0.480 0.520
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.0000     0.4101 1.000 0.000
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.1633     0.3993 0.024 0.976
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.7219     0.5722 0.200 0.800
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.9209     0.6823 0.336 0.664
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0000     0.3742 0.000 1.000
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.9988     0.7655 0.480 0.520
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.9988     0.7357 0.520 0.480
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.9988     0.7357 0.520 0.480
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.9988     0.7357 0.520 0.480
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.9988     0.7357 0.520 0.480
#> B57C849C-28B1-4315-885C-330B9C9482B3     1  0.0000     0.4101 1.000 0.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.9286     0.6878 0.344 0.656
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.9988     0.7655 0.480 0.520
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.9988     0.7655 0.480 0.520
#> 80936433-AA91-4219-98F1-706C36298060     2  0.9988     0.7655 0.480 0.520
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     2  0.0000     0.3742 0.000 1.000
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.9427     0.6887 0.640 0.360
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.9988     0.7357 0.520 0.480
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.9988     0.7357 0.520 0.480
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.9988     0.7655 0.480 0.520
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.9988     0.7357 0.520 0.480
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.9988     0.7357 0.520 0.480
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.9988     0.7357 0.520 0.480
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.9988     0.7357 0.520 0.480
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.9988     0.7357 0.520 0.480
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0000     0.4101 1.000 0.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0000     0.4101 1.000 0.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.0000     0.3742 0.000 1.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.9635    -0.5873 0.388 0.612
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.9988     0.7357 0.520 0.480
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.9988     0.7655 0.480 0.520
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.9988     0.7357 0.520 0.480
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.9988     0.7357 0.520 0.480
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0000     0.4101 1.000 0.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.9988     0.7357 0.520 0.480
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.9988     0.7357 0.520 0.480
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.9044     0.6659 0.680 0.320
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.9988     0.7357 0.520 0.480
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0000     0.3742 0.000 1.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.3733     0.2180 0.072 0.928
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.9988     0.7655 0.480 0.520
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.9988     0.7655 0.480 0.520
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.9988     0.7357 0.520 0.480
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.9988     0.7655 0.480 0.520
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0000     0.4101 1.000 0.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     1  0.0000     0.4101 1.000 0.000
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.9988     0.7357 0.520 0.480
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.9988     0.7655 0.480 0.520
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.0000     0.3742 0.000 1.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.9988     0.7357 0.520 0.480
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.8955     0.6459 0.688 0.312
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.9988     0.7655 0.480 0.520
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.6887     0.5577 0.184 0.816
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.9988     0.7357 0.520 0.480
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.9608     0.6998 0.616 0.384
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.9988     0.7357 0.520 0.480
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.9988     0.7357 0.520 0.480
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.9988     0.7655 0.480 0.520
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.9988     0.7655 0.480 0.520
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.0000     0.3742 0.000 1.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0000     0.4101 1.000 0.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.9988     0.7357 0.520 0.480
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000     0.4101 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     1  0.0000     0.4101 1.000 0.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.9608     0.6998 0.616 0.384
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.0000     0.4101 1.000 0.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     1  0.6801    -0.0849 0.820 0.180
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.9988     0.7357 0.520 0.480
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.9988     0.7357 0.520 0.480
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.9988     0.7357 0.520 0.480
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0000     0.3742 0.000 1.000
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.9608     0.7132 0.384 0.616
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.5737     0.5284 0.864 0.136
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     1  1.0000    -0.7435 0.504 0.496
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.9988     0.7357 0.520 0.480
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.9988     0.7655 0.480 0.520
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.9988     0.7655 0.480 0.520
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.9988     0.7357 0.520 0.480
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.9608     0.6998 0.616 0.384
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.0000     0.4101 1.000 0.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.9988     0.7357 0.520 0.480
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.9988     0.7357 0.520 0.480
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.0000     0.3742 0.000 1.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     2  0.4161     0.1867 0.084 0.916
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.2948     0.2664 0.052 0.948
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.9988     0.7357 0.520 0.480
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.0000     0.3742 0.000 1.000
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.9988     0.7357 0.520 0.480
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.9988     0.7357 0.520 0.480
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.0000     0.4101 1.000 0.000
#> 1122039D-5785-4F70-9916-17C585453512     2  0.0000     0.3742 0.000 1.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.9988     0.7357 0.520 0.480
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0000     0.4101 1.000 0.000
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.9460     0.7024 0.364 0.636
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.8555     0.6405 0.280 0.720
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.9988     0.7655 0.480 0.520
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.9988     0.7357 0.520 0.480
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.0000     0.3742 0.000 1.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.9988     0.7357 0.520 0.480
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.9988     0.7357 0.520 0.480
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0000     0.4101 1.000 0.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.9988     0.7357 0.520 0.480
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.9635     0.7156 0.388 0.612
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.9988     0.7357 0.520 0.480
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.6887     0.5581 0.184 0.816
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.9358     0.6838 0.648 0.352
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.9988     0.7357 0.520 0.480
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.6973     0.5710 0.812 0.188
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.0000     0.4101 1.000 0.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.9580     0.7110 0.380 0.620
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.9988     0.7357 0.520 0.480
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.9988     0.7357 0.520 0.480
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.9988     0.7357 0.520 0.480
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.9988     0.7357 0.520 0.480
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.0000     0.3742 0.000 1.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.9988     0.7357 0.520 0.480
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.9988     0.7655 0.480 0.520
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  1.0000     0.7499 0.496 0.504
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.9988     0.7655 0.480 0.520
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.9988     0.7357 0.520 0.480
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.8909    -0.4430 0.308 0.692
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.9988     0.7357 0.520 0.480
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.9988     0.7357 0.520 0.480

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.406           0.695       0.869         0.4811 0.506   0.506
#> 3 3 0.355           0.453       0.716         0.3368 0.707   0.494
#> 4 4 0.537           0.565       0.781         0.1330 0.814   0.539
#> 5 5 0.546           0.491       0.696         0.0626 0.833   0.492
#> 6 6 0.615           0.562       0.734         0.0451 0.870   0.522

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.7453    0.68209 0.212 0.788
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.8016    0.61032 0.756 0.244
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.7453    0.71511 0.212 0.788
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.8608    0.56037 0.284 0.716
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.8608    0.56037 0.284 0.716
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.8443    0.54847 0.728 0.272
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.8144    0.68912 0.252 0.748
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000    0.83597 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.7883    0.69749 0.236 0.764
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.8608    0.53111 0.716 0.284
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.8661    0.56026 0.288 0.712
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0000    0.83597 1.000 0.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0376    0.82534 0.004 0.996
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.2778    0.81360 0.952 0.048
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.1414    0.82970 0.980 0.020
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.8661    0.52173 0.712 0.288
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.8861    0.53230 0.696 0.304
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.6887    0.70498 0.184 0.816
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.8608    0.56037 0.284 0.716
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0376    0.82534 0.004 0.996
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.7376    0.68563 0.208 0.792
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0376    0.82534 0.004 0.996
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000    0.83597 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0672    0.82734 0.008 0.992
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.1414    0.82970 0.980 0.020
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0376    0.82534 0.004 0.996
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.8081    0.58749 0.752 0.248
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.1843    0.82426 0.972 0.028
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0376    0.83541 0.996 0.004
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0376    0.83541 0.996 0.004
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.8861    0.49188 0.696 0.304
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0376    0.82534 0.004 0.996
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.9909    0.23731 0.556 0.444
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000    0.83597 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.4431    0.77176 0.908 0.092
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.7815    0.62420 0.768 0.232
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.6438    0.70022 0.836 0.164
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0376    0.83541 0.996 0.004
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.1414    0.83178 0.980 0.020
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.9044    0.49459 0.320 0.680
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0000    0.83597 1.000 0.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.1184    0.83249 0.984 0.016
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0938    0.82888 0.012 0.988
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0938    0.83282 0.988 0.012
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.7674    0.62873 0.776 0.224
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.8499    0.54146 0.724 0.276
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000    0.82525 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.1633    0.82716 0.976 0.024
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.8713    0.52119 0.708 0.292
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.8386    0.58876 0.268 0.732
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0672    0.83299 0.992 0.008
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0376    0.83541 0.996 0.004
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.8608    0.56037 0.284 0.716
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.8499    0.54146 0.724 0.276
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0376    0.83541 0.996 0.004
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.3274    0.80449 0.940 0.060
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0938    0.82888 0.012 0.988
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.9775    0.24842 0.412 0.588
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.9963   -0.00203 0.536 0.464
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.8608    0.56037 0.284 0.716
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0376    0.83541 0.996 0.004
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0938    0.82888 0.012 0.988
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.3733    0.79417 0.928 0.072
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000    0.83597 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.9460    0.35892 0.636 0.364
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.9393    0.37781 0.644 0.356
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0938    0.82888 0.012 0.988
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.1184    0.82910 0.984 0.016
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0376    0.83541 0.996 0.004
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0672    0.83299 0.992 0.008
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.8608    0.56037 0.284 0.716
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.9977    0.05106 0.472 0.528
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0938    0.82888 0.012 0.988
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0376    0.82534 0.004 0.996
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.7815    0.69618 0.232 0.768
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.9815    0.29987 0.580 0.420
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.9909    0.25467 0.444 0.556
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.7528    0.67713 0.216 0.784
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.9358    0.49232 0.352 0.648
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.9993   -0.06151 0.516 0.484
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.1843    0.82803 0.972 0.028
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0938    0.82888 0.012 0.988
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000    0.83597 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.1633    0.82559 0.024 0.976
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0672    0.83299 0.992 0.008
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0938    0.82888 0.012 0.988
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0672    0.83299 0.992 0.008
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.7883    0.69183 0.236 0.764
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000    0.83597 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0938    0.82832 0.012 0.988
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000    0.83597 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.8608    0.52874 0.716 0.284
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000    0.83597 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0376    0.82534 0.004 0.996
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000    0.83597 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.8608    0.56037 0.284 0.716
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0376    0.82534 0.004 0.996
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.1184    0.82842 0.016 0.984
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.7299    0.65770 0.796 0.204
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0376    0.82534 0.004 0.996
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0672    0.83299 0.992 0.008
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000    0.83597 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.2236    0.82505 0.036 0.964
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0938    0.82888 0.012 0.988
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0376    0.83541 0.996 0.004
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.9998   -0.07633 0.508 0.492
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.8499    0.64904 0.276 0.724
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0376    0.83541 0.996 0.004
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0938    0.82888 0.012 0.988
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0938    0.83282 0.988 0.012
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.9087    0.50697 0.324 0.676
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.9427    0.42245 0.360 0.640
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0672    0.82830 0.008 0.992
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0376    0.83541 0.996 0.004
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.9896    0.24871 0.560 0.440
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0938    0.82888 0.012 0.988
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000    0.83597 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0938    0.82888 0.012 0.988
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.8016    0.68279 0.244 0.756
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0376    0.83541 0.996 0.004
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.8327    0.56822 0.736 0.264
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0672    0.83299 0.992 0.008
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0938    0.82888 0.012 0.988
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0938    0.83359 0.988 0.012
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0938    0.82888 0.012 0.988
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.6801    0.68661 0.820 0.180
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.7745    0.62601 0.772 0.228
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.8861    0.50112 0.696 0.304
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000    0.83597 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.1633    0.82402 0.024 0.976
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0000    0.83597 1.000 0.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0376    0.82534 0.004 0.996
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  1.0000   -0.10542 0.504 0.496
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.0376    0.83541 0.996 0.004
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000    0.83597 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.7815    0.69618 0.232 0.768
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.9795    0.29930 0.584 0.416
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0938    0.82888 0.012 0.988
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0376    0.83541 0.996 0.004
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0938    0.82888 0.012 0.988
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.8443    0.65426 0.272 0.728
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.9815    0.37681 0.420 0.580
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0672    0.82830 0.008 0.992
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0672    0.82830 0.008 0.992
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.6247    0.71193 0.844 0.156
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0672    0.82830 0.008 0.992
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0672    0.82731 0.008 0.992
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0376    0.83541 0.996 0.004
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.8499    0.54146 0.724 0.276
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.1184    0.83121 0.984 0.016
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0938    0.82888 0.012 0.988
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.9209    0.42307 0.664 0.336
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.7950    0.69312 0.240 0.760
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0672    0.83299 0.992 0.008
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.8081    0.58732 0.752 0.248
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0376    0.83541 0.996 0.004
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000    0.83597 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000    0.83597 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.8763    0.55105 0.296 0.704
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0672    0.82830 0.008 0.992
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0376    0.83541 0.996 0.004
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0938    0.83261 0.988 0.012
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0376    0.83541 0.996 0.004
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000    0.83597 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000    0.83597 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0938    0.82888 0.012 0.988
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.9988   -0.04416 0.520 0.480
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0376    0.83541 0.996 0.004
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000    0.83597 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000    0.83597 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.9909    0.23731 0.556 0.444
#> C8820FA6-3531-4515-A102-19100775E767     1  0.7745    0.62653 0.772 0.228
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0376    0.83541 0.996 0.004
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.7528    0.67828 0.216 0.784
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0672    0.82830 0.008 0.992
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000    0.83597 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.8327    0.56145 0.736 0.264
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.8499    0.54146 0.724 0.276
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.7815    0.69618 0.232 0.768
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.1843    0.82488 0.028 0.972
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.8499    0.54146 0.724 0.276
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000    0.83597 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.8608    0.56037 0.284 0.716
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.9896    0.31356 0.440 0.560
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0376    0.83522 0.996 0.004
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.9909    0.23731 0.556 0.444
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0938    0.82888 0.012 0.988
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0938    0.82888 0.012 0.988
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0376    0.83541 0.996 0.004
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0000    0.83597 1.000 0.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0938    0.82888 0.012 0.988
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.8555    0.53236 0.720 0.280
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.9963    0.20449 0.464 0.536
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.8144    0.68569 0.252 0.748
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.9248    0.55163 0.340 0.660
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0938    0.82888 0.012 0.988
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0938    0.82888 0.012 0.988
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0672    0.82734 0.008 0.992
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.7602    0.63397 0.780 0.220
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.7745    0.70111 0.228 0.772
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.7528    0.66956 0.784 0.216
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.7674    0.70443 0.224 0.776
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0376    0.83541 0.996 0.004
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.4939    0.76506 0.892 0.108
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000    0.83597 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.9909    0.23731 0.556 0.444
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0672    0.82830 0.008 0.992
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000    0.83597 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0376    0.83541 0.996 0.004
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0000    0.83597 1.000 0.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0938    0.82888 0.012 0.988
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.8499    0.53804 0.724 0.276
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.0376    0.83541 0.996 0.004
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.8081    0.63838 0.248 0.752
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000    0.83597 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.9000    0.45995 0.684 0.316
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     1  0.9909    0.23731 0.556 0.444
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.9993   -0.07083 0.516 0.484
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0938    0.82888 0.012 0.988
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.7745    0.66159 0.228 0.772
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.8207    0.62989 0.256 0.744
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.7376    0.65535 0.792 0.208
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  1.0000   -0.07795 0.504 0.496
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000    0.83597 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.7674    0.70443 0.224 0.776
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.7815    0.69618 0.232 0.768
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0376    0.83541 0.996 0.004
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0938    0.82816 0.012 0.988
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.8713    0.51776 0.708 0.292
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0376    0.83541 0.996 0.004
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0938    0.82888 0.012 0.988
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.3114    0.80840 0.056 0.944
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000    0.83597 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.7815    0.69633 0.232 0.768
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.1184    0.83280 0.984 0.016
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.1414    0.82889 0.980 0.020
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.8555    0.53527 0.720 0.280
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0376    0.82534 0.004 0.996
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.9993   -0.07431 0.516 0.484
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0376    0.83541 0.996 0.004
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.8955    0.47597 0.688 0.312
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000    0.83597 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0376    0.83541 0.996 0.004
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.8861    0.48800 0.696 0.304
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0938    0.82888 0.012 0.988
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0938    0.82888 0.012 0.988
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0938    0.82888 0.012 0.988
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.9866    0.29102 0.432 0.568
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.8499    0.54146 0.724 0.276
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.1633    0.82559 0.024 0.976
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.8499    0.54146 0.724 0.276
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.9170    0.47301 0.332 0.668
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.7219    0.72637 0.200 0.800
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.1633    0.82675 0.024 0.976
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.9170    0.44366 0.668 0.332
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.1633    0.82579 0.976 0.024
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0376    0.83541 0.996 0.004
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0938    0.82888 0.012 0.988
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0938    0.82888 0.012 0.988
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0376    0.83541 0.996 0.004
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.5408    0.78194 0.124 0.876
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.2778    0.82100 0.048 0.952
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0000    0.83597 1.000 0.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0938    0.82888 0.012 0.988
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.9963    0.22134 0.464 0.536
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.6973    0.73482 0.188 0.812
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.2043    0.82395 0.032 0.968
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000    0.83597 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.2043    0.82338 0.968 0.032
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0938    0.83399 0.988 0.012
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.8713    0.55999 0.292 0.708
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.7883    0.69183 0.236 0.764
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0376    0.82534 0.004 0.996
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.6801    0.73809 0.180 0.820
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0376    0.82534 0.004 0.996
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0000    0.83597 1.000 0.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.7219    0.72577 0.200 0.800
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.1414    0.82822 0.980 0.020
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.9977   -0.00696 0.528 0.472
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.7950    0.68744 0.240 0.760
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000    0.83597 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.8608    0.56037 0.284 0.716
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.9129    0.47610 0.328 0.672
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.9044    0.49126 0.680 0.320
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.1633    0.82418 0.024 0.976
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0672    0.82830 0.008 0.992
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.7528    0.67993 0.216 0.784
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.9754    0.23288 0.592 0.408
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.9954    0.19581 0.540 0.460
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.2778    0.81804 0.048 0.952
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0376    0.83541 0.996 0.004
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.7674    0.70481 0.224 0.776
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.7602    0.63879 0.780 0.220
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.8499    0.58761 0.276 0.724
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.8443    0.59571 0.272 0.728
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.1184    0.82735 0.016 0.984
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.7674    0.70481 0.224 0.776
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0376    0.83541 0.996 0.004
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.3274    0.81464 0.060 0.940
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0938    0.83261 0.988 0.012
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000    0.83597 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.9922    0.22875 0.552 0.448
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9881    0.33249 0.436 0.564
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.6887    0.73860 0.184 0.816
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0672    0.82734 0.008 0.992
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.7815    0.69618 0.232 0.768
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0376    0.83541 0.996 0.004
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.7219    0.72562 0.200 0.800
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0672    0.82830 0.008 0.992
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.9881    0.25731 0.564 0.436
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.7376    0.71926 0.208 0.792
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0672    0.83299 0.992 0.008
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0938    0.82888 0.012 0.988
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0376    0.83541 0.996 0.004
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.3879    0.79538 0.924 0.076
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.2603    0.81827 0.044 0.956
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000    0.83597 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.7950    0.68784 0.240 0.760
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0938    0.82888 0.012 0.988
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.7815    0.69601 0.232 0.768
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.9522    0.49208 0.372 0.628
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.5178    0.77277 0.116 0.884
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0000    0.83597 1.000 0.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0672    0.82830 0.008 0.992
#> E1833486-2998-4804-A535-EBF25A992392     1  0.9358    0.38470 0.648 0.352
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0672    0.82830 0.008 0.992
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000    0.83597 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.7883    0.63024 0.764 0.236
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0938    0.82888 0.012 0.988
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.7139    0.72962 0.196 0.804
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.8713    0.55999 0.292 0.708
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.4939    0.76294 0.892 0.108
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000    0.83597 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.9983   -0.04652 0.524 0.476
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0672    0.82830 0.008 0.992
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.7745    0.69993 0.228 0.772
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000    0.83597 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0938    0.82888 0.012 0.988
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.1414    0.82596 0.020 0.980
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.7602    0.63300 0.780 0.220
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.8443    0.64439 0.272 0.728
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.9977   -0.03484 0.528 0.472
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.4690    0.76665 0.900 0.100
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.7950    0.68744 0.240 0.760
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.7815    0.69618 0.232 0.768
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0672    0.83299 0.992 0.008
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0376    0.83528 0.996 0.004
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.7950    0.68744 0.240 0.760
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0938    0.82888 0.012 0.988
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0000    0.83597 1.000 0.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0376    0.82534 0.004 0.996
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0672    0.82830 0.008 0.992
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.7528    0.71114 0.216 0.784
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.8661    0.52869 0.712 0.288
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0672    0.82830 0.008 0.992
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000    0.83597 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.9460    0.50425 0.364 0.636
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.8813    0.50289 0.700 0.300
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0938    0.83359 0.988 0.012
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.2423    0.81722 0.960 0.040
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0672    0.82830 0.008 0.992
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0672    0.82830 0.008 0.992
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.9044    0.48285 0.680 0.320
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.7745    0.65023 0.228 0.772
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.7815    0.69618 0.232 0.768
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0938    0.83261 0.988 0.012
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0376    0.82534 0.004 0.996
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000    0.83597 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.8499    0.54146 0.724 0.276
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0376    0.83541 0.996 0.004
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0376    0.82534 0.004 0.996
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.9815    0.16293 0.580 0.420
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0376    0.83541 0.996 0.004
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.7674    0.70381 0.224 0.776
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.9909    0.23731 0.556 0.444
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.2948    0.81049 0.052 0.948
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0938    0.82888 0.012 0.988
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.8144    0.68091 0.252 0.748
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.8813    0.54849 0.300 0.700
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.8713    0.55999 0.292 0.708
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0376    0.82534 0.004 0.996
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.9522    0.41113 0.628 0.372
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0672    0.82830 0.008 0.992
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000    0.83597 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0672    0.83299 0.992 0.008
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.1633    0.82616 0.976 0.024
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0376    0.83541 0.996 0.004
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.7883    0.69222 0.236 0.764
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0938    0.82888 0.012 0.988
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0672    0.82830 0.008 0.992
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0938    0.82888 0.012 0.988
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0376    0.82534 0.004 0.996
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.2043    0.82623 0.968 0.032
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0672    0.83371 0.992 0.008
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000    0.83597 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0672    0.83299 0.992 0.008
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.2236    0.81804 0.036 0.964
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000    0.83597 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000    0.83597 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0376    0.83541 0.996 0.004
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000    0.83597 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000    0.83597 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.9983   -0.03519 0.524 0.476
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.8608    0.63973 0.284 0.716
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.9909    0.23731 0.556 0.444
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0376    0.83541 0.996 0.004
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0672    0.83299 0.992 0.008
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0672    0.82830 0.008 0.992
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0938    0.83218 0.988 0.012
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.1414    0.83011 0.980 0.020
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0376    0.83541 0.996 0.004
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0376    0.83526 0.996 0.004
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.9983   -0.04652 0.524 0.476
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.4431    0.78060 0.908 0.092
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0376    0.83541 0.996 0.004
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.3879    0.80208 0.076 0.924
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.7453    0.65027 0.788 0.212
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.1633    0.82559 0.024 0.976
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0376    0.82534 0.004 0.996
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0376    0.83541 0.996 0.004
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0672    0.82830 0.008 0.992
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.8499    0.54146 0.724 0.276
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.7815    0.69633 0.232 0.768
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0672    0.83299 0.992 0.008
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0938    0.82888 0.012 0.988
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.9866    0.26670 0.568 0.432
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0376    0.83541 0.996 0.004
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.9996    0.13812 0.488 0.512
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0938    0.82888 0.012 0.988
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.8608    0.56037 0.284 0.716
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0376    0.83541 0.996 0.004
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0376    0.83541 0.996 0.004
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0672    0.83299 0.992 0.008
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0672    0.83299 0.992 0.008
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0938    0.82888 0.012 0.988
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0938    0.82888 0.012 0.988
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.9909    0.23731 0.556 0.444
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.8661    0.52173 0.712 0.288
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.9993   -0.07083 0.516 0.484
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000    0.83597 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.9996    0.16660 0.488 0.512
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0672    0.83339 0.992 0.008
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.9988   -0.06273 0.520 0.480
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.7815    0.69601 0.232 0.768
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.8499    0.54146 0.724 0.276
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0376    0.83541 0.996 0.004
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000    0.83597 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.5408    0.76816 0.124 0.876
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.1843    0.82749 0.028 0.972
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.1843    0.82216 0.972 0.028
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.7528    0.71114 0.216 0.784
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0376    0.83541 0.996 0.004
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0376    0.82534 0.004 0.996
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0938    0.82888 0.012 0.988
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0938    0.83282 0.988 0.012
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0000    0.83597 1.000 0.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.8661    0.52173 0.712 0.288
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000    0.83597 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.8661    0.52869 0.712 0.288
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.8608    0.56037 0.284 0.716
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.7528    0.64441 0.784 0.216
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.7815    0.62420 0.768 0.232
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0376    0.83541 0.996 0.004
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9522    0.40994 0.628 0.372
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0672    0.83299 0.992 0.008
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0376    0.83541 0.996 0.004
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.8813    0.49265 0.700 0.300
#> 1122039D-5785-4F70-9916-17C585453512     1  0.9661    0.36699 0.608 0.392
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0376    0.83541 0.996 0.004
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0000    0.83597 1.000 0.000
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.8608    0.56037 0.284 0.716
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.8608    0.56037 0.284 0.716
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0672    0.82830 0.008 0.992
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0672    0.83443 0.992 0.008
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.5629    0.75755 0.868 0.132
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0376    0.83541 0.996 0.004
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000    0.83597 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.7950    0.68784 0.240 0.760
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.7745    0.70068 0.228 0.772
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.8386    0.60250 0.268 0.732
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0938    0.83261 0.988 0.012
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.9988    0.13250 0.520 0.480
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0376    0.83541 0.996 0.004
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0376    0.83541 0.996 0.004
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0672    0.83371 0.992 0.008
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.8499    0.54146 0.724 0.276
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0376    0.82534 0.004 0.996
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000    0.83597 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000    0.83597 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000    0.83597 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0376    0.83541 0.996 0.004
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.9909    0.23731 0.556 0.444
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0376    0.83541 0.996 0.004
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0938    0.82888 0.012 0.988
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.7815    0.69618 0.232 0.768
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0938    0.82888 0.012 0.988
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000    0.83597 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.9732    0.31305 0.596 0.404
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0376    0.83541 0.996 0.004
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000    0.83597 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.961       0.977         0.4779 0.518   0.518
#> 3 3 0.564           0.710       0.837         0.2020 0.965   0.933
#> 4 4 0.543           0.592       0.767         0.1596 0.788   0.581
#> 5 5 0.559           0.599       0.742         0.1161 0.840   0.559
#> 6 6 0.593           0.559       0.703         0.0569 0.941   0.790

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.1184     0.9714 0.016 0.984
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.1414     0.9699 0.020 0.980
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     1  0.0938     0.9829 0.988 0.012
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.1184     0.9685 0.016 0.984
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.1184     0.9714 0.016 0.984
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.1184     0.9851 0.984 0.016
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.9988     0.0799 0.480 0.520
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0376     0.9875 0.996 0.004
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.0000     0.9878 1.000 0.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.1184     0.9840 0.984 0.016
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.1184     0.9714 0.016 0.984
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0672     0.9868 0.992 0.008
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.1184     0.9714 0.016 0.984
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.0376     0.9875 0.996 0.004
#> 5AB5396F-925B-469C-B240-FB37991004DD     2  0.2043     0.9522 0.032 0.968
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0376     0.9875 0.996 0.004
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.1414     0.9699 0.020 0.980
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0376     0.9655 0.004 0.996
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.1184     0.9714 0.016 0.984
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.1184     0.9714 0.016 0.984
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0672     0.9642 0.008 0.992
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0938     0.9702 0.012 0.988
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.9878 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.1184     0.9714 0.016 0.984
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000     0.9878 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.1184     0.9714 0.016 0.984
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.1184     0.9851 0.984 0.016
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0376     0.9875 0.996 0.004
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0672     0.9868 0.992 0.008
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0672     0.9868 0.992 0.008
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.0938     0.9829 0.988 0.012
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.1184     0.9714 0.016 0.984
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0672     0.9642 0.008 0.992
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000     0.9878 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0376     0.9875 0.996 0.004
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.1184     0.9714 0.016 0.984
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.7883     0.7179 0.236 0.764
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0938     0.9829 0.988 0.012
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.9878 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.0672     0.9642 0.008 0.992
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0376     0.9875 0.996 0.004
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0672     0.9868 0.992 0.008
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0938     0.9702 0.012 0.988
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0376     0.9875 0.996 0.004
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.1184     0.9691 0.016 0.984
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.0938     0.9829 0.988 0.012
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0672     0.9642 0.008 0.992
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0000     0.9878 1.000 0.000
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0672     0.9868 0.992 0.008
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.1184     0.9714 0.016 0.984
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.9878 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0938     0.9846 0.988 0.012
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.1184     0.9714 0.016 0.984
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0672     0.9868 0.992 0.008
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.9878 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.2043     0.9676 0.968 0.032
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0938     0.9702 0.012 0.988
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.1184     0.9714 0.016 0.984
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.0376     0.9875 0.996 0.004
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.1184     0.9714 0.016 0.984
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0672     0.9868 0.992 0.008
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.1184     0.9714 0.016 0.984
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000     0.9878 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0672     0.9868 0.992 0.008
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.0938     0.9829 0.988 0.012
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0938     0.9829 0.988 0.012
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.1184     0.9714 0.016 0.984
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0672     0.9868 0.992 0.008
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0938     0.9846 0.988 0.012
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.9878 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.1184     0.9714 0.016 0.984
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.7376     0.7356 0.792 0.208
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.1184     0.9714 0.016 0.984
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.1184     0.9714 0.016 0.984
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.0672     0.9868 0.992 0.008
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.0672     0.9642 0.008 0.992
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0938     0.9829 0.988 0.012
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.8443     0.6652 0.272 0.728
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.0938     0.9829 0.988 0.012
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.0938     0.9829 0.988 0.012
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0672     0.9868 0.992 0.008
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.1184     0.9714 0.016 0.984
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0672     0.9868 0.992 0.008
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.0376     0.9875 0.996 0.004
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0672     0.9861 0.992 0.008
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0938     0.9702 0.012 0.988
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.9878 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     1  0.0938     0.9829 0.988 0.012
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.9878 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.2236     0.9548 0.036 0.964
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.9878 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.0672     0.9868 0.992 0.008
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0672     0.9868 0.992 0.008
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.1184     0.9714 0.016 0.984
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0376     0.9875 0.996 0.004
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.1184     0.9714 0.016 0.984
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.1184     0.9714 0.016 0.984
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.1184     0.9714 0.016 0.984
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.0672     0.9642 0.008 0.992
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.1184     0.9714 0.016 0.984
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.9878 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.9878 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  0.0672     0.9868 0.992 0.008
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.1184     0.9714 0.016 0.984
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0938     0.9829 0.988 0.012
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0938     0.9829 0.988 0.012
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.3584     0.9328 0.932 0.068
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0672     0.9868 0.992 0.008
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.1184     0.9714 0.016 0.984
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.1843     0.9679 0.972 0.028
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.6973     0.7923 0.188 0.812
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0938     0.9702 0.012 0.988
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0938     0.9702 0.012 0.988
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0672     0.9868 0.992 0.008
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.1184     0.9714 0.016 0.984
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.1184     0.9714 0.016 0.984
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0376     0.9875 0.996 0.004
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.1184     0.9714 0.016 0.984
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.0938     0.9829 0.988 0.012
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0672     0.9868 0.992 0.008
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000     0.9878 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.9878 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0938     0.9702 0.012 0.988
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0938     0.9859 0.988 0.012
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.1184     0.9714 0.016 0.984
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     2  0.1414     0.9699 0.020 0.980
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.6887     0.7930 0.184 0.816
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.0672     0.9868 0.992 0.008
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.9878 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.0672     0.9642 0.008 0.992
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0376     0.9875 0.996 0.004
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.1184     0.9714 0.016 0.984
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.0000     0.9878 1.000 0.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.0672     0.9868 0.992 0.008
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.9878 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.0938     0.9829 0.988 0.012
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.0672     0.9642 0.008 0.992
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.1184     0.9714 0.016 0.984
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0376     0.9872 0.996 0.004
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.1184     0.9714 0.016 0.984
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     1  0.0938     0.9829 0.988 0.012
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.0000     0.9878 1.000 0.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0938     0.9702 0.012 0.988
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0938     0.9702 0.012 0.988
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000     0.9878 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0938     0.9702 0.012 0.988
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.1184     0.9714 0.016 0.984
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0672     0.9868 0.992 0.008
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.0938     0.9829 0.988 0.012
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.9878 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.1184     0.9714 0.016 0.984
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.0938     0.9829 0.988 0.012
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.0376     0.9875 0.996 0.004
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0376     0.9875 0.996 0.004
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0672     0.9868 0.992 0.008
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0672     0.9868 0.992 0.008
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0376     0.9875 0.996 0.004
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0376     0.9875 0.996 0.004
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0938     0.9702 0.012 0.988
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0938     0.9702 0.012 0.988
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0376     0.9872 0.996 0.004
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.9878 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.9878 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0376     0.9875 0.996 0.004
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000     0.9878 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0938     0.9702 0.012 0.988
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0938     0.9829 0.988 0.012
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0376     0.9875 0.996 0.004
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0376     0.9875 0.996 0.004
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.9878 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.1414     0.9699 0.020 0.980
#> C8820FA6-3531-4515-A102-19100775E767     2  0.2778     0.9504 0.048 0.952
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0938     0.9829 0.988 0.012
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.1184     0.9714 0.016 0.984
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0672     0.9642 0.008 0.992
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0376     0.9875 0.996 0.004
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.9491     0.4553 0.368 0.632
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.0000     0.9878 1.000 0.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0938     0.9829 0.988 0.012
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0938     0.9702 0.012 0.988
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0938     0.9829 0.988 0.012
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.9878 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.1184     0.9685 0.016 0.984
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.0376     0.9866 0.996 0.004
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0376     0.9875 0.996 0.004
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0938     0.9702 0.012 0.988
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.1184     0.9714 0.016 0.984
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.1184     0.9714 0.016 0.984
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0672     0.9868 0.992 0.008
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0672     0.9868 0.992 0.008
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0938     0.9702 0.012 0.988
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.0000     0.9878 1.000 0.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.0376     0.9875 0.996 0.004
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     1  0.0000     0.9878 1.000 0.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     1  0.0000     0.9878 1.000 0.000
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.1184     0.9714 0.016 0.984
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.1184     0.9714 0.016 0.984
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0672     0.9642 0.008 0.992
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.1843     0.9681 0.972 0.028
#> 354669B6-34E9-44AA-91B2-882423F50B0A     1  0.0938     0.9829 0.988 0.012
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000     0.9878 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.1633     0.9753 0.976 0.024
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.9878 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.8327     0.6832 0.264 0.736
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0376     0.9875 0.996 0.004
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.1414     0.9699 0.020 0.980
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.1633     0.9641 0.024 0.976
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0376     0.9875 0.996 0.004
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0938     0.9846 0.988 0.012
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0376     0.9875 0.996 0.004
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0938     0.9702 0.012 0.988
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.0672     0.9868 0.992 0.008
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.0672     0.9850 0.992 0.008
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.8813     0.5512 0.700 0.300
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.9878 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.0672     0.9850 0.992 0.008
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.1184     0.9714 0.016 0.984
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.0672     0.9868 0.992 0.008
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.1184     0.9714 0.016 0.984
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.1184     0.9691 0.016 0.984
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.3114     0.9367 0.056 0.944
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.2778     0.9443 0.048 0.952
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.3879     0.9243 0.924 0.076
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0376     0.9875 0.996 0.004
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.0938     0.9850 0.988 0.012
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     1  0.1184     0.9840 0.984 0.016
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0672     0.9868 0.992 0.008
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0938     0.9702 0.012 0.988
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.1184     0.9821 0.984 0.016
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0938     0.9829 0.988 0.012
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0938     0.9702 0.012 0.988
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.1184     0.9714 0.016 0.984
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0672     0.9868 0.992 0.008
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000     0.9878 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.9878 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0938     0.9829 0.988 0.012
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.0672     0.9868 0.992 0.008
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.1184     0.9714 0.016 0.984
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.2043     0.9642 0.968 0.032
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000     0.9878 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.0938     0.9829 0.988 0.012
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0376     0.9875 0.996 0.004
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0672     0.9868 0.992 0.008
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0376     0.9875 0.996 0.004
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0938     0.9702 0.012 0.988
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0938     0.9702 0.012 0.988
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0938     0.9702 0.012 0.988
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.0938     0.9846 0.988 0.012
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0938     0.9829 0.988 0.012
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     1  0.1843     0.9738 0.972 0.028
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0672     0.9850 0.992 0.008
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.0672     0.9642 0.008 0.992
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.0672     0.9868 0.992 0.008
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.1184     0.9714 0.016 0.984
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.0376     0.9872 0.996 0.004
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.3879     0.9214 0.076 0.924
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0938     0.9846 0.988 0.012
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.5519     0.8615 0.128 0.872
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.1184     0.9714 0.016 0.984
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0376     0.9872 0.996 0.004
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.7602     0.7475 0.220 0.780
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.2043     0.9672 0.968 0.032
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0376     0.9875 0.996 0.004
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.1184     0.9714 0.016 0.984
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.8955     0.5912 0.312 0.688
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     1  0.0672     0.9851 0.992 0.008
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.7056     0.7711 0.192 0.808
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0672     0.9868 0.992 0.008
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000     0.9878 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0672     0.9868 0.992 0.008
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.0938     0.9702 0.012 0.988
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0938     0.9829 0.988 0.012
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.1184     0.9714 0.016 0.984
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0672     0.9642 0.008 0.992
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.1184     0.9714 0.016 0.984
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0672     0.9868 0.992 0.008
#> D249B589-22E5-4678-9757-FF6A7E4553E5     1  0.0938     0.9829 0.988 0.012
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0376     0.9875 0.996 0.004
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.2043     0.9542 0.032 0.968
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     1  0.0938     0.9829 0.988 0.012
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0376     0.9875 0.996 0.004
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.1184     0.9714 0.016 0.984
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.1184     0.9714 0.016 0.984
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.0672     0.9642 0.008 0.992
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     1  0.9996     0.0175 0.512 0.488
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0672     0.9692 0.008 0.992
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.9635     0.4189 0.388 0.612
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.0938     0.9846 0.988 0.012
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0938     0.9702 0.012 0.988
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     1  0.2043     0.9740 0.968 0.032
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.9878 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.9977     0.1564 0.472 0.528
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.0672     0.9642 0.008 0.992
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.0672     0.9642 0.008 0.992
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0938     0.9702 0.012 0.988
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0938     0.9702 0.012 0.988
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     1  0.0672     0.9868 0.992 0.008
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0672     0.9868 0.992 0.008
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.0672     0.9868 0.992 0.008
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000     0.9878 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0672     0.9868 0.992 0.008
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0938     0.9702 0.012 0.988
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9815     0.3201 0.420 0.580
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     1  0.1184     0.9817 0.984 0.016
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.1633     0.9671 0.024 0.976
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  0.0672     0.9868 0.992 0.008
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0672     0.9868 0.992 0.008
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     1  0.0672     0.9868 0.992 0.008
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0938     0.9702 0.012 0.988
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.1184     0.9714 0.016 0.984
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     1  0.0938     0.9829 0.988 0.012
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.9878 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.1184     0.9714 0.016 0.984
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0672     0.9868 0.992 0.008
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     2  0.0672     0.9642 0.008 0.992
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0938     0.9702 0.012 0.988
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000     0.9878 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  0.0938     0.9846 0.988 0.012
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.1184     0.9714 0.016 0.984
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.1184     0.9840 0.984 0.016
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.0672     0.9868 0.992 0.008
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.1184     0.9714 0.016 0.984
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0376     0.9875 0.996 0.004
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.8909     0.5916 0.308 0.692
#> E1833486-2998-4804-A535-EBF25A992392     1  0.0672     0.9850 0.992 0.008
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.2423     0.9513 0.040 0.960
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.9878 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.0672     0.9642 0.008 0.992
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.1184     0.9714 0.016 0.984
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0672     0.9642 0.008 0.992
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.1184     0.9714 0.016 0.984
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.9686     0.2976 0.604 0.396
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0672     0.9868 0.992 0.008
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.0938     0.9829 0.988 0.012
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.1633     0.9570 0.024 0.976
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     1  0.1184     0.9840 0.984 0.016
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0376     0.9875 0.996 0.004
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.1184     0.9714 0.016 0.984
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0938     0.9637 0.012 0.988
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.0672     0.9642 0.008 0.992
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     1  0.1184     0.9851 0.984 0.016
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.0376     0.9872 0.996 0.004
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0376     0.9875 0.996 0.004
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     1  0.0938     0.9829 0.988 0.012
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     1  0.0938     0.9829 0.988 0.012
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.9878 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0672     0.9868 0.992 0.008
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.0938     0.9829 0.988 0.012
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0938     0.9702 0.012 0.988
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0000     0.9878 1.000 0.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.1184     0.9714 0.016 0.984
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0376     0.9655 0.004 0.996
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     1  0.0376     0.9875 0.996 0.004
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.0672     0.9868 0.992 0.008
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0938     0.9702 0.012 0.988
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0672     0.9868 0.992 0.008
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.0938     0.9829 0.988 0.012
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0376     0.9875 0.996 0.004
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0376     0.9875 0.996 0.004
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000     0.9878 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.1184     0.9714 0.016 0.984
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0376     0.9655 0.004 0.996
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000     0.9878 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.1184     0.9714 0.016 0.984
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     1  0.0672     0.9868 0.992 0.008
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.9878 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.1184     0.9714 0.016 0.984
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0376     0.9875 0.996 0.004
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0938     0.9829 0.988 0.012
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0376     0.9872 0.996 0.004
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.1184     0.9714 0.016 0.984
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0000     0.9878 1.000 0.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0376     0.9875 0.996 0.004
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     1  0.0938     0.9829 0.988 0.012
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0672     0.9642 0.008 0.992
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.1184     0.9714 0.016 0.984
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0938     0.9702 0.012 0.988
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.0000     0.9878 1.000 0.000
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.2043     0.9581 0.032 0.968
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.1184     0.9714 0.016 0.984
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.1184     0.9714 0.016 0.984
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0938     0.9702 0.012 0.988
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0938     0.9702 0.012 0.988
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0376     0.9872 0.996 0.004
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.9878 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0376     0.9875 0.996 0.004
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0672     0.9868 0.992 0.008
#> B57C849C-28B1-4315-885C-330B9C9482B3     1  0.0938     0.9829 0.988 0.012
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.1414     0.9699 0.020 0.980
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0938     0.9702 0.012 0.988
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.1184     0.9714 0.016 0.984
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0376     0.9655 0.004 0.996
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     2  0.0672     0.9642 0.008 0.992
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0376     0.9875 0.996 0.004
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0672     0.9868 0.992 0.008
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.9878 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.1184     0.9714 0.016 0.984
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0376     0.9875 0.996 0.004
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0376     0.9872 0.996 0.004
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0672     0.9868 0.992 0.008
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0672     0.9868 0.992 0.008
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0376     0.9875 0.996 0.004
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0938     0.9829 0.988 0.012
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0938     0.9829 0.988 0.012
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.1414     0.9699 0.020 0.980
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.7602     0.7131 0.780 0.220
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.9878 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.9648 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000     0.9878 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.0000     0.9878 1.000 0.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0672     0.9850 0.992 0.008
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0376     0.9875 0.996 0.004
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000     0.9878 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.0376     0.9875 0.996 0.004
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0376     0.9867 0.996 0.004
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0938     0.9702 0.012 0.988
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.1414     0.9699 0.020 0.980
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000     0.9648 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.1184     0.9714 0.016 0.984
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0672     0.9868 0.992 0.008
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0938     0.9702 0.012 0.988
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0376     0.9875 0.996 0.004
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     1  0.0938     0.9829 0.988 0.012
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.9878 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0938     0.9702 0.012 0.988
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.1184     0.9685 0.016 0.984
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0376     0.9872 0.996 0.004
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.0376     0.9875 0.996 0.004
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.1184     0.9714 0.016 0.984
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.1184     0.9714 0.016 0.984
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.9878 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0938     0.9829 0.988 0.012
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0938     0.9829 0.988 0.012
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.9878 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.1184     0.9714 0.016 0.984
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.1184     0.9714 0.016 0.984
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.1414     0.9699 0.020 0.980
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0938     0.9829 0.988 0.012
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.9878 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0376     0.9875 0.996 0.004
#> C075F09E-623C-46ED-B927-889B48F450B3     1  0.0938     0.9829 0.988 0.012
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0376     0.9875 0.996 0.004
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.0376     0.9875 0.996 0.004
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     1  0.0938     0.9829 0.988 0.012
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0938     0.9829 0.988 0.012
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0672     0.9868 0.992 0.008
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0376     0.9875 0.996 0.004
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0938     0.9702 0.012 0.988
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.8144     0.6985 0.252 0.748
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0376     0.9875 0.996 0.004
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     1  0.1184     0.9851 0.984 0.016
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0672     0.9868 0.992 0.008
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.1184     0.9714 0.016 0.984
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0938     0.9702 0.012 0.988
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.9878 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0672     0.9868 0.992 0.008
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.0938     0.9829 0.988 0.012
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.9878 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000     0.9878 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.1184     0.9714 0.016 0.984
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     2  0.2423     0.9573 0.040 0.960
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.1414     0.9699 0.020 0.980
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.9878 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.0938     0.9702 0.012 0.988
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.9878 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.9878 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.0000     0.9878 1.000 0.000
#> 1122039D-5785-4F70-9916-17C585453512     2  0.0672     0.9642 0.008 0.992
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0376     0.9875 0.996 0.004
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0376     0.9875 0.996 0.004
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.1184     0.9714 0.016 0.984
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.1184     0.9714 0.016 0.984
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.3733     0.9215 0.072 0.928
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0000     0.9878 1.000 0.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.0672     0.9642 0.008 0.992
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0938     0.9829 0.988 0.012
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0376     0.9875 0.996 0.004
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0938     0.9846 0.988 0.012
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0672     0.9868 0.992 0.008
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.1184     0.9714 0.016 0.984
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.9878 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.1184     0.9714 0.016 0.984
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0938     0.9829 0.988 0.012
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0672     0.9868 0.992 0.008
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0376     0.9875 0.996 0.004
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.1184     0.9851 0.984 0.016
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.1184     0.9714 0.016 0.984
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0376     0.9875 0.996 0.004
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0672     0.9850 0.992 0.008
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.9878 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0672     0.9868 0.992 0.008
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.1414     0.9699 0.020 0.980
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0376     0.9872 0.996 0.004
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.1184     0.9685 0.016 0.984
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.1184     0.9817 0.984 0.016
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.1184     0.9714 0.016 0.984
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0672     0.9868 0.992 0.008
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0376     0.9875 0.996 0.004
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0938     0.9829 0.988 0.012
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0672     0.9868 0.992 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.673           0.871       0.935         0.5000 0.500   0.500
#> 3 3 0.723           0.808       0.910         0.3263 0.694   0.463
#> 4 4 0.536           0.593       0.787         0.0796 0.742   0.406
#> 5 5 0.587           0.559       0.774         0.0877 0.873   0.591
#> 6 6 0.660           0.531       0.759         0.0384 0.885   0.565

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0000     0.9282 0.000 1.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.1843     0.9190 0.972 0.028
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.1843     0.9246 0.028 0.972
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.9970     0.2025 0.468 0.532
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.9970     0.0458 0.532 0.468
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.5629     0.8367 0.132 0.868
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.1633     0.9257 0.024 0.976
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.1414     0.9255 0.980 0.020
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.6343     0.8272 0.160 0.840
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.1843     0.9246 0.028 0.972
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0376     0.9279 0.004 0.996
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.5178     0.8612 0.884 0.116
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.6148     0.8277 0.152 0.848
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.0376     0.9307 0.996 0.004
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.0938     0.9268 0.988 0.012
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.7453     0.7624 0.788 0.212
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.1843     0.9190 0.972 0.028
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0672     0.9273 0.008 0.992
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.6531     0.8112 0.168 0.832
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.9282 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000     0.9282 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.1184     0.9249 0.016 0.984
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.9311 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0376     0.9279 0.004 0.996
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000     0.9311 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.9282 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.2236     0.9211 0.036 0.964
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.1633     0.9212 0.976 0.024
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.5178     0.8612 0.884 0.116
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.1414     0.9255 0.980 0.020
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.3274     0.9041 0.940 0.060
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.9282 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.9850     0.3275 0.428 0.572
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.1184     0.9271 0.984 0.016
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.9732     0.3964 0.596 0.404
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.1843     0.9190 0.972 0.028
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.1414     0.9234 0.980 0.020
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0938     0.9281 0.988 0.012
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.9311 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.6048     0.8316 0.148 0.852
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.1414     0.9255 0.980 0.020
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000     0.9311 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.9282 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.9311 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.1843     0.9190 0.972 0.028
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.1843     0.9246 0.028 0.972
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.9282 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.1184     0.9250 0.984 0.016
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.9248     0.5499 0.660 0.340
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.5842     0.8394 0.140 0.860
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0376     0.9304 0.996 0.004
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.6148     0.8285 0.848 0.152
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0938     0.9262 0.012 0.988
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.9896     0.2916 0.560 0.440
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.9311 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.1414     0.9231 0.980 0.020
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.9282 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.1843     0.9190 0.972 0.028
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.2043     0.9229 0.032 0.968
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.6531     0.8112 0.168 0.832
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.1184     0.9268 0.984 0.016
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.5946     0.8357 0.144 0.856
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000     0.9311 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0376     0.9304 0.996 0.004
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.6438     0.8214 0.836 0.164
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.1843     0.9246 0.028 0.972
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000     0.9282 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.9311 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0938     0.9281 0.988 0.012
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.9311 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.1184     0.9249 0.016 0.984
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.1184     0.9273 0.016 0.984
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0672     0.9273 0.008 0.992
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.9282 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.1843     0.9246 0.028 0.972
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.7602     0.7054 0.780 0.220
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.2603     0.9163 0.044 0.956
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0000     0.9282 0.000 1.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.6343     0.8224 0.840 0.160
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.1633     0.9257 0.024 0.976
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0000     0.9311 1.000 0.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.9282 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000     0.9311 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.1414     0.9267 0.020 0.980
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000     0.9311 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.9282 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.9311 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.1843     0.9246 0.028 0.972
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.9311 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.4815     0.8722 0.104 0.896
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.9311 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.6247     0.8250 0.844 0.156
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000     0.9311 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.2603     0.9122 0.044 0.956
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000     0.9311 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0376     0.9279 0.004 0.996
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.6712     0.8028 0.176 0.824
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000     0.9282 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.2423     0.9132 0.960 0.040
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.1633     0.9220 0.024 0.976
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.9311 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.9311 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.3274     0.9104 0.060 0.940
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.9282 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0376     0.9304 0.996 0.004
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.1843     0.9246 0.028 0.972
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.2603     0.9081 0.956 0.044
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.6623     0.8088 0.828 0.172
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0376     0.9279 0.004 0.996
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.9311 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.1843     0.9190 0.972 0.028
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.4022     0.8827 0.920 0.080
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0672     0.9273 0.008 0.992
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.7528     0.7572 0.784 0.216
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.7056     0.7502 0.808 0.192
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0672     0.9273 0.008 0.992
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.7745     0.7029 0.228 0.772
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.1414     0.9236 0.020 0.980
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.9775     0.3663 0.588 0.412
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0376     0.9304 0.996 0.004
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000     0.9311 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.9311 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.8267     0.6932 0.260 0.740
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.1843     0.9246 0.028 0.972
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000     0.9282 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.1414     0.9231 0.980 0.020
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.1633     0.9212 0.976 0.024
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.9170     0.5661 0.668 0.332
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.9311 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.0000     0.9282 0.000 1.000
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.4022     0.8902 0.920 0.080
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0672     0.9273 0.008 0.992
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.3584     0.9012 0.932 0.068
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.7219     0.7769 0.800 0.200
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.9311 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.1843     0.9246 0.028 0.972
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.1843     0.9190 0.972 0.028
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.5519     0.8507 0.128 0.872
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000     0.9311 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.9282 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.1843     0.9246 0.028 0.972
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.9896     0.2936 0.560 0.440
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.9282 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.9282 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000     0.9311 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.9282 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0672     0.9273 0.008 0.992
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0376     0.9304 0.996 0.004
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.1843     0.9246 0.028 0.972
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.9311 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.9282 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.1843     0.9246 0.028 0.972
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.2043     0.9229 0.032 0.968
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.9311 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.2043     0.9229 0.032 0.968
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0376     0.9304 0.996 0.004
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.9311 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.2423     0.9163 0.960 0.040
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.6887     0.7788 0.184 0.816
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.9282 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0376     0.9304 0.996 0.004
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.9311 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0938     0.9281 0.988 0.012
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.9311 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0376     0.9304 0.996 0.004
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.1414     0.9236 0.020 0.980
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000     0.9311 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.6623     0.8087 0.828 0.172
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0376     0.9304 0.996 0.004
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.9311 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.1843     0.9190 0.972 0.028
#> C8820FA6-3531-4515-A102-19100775E767     1  0.1843     0.9190 0.972 0.028
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.4431     0.8808 0.908 0.092
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.2948     0.9077 0.052 0.948
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.9282 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.9311 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.4562     0.8862 0.904 0.096
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.6623     0.8094 0.828 0.172
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.1843     0.9246 0.028 0.972
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0376     0.9284 0.004 0.996
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.4690     0.8710 0.100 0.900
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.9311 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.6148     0.8274 0.152 0.848
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.0376     0.9307 0.996 0.004
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.9311 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.1843     0.9190 0.972 0.028
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.2948     0.9078 0.052 0.948
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.9282 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0376     0.9304 0.996 0.004
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.4431     0.8810 0.908 0.092
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0376     0.9279 0.004 0.996
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.6343     0.8212 0.840 0.160
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.0672     0.9283 0.008 0.992
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.7139     0.7681 0.196 0.804
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.4562     0.8901 0.096 0.904
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0376     0.9279 0.004 0.996
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.9282 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0376     0.9279 0.004 0.996
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.2043     0.9212 0.968 0.032
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.1843     0.9246 0.028 0.972
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000     0.9311 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.1843     0.9246 0.028 0.972
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.3114     0.9066 0.944 0.056
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.1414     0.9231 0.980 0.020
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.7376     0.7680 0.792 0.208
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.1843     0.9190 0.972 0.028
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.9282 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.9311 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0376     0.9304 0.996 0.004
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.6712     0.8044 0.824 0.176
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000     0.9282 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.0672     0.9299 0.992 0.008
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.6438     0.8169 0.836 0.164
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.1843     0.9190 0.972 0.028
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0376     0.9304 0.996 0.004
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.4690     0.8706 0.100 0.900
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.7815     0.7341 0.232 0.768
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.1633     0.9243 0.976 0.024
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.9282 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.8016     0.7167 0.244 0.756
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.0000     0.9282 0.000 1.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.1843     0.9190 0.972 0.028
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.2236     0.9243 0.036 0.964
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.9311 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.1843     0.9246 0.028 0.972
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.1843     0.9246 0.028 0.972
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.9311 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.9282 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.3114     0.9074 0.944 0.056
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0376     0.9304 0.996 0.004
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0672     0.9273 0.008 0.992
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0376     0.9279 0.004 0.996
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.9933     0.1178 0.452 0.548
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.6712     0.8054 0.824 0.176
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.9311 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.3733     0.8957 0.928 0.072
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.6343     0.8211 0.840 0.160
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0376     0.9279 0.004 0.996
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.3114     0.9084 0.056 0.944
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0376     0.9304 0.996 0.004
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.7674     0.7463 0.776 0.224
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.9311 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.2423     0.9161 0.960 0.040
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.2423     0.9189 0.040 0.960
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.2948     0.9077 0.052 0.948
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.1633     0.9220 0.024 0.976
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0672     0.9273 0.008 0.992
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.1843     0.9246 0.028 0.972
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.9608     0.4492 0.616 0.384
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.1414     0.9265 0.020 0.980
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.6148     0.8286 0.848 0.152
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.5178     0.8609 0.116 0.884
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.1414     0.9265 0.020 0.980
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0376     0.9279 0.004 0.996
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.1633     0.9240 0.976 0.024
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.3879     0.8866 0.924 0.076
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.6801     0.8004 0.820 0.180
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.2236     0.9182 0.036 0.964
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.2236     0.9167 0.036 0.964
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.1414     0.9255 0.980 0.020
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0376     0.9284 0.004 0.996
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.0000     0.9311 1.000 0.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.4161     0.8870 0.916 0.084
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0938     0.9262 0.012 0.988
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.7139     0.7809 0.196 0.804
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.1843     0.9246 0.028 0.972
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.1633     0.9257 0.024 0.976
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.3114     0.9067 0.944 0.056
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000     0.9311 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000     0.9311 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.4939     0.8678 0.108 0.892
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.1843     0.9246 0.028 0.972
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.6247     0.8235 0.156 0.844
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0672     0.9282 0.008 0.992
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0938     0.9262 0.012 0.988
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.7376     0.7676 0.792 0.208
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.1843     0.9246 0.028 0.972
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.7299     0.7731 0.796 0.204
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.1184     0.9272 0.016 0.984
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.1843     0.9246 0.028 0.972
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.9311 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0376     0.9279 0.004 0.996
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.0672     0.9273 0.008 0.992
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.1633     0.9213 0.976 0.024
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.6712     0.8033 0.176 0.824
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.9282 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000     0.9282 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.9732     0.3969 0.596 0.404
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0672     0.9273 0.008 0.992
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.1414     0.9265 0.020 0.980
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0672     0.9293 0.992 0.008
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.1633     0.9257 0.024 0.976
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.1843     0.9190 0.972 0.028
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.5059     0.8646 0.112 0.888
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.7602     0.7507 0.220 0.780
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0376     0.9284 0.004 0.996
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.1843     0.9246 0.028 0.972
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.5946     0.8360 0.856 0.144
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.4298     0.8748 0.912 0.088
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.1414     0.9231 0.980 0.020
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.9311 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.2236     0.9152 0.964 0.036
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.1414     0.9265 0.020 0.980
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.1184     0.9272 0.016 0.984
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.5737     0.8441 0.136 0.864
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.1843     0.9246 0.028 0.972
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.1414     0.9255 0.980 0.020
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.1633     0.9257 0.024 0.976
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.5629     0.8465 0.132 0.868
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.1843     0.9190 0.972 0.028
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.1843     0.9246 0.028 0.972
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.9311 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0376     0.9279 0.004 0.996
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.9311 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0938     0.9267 0.988 0.012
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000     0.9282 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000     0.9311 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.1843     0.9246 0.028 0.972
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.9282 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.1843     0.9246 0.028 0.972
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.7056     0.7592 0.192 0.808
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.7299     0.7336 0.796 0.204
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.2423     0.9162 0.960 0.040
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.5946     0.8407 0.144 0.856
#> E1833486-2998-4804-A535-EBF25A992392     2  0.1843     0.9246 0.028 0.972
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.9282 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.9311 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.8386     0.6804 0.268 0.732
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000     0.9282 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.1184     0.9272 0.016 0.984
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.9282 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000     0.9311 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.1184     0.9271 0.984 0.016
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.1843     0.9246 0.028 0.972
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0376     0.9284 0.004 0.996
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.1843     0.9246 0.028 0.972
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0376     0.9304 0.996 0.004
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.9282 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.5059     0.8653 0.112 0.888
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.9795     0.2044 0.584 0.416
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.1843     0.9246 0.028 0.972
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.9732     0.3973 0.596 0.404
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.1633     0.9212 0.976 0.024
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.8661     0.5914 0.288 0.712
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.1843     0.9246 0.028 0.972
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.9311 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.8555     0.6097 0.280 0.720
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.9996     0.0728 0.488 0.512
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0938     0.9262 0.012 0.988
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.2778     0.9117 0.952 0.048
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.9282 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.9282 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.1843     0.9246 0.028 0.972
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.8813     0.6278 0.700 0.300
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.9282 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000     0.9311 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.4298     0.8863 0.088 0.912
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.1843     0.9246 0.028 0.972
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.9608     0.3492 0.384 0.616
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.1414     0.9233 0.980 0.020
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.9282 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.9282 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000     0.9311 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.1843     0.9202 0.028 0.972
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.1843     0.9246 0.028 0.972
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.9311 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.1633     0.9220 0.024 0.976
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.9311 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9686     0.3127 0.396 0.604
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.9311 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.4939     0.8678 0.108 0.892
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0000     0.9311 1.000 0.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.6623     0.8088 0.828 0.172
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.1843     0.9246 0.028 0.972
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.6247     0.8239 0.156 0.844
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.1184     0.9249 0.016 0.984
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0376     0.9279 0.004 0.996
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.5294     0.8527 0.120 0.880
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.6048     0.8132 0.852 0.148
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     1  0.9209     0.4728 0.664 0.336
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.7376     0.7655 0.208 0.792
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.1843     0.9190 0.972 0.028
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.9282 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.9311 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.9311 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0000     0.9311 1.000 0.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000     0.9311 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.1843     0.9246 0.028 0.972
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.7745     0.7392 0.228 0.772
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0000     0.9282 0.000 1.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0376     0.9279 0.004 0.996
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.9282 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.1633     0.9213 0.976 0.024
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.6623     0.8090 0.828 0.172
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0376     0.9304 0.996 0.004
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.9311 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.9282 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.3274     0.9041 0.940 0.060
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.9311 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.9311 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000     0.9311 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.9311 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.2043     0.9229 0.032 0.968
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.8555     0.6112 0.280 0.720
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.1843     0.9190 0.972 0.028
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0000     0.9311 1.000 0.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.9311 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0938     0.9277 0.012 0.988
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000     0.9311 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.1633     0.9240 0.976 0.024
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.9393     0.5143 0.644 0.356
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000     0.9311 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000     0.9311 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.5408     0.8549 0.876 0.124
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000     0.9311 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.1843     0.9190 0.972 0.028
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.1843     0.9190 0.972 0.028
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.1414     0.9265 0.020 0.980
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.4161     0.8863 0.084 0.916
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0376     0.9304 0.996 0.004
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.9282 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.9323     0.5328 0.652 0.348
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.1843     0.9246 0.028 0.972
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.9311 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0376     0.9279 0.004 0.996
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.1843     0.9190 0.972 0.028
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.9311 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.0672     0.9299 0.992 0.008
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.9282 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.8861     0.5466 0.696 0.304
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.9311 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.8081     0.7125 0.752 0.248
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0376     0.9304 0.996 0.004
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.9311 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0938     0.9262 0.012 0.988
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.9282 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.2043     0.9172 0.968 0.032
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  1.0000    -0.0676 0.496 0.504
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.9311 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.9970     0.1979 0.532 0.468
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.1843     0.9246 0.028 0.972
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.5737     0.8434 0.864 0.136
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.1843     0.9246 0.028 0.972
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.1843     0.9246 0.028 0.972
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.1184     0.9268 0.984 0.016
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.2043     0.9202 0.968 0.032
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0376     0.9304 0.996 0.004
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.9754     0.3841 0.408 0.592
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.6887     0.7943 0.184 0.816
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.4815     0.8717 0.896 0.104
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.1633     0.9257 0.024 0.976
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.9311 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0376     0.9279 0.004 0.996
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0672     0.9273 0.008 0.992
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.9311 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.6048     0.8321 0.852 0.148
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.7056     0.7590 0.192 0.808
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.9311 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.1184     0.9271 0.984 0.016
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.8713     0.6396 0.292 0.708
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.1414     0.9231 0.980 0.020
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.1843     0.9190 0.972 0.028
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.9311 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.6973     0.7892 0.188 0.812
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.9311 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.9311 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.6801     0.8010 0.820 0.180
#> 1122039D-5785-4F70-9916-17C585453512     2  0.4431     0.8800 0.092 0.908
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.2948     0.9092 0.948 0.052
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.7883     0.7301 0.764 0.236
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.5629     0.8466 0.132 0.868
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9087     0.5801 0.324 0.676
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.4022     0.8901 0.080 0.920
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.1633     0.9212 0.976 0.024
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.7056     0.7993 0.192 0.808
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0376     0.9304 0.996 0.004
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.9311 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.1843     0.9246 0.028 0.972
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0000     0.9311 1.000 0.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.6438     0.8157 0.164 0.836
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.9311 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.9754     0.3857 0.408 0.592
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.8386     0.6815 0.732 0.268
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.2778     0.9115 0.952 0.048
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.6531     0.8130 0.832 0.168
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.2423     0.9186 0.040 0.960
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.6048     0.8315 0.148 0.852
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.9311 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.2603     0.9140 0.956 0.044
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.9311 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.9311 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.1843     0.9190 0.972 0.028
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0376     0.9304 0.996 0.004
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.9282 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.1633     0.9257 0.024 0.976
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0938     0.9262 0.012 0.988
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0938     0.9285 0.988 0.012
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.1633     0.9212 0.976 0.024
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0376     0.9304 0.996 0.004
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.9311 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.368           0.752       0.882         0.2860 0.742   0.742
#> 3 3 0.226           0.537       0.792         0.5095 0.916   0.888
#> 4 4 0.271           0.502       0.748         0.1699 0.874   0.812
#> 5 5 0.283           0.456       0.733         0.1154 0.940   0.893
#> 6 6 0.304           0.466       0.698         0.0866 0.919   0.845

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.3733    0.85340 0.928 0.072
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.0000    0.87216 1.000 0.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.9393    0.65047 0.356 0.644
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.9815    0.52319 0.420 0.580
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.0672    0.87322 0.992 0.008
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.8763    0.43550 0.704 0.296
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     1  0.6247    0.75319 0.844 0.156
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000    0.87216 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.8713    0.52974 0.708 0.292
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.5519    0.73678 0.128 0.872
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     1  0.6438    0.76386 0.836 0.164
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0376    0.87243 0.996 0.004
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     1  0.6438    0.76239 0.836 0.164
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.1184    0.87221 0.984 0.016
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.4939    0.78195 0.892 0.108
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.2778    0.86428 0.952 0.048
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.0000    0.87216 1.000 0.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.9850    0.52451 0.428 0.572
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.0672    0.87322 0.992 0.008
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     1  0.7139    0.71901 0.804 0.196
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000    0.68050 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     1  0.4298    0.84361 0.912 0.088
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000    0.87216 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.9922    0.45372 0.448 0.552
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000    0.87216 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     1  0.9286    0.38282 0.656 0.344
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.9933    0.47544 0.452 0.548
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.2236    0.86844 0.964 0.036
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.2603    0.85029 0.956 0.044
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000    0.87216 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.6801    0.75427 0.820 0.180
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     1  0.7139    0.71901 0.804 0.196
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.9087    0.67612 0.324 0.676
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.1184    0.87221 0.984 0.016
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.1414    0.87262 0.980 0.020
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.0000    0.87216 1.000 0.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.0000    0.87216 1.000 0.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.8909    0.44928 0.692 0.308
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000    0.87216 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.1633    0.69733 0.024 0.976
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0000    0.87216 1.000 0.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000    0.87216 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     1  0.2043    0.87001 0.968 0.032
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000    0.87216 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.0000    0.87216 1.000 0.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.6973    0.74125 0.188 0.812
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000    0.68050 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.3274    0.85945 0.940 0.060
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.1633    0.87025 0.976 0.024
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     1  0.1414    0.87242 0.980 0.020
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.1843    0.87159 0.972 0.028
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.4022    0.82807 0.920 0.080
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.9795    0.53120 0.416 0.584
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.4298    0.83952 0.912 0.088
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.1184    0.86788 0.984 0.016
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000    0.87216 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     1  0.4690    0.83131 0.900 0.100
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.0000    0.87216 1.000 0.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.6343    0.77087 0.840 0.160
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     1  0.0672    0.87322 0.992 0.008
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.2043    0.85863 0.968 0.032
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     1  0.5629    0.80524 0.868 0.132
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000    0.87216 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000    0.87216 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.5294    0.76558 0.880 0.120
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.5519    0.73678 0.128 0.872
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.4298    0.84189 0.912 0.088
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0672    0.87319 0.992 0.008
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.6623    0.72832 0.828 0.172
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000    0.87216 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.9866    0.50243 0.432 0.568
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.0672    0.87307 0.992 0.008
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     1  0.7056    0.73150 0.808 0.192
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.9795    0.53120 0.416 0.584
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.7219    0.71656 0.800 0.200
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.8955    0.30461 0.688 0.312
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.9866    0.50532 0.432 0.568
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     1  0.1184    0.87221 0.984 0.016
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.7815    0.73248 0.232 0.768
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.8955    0.70095 0.312 0.688
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0000    0.87216 1.000 0.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     1  0.8813    0.51182 0.700 0.300
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000    0.87216 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.8713    0.52961 0.708 0.292
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000    0.87216 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     1  0.3274    0.85529 0.940 0.060
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000    0.87216 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.6973    0.74125 0.188 0.812
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0376    0.87252 0.996 0.004
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     1  0.4690    0.83038 0.900 0.100
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.1184    0.87221 0.984 0.016
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.0376    0.87243 0.996 0.004
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000    0.87216 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     1  0.6801    0.74293 0.820 0.180
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0376    0.87243 0.996 0.004
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.6623    0.75231 0.828 0.172
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     1  0.5629    0.80524 0.868 0.132
#> 31322670-76A2-4308-A71F-D8E00049519D     1  0.6801    0.74294 0.820 0.180
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.9427    0.12915 0.640 0.360
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     1  0.5946    0.79215 0.856 0.144
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.1184    0.87221 0.984 0.016
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0376    0.87241 0.996 0.004
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  0.1184    0.87213 0.984 0.016
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     1  0.9983   -0.20339 0.524 0.476
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.4815    0.78607 0.896 0.104
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.4431    0.72759 0.092 0.908
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.9775    0.55336 0.412 0.588
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.1633    0.87115 0.976 0.024
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     1  0.5737    0.79887 0.864 0.136
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000    0.87216 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.0938    0.87338 0.988 0.012
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.1843    0.87101 0.972 0.028
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     1  0.3431    0.85672 0.936 0.064
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0938    0.87287 0.988 0.012
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.0672    0.87322 0.992 0.008
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     1  0.6531    0.75754 0.832 0.168
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0376    0.87243 0.996 0.004
#> 9980293D-AF0A-4215-9688-C576B1F8B519     1  0.7376    0.70709 0.792 0.208
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  1.0000   -0.30765 0.500 0.500
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000    0.87216 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.2236    0.86672 0.964 0.036
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000    0.87216 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.2423    0.86475 0.960 0.040
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.5519    0.73678 0.128 0.872
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     1  0.8955    0.47207 0.688 0.312
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.4690    0.79270 0.900 0.100
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.0672    0.87299 0.992 0.008
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.0376    0.87243 0.996 0.004
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000    0.87216 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.1633    0.69733 0.024 0.976
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0376    0.87243 0.996 0.004
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     1  0.6531    0.75754 0.832 0.168
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.8443    0.57677 0.728 0.272
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.2236    0.86306 0.964 0.036
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000    0.87216 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.3733    0.72028 0.072 0.928
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.8955    0.30461 0.688 0.312
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     1  0.7376    0.70709 0.792 0.208
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000    0.87216 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     1  0.6623    0.75333 0.828 0.172
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.9393    0.64401 0.356 0.644
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.1843    0.87158 0.972 0.028
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     1  0.5059    0.82456 0.888 0.112
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     1  0.8207    0.60923 0.744 0.256
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.3431    0.85575 0.936 0.064
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     1  0.8608    0.55090 0.716 0.284
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     1  0.6712    0.74843 0.824 0.176
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000    0.87216 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.9710    0.57042 0.400 0.600
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000    0.87216 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     1  0.8955    0.47207 0.688 0.312
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.6247    0.74060 0.156 0.844
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.7602    0.68068 0.780 0.220
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000    0.87216 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0672    0.87308 0.992 0.008
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000    0.87216 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000    0.87216 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0938    0.87270 0.988 0.012
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.3431    0.85829 0.936 0.064
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     1  0.3274    0.85529 0.940 0.060
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000    0.87216 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000    0.87216 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.1843    0.86121 0.972 0.028
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000    0.87216 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.4815    0.82883 0.896 0.104
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     1  0.6623    0.75837 0.828 0.172
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.5946    0.78880 0.856 0.144
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.2948    0.85173 0.948 0.052
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0672    0.87087 0.992 0.008
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0376    0.87252 0.996 0.004
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.0000    0.87216 1.000 0.000
#> C8820FA6-3531-4515-A102-19100775E767     1  0.2603    0.86668 0.956 0.044
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.5737    0.74076 0.864 0.136
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     1  0.4562    0.83702 0.904 0.096
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  1.0000    0.29020 0.500 0.500
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000    0.87216 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.0376    0.87243 0.996 0.004
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.4690    0.83107 0.900 0.100
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.9850    0.51060 0.428 0.572
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.8327    0.59141 0.736 0.264
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.5519    0.73678 0.128 0.872
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000    0.87216 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.9087    0.67612 0.324 0.676
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.8555    0.55867 0.720 0.280
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0938    0.87338 0.988 0.012
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.0000    0.87216 1.000 0.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     1  0.4690    0.83413 0.900 0.100
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     1  0.6801    0.74294 0.820 0.180
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.3431    0.83903 0.936 0.064
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.2236    0.86873 0.964 0.036
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     1  0.6623    0.75837 0.828 0.172
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.0376    0.87243 0.996 0.004
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.1184    0.87221 0.984 0.016
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     1  0.8661    0.53929 0.712 0.288
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     1  0.6148    0.78023 0.848 0.152
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     1  0.4161    0.84301 0.916 0.084
#> E92F7290-E334-4304-A356-C56B3EE15279     1  0.6973    0.73403 0.812 0.188
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.9661    0.58640 0.392 0.608
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.2603    0.86668 0.956 0.044
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.8144    0.72692 0.252 0.748
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0938    0.87277 0.988 0.012
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.8955    0.46974 0.688 0.312
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.1633    0.86882 0.976 0.024
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.0000    0.87216 1.000 0.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.3114    0.84021 0.944 0.056
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.0000    0.87216 1.000 0.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     1  0.8327    0.59759 0.736 0.264
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000    0.87216 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  1.0000   -0.36985 0.504 0.496
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.2236    0.86325 0.964 0.036
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     1  0.8327    0.59141 0.736 0.264
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.0376    0.87243 0.996 0.004
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.6438    0.71631 0.836 0.164
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.0672    0.87322 0.992 0.008
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000    0.87216 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.5842    0.80201 0.860 0.140
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     1  0.0672    0.87271 0.992 0.008
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.0938    0.87321 0.988 0.012
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     1  0.9170    0.42248 0.668 0.332
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     1  0.0000    0.87216 1.000 0.000
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.5178    0.82096 0.884 0.116
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.0000    0.87216 1.000 0.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.5294    0.73456 0.120 0.880
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000    0.87216 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.9000    0.45855 0.684 0.316
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.3733    0.72131 0.072 0.928
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000    0.87216 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     1  0.5059    0.82463 0.888 0.112
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.9993    0.41187 0.484 0.516
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.4022    0.81705 0.920 0.080
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     1  0.1414    0.87242 0.980 0.020
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.6623    0.75333 0.828 0.172
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0938    0.87191 0.988 0.012
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.4690    0.83107 0.900 0.100
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000    0.87216 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.4161    0.82361 0.916 0.084
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.0938    0.87334 0.988 0.012
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     1  0.6712    0.74843 0.824 0.176
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.5629    0.75942 0.868 0.132
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000    0.87216 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.5842    0.73967 0.140 0.860
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000    0.87216 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0376    0.87243 0.996 0.004
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.2043    0.87022 0.968 0.032
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     1  0.7950    0.64785 0.760 0.240
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     1  0.8144    0.61794 0.748 0.252
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     1  0.2423    0.86475 0.960 0.040
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.9881   -0.12543 0.564 0.436
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.8909    0.44928 0.692 0.308
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     1  0.9881    0.00209 0.564 0.436
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.5059    0.78599 0.888 0.112
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.1633    0.69733 0.024 0.976
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.8955    0.46974 0.688 0.312
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     1  0.2778    0.86291 0.952 0.048
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.0376    0.87243 0.996 0.004
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.0672    0.87271 0.992 0.008
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.6048    0.73075 0.852 0.148
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     1  0.8327    0.59141 0.736 0.264
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     1  0.5842    0.79419 0.860 0.140
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000    0.87216 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     1  0.6887    0.73793 0.816 0.184
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.0000    0.87216 1.000 0.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0672    0.87286 0.992 0.008
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     1  0.4298    0.84361 0.912 0.088
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.1843    0.87002 0.972 0.028
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     1  0.8813    0.50834 0.700 0.300
#> E36597D1-60C3-4EB8-867A-0E808599E300     1  0.3274    0.85952 0.940 0.060
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0376    0.87243 0.996 0.004
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000    0.87216 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000    0.87216 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     1  0.2043    0.87001 0.968 0.032
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.6973    0.74125 0.188 0.812
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     1  0.6048    0.78796 0.852 0.148
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0000    0.68050 0.000 1.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     1  0.6623    0.75231 0.828 0.172
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0376    0.87243 0.996 0.004
#> D249B589-22E5-4678-9757-FF6A7E4553E5     1  0.8813    0.50759 0.700 0.300
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0672    0.87272 0.992 0.008
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.8861    0.37607 0.696 0.304
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.8555    0.71324 0.280 0.720
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000    0.87216 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.9795    0.53120 0.416 0.584
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.6623    0.75333 0.828 0.172
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.9427    0.12915 0.640 0.360
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.9775    0.55336 0.412 0.588
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     1  0.4022    0.85001 0.920 0.080
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     1  0.4022    0.84407 0.920 0.080
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.7950    0.59543 0.760 0.240
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.9795    0.53120 0.416 0.584
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     1  0.9833    0.06383 0.576 0.424
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000    0.87216 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     1  0.8327    0.59141 0.736 0.264
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.7453    0.59321 0.788 0.212
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.9129    0.25959 0.672 0.328
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.0000    0.87216 1.000 0.000
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     1  0.3733    0.85451 0.928 0.072
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     1  0.8327    0.59141 0.736 0.264
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0376    0.87285 0.996 0.004
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.0938    0.87351 0.988 0.012
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0376    0.87243 0.996 0.004
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000    0.87216 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.0000    0.87216 1.000 0.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.1414    0.87195 0.980 0.020
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.8955    0.69643 0.312 0.688
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     1  0.9209    0.40853 0.664 0.336
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  0.5946    0.79065 0.856 0.144
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000    0.87216 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     1  0.9358    0.35313 0.648 0.352
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     1  0.4690    0.83131 0.900 0.100
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.0000    0.87216 1.000 0.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.9522    0.62252 0.372 0.628
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000    0.87216 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     1  0.4562    0.83246 0.904 0.096
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000    0.87216 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.4690    0.79270 0.900 0.100
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     1  0.7528    0.68780 0.784 0.216
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.1184    0.87221 0.984 0.016
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  1.0000   -0.30524 0.500 0.500
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     1  0.6801    0.74385 0.820 0.180
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.9815    0.06252 0.580 0.420
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.2778    0.86428 0.952 0.048
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.0000    0.87216 1.000 0.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0672    0.87272 0.992 0.008
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     1  0.6623    0.75631 0.828 0.172
#> E1833486-2998-4804-A535-EBF25A992392     1  0.7815    0.67022 0.768 0.232
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     1  0.9044    0.45166 0.680 0.320
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.1184    0.87221 0.984 0.016
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.9044    0.27852 0.680 0.320
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.6623    0.75231 0.828 0.172
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.1414    0.69471 0.020 0.980
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     1  0.4298    0.83908 0.912 0.088
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000    0.87216 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000    0.87216 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.9881    0.52066 0.436 0.564
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     1  0.9522    0.28840 0.628 0.372
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     1  0.9608    0.21047 0.616 0.384
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000    0.87216 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     1  0.6887    0.73793 0.816 0.184
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.9850    0.50422 0.428 0.572
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.2423    0.70396 0.040 0.960
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     1  0.9850    0.02393 0.572 0.428
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.2043    0.87034 0.968 0.032
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0376    0.87243 0.996 0.004
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.8661    0.70936 0.288 0.712
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.9608    0.60371 0.384 0.616
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000    0.87216 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.1843    0.87094 0.972 0.028
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.9209    0.66594 0.336 0.664
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     1  0.4562    0.83246 0.904 0.096
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.2236    0.86324 0.964 0.036
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     1  0.9000    0.46121 0.684 0.316
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0672    0.68503 0.008 0.992
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     1  0.8327    0.59141 0.736 0.264
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.1843    0.87072 0.972 0.028
#> 4326E7CF-426E-4352-9903-27BF06E76626     1  0.4815    0.82804 0.896 0.104
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0376    0.87243 0.996 0.004
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.7745    0.66971 0.772 0.228
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.3584    0.85161 0.932 0.068
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.2043    0.86572 0.968 0.032
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.1184    0.87221 0.984 0.016
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     1  0.6712    0.74843 0.824 0.176
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.5737    0.73322 0.136 0.864
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000    0.87216 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     1  0.6623    0.75333 0.828 0.172
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     1  0.3114    0.86074 0.944 0.056
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000    0.87216 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     1  0.8955    0.47954 0.688 0.312
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000    0.87216 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9608    0.59716 0.384 0.616
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0938    0.86955 0.988 0.012
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     1  0.6531    0.75938 0.832 0.168
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.1184    0.87221 0.984 0.016
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000    0.87216 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.8909    0.69484 0.308 0.692
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.9087    0.67612 0.324 0.676
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.6623    0.75231 0.828 0.172
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     1  0.5178    0.81767 0.884 0.116
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.7453    0.69682 0.788 0.212
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.2236    0.86623 0.964 0.036
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     1  0.0672    0.87322 0.992 0.008
#> E789661A-C027-405D-9F76-E6D52CE3018B     1  0.5737    0.79984 0.864 0.136
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.1184    0.87252 0.984 0.016
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     1  0.5178    0.82096 0.884 0.116
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000    0.87216 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000    0.87216 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0376    0.87261 0.996 0.004
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000    0.87216 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.7453    0.73981 0.212 0.788
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     1  0.4690    0.83442 0.900 0.100
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.3733    0.85340 0.928 0.072
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     1  0.9850    0.03410 0.572 0.428
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0672    0.68644 0.008 0.992
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.5737    0.74129 0.864 0.136
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0938    0.87270 0.988 0.012
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000    0.87216 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000    0.87216 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.9795    0.53120 0.416 0.584
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0376    0.87182 0.996 0.004
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000    0.87216 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000    0.87216 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000    0.87216 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0376    0.87243 0.996 0.004
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.5178    0.73516 0.116 0.884
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.7674    0.67894 0.776 0.224
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.0000    0.87216 1.000 0.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0376    0.87179 0.996 0.004
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000    0.87216 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     1  0.3431    0.85672 0.936 0.064
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000    0.87216 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.4690    0.83107 0.900 0.100
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.5178    0.80039 0.884 0.116
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000    0.87216 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.1184    0.87347 0.984 0.016
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.0938    0.87270 0.988 0.012
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.4562    0.79644 0.904 0.096
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.2423    0.86475 0.960 0.040
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.0672    0.87320 0.992 0.008
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     1  0.9170    0.43155 0.668 0.332
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     1  0.5946    0.79215 0.856 0.144
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.5519    0.75263 0.872 0.128
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     1  0.2423    0.86475 0.960 0.040
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.4939    0.81033 0.892 0.108
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.9209    0.66594 0.336 0.664
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000    0.87216 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     1  0.2423    0.86475 0.960 0.040
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.3733    0.82424 0.928 0.072
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0376    0.87199 0.996 0.004
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.2948    0.85937 0.948 0.052
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     1  0.6973    0.73013 0.812 0.188
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.0938    0.87338 0.988 0.012
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.3733    0.82480 0.928 0.072
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.5519    0.73678 0.128 0.872
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.9087    0.40579 0.676 0.324
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000    0.87216 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     1  0.7950    0.64785 0.760 0.240
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     1  0.6148    0.78365 0.848 0.152
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.0000    0.87216 1.000 0.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.9661    0.58014 0.392 0.608
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0376    0.87243 0.996 0.004
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.1184    0.87052 0.984 0.016
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.5178    0.73516 0.116 0.884
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0672    0.87272 0.992 0.008
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.6343    0.77087 0.840 0.160
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.8555    0.71324 0.280 0.720
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.1633    0.86622 0.976 0.024
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000    0.87216 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000    0.87216 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.2423    0.86475 0.960 0.040
#> 816CF68B-8476-4960-9F05-FB959A686323     1  0.6623    0.76271 0.828 0.172
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.1184    0.87293 0.984 0.016
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     1  0.9954   -0.12864 0.540 0.460
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000    0.87216 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     1  0.6623    0.75231 0.828 0.172
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     1  0.6531    0.76346 0.832 0.168
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.2043    0.85978 0.968 0.032
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0000    0.87216 1.000 0.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.9988    0.42286 0.480 0.520
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000    0.87216 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0672    0.87300 0.992 0.008
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.0672    0.87311 0.992 0.008
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000    0.87216 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000    0.87216 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.1184    0.86851 0.984 0.016
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.0672    0.87283 0.992 0.008
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000    0.87216 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0376    0.87243 0.996 0.004
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.6247    0.77630 0.844 0.156
#> 1122039D-5785-4F70-9916-17C585453512     2  0.1633    0.69733 0.024 0.976
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000    0.87216 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.1184    0.87221 0.984 0.016
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.9866    0.50243 0.432 0.568
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     1  0.2948    0.86047 0.948 0.052
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     1  0.4815    0.82761 0.896 0.104
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.1843    0.87012 0.972 0.028
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.1843    0.69955 0.028 0.972
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     2  1.0000    0.38117 0.496 0.504
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000    0.87216 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.9996    0.33689 0.488 0.512
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0000    0.87216 1.000 0.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     1  0.0672    0.87226 0.992 0.008
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000    0.87216 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.0938    0.87301 0.988 0.012
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.9710    0.57042 0.400 0.600
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000    0.87216 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0672    0.87272 0.992 0.008
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.6343    0.74702 0.840 0.160
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     1  0.3431    0.85675 0.936 0.064
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000    0.87216 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.2236    0.86325 0.964 0.036
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.1184    0.87221 0.984 0.016
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000    0.87216 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.0000    0.87216 1.000 0.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.1414    0.86603 0.980 0.020
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.9896    0.47769 0.440 0.560
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.3733    0.72028 0.072 0.928
#> A0C429D9-0638-4873-BFB4-00056AB4719F     1  0.8955    0.47207 0.688 0.312
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000    0.87216 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0376    0.87243 0.996 0.004
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.5946    0.78880 0.856 0.144
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000    0.87216 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.359           0.770       0.851         0.4681 0.517   0.517
#> 3 3 0.797           0.845       0.932         0.3239 0.781   0.612
#> 4 4 0.647           0.683       0.816         0.1151 0.910   0.777
#> 5 5 0.608           0.620       0.774         0.0709 0.951   0.853
#> 6 6 0.618           0.505       0.697         0.0569 0.909   0.713

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.5737     0.8711 0.136 0.864
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.6623     0.7168 0.828 0.172
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.6343     0.7382 0.160 0.840
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.5408     0.8688 0.124 0.876
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.9044     0.6139 0.320 0.680
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.5737     0.7700 0.864 0.136
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     1  0.5842     0.7686 0.860 0.140
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000     0.8863 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.9710     0.5669 0.400 0.600
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.9954     0.1438 0.460 0.540
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.5737     0.8711 0.136 0.864
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0000     0.8863 1.000 0.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.5737     0.8711 0.136 0.864
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.0000     0.8863 1.000 0.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.4815     0.8030 0.896 0.104
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0000     0.8863 1.000 0.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.8327     0.5809 0.736 0.264
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.8028 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.5737     0.8711 0.136 0.864
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.5737     0.8711 0.136 0.864
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.2043     0.8029 0.032 0.968
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.5737     0.8711 0.136 0.864
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.8863 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.5519     0.8702 0.128 0.872
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000     0.8863 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.5519     0.8702 0.128 0.872
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.5842     0.7686 0.860 0.140
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.8144     0.6009 0.748 0.252
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0000     0.8863 1.000 0.000
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000     0.8863 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.0000     0.8863 1.000 0.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.5737     0.8711 0.136 0.864
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000     0.8028 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000     0.8863 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0000     0.8863 1.000 0.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.8327     0.5809 0.736 0.264
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.5737     0.8711 0.136 0.864
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.5178     0.7891 0.884 0.116
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.8863 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.4161     0.7887 0.084 0.916
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0000     0.8863 1.000 0.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000     0.8863 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.5737     0.8711 0.136 0.864
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.8863 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.0376     0.8836 0.996 0.004
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.9248     0.4786 0.340 0.660
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.8028 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.5178     0.7824 0.884 0.116
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0000     0.8863 1.000 0.000
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.5737     0.8711 0.136 0.864
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.8863 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0000     0.8863 1.000 0.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.4815     0.8604 0.104 0.896
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0000     0.8863 1.000 0.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.8863 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000     0.8863 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.5519     0.8702 0.128 0.872
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.9815     0.2193 0.580 0.420
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.7950     0.5463 0.760 0.240
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.5737     0.8711 0.136 0.864
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000     0.8863 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.5737     0.8711 0.136 0.864
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000     0.8863 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.8863 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.4939     0.7967 0.892 0.108
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.8555     0.5913 0.280 0.720
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.5737     0.8711 0.136 0.864
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.8863 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.4939     0.7967 0.892 0.108
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.8863 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.5519     0.8702 0.128 0.872
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.6712     0.7067 0.824 0.176
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.5519     0.8702 0.128 0.872
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.4815     0.8604 0.104 0.896
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.9710     0.0518 0.600 0.400
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.5059     0.7743 0.112 0.888
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.9552     0.3958 0.376 0.624
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     1  0.0000     0.8863 1.000 0.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.9286     0.4700 0.344 0.656
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.2236     0.8025 0.036 0.964
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.1633     0.8681 0.976 0.024
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.5737     0.8711 0.136 0.864
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000     0.8863 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.5737     0.8711 0.136 0.864
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000     0.8863 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.5737     0.8711 0.136 0.864
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.8863 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.8267     0.6221 0.260 0.740
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.8863 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.5737     0.8711 0.136 0.864
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.8863 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.0000     0.8863 1.000 0.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.8327     0.5809 0.736 0.264
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.5737     0.8711 0.136 0.864
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000     0.8863 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.5737     0.8711 0.136 0.864
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.5737     0.8711 0.136 0.864
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.5737     0.8711 0.136 0.864
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.9460     0.4828 0.636 0.364
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.5737     0.8711 0.136 0.864
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.8863 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.8863 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  0.3584     0.8294 0.932 0.068
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.5408     0.8688 0.124 0.876
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.5178     0.7891 0.884 0.116
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.8267     0.6221 0.260 0.740
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.9608     0.5570 0.384 0.616
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0000     0.8863 1.000 0.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.5737     0.8711 0.136 0.864
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.8863 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.9661     0.3023 0.608 0.392
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.9954     0.0790 0.540 0.460
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.5737     0.8711 0.136 0.864
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000     0.8863 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.9323     0.4145 0.652 0.348
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.5737     0.8711 0.136 0.864
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000     0.8863 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.5519     0.8702 0.128 0.872
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.9710     0.0518 0.600 0.400
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.8863 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000     0.8863 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.8863 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.9963     0.0634 0.536 0.464
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.5842     0.7686 0.860 0.140
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.5519     0.8702 0.128 0.872
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0000     0.8863 1.000 0.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.1184     0.8746 0.984 0.016
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.0000     0.8863 1.000 0.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.8863 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.4562     0.7832 0.096 0.904
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0000     0.8863 1.000 0.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.5737     0.8711 0.136 0.864
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.9248     0.2744 0.660 0.340
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.0000     0.8863 1.000 0.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.8863 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.7056     0.7071 0.192 0.808
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.9988     0.2109 0.520 0.480
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.5737     0.8711 0.136 0.864
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000     0.8863 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.5737     0.8711 0.136 0.864
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.8555     0.5913 0.280 0.720
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.0000     0.8863 1.000 0.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.1414     0.8151 0.020 0.980
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.5737     0.8711 0.136 0.864
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000     0.8863 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.5629     0.8708 0.132 0.868
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.5737     0.8711 0.136 0.864
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.8863 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.5842     0.7686 0.860 0.140
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.8863 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.5519     0.8702 0.128 0.872
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.9323     0.4612 0.348 0.652
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.9710     0.0518 0.600 0.400
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.8863 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0000     0.8863 1.000 0.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.8863 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.8863 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000     0.8863 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.9323     0.5583 0.652 0.348
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.5737     0.8711 0.136 0.864
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000     0.8863 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.8863 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.8863 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.8863 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000     0.8863 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.5737     0.8711 0.136 0.864
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000     0.8863 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0000     0.8863 1.000 0.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000     0.8863 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.8863 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.9358     0.4052 0.648 0.352
#> C8820FA6-3531-4515-A102-19100775E767     1  0.9754     0.2562 0.592 0.408
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.4939     0.7967 0.892 0.108
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.5737     0.8711 0.136 0.864
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.8028 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.8863 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.0000     0.8863 1.000 0.000
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.0000     0.8863 1.000 0.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.8661     0.5786 0.288 0.712
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.5519     0.8702 0.128 0.872
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.8608     0.5847 0.284 0.716
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.8863 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.2948     0.8345 0.052 0.948
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.9795    -0.0176 0.584 0.416
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.8863 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.8443     0.5674 0.728 0.272
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.5737     0.8711 0.136 0.864
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.5737     0.8711 0.136 0.864
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0000     0.8863 1.000 0.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0000     0.8863 1.000 0.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.5629     0.8708 0.132 0.868
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.0000     0.8863 1.000 0.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.0938     0.8776 0.988 0.012
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.9000     0.6923 0.316 0.684
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     1  0.9710     0.0518 0.600 0.400
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.5737     0.8711 0.136 0.864
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.5629     0.8708 0.132 0.868
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.8028 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.7950     0.6200 0.760 0.240
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.7376     0.6892 0.208 0.792
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000     0.8863 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.9754     0.5510 0.408 0.592
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.8863 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.0672     0.8806 0.992 0.008
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.4815     0.8002 0.896 0.104
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.7815     0.6327 0.768 0.232
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.5519     0.8702 0.128 0.872
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.8863 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.5629     0.7737 0.868 0.132
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0000     0.8863 1.000 0.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.5519     0.8702 0.128 0.872
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.8386     0.5736 0.732 0.268
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.4939     0.7967 0.892 0.108
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.7139     0.6851 0.804 0.196
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.8863 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.0000     0.8863 1.000 0.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     1  0.9358     0.4050 0.648 0.352
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.0000     0.8863 1.000 0.000
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.5629     0.8708 0.132 0.868
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.9323     0.5534 0.348 0.652
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.6887     0.8421 0.184 0.816
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.8016     0.6138 0.756 0.244
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.8207     0.6278 0.256 0.744
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.8863 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  1.0000    -0.3248 0.500 0.500
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.4161     0.7887 0.084 0.916
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.8863 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.5629     0.8708 0.132 0.868
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.5629     0.7737 0.868 0.132
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000     0.8863 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.5737     0.8711 0.136 0.864
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.5737     0.8711 0.136 0.864
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000     0.8863 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000     0.8863 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.8863 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.5629     0.7737 0.868 0.132
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.0000     0.8863 1.000 0.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.5737     0.8711 0.136 0.864
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.0376     0.8836 0.996 0.004
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000     0.8863 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.9954     0.1438 0.460 0.540
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.8863 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0000     0.8863 1.000 0.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0000     0.8863 1.000 0.000
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.5629     0.8708 0.132 0.868
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.5737     0.8711 0.136 0.864
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     1  0.9963     0.0634 0.536 0.464
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.5737     0.7700 0.864 0.136
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.9933     0.1810 0.548 0.452
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.4161     0.7887 0.084 0.916
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.4939     0.7967 0.892 0.108
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.4161     0.7887 0.084 0.916
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.7883     0.7983 0.236 0.764
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.5737     0.8711 0.136 0.864
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.0000     0.8863 1.000 0.000
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.7745     0.6371 0.772 0.228
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.5629     0.7737 0.868 0.132
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.5737     0.8711 0.136 0.864
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.5737     0.8711 0.136 0.864
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000     0.8863 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.5842     0.8687 0.140 0.860
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.9850     0.1913 0.572 0.428
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0000     0.8863 1.000 0.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.5737     0.8711 0.136 0.864
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.5842     0.8682 0.140 0.860
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.9710     0.5669 0.400 0.600
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.8608     0.5500 0.284 0.716
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000     0.8863 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000     0.8863 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000     0.8863 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.5737     0.8711 0.136 0.864
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.8267     0.6221 0.260 0.740
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.5629     0.8708 0.132 0.868
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.4161     0.7887 0.084 0.916
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.5737     0.8711 0.136 0.864
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0000     0.8863 1.000 0.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.7602     0.8076 0.220 0.780
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000     0.8863 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.4161     0.7887 0.084 0.916
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.8267     0.6221 0.260 0.740
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.8863 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.5178     0.8656 0.116 0.884
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.5737     0.8711 0.136 0.864
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.9087     0.5640 0.676 0.324
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.6148     0.8480 0.152 0.848
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.8028 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.5737     0.8711 0.136 0.864
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.5737     0.7700 0.864 0.136
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.5519     0.8702 0.128 0.872
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.1414     0.8039 0.020 0.980
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.8863 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.5629     0.8708 0.132 0.868
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.2948     0.8576 0.948 0.052
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.5408     0.7665 0.124 0.876
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.8555     0.5532 0.720 0.280
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.1633     0.8176 0.024 0.976
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.5629     0.8708 0.132 0.868
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0000     0.8863 1.000 0.000
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.9323     0.2478 0.652 0.348
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000     0.8863 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.8863 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.9815     0.2193 0.580 0.420
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.0000     0.8863 1.000 0.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0938     0.8109 0.012 0.988
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.5737     0.8711 0.136 0.864
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  1.0000    -0.3248 0.500 0.500
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000     0.8863 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.5408     0.8690 0.124 0.876
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.5737     0.8711 0.136 0.864
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.8267     0.5877 0.740 0.260
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.6801     0.7195 0.180 0.820
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.8863 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.5737     0.8711 0.136 0.864
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.8863 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.5178     0.7919 0.884 0.116
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.5737     0.8711 0.136 0.864
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000     0.8863 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.9996     0.3294 0.488 0.512
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.5737     0.8711 0.136 0.864
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.6247     0.7417 0.156 0.844
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.0000     0.8863 1.000 0.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.9993    -0.0206 0.516 0.484
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0000     0.8863 1.000 0.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.5737     0.8711 0.136 0.864
#> E1833486-2998-4804-A535-EBF25A992392     1  0.6247     0.7059 0.844 0.156
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.5737     0.8711 0.136 0.864
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.8863 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.5059     0.7755 0.112 0.888
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.5737     0.8711 0.136 0.864
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.4161     0.7887 0.084 0.916
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     1  0.9427     0.3844 0.640 0.360
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000     0.8863 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.8863 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.8207     0.6278 0.256 0.744
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.8028 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.8267     0.6221 0.260 0.740
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.8863 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.5737     0.8711 0.136 0.864
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.4815     0.8604 0.104 0.896
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.7056     0.7071 0.192 0.808
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.8267     0.6221 0.260 0.740
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.4431     0.8058 0.908 0.092
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0376     0.8835 0.996 0.004
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.9358     0.4532 0.352 0.648
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.8386     0.6174 0.268 0.732
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.8863 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0000     0.8863 1.000 0.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.8555     0.5913 0.280 0.720
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.5737     0.8711 0.136 0.864
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0000     0.8863 1.000 0.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.5519     0.8702 0.128 0.872
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.8028 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.5842     0.8687 0.140 0.860
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.0000     0.8863 1.000 0.000
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.5737     0.8711 0.136 0.864
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000     0.8863 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.9988    -0.2614 0.520 0.480
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0000     0.8863 1.000 0.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.3274     0.8389 0.940 0.060
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000     0.8863 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.5737     0.8711 0.136 0.864
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.8028 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000     0.8863 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.5737     0.8711 0.136 0.864
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  1.0000     0.3191 0.500 0.500
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.8863 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.5737     0.8711 0.136 0.864
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.8863 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9323     0.4612 0.348 0.652
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.8863 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.5737     0.8711 0.136 0.864
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0000     0.8863 1.000 0.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000     0.8863 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.6973     0.7114 0.188 0.812
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000     0.8028 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.5737     0.8711 0.136 0.864
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.5737     0.8711 0.136 0.864
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.9710     0.0518 0.600 0.400
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.8327     0.5809 0.736 0.264
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.5737     0.8711 0.136 0.864
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.6887     0.8257 0.184 0.816
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.8327     0.5809 0.736 0.264
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.5737     0.8711 0.136 0.864
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.8863 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.8863 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0000     0.8863 1.000 0.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000     0.8863 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.7139     0.7028 0.196 0.804
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.5737     0.8711 0.136 0.864
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.5737     0.8711 0.136 0.864
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.5519     0.8702 0.128 0.872
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.8028 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.5842     0.7686 0.860 0.140
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0000     0.8863 1.000 0.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000     0.8863 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.8863 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.4815     0.8604 0.104 0.896
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000     0.8863 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.8863 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.8863 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000     0.8863 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.8863 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.9209     0.4870 0.336 0.664
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.9491     0.1771 0.632 0.368
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.8499     0.5608 0.724 0.276
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0000     0.8863 1.000 0.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.8863 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0672     0.8036 0.008 0.992
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000     0.8863 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.0000     0.8863 1.000 0.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.4939     0.7967 0.892 0.108
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000     0.8863 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000     0.8863 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.0000     0.8863 1.000 0.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000     0.8863 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.9833     0.2064 0.576 0.424
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.4562     0.8016 0.904 0.096
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0672     0.8037 0.008 0.992
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.5737     0.8711 0.136 0.864
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.4939     0.7967 0.892 0.108
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     1  0.9954     0.0790 0.540 0.460
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0000     0.8863 1.000 0.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.8267     0.6221 0.260 0.740
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.8863 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     1  0.9944     0.0942 0.544 0.456
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.4298     0.8127 0.912 0.088
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.8863 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.1184     0.8746 0.984 0.016
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.5737     0.8711 0.136 0.864
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.5737     0.8711 0.136 0.864
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.8863 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.5842     0.7686 0.860 0.140
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.4939     0.7967 0.892 0.108
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.8863 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.5519     0.8702 0.128 0.872
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.5737     0.8711 0.136 0.864
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.9044     0.4763 0.680 0.320
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.5842     0.7686 0.860 0.140
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.8863 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000     0.8863 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.8267     0.6221 0.260 0.740
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000     0.8863 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.9710     0.0518 0.600 0.400
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.7139     0.7028 0.196 0.804
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000     0.8863 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000     0.8863 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000     0.8863 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.9866     0.1799 0.568 0.432
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.5737     0.8711 0.136 0.864
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0000     0.8863 1.000 0.000
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.4562     0.7830 0.096 0.904
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.8863 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.6343     0.8583 0.160 0.840
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.5737     0.8711 0.136 0.864
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.8863 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0000     0.8863 1.000 0.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.5737     0.7700 0.864 0.136
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.8863 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000     0.8863 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.9963     0.0634 0.536 0.464
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000     0.8863 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000     0.8863 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.8863 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9775     0.2441 0.588 0.412
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.8863 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.8863 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.0000     0.8863 1.000 0.000
#> 1122039D-5785-4F70-9916-17C585453512     2  0.5294     0.7692 0.120 0.880
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000     0.8863 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0000     0.8863 1.000 0.000
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.5519     0.8702 0.128 0.872
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     1  0.9323     0.4145 0.652 0.348
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.5737     0.8711 0.136 0.864
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.4562     0.8016 0.904 0.096
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.6623     0.7273 0.172 0.828
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.5737     0.7700 0.864 0.136
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.8863 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.9358     0.4532 0.352 0.648
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0000     0.8863 1.000 0.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.5737     0.8711 0.136 0.864
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.8863 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.9963     0.0634 0.536 0.464
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.5842     0.7686 0.860 0.140
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000     0.8863 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0000     0.8863 1.000 0.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.5737     0.7700 0.864 0.136
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.5737     0.8711 0.136 0.864
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.8863 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.4690     0.8038 0.900 0.100
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.8863 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.8863 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.9286     0.4237 0.656 0.344
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000     0.8863 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.5178     0.8656 0.116 0.884
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.6623     0.7273 0.172 0.828
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.5519     0.8702 0.128 0.872
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.8863 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0000     0.8863 1.000 0.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000     0.8863 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.8863 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.704           0.808       0.925         0.4982 0.500   0.500
#> 3 3 0.777           0.832       0.932         0.3070 0.756   0.552
#> 4 4 0.772           0.797       0.908         0.1178 0.887   0.690
#> 5 5 0.696           0.644       0.814         0.0662 0.942   0.798
#> 6 6 0.708           0.465       0.740         0.0505 0.898   0.619

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0000    0.88900 0.000 1.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.9710    0.31264 0.600 0.400
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.1633    0.87357 0.024 0.976
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.0000    0.88900 0.000 1.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000    0.88900 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.0000    0.93329 1.000 0.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     1  0.8443    0.58691 0.728 0.272
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000    0.93329 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.8763    0.58698 0.296 0.704
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.9710    0.23892 0.600 0.400
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0000    0.88900 0.000 1.000
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0000    0.93329 1.000 0.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000    0.88900 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.0000    0.93329 1.000 0.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.9248    0.45148 0.660 0.340
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0000    0.93329 1.000 0.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.9710    0.31264 0.600 0.400
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000    0.88900 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.0000    0.88900 0.000 1.000
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000    0.88900 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000    0.88900 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000    0.88900 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000    0.93329 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000    0.88900 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000    0.93329 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000    0.88900 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.0000    0.93329 1.000 0.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.9710    0.31264 0.600 0.400
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0000    0.93329 1.000 0.000
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000    0.93329 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.0000    0.93329 1.000 0.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000    0.88900 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000    0.88900 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000    0.93329 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0000    0.93329 1.000 0.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.9710    0.31264 0.600 0.400
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000    0.88900 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000    0.93329 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000    0.93329 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.0000    0.88900 0.000 1.000
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0000    0.93329 1.000 0.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000    0.93329 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000    0.88900 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000    0.93329 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.6973    0.71686 0.812 0.188
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.9710    0.39622 0.400 0.600
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000    0.88900 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.9896    0.20070 0.560 0.440
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0000    0.93329 1.000 0.000
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.0000    0.88900 0.000 1.000
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000    0.93329 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0000    0.93329 1.000 0.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0000    0.88900 0.000 1.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0000    0.93329 1.000 0.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000    0.93329 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000    0.93329 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000    0.88900 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.9710    0.32086 0.400 0.600
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.9710    0.23892 0.600 0.400
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000    0.88900 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000    0.93329 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000    0.88900 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000    0.93329 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000    0.93329 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.9460    0.34015 0.636 0.364
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.9661    0.41318 0.392 0.608
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000    0.88900 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000    0.93329 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000    0.93329 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000    0.93329 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000    0.88900 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.9850    0.24515 0.428 0.572
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000    0.88900 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000    0.88900 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.9977    0.20026 0.472 0.528
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.0000    0.88900 0.000 1.000
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.9881    0.30549 0.436 0.564
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     1  0.9248    0.41298 0.660 0.340
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.9710    0.39622 0.400 0.600
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000    0.88900 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.2948    0.88335 0.948 0.052
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000    0.88900 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000    0.93329 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.0000    0.88900 0.000 1.000
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000    0.93329 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000    0.88900 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000    0.93329 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.8327    0.63339 0.264 0.736
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000    0.93329 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000    0.88900 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000    0.93329 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.0000    0.93329 1.000 0.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.9710    0.31264 0.600 0.400
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000    0.88900 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000    0.93329 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0000    0.88900 0.000 1.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000    0.88900 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000    0.88900 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.9661    0.34055 0.392 0.608
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000    0.88900 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000    0.93329 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000    0.93329 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  0.8713    0.55709 0.708 0.292
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000    0.88900 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000    0.93329 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.8861    0.57425 0.304 0.696
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.9248    0.51361 0.340 0.660
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0000    0.93329 1.000 0.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000    0.88900 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000    0.93329 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.4939    0.80047 0.108 0.892
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.2778    0.85410 0.048 0.952
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000    0.88900 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000    0.93329 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.9963    0.13352 0.464 0.536
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000    0.88900 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000    0.93329 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000    0.88900 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.9954    0.03606 0.540 0.460
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000    0.93329 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000    0.93329 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000    0.93329 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000    0.88900 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000    0.93329 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000    0.88900 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0000    0.93329 1.000 0.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.1414    0.91513 0.980 0.020
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.0000    0.93329 1.000 0.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000    0.93329 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.0000    0.88900 0.000 1.000
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0000    0.93329 1.000 0.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000    0.88900 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.9710    0.23892 0.600 0.400
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.0000    0.93329 1.000 0.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000    0.93329 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.4939    0.80752 0.108 0.892
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.7883    0.64308 0.236 0.764
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000    0.88900 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000    0.93329 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000    0.88900 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.9710    0.39622 0.400 0.600
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.0376    0.92968 0.996 0.004
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000    0.88900 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000    0.88900 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000    0.93329 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000    0.88900 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000    0.88900 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000    0.93329 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.2043    0.90284 0.968 0.032
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000    0.93329 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000    0.88900 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.9710    0.39622 0.400 0.600
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.9970    0.00531 0.532 0.468
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000    0.93329 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0000    0.93329 1.000 0.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000    0.93329 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000    0.93329 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000    0.93329 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.9954    0.14681 0.460 0.540
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000    0.88900 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000    0.93329 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000    0.93329 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000    0.93329 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000    0.93329 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000    0.93329 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000    0.88900 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000    0.93329 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0000    0.93329 1.000 0.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000    0.93329 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000    0.93329 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.9795    0.27847 0.416 0.584
#> C8820FA6-3531-4515-A102-19100775E767     2  0.9661    0.34084 0.392 0.608
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000    0.93329 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000    0.88900 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000    0.88900 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000    0.93329 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.0000    0.93329 1.000 0.000
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.0000    0.93329 1.000 0.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.9710    0.39622 0.400 0.600
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0000    0.88900 0.000 1.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.9686    0.40478 0.396 0.604
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000    0.93329 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000    0.88900 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.9775    0.36749 0.412 0.588
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000    0.93329 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.9795    0.26949 0.584 0.416
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000    0.88900 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000    0.88900 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0000    0.93329 1.000 0.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0000    0.93329 1.000 0.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000    0.88900 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.0000    0.93329 1.000 0.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.0000    0.93329 1.000 0.000
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.2778    0.85691 0.048 0.952
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.9710    0.39622 0.400 0.600
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000    0.88900 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000    0.88900 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000    0.88900 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.9686    0.32254 0.604 0.396
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.6712    0.74109 0.176 0.824
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000    0.93329 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.9710    0.39622 0.400 0.600
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000    0.93329 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.0672    0.92617 0.992 0.008
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000    0.93329 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.9710    0.31264 0.600 0.400
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000    0.88900 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000    0.93329 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0000    0.93329 1.000 0.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0000    0.93329 1.000 0.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000    0.88900 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.9754    0.30006 0.408 0.592
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.0000    0.93329 1.000 0.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.8608    0.56683 0.284 0.716
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000    0.93329 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.0000    0.93329 1.000 0.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.9896    0.20940 0.440 0.560
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.9323    0.49988 0.348 0.652
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000    0.88900 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.0000    0.88900 0.000 1.000
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.0000    0.88900 0.000 1.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.9710    0.31264 0.600 0.400
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.5408    0.79330 0.124 0.876
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000    0.93329 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.9710    0.39622 0.400 0.600
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000    0.88900 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000    0.93329 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000    0.88900 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.0000    0.93329 1.000 0.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000    0.93329 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000    0.88900 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0000    0.88900 0.000 1.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000    0.93329 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000    0.93329 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000    0.93329 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0000    0.93329 1.000 0.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.0000    0.93329 1.000 0.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000    0.88900 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.0938    0.92260 0.988 0.012
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000    0.93329 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.9754    0.21438 0.592 0.408
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000    0.93329 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0000    0.93329 1.000 0.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0000    0.93329 1.000 0.000
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000    0.88900 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000    0.88900 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.7299    0.68870 0.204 0.796
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.0000    0.93329 1.000 0.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.9710    0.23892 0.600 0.400
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000    0.88900 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0000    0.93329 1.000 0.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.0000    0.88900 0.000 1.000
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.7219    0.71434 0.200 0.800
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000    0.88900 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.0000    0.93329 1.000 0.000
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.9087    0.48342 0.676 0.324
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0000    0.93329 1.000 0.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000    0.88900 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000    0.88900 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000    0.93329 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000    0.88900 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.0000    0.88900 0.000 1.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0000    0.93329 1.000 0.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000    0.88900 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.0000    0.88900 0.000 1.000
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.7299    0.70974 0.204 0.796
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0000    0.88900 0.000 1.000
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000    0.93329 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000    0.93329 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000    0.93329 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.0000    0.88900 0.000 1.000
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.8327    0.63339 0.264 0.736
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000    0.88900 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0000    0.88900 0.000 1.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000    0.88900 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0000    0.93329 1.000 0.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000    0.88900 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000    0.93329 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.0000    0.88900 0.000 1.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.8813    0.58048 0.300 0.700
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000    0.93329 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000    0.88900 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.0000    0.88900 0.000 1.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.8955    0.51435 0.312 0.688
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.0000    0.88900 0.000 1.000
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000    0.88900 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000    0.88900 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.0000    0.93329 1.000 0.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0000    0.88900 0.000 1.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000    0.88900 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000    0.93329 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0000    0.88900 0.000 1.000
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.9710    0.31264 0.600 0.400
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.0000    0.88900 0.000 1.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.9963    0.13358 0.464 0.536
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000    0.88900 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0000    0.88900 0.000 1.000
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0000    0.93329 1.000 0.000
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.9522    0.45265 0.372 0.628
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000    0.93329 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000    0.93329 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.9710    0.32086 0.400 0.600
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.0000    0.93329 1.000 0.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000    0.88900 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000    0.88900 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.9710    0.39622 0.400 0.600
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000    0.93329 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000    0.88900 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000    0.88900 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.9710    0.31264 0.600 0.400
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.2778    0.85634 0.048 0.952
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000    0.93329 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000    0.88900 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000    0.93329 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0000    0.93329 1.000 0.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000    0.88900 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000    0.93329 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.9710    0.39622 0.400 0.600
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000    0.88900 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.6148    0.76610 0.152 0.848
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.0000    0.93329 1.000 0.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000    0.88900 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0000    0.93329 1.000 0.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000    0.88900 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     1  0.9491    0.32925 0.632 0.368
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000    0.88900 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000    0.93329 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.0000    0.88900 0.000 1.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000    0.88900 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000    0.88900 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000    0.88900 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000    0.93329 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000    0.93329 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000    0.88900 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000    0.88900 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.8608    0.60482 0.284 0.716
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000    0.93329 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000    0.88900 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000    0.88900 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.0376    0.88654 0.004 0.996
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.7602    0.69064 0.220 0.780
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.8608    0.58028 0.716 0.284
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0000    0.93329 1.000 0.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.9710    0.39622 0.400 0.600
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.9710    0.39622 0.400 0.600
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000    0.93329 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0000    0.93329 1.000 0.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.9710    0.39622 0.400 0.600
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000    0.88900 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0000    0.93329 1.000 0.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000    0.88900 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000    0.88900 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0000    0.88900 0.000 1.000
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.0000    0.93329 1.000 0.000
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000    0.88900 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000    0.93329 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.9710    0.39622 0.400 0.600
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0000    0.93329 1.000 0.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0000    0.93329 1.000 0.000
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000    0.93329 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000    0.88900 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000    0.88900 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000    0.93329 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.0000    0.88900 0.000 1.000
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.9710    0.39622 0.400 0.600
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000    0.93329 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000    0.88900 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000    0.93329 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9710    0.39622 0.400 0.600
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000    0.93329 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000    0.88900 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0000    0.93329 1.000 0.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000    0.93329 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0672    0.88410 0.008 0.992
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000    0.88900 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.0000    0.88900 0.000 1.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000    0.88900 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.9970    0.00539 0.532 0.468
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.9795    0.26968 0.584 0.416
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000    0.88900 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000    0.88900 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.9710    0.31264 0.600 0.400
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000    0.88900 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000    0.93329 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000    0.93329 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0000    0.93329 1.000 0.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000    0.93329 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.7219    0.71434 0.200 0.800
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000    0.88900 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0000    0.88900 0.000 1.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000    0.88900 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000    0.88900 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.7376    0.68798 0.792 0.208
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0000    0.93329 1.000 0.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000    0.93329 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000    0.93329 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000    0.88900 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000    0.93329 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000    0.93329 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000    0.93329 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000    0.93329 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000    0.93329 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.9710    0.39622 0.400 0.600
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.9710    0.23892 0.600 0.400
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.9866    0.22325 0.568 0.432
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0000    0.93329 1.000 0.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000    0.93329 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000    0.88900 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000    0.93329 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.0000    0.93329 1.000 0.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0000    0.93329 1.000 0.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000    0.93329 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000    0.93329 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.0000    0.93329 1.000 0.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000    0.93329 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.9710    0.32086 0.400 0.600
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.8016    0.63144 0.756 0.244
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000    0.88900 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000    0.88900 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0000    0.93329 1.000 0.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.8443    0.58651 0.272 0.728
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0000    0.93329 1.000 0.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.9044    0.54813 0.320 0.680
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000    0.93329 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.9686    0.33097 0.396 0.604
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.9710    0.31264 0.600 0.400
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000    0.93329 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.6438    0.76493 0.836 0.164
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000    0.88900 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000    0.88900 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000    0.93329 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0000    0.93329 1.000 0.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000    0.93329 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000    0.93329 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000    0.88900 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000    0.88900 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.9963    0.13352 0.464 0.536
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.1184    0.91844 0.984 0.016
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000    0.93329 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000    0.93329 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.9491    0.46155 0.368 0.632
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000    0.93329 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.9710    0.23892 0.600 0.400
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0938    0.88150 0.012 0.988
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000    0.93329 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000    0.93329 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000    0.93329 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.9710    0.32086 0.400 0.600
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.0000    0.88900 0.000 1.000
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.3584    0.86397 0.932 0.068
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0000    0.88900 0.000 1.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000    0.93329 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000    0.88900 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000    0.88900 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000    0.93329 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0000    0.93329 1.000 0.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.0000    0.93329 1.000 0.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000    0.93329 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000    0.93329 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.0376    0.88637 0.004 0.996
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000    0.93329 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000    0.93329 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000    0.93329 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.9710    0.32086 0.400 0.600
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000    0.93329 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000    0.93329 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.0000    0.93329 1.000 0.000
#> 1122039D-5785-4F70-9916-17C585453512     2  0.0000    0.88900 0.000 1.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000    0.93329 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0000    0.93329 1.000 0.000
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.0000    0.88900 0.000 1.000
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.0000    0.88900 0.000 1.000
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000    0.88900 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.8144    0.61828 0.748 0.252
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.0000    0.88900 0.000 1.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000    0.93329 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000    0.93329 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.9710    0.39622 0.400 0.600
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0000    0.93329 1.000 0.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0000    0.88900 0.000 1.000
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000    0.93329 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.3879    0.83014 0.076 0.924
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0000    0.93329 1.000 0.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000    0.93329 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0000    0.93329 1.000 0.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.2778    0.88613 0.952 0.048
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000    0.88900 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000    0.93329 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000    0.93329 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000    0.93329 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000    0.93329 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.9963    0.13352 0.464 0.536
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000    0.93329 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000    0.88900 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.1184    0.87889 0.016 0.984
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000    0.88900 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000    0.93329 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0000    0.93329 1.000 0.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000    0.93329 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000    0.93329 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.299           0.671       0.811         0.4520 0.524   0.524
#> 3 3 0.454           0.749       0.848         0.4033 0.653   0.428
#> 4 4 0.523           0.695       0.824         0.0980 0.948   0.850
#> 5 5 0.558           0.601       0.778         0.0710 0.953   0.849
#> 6 6 0.597           0.550       0.717         0.0657 0.865   0.554

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.9358     0.7203 0.352 0.648
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.2043     0.7110 0.032 0.968
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     1  0.0000     0.7857 1.000 0.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.2043     0.6979 0.032 0.968
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000     0.7001 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.0000     0.7857 1.000 0.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     1  0.1633     0.7824 0.976 0.024
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     2  0.8608     0.7554 0.284 0.716
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.9460     0.7096 0.364 0.636
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.5946     0.6606 0.856 0.144
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.3431     0.7145 0.064 0.936
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.8608     0.7554 0.284 0.716
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.1414     0.6999 0.020 0.980
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.8861     0.7487 0.304 0.696
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.9323     0.5675 0.652 0.348
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.9427     0.7131 0.360 0.640
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0000     0.7001 0.000 1.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.8661     0.3647 0.288 0.712
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.0000     0.7001 0.000 1.000
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.3733     0.6806 0.072 0.928
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     1  0.7674     0.6170 0.776 0.224
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.7001 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     2  0.8608     0.7554 0.284 0.716
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.4022     0.6772 0.080 0.920
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     2  0.2778     0.7152 0.048 0.952
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.4022     0.6772 0.080 0.920
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.0000     0.7857 1.000 0.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.8499     0.7577 0.276 0.724
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.3879     0.7634 0.924 0.076
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     2  0.8608     0.7554 0.284 0.716
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.0672     0.7856 0.992 0.008
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.4022     0.6772 0.080 0.920
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.9491     0.5550 0.632 0.368
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.8861     0.7487 0.304 0.696
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.8861     0.7487 0.304 0.696
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.2603     0.7131 0.044 0.956
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.9209     0.3425 0.664 0.336
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.2778     0.7728 0.952 0.048
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.9963     0.1279 0.536 0.464
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.7950     0.6006 0.760 0.240
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.8608     0.7554 0.284 0.716
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.9993    -0.2131 0.516 0.484
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.9044     0.7118 0.320 0.680
#> 60EE5A75-84EC-419D-9540-0864A98EA293     2  0.8608     0.7554 0.284 0.716
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.8555     0.7566 0.280 0.720
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.0000     0.7857 1.000 0.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     1  0.8608     0.5649 0.716 0.284
#> 066B10C1-777F-4863-ACCA-6684310B913E     2  0.2948     0.7171 0.052 0.948
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  0.9044     0.7382 0.320 0.680
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.0000     0.7001 0.000 1.000
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     2  0.8861     0.7487 0.304 0.696
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.3879     0.7634 0.924 0.076
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.6148     0.5947 0.152 0.848
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.7883     0.5990 0.764 0.236
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.8499     0.5534 0.724 0.276
#> 311D089C-33F1-4722-9118-F56427C5C128     2  0.8443     0.7587 0.272 0.728
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.9323     0.6813 0.348 0.652
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0672     0.7057 0.008 0.992
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.9460     0.7096 0.364 0.636
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000     0.7001 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.4298     0.7567 0.912 0.088
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.4022     0.6772 0.080 0.920
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.8608     0.7554 0.284 0.716
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     2  0.8608     0.7554 0.284 0.716
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.8713     0.3150 0.708 0.292
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0000     0.7857 1.000 0.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.4298     0.6948 0.088 0.912
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     2  0.8608     0.7554 0.284 0.716
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.3584     0.7644 0.932 0.068
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     2  0.9170     0.6990 0.332 0.668
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.7001 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.9970    -0.3449 0.532 0.468
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.4022     0.6772 0.080 0.920
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.4022     0.6772 0.080 0.920
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.0672     0.7856 0.992 0.008
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.8909     0.5951 0.692 0.308
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0000     0.7857 1.000 0.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9358     0.7203 0.352 0.648
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.0000     0.7857 1.000 0.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.0376     0.7853 0.996 0.004
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.9522     0.2878 0.628 0.372
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.4022     0.6772 0.080 0.920
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.8608     0.7554 0.284 0.716
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.8909     0.7220 0.308 0.692
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.8555     0.7567 0.280 0.720
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.8909     0.7216 0.308 0.692
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     2  0.7299     0.5287 0.204 0.796
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     1  0.0000     0.7857 1.000 0.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.9635     0.2337 0.612 0.388
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     1  0.7815     0.6200 0.768 0.232
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     2  0.8608     0.7554 0.284 0.716
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.7528     0.6031 0.784 0.216
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.8608     0.7554 0.284 0.716
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.3114     0.6882 0.056 0.944
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.8608     0.7554 0.284 0.716
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.2948     0.7134 0.052 0.948
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0672     0.7006 0.008 0.992
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.5178     0.7062 0.116 0.884
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.8909     0.5951 0.692 0.308
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.4022     0.6772 0.080 0.920
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.8608     0.7554 0.284 0.716
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     2  0.8608     0.7554 0.284 0.716
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.9460     0.7096 0.364 0.636
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.4022     0.6772 0.080 0.920
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.3584     0.7644 0.932 0.068
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0376     0.7853 0.996 0.004
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.8081     0.6010 0.752 0.248
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.7674     0.6190 0.776 0.224
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.4022     0.6772 0.080 0.920
#> C44C898C-EEF9-4E03-911A-9D951312C380     2  0.8608     0.7554 0.284 0.716
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0672     0.7037 0.008 0.992
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.7376     0.7592 0.208 0.792
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     1  0.9710     0.2505 0.600 0.400
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     2  0.8608     0.7554 0.284 0.716
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0672     0.7037 0.008 0.992
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.4022     0.6772 0.080 0.920
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.9209     0.7320 0.336 0.664
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.4022     0.6772 0.080 0.920
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.7139     0.6184 0.804 0.196
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     2  0.8608     0.7554 0.284 0.716
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.8207     0.5626 0.744 0.256
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     2  0.9661     0.5889 0.392 0.608
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.7950     0.7538 0.240 0.760
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.8861     0.2715 0.696 0.304
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.8608     0.7208 0.284 0.716
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.9896     0.4544 0.560 0.440
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.8608     0.7554 0.284 0.716
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.8608     0.7554 0.284 0.716
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     2  0.8713     0.7489 0.292 0.708
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.7950     0.6006 0.760 0.240
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.8608     0.7554 0.284 0.716
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.3879     0.6868 0.076 0.924
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.9460     0.7096 0.364 0.636
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.6438     0.6975 0.836 0.164
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     2  0.8763     0.7452 0.296 0.704
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.0376     0.7853 0.996 0.004
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.8909     0.5951 0.692 0.308
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.4022     0.6772 0.080 0.920
#> CBEFE77E-A0EB-457D-A145-763654236EBB     2  0.8608     0.7554 0.284 0.716
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.4161     0.6794 0.084 0.916
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     1  0.0000     0.7857 1.000 0.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.8909     0.7468 0.308 0.692
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     1  0.2603     0.7662 0.956 0.044
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.9608     0.6273 0.384 0.616
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.8499     0.3936 0.276 0.724
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     1  0.5059     0.7525 0.888 0.112
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.4022     0.6772 0.080 0.920
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     2  0.8608     0.7554 0.284 0.716
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.0000     0.7857 1.000 0.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     2  0.8327     0.7592 0.264 0.736
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.9087     0.7067 0.324 0.676
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.0000     0.7857 1.000 0.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.9460     0.7096 0.364 0.636
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     2  0.8608     0.7554 0.284 0.716
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.9087     0.7378 0.324 0.676
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     2  0.8608     0.7554 0.284 0.716
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     2  0.8608     0.7554 0.284 0.716
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     2  0.8861     0.7487 0.304 0.696
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.3733     0.7652 0.928 0.072
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.8955     0.7183 0.312 0.688
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.8443     0.5564 0.728 0.272
#> D17803A2-4BF2-4382-A544-76E28695214F     2  0.8555     0.7565 0.280 0.720
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.4298     0.7567 0.912 0.088
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     2  0.8608     0.7554 0.284 0.716
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     2  0.9522     0.6646 0.372 0.628
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.9580     0.0540 0.380 0.620
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.9850    -0.1350 0.428 0.572
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.6887     0.6746 0.816 0.184
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.8608     0.7554 0.284 0.716
#> 862D2F88-77A9-4363-A744-7738F49980E8     2  0.9522     0.6307 0.372 0.628
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.0000     0.7001 0.000 1.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0000     0.7001 0.000 1.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.3584     0.7644 0.932 0.068
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.7001 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     1  0.8555     0.5693 0.720 0.280
#> BD485B46-E873-4A39-A78C-213B91EE0175     2  0.8608     0.7554 0.284 0.716
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.8608     0.7554 0.284 0.716
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.7219     0.6121 0.800 0.200
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0672     0.7856 0.992 0.008
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.9993    -0.3073 0.516 0.484
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0000     0.7857 1.000 0.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.8608     0.7554 0.284 0.716
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.5629     0.5644 0.132 0.868
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.7602     0.5985 0.780 0.220
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     2  0.8608     0.7554 0.284 0.716
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.1843     0.7117 0.028 0.972
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.2236     0.6969 0.036 0.964
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.4161     0.6797 0.084 0.916
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.3879     0.7634 0.924 0.076
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.8661     0.7524 0.288 0.712
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.8661     0.4803 0.288 0.712
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.9000     0.7413 0.316 0.684
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.8861     0.7487 0.304 0.696
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.9286     0.7134 0.344 0.656
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.9286     0.7210 0.344 0.656
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.3584     0.6819 0.068 0.932
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.4022     0.6772 0.080 0.920
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     1  0.9754     0.4455 0.592 0.408
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.8555     0.7561 0.280 0.720
#> 354669B6-34E9-44AA-91B2-882423F50B0A     1  0.0376     0.7853 0.996 0.004
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     2  0.9998    -0.3592 0.492 0.508
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.7299     0.6056 0.796 0.204
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.3879     0.7634 0.924 0.076
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.4690     0.7344 0.100 0.900
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     2  0.9993     0.3836 0.484 0.516
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.3274     0.6645 0.060 0.940
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     1  0.2948     0.7680 0.948 0.052
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     2  0.8608     0.7554 0.284 0.716
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.3584     0.7644 0.932 0.068
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.8909     0.7468 0.308 0.692
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.9754     0.5886 0.408 0.592
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.8608     0.7554 0.284 0.716
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.2778     0.7728 0.952 0.048
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.5946     0.6374 0.144 0.856
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     2  0.8608     0.7554 0.284 0.716
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.9933    -0.3240 0.548 0.452
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.3584     0.7239 0.068 0.932
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.8763     0.4730 0.704 0.296
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.4022     0.6772 0.080 0.920
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.8016     0.7546 0.244 0.756
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.7376     0.5988 0.792 0.208
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.6887     0.7541 0.184 0.816
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.1184     0.7824 0.984 0.016
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     2  0.8608     0.7554 0.284 0.716
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.6887     0.6369 0.816 0.184
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     1  0.0000     0.7857 1.000 0.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.9522     0.2931 0.628 0.372
#> 293F530E-C875-4868-BEF0-474049A88644     1  0.8713     0.5651 0.708 0.292
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.0000     0.7857 1.000 0.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.3733     0.7656 0.928 0.072
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.8608     0.7554 0.284 0.716
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.3431     0.7145 0.064 0.936
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.8909     0.7468 0.308 0.692
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.7219     0.6121 0.800 0.200
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     2  0.9460     0.0452 0.364 0.636
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.2236     0.7777 0.964 0.036
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.8207     0.5626 0.744 0.256
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.4022     0.6772 0.080 0.920
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.6048     0.7133 0.852 0.148
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.9000     0.7413 0.316 0.684
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.0000     0.7857 1.000 0.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     2  0.8608     0.7554 0.284 0.716
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.8661     0.5289 0.712 0.288
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.9323     0.7234 0.348 0.652
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     1  0.9732     0.4611 0.596 0.404
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.4022     0.6938 0.080 0.920
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.9963     0.2694 0.464 0.536
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.0000     0.7857 1.000 0.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0000     0.7857 1.000 0.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     1  0.2423     0.7699 0.960 0.040
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.1633     0.7828 0.976 0.024
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.8267     0.5996 0.740 0.260
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.9881     0.5962 0.436 0.564
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.8661     0.7428 0.288 0.712
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.8081     0.5776 0.752 0.248
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.8608     0.7554 0.284 0.716
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.2778     0.7728 0.952 0.048
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.9044     0.7118 0.320 0.680
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.3584     0.6819 0.068 0.932
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.8443     0.5523 0.728 0.272
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.9460     0.7096 0.364 0.636
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.7950     0.7538 0.240 0.760
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.8608     0.7554 0.284 0.716
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.4022     0.6772 0.080 0.920
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.8713     0.7544 0.292 0.708
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     1  0.6531     0.6656 0.832 0.168
#> E36597D1-60C3-4EB8-867A-0E808599E300     1  0.1184     0.7808 0.984 0.016
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.8661     0.7538 0.288 0.712
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     2  0.2948     0.7171 0.052 0.948
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.9944     0.4188 0.456 0.544
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.6048     0.7512 0.148 0.852
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0000     0.7857 1.000 0.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.3584     0.6819 0.068 0.932
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     1  0.0376     0.7853 0.996 0.004
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.3584     0.6819 0.068 0.932
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.9608     0.2319 0.616 0.384
#> D249B589-22E5-4678-9757-FF6A7E4553E5     1  0.0938     0.7857 0.988 0.012
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     2  0.8861     0.7487 0.304 0.696
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.6531     0.6230 0.832 0.168
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     1  0.5178     0.7163 0.884 0.116
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     2  0.8608     0.7554 0.284 0.716
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.4022     0.6772 0.080 0.920
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.2603     0.7131 0.044 0.956
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.8955     0.5930 0.688 0.312
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     1  0.8608     0.5720 0.716 0.284
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     1  0.2603     0.7662 0.956 0.044
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.8909     0.7217 0.308 0.692
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.0000     0.7857 1.000 0.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0000     0.7001 0.000 1.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     1  0.2603     0.7662 0.956 0.044
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     2  0.8608     0.7554 0.284 0.716
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.9983     0.4228 0.476 0.524
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.9129     0.5871 0.672 0.328
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.8207     0.6000 0.744 0.256
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.2423     0.7223 0.040 0.960
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     1  0.2603     0.7662 0.956 0.044
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     1  0.0672     0.7856 0.992 0.008
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.6148     0.7181 0.848 0.152
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.9686     0.1832 0.604 0.396
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     2  0.2603     0.7131 0.044 0.956
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     2  0.8608     0.7554 0.284 0.716
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0000     0.7001 0.000 1.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9087     0.7397 0.324 0.676
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     1  0.2778     0.7718 0.952 0.048
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.4022     0.6772 0.080 0.920
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  0.0672     0.7856 0.992 0.008
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.8608     0.5297 0.716 0.284
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     1  0.0672     0.7856 0.992 0.008
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.8909     0.3084 0.308 0.692
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.2603     0.7131 0.044 0.956
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     1  0.0938     0.7859 0.988 0.012
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     2  0.2603     0.7131 0.044 0.956
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.8016     0.6849 0.244 0.756
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     2  0.8661     0.7525 0.288 0.712
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.9087     0.5879 0.676 0.324
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.8081     0.7553 0.248 0.752
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.8861     0.7487 0.304 0.696
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  0.0672     0.7856 0.992 0.008
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.5842     0.7016 0.140 0.860
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.7528     0.5269 0.784 0.216
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.9393     0.7164 0.356 0.644
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.5408     0.7466 0.124 0.876
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.8861     0.7487 0.304 0.696
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.9248     0.6941 0.340 0.660
#> E1833486-2998-4804-A535-EBF25A992392     1  0.0672     0.7856 0.992 0.008
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     1  0.8144     0.5851 0.748 0.252
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     2  0.8608     0.7554 0.284 0.716
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.8909     0.5951 0.692 0.308
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.4161     0.6795 0.084 0.916
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     1  0.0376     0.7853 0.996 0.004
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.9358     0.7203 0.352 0.648
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     2  0.7815     0.4644 0.232 0.768
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     2  0.8608     0.7554 0.284 0.716
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.0000     0.7857 1.000 0.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     1  0.2778     0.7649 0.952 0.048
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     1  0.0000     0.7857 1.000 0.000
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     2  0.8608     0.7554 0.284 0.716
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.4161     0.6797 0.084 0.916
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     1  0.8763     0.5640 0.704 0.296
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.8909     0.5951 0.692 0.308
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     1  0.0000     0.7857 1.000 0.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.9000     0.4049 0.684 0.316
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.8555     0.7569 0.280 0.720
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     1  0.0000     0.7857 1.000 0.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     1  0.0672     0.7856 0.992 0.008
#> B3CCA12D-4569-4AB8-AC41-457448268D90     2  0.7883     0.7600 0.236 0.764
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.8608     0.7554 0.284 0.716
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.0938     0.7836 0.988 0.012
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0376     0.7030 0.004 0.996
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.4022     0.7653 0.920 0.080
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.4022     0.6772 0.080 0.920
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     1  0.2778     0.7649 0.952 0.048
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.9460     0.7096 0.364 0.636
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.7950     0.5733 0.760 0.240
#> 4326E7CF-426E-4352-9903-27BF06E76626     1  0.2948     0.7680 0.948 0.052
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     2  0.8608     0.7554 0.284 0.716
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.9460     0.7068 0.364 0.636
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0672     0.7856 0.992 0.008
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  1.0000    -0.3647 0.504 0.496
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     2  0.8608     0.7554 0.284 0.716
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.4815     0.6847 0.104 0.896
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     1  0.6438     0.6617 0.836 0.164
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.9686     0.1832 0.604 0.396
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.1843     0.7042 0.028 0.972
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     1  0.7376     0.5988 0.792 0.208
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     2  0.8608     0.7554 0.284 0.716
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.4022     0.6772 0.080 0.920
#> 457090A2-AE7F-4E68-85EA-032DE8411110     2  0.8608     0.7554 0.284 0.716
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0000     0.7857 1.000 0.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.4298     0.7567 0.912 0.088
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.1414     0.6999 0.020 0.980
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.8861     0.7487 0.304 0.696
#> 34ED910C-7470-4552-8561-D01D59190521     2  0.8608     0.7554 0.284 0.716
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     1  0.3431     0.7533 0.936 0.064
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.7299     0.4336 0.204 0.796
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.3584     0.6819 0.068 0.932
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.4022     0.6863 0.080 0.920
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.9460     0.7096 0.364 0.636
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.7950     0.7538 0.240 0.760
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0672     0.7037 0.008 0.992
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000     0.7001 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0938     0.7052 0.012 0.988
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     1  0.9661     0.2255 0.608 0.392
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     2  0.8608     0.7554 0.284 0.716
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     2  0.2603     0.7131 0.044 0.956
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.8608     0.7554 0.284 0.716
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     2  0.8608     0.7554 0.284 0.716
#> B57C849C-28B1-4315-885C-330B9C9482B3     1  0.0000     0.7857 1.000 0.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0938     0.6993 0.012 0.988
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.8813     0.7270 0.300 0.700
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.4022     0.6772 0.080 0.920
#> 80936433-AA91-4219-98F1-706C36298060     1  0.8608     0.5649 0.716 0.284
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.8955     0.5930 0.688 0.312
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.8608     0.7554 0.284 0.716
#> D85CB054-7F54-4383-96C0-6C99761B84E7     2  0.8608     0.7554 0.284 0.716
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     2  0.8608     0.7554 0.284 0.716
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.4022     0.6772 0.080 0.920
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.8608     0.7554 0.284 0.716
#> 17CA5D73-4384-4645-83F8-587847043DD2     2  0.8813     0.7411 0.300 0.700
#> 40467950-A95C-4731-AD93-0A128442C837     2  0.8608     0.7554 0.284 0.716
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.8608     0.7554 0.284 0.716
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     2  0.8608     0.7554 0.284 0.716
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0000     0.7857 1.000 0.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0672     0.7856 0.992 0.008
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.0000     0.7001 0.000 1.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.8608     0.7554 0.284 0.716
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     2  0.8499     0.7575 0.276 0.724
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     1  0.2778     0.7649 0.952 0.048
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.8608     0.7554 0.284 0.716
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.8081     0.5776 0.752 0.248
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0376     0.7858 0.996 0.004
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.8608     0.7554 0.284 0.716
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.9833     0.5256 0.424 0.576
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.8608     0.7554 0.284 0.716
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.3879     0.7634 0.924 0.076
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.7602     0.7569 0.220 0.780
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.2603     0.7131 0.044 0.956
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     1  0.2778     0.7649 0.952 0.048
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.3733     0.6806 0.072 0.928
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.3733     0.7626 0.928 0.072
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     1  0.8144     0.6143 0.748 0.252
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.9833    -0.1504 0.576 0.424
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     1  0.1633     0.7793 0.976 0.024
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     2  0.3879     0.7267 0.076 0.924
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.7950     0.7538 0.240 0.760
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.2603     0.7131 0.044 0.956
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.5408     0.7398 0.876 0.124
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.8763     0.7496 0.296 0.704
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.4022     0.6772 0.080 0.920
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0376     0.7020 0.004 0.996
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.4298     0.7567 0.912 0.088
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0000     0.7857 1.000 0.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.9954     0.0457 0.540 0.460
#> 887E7408-C7D7-420F-A763-0EE70A316D17     2  0.6623     0.7518 0.172 0.828
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.4431     0.6690 0.092 0.908
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.7453     0.7201 0.212 0.788
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.0000     0.7001 0.000 1.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0000     0.7857 1.000 0.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.9170     0.4084 0.668 0.332
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.8861     0.7487 0.304 0.696
#> C075F09E-623C-46ED-B927-889B48F450B3     1  0.0000     0.7857 1.000 0.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.8608     0.7554 0.284 0.716
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.9460     0.7096 0.364 0.636
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     1  0.7950     0.6006 0.760 0.240
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.3114     0.7720 0.944 0.056
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     2  0.9977     0.3681 0.472 0.528
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.8608     0.7554 0.284 0.716
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.3431     0.7314 0.064 0.936
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.9580     0.0293 0.380 0.620
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.8861     0.7487 0.304 0.696
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     1  0.0000     0.7857 1.000 0.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.8713     0.5204 0.708 0.292
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.4939     0.6989 0.108 0.892
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.5946     0.6166 0.144 0.856
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.4431     0.7556 0.908 0.092
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.8608     0.7554 0.284 0.716
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.0000     0.7857 1.000 0.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     2  0.8608     0.7554 0.284 0.716
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.8267     0.5555 0.740 0.260
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.0000     0.7001 0.000 1.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     2  0.2603     0.7131 0.044 0.956
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.2603     0.7131 0.044 0.956
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.8207     0.5924 0.744 0.256
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.2236     0.7119 0.036 0.964
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     2  0.8207     0.7602 0.256 0.744
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.8207     0.5841 0.744 0.256
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.9460     0.7096 0.364 0.636
#> 1122039D-5785-4F70-9916-17C585453512     1  0.8499     0.5996 0.724 0.276
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     2  0.8713     0.7519 0.292 0.708
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.9248     0.7294 0.340 0.660
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.0000     0.7001 0.000 1.000
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.2423     0.7126 0.040 0.960
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     1  0.9286     0.5399 0.656 0.344
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.2778     0.7152 0.048 0.952
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.8327     0.5997 0.736 0.264
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.3584     0.7644 0.932 0.068
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     2  0.8608     0.7554 0.284 0.716
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0000     0.7857 1.000 0.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.8909     0.4739 0.692 0.308
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0000     0.7001 0.000 1.000
#> 1B73CE27-B464-41E6-BE27-90FA13683331     2  0.8608     0.7554 0.284 0.716
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.2603     0.7131 0.044 0.956
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0000     0.7857 1.000 0.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.8713     0.7490 0.292 0.708
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.8861     0.7487 0.304 0.696
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.0000     0.7857 1.000 0.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000     0.7001 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     2  0.8608     0.7554 0.284 0.716
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     2  1.0000     0.3843 0.496 0.504
#> EB7883EB-0079-4548-9132-169E94A698BA     2  0.8608     0.7554 0.284 0.716
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.8763     0.5116 0.704 0.296
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.0000     0.7001 0.000 1.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.7745     0.6340 0.772 0.228
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.4022     0.6772 0.080 0.920
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.0376     0.7853 0.996 0.004
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.4161     0.6796 0.084 0.916
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     2  0.8608     0.7554 0.284 0.716
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.8608     0.7554 0.284 0.716
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.3274     0.7715 0.940 0.060
#> 2785594A-571A-46B4-A901-CB9C62DC6174     2  0.8608     0.7554 0.284 0.716

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.346           0.743       0.855         0.4642 0.529   0.529
#> 3 3 0.572           0.730       0.845         0.3832 0.747   0.551
#> 4 4 0.561           0.508       0.728         0.1318 0.884   0.689
#> 5 5 0.527           0.367       0.676         0.0413 0.881   0.643
#> 6 6 0.538           0.334       0.622         0.0487 0.883   0.603

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.6973     0.8073 0.188 0.812
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.8144     0.7414 0.252 0.748
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.4431     0.7858 0.092 0.908
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.0000     0.7917 0.000 1.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.7056     0.8061 0.192 0.808
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.6343     0.7245 0.160 0.840
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.6048     0.7358 0.148 0.852
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000     0.8433 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.8327     0.7781 0.264 0.736
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.4431     0.7858 0.092 0.908
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.7056     0.8061 0.192 0.808
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0000     0.8433 1.000 0.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.7056     0.8061 0.192 0.808
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.9996    -0.2262 0.512 0.488
#> 5AB5396F-925B-469C-B240-FB37991004DD     2  0.9358     0.3083 0.352 0.648
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.8909     0.4278 0.692 0.308
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.4298     0.8146 0.088 0.912
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.7917 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.5059     0.8154 0.112 0.888
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.7056     0.8061 0.192 0.808
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.3431     0.7960 0.064 0.936
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.7056     0.8061 0.192 0.808
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.8433 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0376     0.7936 0.004 0.996
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000     0.8433 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.6973     0.8074 0.188 0.812
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.4939     0.7745 0.108 0.892
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.7815     0.7950 0.232 0.768
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.8016     0.6903 0.756 0.244
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000     0.8433 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.7376     0.6598 0.208 0.792
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.7056     0.8061 0.192 0.808
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000     0.7917 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0376     0.8418 0.996 0.004
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.6247     0.7077 0.844 0.156
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.7056     0.8061 0.192 0.808
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0376     0.7936 0.004 0.996
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.5059     0.7717 0.112 0.888
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.8433 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.3431     0.7960 0.064 0.936
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0000     0.8433 1.000 0.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.2236     0.8238 0.964 0.036
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.7056     0.8061 0.192 0.808
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.8433 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.8327     0.6991 0.736 0.264
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.4431     0.7858 0.092 0.908
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.3114     0.7970 0.056 0.944
#> 066B10C1-777F-4863-ACCA-6684310B913E     2  0.6247     0.8103 0.156 0.844
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.9000     0.4125 0.684 0.316
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.7056     0.8061 0.192 0.808
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.7376     0.7149 0.792 0.208
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.8081     0.6882 0.752 0.248
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0000     0.7917 0.000 1.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  1.0000    -0.2428 0.496 0.504
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.7219     0.7186 0.800 0.200
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.2603     0.8185 0.956 0.044
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.5059     0.8153 0.112 0.888
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.7056     0.8061 0.192 0.808
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.9661     0.5152 0.392 0.608
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.6973     0.8073 0.188 0.812
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.7219     0.7186 0.800 0.200
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.6712     0.8101 0.176 0.824
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.2423     0.8214 0.960 0.040
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.8433 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     2  0.4431     0.7864 0.092 0.908
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.4431     0.7858 0.092 0.908
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.7056     0.8061 0.192 0.808
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.2603     0.8185 0.956 0.044
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.9580     0.5017 0.620 0.380
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.3274     0.8133 0.940 0.060
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.2236     0.8050 0.036 0.964
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.5408     0.7598 0.124 0.876
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.6148     0.8138 0.152 0.848
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.7917 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.5178     0.7700 0.116 0.884
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.3431     0.7960 0.064 0.936
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.4431     0.7858 0.092 0.908
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9909     0.4653 0.444 0.556
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.4431     0.7858 0.092 0.908
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.3431     0.7960 0.064 0.936
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.9286     0.3430 0.656 0.344
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.7056     0.8061 0.192 0.808
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.2603     0.8185 0.956 0.044
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.8207     0.7838 0.256 0.744
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000     0.8433 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.7056     0.8061 0.192 0.808
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.7219     0.7186 0.800 0.200
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.4431     0.7858 0.092 0.908
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.8433 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.7056     0.8061 0.192 0.808
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.8433 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.8207     0.5381 0.744 0.256
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.7056     0.8061 0.192 0.808
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.7056     0.8061 0.192 0.808
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000     0.8433 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.7056     0.8061 0.192 0.808
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.6887     0.8083 0.184 0.816
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.7056     0.8061 0.192 0.808
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.4431     0.7864 0.092 0.908
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.7056     0.8061 0.192 0.808
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.1184     0.8364 0.984 0.016
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.8433 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.9775     0.5472 0.412 0.588
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.5629     0.8156 0.132 0.868
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.9881     0.3746 0.564 0.436
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.4431     0.7858 0.092 0.908
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.4431     0.7858 0.092 0.908
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.7299     0.7168 0.796 0.204
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.7056     0.8061 0.192 0.808
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.8433 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.7056     0.8061 0.192 0.808
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.7056     0.8061 0.192 0.808
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.4815     0.8152 0.104 0.896
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.7219     0.7186 0.800 0.200
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.7056     0.8061 0.192 0.808
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.7056     0.8061 0.192 0.808
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0938     0.8384 0.988 0.012
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.5408     0.8155 0.124 0.876
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.7453     0.6510 0.212 0.788
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.1843     0.8278 0.972 0.028
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.6148     0.7128 0.848 0.152
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.8433 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.7056     0.8061 0.192 0.808
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.4939     0.7745 0.108 0.892
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.6801     0.8093 0.180 0.820
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     2  0.9522     0.2820 0.372 0.628
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  1.0000     0.2910 0.500 0.500
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.7376     0.6454 0.792 0.208
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.8433 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.3431     0.7960 0.064 0.936
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0000     0.8433 1.000 0.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.7917 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.9686     0.1065 0.604 0.396
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.7602     0.7081 0.780 0.220
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.8433 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.4431     0.7858 0.092 0.908
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.3431     0.7960 0.064 0.936
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.7056     0.8061 0.192 0.808
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000     0.8433 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.7056     0.8061 0.192 0.808
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.4431     0.7858 0.092 0.908
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.6531     0.7128 0.168 0.832
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.7917 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.7056     0.8061 0.192 0.808
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.8955     0.4035 0.688 0.312
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.7056     0.8061 0.192 0.808
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.7056     0.8061 0.192 0.808
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.8433 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.4939     0.7745 0.108 0.892
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.8433 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.6801     0.8093 0.180 0.820
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.4431     0.7858 0.092 0.908
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  1.0000     0.3302 0.500 0.500
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.8433 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.9170     0.3784 0.668 0.332
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.1633     0.8294 0.976 0.024
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.8433 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.2423     0.8224 0.960 0.040
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.6801     0.6890 0.180 0.820
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.7056     0.8061 0.192 0.808
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000     0.8433 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.8433 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.7602     0.7081 0.780 0.220
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.8433 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.7745     0.5936 0.772 0.228
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.7056     0.8061 0.192 0.808
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.7453     0.6512 0.212 0.788
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.8016     0.6903 0.756 0.244
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.7219     0.7186 0.800 0.200
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.8433 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.3879     0.8125 0.076 0.924
#> C8820FA6-3531-4515-A102-19100775E767     2  0.5519     0.8153 0.128 0.872
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.9710     0.4603 0.600 0.400
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.7056     0.8061 0.192 0.808
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.3431     0.7960 0.064 0.936
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.8433 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.8499     0.5188 0.724 0.276
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.8386     0.5128 0.732 0.268
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.4431     0.7858 0.092 0.908
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.1184     0.7987 0.016 0.984
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.4431     0.7858 0.092 0.908
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.8433 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000     0.7917 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.8661     0.7659 0.288 0.712
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.8433 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.7056     0.8061 0.192 0.808
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.7056     0.8061 0.192 0.808
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.7056     0.8061 0.192 0.808
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.8861     0.4228 0.304 0.696
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.9881     0.4875 0.436 0.564
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.7056     0.8061 0.192 0.808
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.8661     0.4707 0.712 0.288
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.6247     0.7215 0.844 0.156
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.8207     0.7838 0.256 0.744
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.8386     0.7765 0.268 0.732
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.7056     0.8061 0.192 0.808
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.7056     0.8061 0.192 0.808
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.7917 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.8207     0.7838 0.256 0.744
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.4431     0.7858 0.092 0.908
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.9754    -0.0414 0.592 0.408
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.8443     0.7746 0.272 0.728
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.8016     0.6903 0.756 0.244
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.8327     0.5115 0.736 0.264
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.8763     0.6368 0.704 0.296
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.7056     0.8027 0.192 0.808
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.7917 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.8433 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.9881     0.0618 0.436 0.564
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.7528     0.7106 0.784 0.216
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.5737     0.8152 0.136 0.864
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.7219     0.7990 0.200 0.800
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.9833     0.4193 0.576 0.424
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.8267     0.7811 0.260 0.740
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.8433 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.8713     0.4902 0.292 0.708
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.7056     0.8061 0.192 0.808
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.8955     0.7271 0.312 0.688
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.7056     0.8061 0.192 0.808
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.7056     0.8061 0.192 0.808
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.3431     0.7960 0.064 0.936
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.7056     0.8061 0.192 0.808
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.4431     0.7858 0.092 0.908
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.8433 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.4431     0.7858 0.092 0.908
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.3431     0.7960 0.064 0.936
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.8433 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.7917 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.4939     0.7745 0.108 0.892
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.8016     0.6903 0.756 0.244
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.7056     0.8061 0.192 0.808
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.7056     0.8061 0.192 0.808
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.7219     0.7186 0.800 0.200
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.8861     0.4544 0.696 0.304
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.8433 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     2  0.5059     0.7717 0.112 0.888
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.8016     0.5628 0.756 0.244
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.7056     0.8061 0.192 0.808
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.9248     0.3644 0.340 0.660
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0938     0.8382 0.988 0.012
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.4431     0.7858 0.092 0.908
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.8433 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0000     0.8433 1.000 0.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.8763     0.4476 0.704 0.296
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.7056     0.8061 0.192 0.808
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.7056     0.8061 0.192 0.808
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.7056     0.8061 0.192 0.808
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.4690     0.7806 0.100 0.900
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.4690     0.7806 0.100 0.900
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.3431     0.7960 0.064 0.936
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     2  0.8144     0.5748 0.252 0.748
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.3431     0.7960 0.064 0.936
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.8207     0.7838 0.256 0.744
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.7056     0.8061 0.192 0.808
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.9522     0.4113 0.628 0.372
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.7219     0.7990 0.200 0.800
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.9754     0.4426 0.592 0.408
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.7056     0.8061 0.192 0.808
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.7056     0.8061 0.192 0.808
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.7219     0.7186 0.800 0.200
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.8207     0.7833 0.256 0.744
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.7139     0.8026 0.196 0.804
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0000     0.8433 1.000 0.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.7056     0.8061 0.192 0.808
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.6623     0.8109 0.172 0.828
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.3584     0.7949 0.068 0.932
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.3431     0.7960 0.064 0.936
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000     0.8433 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000     0.8433 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.2603     0.8185 0.956 0.044
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.7056     0.8061 0.192 0.808
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.4431     0.7858 0.092 0.908
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.6712     0.8101 0.176 0.824
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.4161     0.7893 0.084 0.916
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.7056     0.8061 0.192 0.808
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.6048     0.7230 0.852 0.148
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.3431     0.7960 0.064 0.936
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000     0.8433 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.3274     0.7966 0.060 0.940
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.4431     0.7858 0.092 0.908
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0672     0.8392 0.992 0.008
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000     0.7917 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.7056     0.8061 0.192 0.808
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.3431     0.7960 0.064 0.936
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.3431     0.7960 0.064 0.936
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.2043     0.7969 0.032 0.968
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.7056     0.8061 0.192 0.808
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.4690     0.7811 0.100 0.900
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0000     0.7917 0.000 1.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.3431     0.7960 0.064 0.936
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.8433 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.7056     0.8061 0.192 0.808
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.6048     0.7315 0.148 0.852
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.4022     0.7909 0.080 0.920
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.7056     0.8061 0.192 0.808
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.3431     0.7960 0.064 0.936
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.4939     0.8154 0.108 0.892
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.7219     0.7186 0.800 0.200
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.8499     0.7678 0.276 0.724
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000     0.8433 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.8433 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.7056     0.8061 0.192 0.808
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.9170     0.3784 0.668 0.332
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.3431     0.7960 0.064 0.936
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.7056     0.8061 0.192 0.808
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.4298     0.7877 0.088 0.912
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000     0.8433 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.3274     0.7966 0.060 0.940
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.7056     0.8061 0.192 0.808
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.7056     0.8061 0.192 0.808
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.4431     0.7858 0.092 0.908
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.8433 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.1414     0.8002 0.020 0.980
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.8433 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     2  0.9522     0.2820 0.372 0.628
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.6973     0.8073 0.188 0.812
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.8608     0.4762 0.716 0.284
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.4431     0.7858 0.092 0.908
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.7056     0.8061 0.192 0.808
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.3431     0.7960 0.064 0.936
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.9944     0.2737 0.544 0.456
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.7056     0.8061 0.192 0.808
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.1843     0.8301 0.972 0.028
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.7056     0.8061 0.192 0.808
#> E1833486-2998-4804-A535-EBF25A992392     2  0.4690     0.7806 0.100 0.900
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.8207     0.7838 0.256 0.744
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.3879     0.7946 0.924 0.076
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.3431     0.7960 0.064 0.936
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.7056     0.8061 0.192 0.808
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.3431     0.7960 0.064 0.936
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.8327     0.7781 0.264 0.736
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000     0.8433 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.8433 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.4431     0.7858 0.092 0.908
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.3431     0.7960 0.064 0.936
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.4431     0.7858 0.092 0.908
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.8433 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.7056     0.8061 0.192 0.808
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.1843     0.7966 0.028 0.972
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.4161     0.7893 0.084 0.916
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.3431     0.7960 0.064 0.936
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.8608     0.7693 0.284 0.716
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.3114     0.8129 0.944 0.056
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.4431     0.7858 0.092 0.908
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.4431     0.7858 0.092 0.908
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.7219     0.7186 0.800 0.200
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.9209     0.3664 0.664 0.336
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.4431     0.7858 0.092 0.908
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.7056     0.8061 0.192 0.808
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.7883     0.6968 0.764 0.236
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.6623     0.8110 0.172 0.828
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.7917 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.7056     0.8061 0.192 0.808
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.9129     0.3865 0.672 0.328
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.7917 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000     0.8433 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.4431     0.7858 0.092 0.908
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.9922    -0.0621 0.448 0.552
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.8016     0.6903 0.756 0.244
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000     0.8433 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.7056     0.8061 0.192 0.808
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.7917 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.9754     0.5570 0.408 0.592
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.7056     0.8061 0.192 0.808
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.9248     0.6863 0.340 0.660
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.8433 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.7056     0.8061 0.192 0.808
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.8433 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.4431     0.7858 0.092 0.908
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.7219     0.7186 0.800 0.200
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.7056     0.8061 0.192 0.808
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.9608     0.1589 0.616 0.384
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000     0.8433 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.3431     0.7960 0.064 0.936
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000     0.7917 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.7056     0.8061 0.192 0.808
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.7056     0.8061 0.192 0.808
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.9963     0.4289 0.464 0.536
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.8267     0.7814 0.260 0.740
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.7056     0.8061 0.192 0.808
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.7056     0.8061 0.192 0.808
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.8861     0.7344 0.304 0.696
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.7056     0.8061 0.192 0.808
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.8433 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.8433 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0000     0.8433 1.000 0.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.1633     0.8294 0.976 0.024
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.4431     0.7858 0.092 0.908
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.7056     0.8061 0.192 0.808
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.7056     0.8061 0.192 0.808
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.5842     0.8148 0.140 0.860
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.7917 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     2  0.7950     0.5985 0.240 0.760
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.4161     0.7930 0.916 0.084
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000     0.8433 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.6887     0.7317 0.816 0.184
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.7917 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.6148     0.7555 0.848 0.152
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.8433 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.1843     0.8285 0.972 0.028
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.6887     0.6825 0.816 0.184
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.8433 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.4431     0.7858 0.092 0.908
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.7528     0.6448 0.216 0.784
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.5519     0.8144 0.128 0.872
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.9580     0.6012 0.620 0.380
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.8433 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.2948     0.7973 0.052 0.948
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.8443     0.5280 0.728 0.272
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.0376     0.8418 0.996 0.004
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.7376     0.6566 0.208 0.792
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.9044     0.4115 0.680 0.320
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000     0.8433 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.4815     0.7759 0.896 0.104
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.7745     0.7027 0.772 0.228
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.7056     0.8061 0.192 0.808
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.9988     0.3947 0.480 0.520
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.3431     0.7960 0.064 0.936
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.7056     0.8061 0.192 0.808
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.8555     0.6556 0.720 0.280
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.8207     0.7841 0.256 0.744
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.9970    -0.1412 0.468 0.532
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.4431     0.7858 0.092 0.908
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.8433 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.7056     0.8061 0.192 0.808
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.3431     0.7960 0.064 0.936
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.7219     0.7186 0.800 0.200
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.8661     0.7555 0.288 0.712
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.6623     0.8109 0.172 0.828
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.7056     0.8061 0.192 0.808
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.7453     0.7128 0.788 0.212
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.4939     0.7745 0.108 0.892
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     2  0.4431     0.7858 0.092 0.908
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.8433 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.7056     0.8061 0.192 0.808
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.7056     0.8061 0.192 0.808
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.4431     0.8159 0.092 0.908
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.4939     0.7745 0.108 0.892
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.8433 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.7219     0.7186 0.800 0.200
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.4431     0.7858 0.092 0.908
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000     0.8433 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.8267     0.7731 0.260 0.740
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.3733     0.7937 0.072 0.928
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.9881     0.4228 0.564 0.436
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.7219     0.7186 0.800 0.200
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000     0.8433 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.7056     0.8061 0.192 0.808
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.8207     0.7838 0.256 0.744
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.9286     0.3429 0.656 0.344
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.3431     0.7960 0.064 0.936
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.8433 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.7056     0.8061 0.192 0.808
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.7056     0.8061 0.192 0.808
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.7219     0.7186 0.800 0.200
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0000     0.8433 1.000 0.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.4939     0.7745 0.108 0.892
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.8433 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000     0.8433 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.7056     0.8061 0.192 0.808
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.2778     0.8153 0.952 0.048
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.9963     0.4698 0.464 0.536
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.7453     0.7128 0.788 0.212
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.7056     0.8061 0.192 0.808
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.8433 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.8433 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.8661     0.4654 0.712 0.288
#> 1122039D-5785-4F70-9916-17C585453512     2  0.4431     0.7858 0.092 0.908
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000     0.8433 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.8144     0.5471 0.748 0.252
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.2423     0.8060 0.040 0.960
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.7056     0.8061 0.192 0.808
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.8207     0.7838 0.256 0.744
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.8016     0.7909 0.244 0.756
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.4298     0.7876 0.088 0.912
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     2  0.7815     0.6172 0.232 0.768
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.8433 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.4431     0.7858 0.092 0.908
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.9170     0.3784 0.668 0.332
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.6973     0.8073 0.188 0.812
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.8433 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.7056     0.8061 0.192 0.808
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.4939     0.7745 0.108 0.892
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000     0.8433 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.5294     0.7552 0.880 0.120
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.4431     0.7858 0.092 0.908
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.3879     0.8128 0.076 0.924
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.8433 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.8813     0.6377 0.700 0.300
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.8016     0.5633 0.756 0.244
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.8433 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.4431     0.8142 0.092 0.908
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.7376     0.7149 0.792 0.208
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0376     0.7936 0.004 0.996
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.4431     0.7858 0.092 0.908
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.7056     0.8061 0.192 0.808
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.8433 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0000     0.8433 1.000 0.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     2  1.0000    -0.2503 0.500 0.500
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.8433 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.781           0.896       0.950         0.4925 0.508   0.508
#> 3 3 0.803           0.820       0.928         0.3207 0.767   0.574
#> 4 4 0.637           0.715       0.827         0.1302 0.821   0.551
#> 5 5 0.622           0.580       0.755         0.0666 0.895   0.640
#> 6 6 0.656           0.504       0.735         0.0398 0.850   0.469

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0000     0.9669 0.000 1.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.0000     0.9669 0.000 1.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     1  0.0000     0.9321 1.000 0.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.0000     0.9669 0.000 1.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000     0.9669 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.0000     0.9321 1.000 0.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     1  0.0000     0.9321 1.000 0.000
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.1633     0.9297 0.976 0.024
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.7299     0.7854 0.796 0.204
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0000     0.9321 1.000 0.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0000     0.9669 0.000 1.000
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.4431     0.8901 0.908 0.092
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000     0.9669 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.0000     0.9669 0.000 1.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.0000     0.9321 1.000 0.000
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.6973     0.8033 0.812 0.188
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0000     0.9669 0.000 1.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.1184     0.9523 0.016 0.984
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.0000     0.9669 0.000 1.000
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.9669 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     1  0.9996     0.0181 0.512 0.488
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.9669 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.1633     0.9297 0.976 0.024
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.9669 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.7376     0.7801 0.792 0.208
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.9669 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.0000     0.9321 1.000 0.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.0000     0.9669 0.000 1.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0000     0.9321 1.000 0.000
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.1843     0.9282 0.972 0.028
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.0000     0.9321 1.000 0.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.9669 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000     0.9669 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.1633     0.9297 0.976 0.024
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.5294     0.8676 0.880 0.120
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.0000     0.9669 0.000 1.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000     0.9669 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000     0.9321 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.1633     0.9297 0.976 0.024
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.0672     0.9296 0.992 0.008
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.7139     0.7942 0.804 0.196
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.9896     0.3223 0.560 0.440
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.9669 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.9321 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.0000     0.9669 0.000 1.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.0000     0.9321 1.000 0.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.8608     0.6128 0.284 0.716
#> 066B10C1-777F-4863-ACCA-6684310B913E     2  0.9754     0.2299 0.408 0.592
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.7883     0.7436 0.764 0.236
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.0000     0.9669 0.000 1.000
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.9321 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0000     0.9321 1.000 0.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0000     0.9669 0.000 1.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0000     0.9321 1.000 0.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.9321 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     2  0.0000     0.9669 0.000 1.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.9669 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0000     0.9669 0.000 1.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.7219     0.7896 0.800 0.200
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000     0.9669 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000     0.9321 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000     0.9669 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.6887     0.8073 0.816 0.184
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.3879     0.9013 0.924 0.076
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.0000     0.9321 1.000 0.000
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0000     0.9321 1.000 0.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000     0.9669 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     2  0.0000     0.9669 0.000 1.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000     0.9321 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.1414     0.9303 0.980 0.020
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.9669 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.0000     0.9669 0.000 1.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.9669 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.9669 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.0000     0.9321 1.000 0.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.5059     0.8491 0.888 0.112
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0000     0.9321 1.000 0.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0376     0.9634 0.004 0.996
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.0000     0.9321 1.000 0.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.2423     0.9122 0.960 0.040
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.2423     0.9289 0.040 0.960
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.9669 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.9833     0.1736 0.424 0.576
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.0000     0.9669 0.000 1.000
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.5408     0.8330 0.124 0.876
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.9669 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0376     0.9319 0.996 0.004
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     1  0.0000     0.9321 1.000 0.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.1633     0.9297 0.976 0.024
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.9669 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.1633     0.9297 0.976 0.024
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.4431     0.8898 0.908 0.092
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.0000     0.9669 0.000 1.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.9669 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.7219     0.7896 0.800 0.200
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0000     0.9669 0.000 1.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000     0.9669 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000     0.9669 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.0000     0.9321 1.000 0.000
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.9669 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.1633     0.9297 0.976 0.024
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.3584     0.9065 0.932 0.068
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0000     0.9669 0.000 1.000
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.9669 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000     0.9321 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0000     0.9321 1.000 0.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.0000     0.9321 1.000 0.000
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0000     0.9321 1.000 0.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000     0.9669 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.7139     0.7943 0.804 0.196
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000     0.9669 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000     0.9669 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000     0.9669 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000     0.9321 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0000     0.9669 0.000 1.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.9669 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.1633     0.9297 0.976 0.024
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.9669 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.0000     0.9321 1.000 0.000
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     2  0.9833     0.1958 0.424 0.576
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.1633     0.9297 0.976 0.024
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.1633     0.9297 0.976 0.024
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000     0.9669 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000     0.9321 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000     0.9669 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0000     0.9321 1.000 0.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.0000     0.9669 0.000 1.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000     0.9669 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.1633     0.9297 0.976 0.024
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.0376     0.9309 0.996 0.004
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.1633     0.9297 0.976 0.024
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.9669 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.7139     0.7941 0.804 0.196
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.0000     0.9321 1.000 0.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.1414     0.9303 0.980 0.020
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.0000     0.9321 1.000 0.000
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.9491     0.4084 0.632 0.368
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000     0.9669 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.6801     0.8115 0.820 0.180
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.9669 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     1  0.0000     0.9321 1.000 0.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.0000     0.9321 1.000 0.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.2043     0.9390 0.032 0.968
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.9669 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.7219     0.7896 0.800 0.200
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.9669 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.9669 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.1633     0.9297 0.976 0.024
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.0000     0.9321 1.000 0.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.1633     0.9297 0.976 0.024
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.9669 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.0000     0.9321 1.000 0.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.8909     0.6296 0.692 0.308
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.1633     0.9297 0.976 0.024
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.9977    -0.0153 0.472 0.528
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.8081     0.7276 0.752 0.248
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.1633     0.9297 0.976 0.024
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.1633     0.9297 0.976 0.024
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.5737     0.8308 0.136 0.864
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.9669 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.1633     0.9297 0.976 0.024
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.1633     0.9297 0.976 0.024
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.9321 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.1633     0.9297 0.976 0.024
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.1633     0.9297 0.976 0.024
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.9669 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.1184     0.9308 0.984 0.016
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0000     0.9321 1.000 0.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000     0.9321 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.1633     0.9297 0.976 0.024
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.0000     0.9669 0.000 1.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0000     0.9669 0.000 1.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.9321 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.9669 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0672     0.9597 0.008 0.992
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.9321 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.0000     0.9669 0.000 1.000
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.1633     0.9297 0.976 0.024
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0000     0.9321 1.000 0.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0000     0.9669 0.000 1.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0000     0.9321 1.000 0.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.1633     0.9297 0.976 0.024
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000     0.9669 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.5842     0.8502 0.860 0.140
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.9661     0.4516 0.608 0.392
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000     0.9669 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.9669 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.9669 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0672     0.9316 0.992 0.008
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.8207     0.7151 0.744 0.256
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.9669 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.7219     0.7896 0.800 0.200
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.3431     0.9036 0.064 0.936
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     1  0.9833     0.3683 0.576 0.424
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     1  0.9710     0.4317 0.600 0.400
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.9669 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.9669 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.9669 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.0000     0.9669 0.000 1.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     1  0.0000     0.9321 1.000 0.000
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.1843     0.9281 0.972 0.028
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.3584     0.8990 0.068 0.932
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.9321 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.0000     0.9669 0.000 1.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000     0.9321 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.0000     0.9669 0.000 1.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.9669 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.1633     0.9297 0.976 0.024
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0000     0.9321 1.000 0.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0000     0.9321 1.000 0.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000     0.9669 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.0000     0.9669 0.000 1.000
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.0000     0.9321 1.000 0.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.0000     0.9669 0.000 1.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.1633     0.9297 0.976 0.024
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.0000     0.9321 1.000 0.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.0000     0.9669 0.000 1.000
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.9866     0.3463 0.568 0.432
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.9669 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.0000     0.9669 0.000 1.000
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.0000     0.9669 0.000 1.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.0000     0.9669 0.000 1.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.0000     0.9321 1.000 0.000
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.2778     0.9183 0.952 0.048
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.1184     0.9308 0.984 0.016
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     1  0.0000     0.9321 1.000 0.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.1843     0.9281 0.972 0.028
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.9669 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.0000     0.9321 1.000 0.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000     0.9321 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.9669 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0000     0.9669 0.000 1.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000     0.9321 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.1633     0.9297 0.976 0.024
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.1633     0.9297 0.976 0.024
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0000     0.9321 1.000 0.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.2948     0.9161 0.948 0.052
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.9669 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.0000     0.9321 1.000 0.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.4562     0.8869 0.904 0.096
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.0000     0.9321 1.000 0.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.1633     0.9297 0.976 0.024
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.7219     0.7896 0.800 0.200
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.3584     0.9066 0.932 0.068
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.9669 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000     0.9669 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.9669 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.0000     0.9321 1.000 0.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0000     0.9321 1.000 0.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     1  0.0000     0.9321 1.000 0.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0000     0.9321 1.000 0.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.7376     0.7272 0.792 0.208
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.0000     0.9669 0.000 1.000
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000     0.9669 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.1633     0.9297 0.976 0.024
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.0000     0.9669 0.000 1.000
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0000     0.9321 1.000 0.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000     0.9669 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.9669 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000     0.9321 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000     0.9669 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.0000     0.9669 0.000 1.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.1633     0.9297 0.976 0.024
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.9669 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.0000     0.9669 0.000 1.000
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     1  0.5178     0.8709 0.884 0.116
#> E36597D1-60C3-4EB8-867A-0E808599E300     1  0.8081     0.6639 0.752 0.248
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.7219     0.7896 0.800 0.200
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.3584     0.9065 0.932 0.068
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.9248     0.4293 0.340 0.660
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.0000     0.9669 0.000 1.000
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0000     0.9321 1.000 0.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000     0.9669 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     1  0.3114     0.8999 0.944 0.056
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.9669 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.9977     0.2210 0.528 0.472
#> D249B589-22E5-4678-9757-FF6A7E4553E5     1  0.4161     0.8949 0.916 0.084
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.1843     0.9282 0.972 0.028
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.9881     0.2504 0.436 0.564
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     1  0.0000     0.9321 1.000 0.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.6623     0.8195 0.828 0.172
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000     0.9669 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.0000     0.9669 0.000 1.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.0000     0.9321 1.000 0.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     1  0.8499     0.6874 0.724 0.276
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.2948     0.9217 0.052 0.948
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000     0.9669 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.0000     0.9321 1.000 0.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0000     0.9669 0.000 1.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     1  0.3584     0.8939 0.932 0.068
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.1633     0.9297 0.976 0.024
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0000     0.9669 0.000 1.000
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.8909     0.5486 0.692 0.308
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.0000     0.9321 1.000 0.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0000     0.9669 0.000 1.000
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.1843     0.9417 0.028 0.972
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0000     0.9669 0.000 1.000
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0672     0.9316 0.992 0.008
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0000     0.9669 0.000 1.000
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.7299     0.7850 0.796 0.204
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.7139     0.7942 0.804 0.196
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0000     0.9669 0.000 1.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.0000     0.9669 0.000 1.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000     0.9669 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.9669 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  0.0000     0.9321 1.000 0.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.1633     0.9297 0.976 0.024
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000     0.9669 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000     0.9669 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000     0.9669 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     1  0.0000     0.9321 1.000 0.000
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.1633     0.9297 0.976 0.024
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.9669 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.4022     0.8985 0.920 0.080
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0000     0.9321 1.000 0.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000     0.9669 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.4562     0.8868 0.904 0.096
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  0.0000     0.9321 1.000 0.000
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.9669 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0000     0.9321 1.000 0.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.7219     0.7896 0.800 0.200
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000     0.9669 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.1633     0.9297 0.976 0.024
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000     0.9669 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     1  0.0000     0.9321 1.000 0.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.9669 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.1633     0.9297 0.976 0.024
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.9522     0.3978 0.628 0.372
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000     0.9669 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     1  0.2603     0.9089 0.956 0.044
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.9669 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.3879     0.9011 0.924 0.076
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.9321 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.0000     0.9321 1.000 0.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.6712     0.7781 0.176 0.824
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     1  0.0000     0.9321 1.000 0.000
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.5946     0.8465 0.856 0.144
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.9669 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000     0.9669 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.0000     0.9321 1.000 0.000
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     1  0.0000     0.9321 1.000 0.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.9833     0.1750 0.424 0.576
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.9000     0.4888 0.316 0.684
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     1  0.0000     0.9321 1.000 0.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     1  0.0000     0.9321 1.000 0.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.9321 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.0000     0.9669 0.000 1.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.0000     0.9321 1.000 0.000
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.9669 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0000     0.9321 1.000 0.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.9669 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.6887     0.7669 0.184 0.816
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0000     0.9669 0.000 1.000
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.6531     0.8237 0.832 0.168
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.9669 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.8813     0.6438 0.700 0.300
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.1633     0.9297 0.976 0.024
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0000     0.9321 1.000 0.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0000     0.9321 1.000 0.000
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.9000     0.6148 0.684 0.316
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.9669 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.7528     0.7224 0.216 0.784
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.8763     0.6506 0.704 0.296
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.0000     0.9669 0.000 1.000
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.9833     0.1740 0.424 0.576
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.2948     0.9160 0.948 0.052
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.9669 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.1633     0.9297 0.976 0.024
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0000     0.9321 1.000 0.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.9321 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000     0.9669 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.7219     0.7896 0.800 0.200
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.2423     0.9227 0.960 0.040
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     1  0.0000     0.9321 1.000 0.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.1633     0.9447 0.024 0.976
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.0000     0.9669 0.000 1.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000     0.9669 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.2236     0.9245 0.964 0.036
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.0000     0.9669 0.000 1.000
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000     0.9669 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000     0.9669 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0000     0.9669 0.000 1.000
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.9669 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.1633     0.9297 0.976 0.024
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.1633     0.9297 0.976 0.024
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.7376     0.7802 0.792 0.208
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     2  0.7602     0.6857 0.220 0.780
#> B57C849C-28B1-4315-885C-330B9C9482B3     1  0.0000     0.9321 1.000 0.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000     0.9669 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0000     0.9669 0.000 1.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.9669 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.2236     0.9353 0.036 0.964
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.0000     0.9321 1.000 0.000
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.0000     0.9669 0.000 1.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0376     0.9319 0.996 0.004
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.9321 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.9669 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000     0.9321 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.1633     0.9297 0.976 0.024
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.6973     0.8029 0.812 0.188
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.7056     0.7371 0.192 0.808
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.7376     0.7801 0.792 0.208
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0000     0.9321 1.000 0.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0000     0.9321 1.000 0.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.0000     0.9669 0.000 1.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.9491     0.4402 0.632 0.368
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.1633     0.9297 0.976 0.024
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.7219     0.7444 0.200 0.800
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.9922     0.2995 0.552 0.448
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.1633     0.9297 0.976 0.024
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0000     0.9321 1.000 0.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.0000     0.9669 0.000 1.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.6148     0.8392 0.848 0.152
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0000     0.9669 0.000 1.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000     0.9321 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0000     0.9669 0.000 1.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.0000     0.9669 0.000 1.000
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.9393     0.4653 0.356 0.644
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.9669 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0000     0.9321 1.000 0.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.9669 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0000     0.9321 1.000 0.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     1  0.0000     0.9321 1.000 0.000
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.1633     0.9297 0.976 0.024
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.9669 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.0000     0.9669 0.000 1.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.9321 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.6247     0.7875 0.156 0.844
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.9669 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000     0.9669 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.9321 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0000     0.9321 1.000 0.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000     0.9321 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.7219     0.7896 0.800 0.200
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.9669 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.9669 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.0000     0.9669 0.000 1.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0000     0.9321 1.000 0.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.6531     0.8236 0.832 0.168
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000     0.9321 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     1  0.0000     0.9321 1.000 0.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.6048     0.8429 0.852 0.148
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.7376     0.7804 0.792 0.208
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     1  0.0000     0.9321 1.000 0.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000     0.9321 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000     0.9321 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.1843     0.9281 0.972 0.028
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0000     0.9669 0.000 1.000
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.0000     0.9669 0.000 1.000
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.7745     0.7544 0.772 0.228
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     1  0.5842     0.8189 0.860 0.140
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.2423     0.9226 0.960 0.040
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000     0.9669 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.9669 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.9321 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.1633     0.9297 0.976 0.024
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.0000     0.9321 1.000 0.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.1414     0.9303 0.980 0.020
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.1633     0.9297 0.976 0.024
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.0000     0.9669 0.000 1.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.3879     0.9012 0.924 0.076
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.9170     0.5842 0.668 0.332
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.9321 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.0000     0.9669 0.000 1.000
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.7219     0.7896 0.800 0.200
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.9321 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.1633     0.9297 0.976 0.024
#> 1122039D-5785-4F70-9916-17C585453512     1  0.0000     0.9321 1.000 0.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.1843     0.9281 0.972 0.028
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0938     0.9312 0.988 0.012
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.0000     0.9669 0.000 1.000
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.0000     0.9669 0.000 1.000
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.9669 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.6801     0.7518 0.180 0.820
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.0000     0.9321 1.000 0.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000     0.9321 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.1633     0.9297 0.976 0.024
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0000     0.9321 1.000 0.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.8443     0.6904 0.728 0.272
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0000     0.9669 0.000 1.000
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.2043     0.9264 0.968 0.032
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.0000     0.9669 0.000 1.000
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0000     0.9321 1.000 0.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000     0.9321 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.4161     0.8957 0.916 0.084
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.0000     0.9321 1.000 0.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000     0.9669 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.2236     0.9246 0.964 0.036
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000     0.9321 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.1633     0.9297 0.976 0.024
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.1184     0.9308 0.984 0.016
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.0000     0.9669 0.000 1.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000     0.9321 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.9669 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.0000     0.9321 1.000 0.000
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.9669 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.1633     0.9297 0.976 0.024
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.9460     0.5168 0.636 0.364
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000     0.9321 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.5294     0.8676 0.880 0.120

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0736           0.628       0.787         0.4069 0.596   0.596
#> 3 3 0.0856           0.478       0.714         0.2945 0.898   0.835
#> 4 4 0.1500           0.336       0.592         0.2165 0.767   0.586
#> 5 5 0.2381           0.329       0.566         0.1060 0.840   0.606
#> 6 6 0.3177           0.362       0.583         0.0654 0.865   0.605

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.9977    0.15873 0.528 0.472
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.0376    0.68834 0.996 0.004
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0000    0.73162 0.000 1.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.9833    0.37938 0.424 0.576
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.9922    0.33750 0.448 0.552
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.3879    0.77035 0.076 0.924
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.9552    0.54231 0.376 0.624
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     2  0.7883    0.73561 0.236 0.764
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.2778    0.75699 0.048 0.952
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.7745    0.71461 0.228 0.772
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.8955    0.58806 0.312 0.688
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.8327    0.71350 0.264 0.736
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.7376    0.72103 0.208 0.792
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.6623    0.77486 0.172 0.828
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.9129    0.51127 0.672 0.328
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.6438    0.77192 0.164 0.836
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.0376    0.68834 0.996 0.004
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.9087    0.59369 0.324 0.676
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.9998   -0.09435 0.508 0.492
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.5519    0.72805 0.128 0.872
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.9896    0.08429 0.440 0.560
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.9358    0.59727 0.352 0.648
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.2778    0.70219 0.952 0.048
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.6148    0.71694 0.152 0.848
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.5842    0.69700 0.860 0.140
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.5059    0.73156 0.112 0.888
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.7453    0.75910 0.212 0.788
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.8555    0.70385 0.280 0.720
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     2  0.9977    0.21710 0.472 0.528
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     2  0.9963    0.28127 0.464 0.536
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.6801    0.76339 0.180 0.820
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.5519    0.72805 0.128 0.872
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.0376    0.68834 0.996 0.004
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.7950    0.73034 0.240 0.760
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.5408    0.77706 0.124 0.876
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.8813    0.55049 0.700 0.300
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.9358    0.45957 0.648 0.352
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.7883    0.74023 0.236 0.764
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.1633    0.69588 0.976 0.024
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.0376    0.68834 0.996 0.004
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.7883    0.73823 0.236 0.764
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     2  0.9635    0.53524 0.388 0.612
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.8443    0.69186 0.272 0.728
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.1843    0.69616 0.972 0.028
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.8608    0.57206 0.716 0.284
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.2603    0.75710 0.044 0.956
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.9881    0.09694 0.436 0.564
#> 066B10C1-777F-4863-ACCA-6684310B913E     2  0.8955    0.65365 0.312 0.688
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  1.0000   -0.02246 0.496 0.504
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.9754    0.45882 0.408 0.592
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     2  0.7950    0.73034 0.240 0.760
#> 4379559E-E467-49BD-9673-40A486146A3B     2  0.8955    0.64986 0.312 0.688
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.9170    0.49144 0.332 0.668
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.5059    0.77998 0.112 0.888
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.7056    0.67645 0.808 0.192
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.9323    0.47552 0.652 0.348
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.6438    0.75657 0.164 0.836
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.9522    0.38341 0.628 0.372
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.3584    0.76544 0.068 0.932
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.9323    0.57412 0.348 0.652
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.9983    0.20666 0.476 0.524
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.9286    0.57438 0.344 0.656
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.7528    0.65894 0.784 0.216
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     2  0.9522    0.56642 0.372 0.628
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     2  0.8713    0.68642 0.292 0.708
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.4690    0.77255 0.100 0.900
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.9977    0.15873 0.528 0.472
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.9963    0.01790 0.536 0.464
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     2  0.9963    0.25033 0.464 0.536
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.9209    0.49705 0.664 0.336
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.9963    0.21628 0.464 0.536
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.8713    0.53963 0.708 0.292
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.4815    0.76961 0.104 0.896
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.8327    0.59027 0.264 0.736
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.1184    0.74213 0.016 0.984
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.0376    0.68834 0.996 0.004
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.3274    0.76473 0.060 0.940
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.6438    0.78239 0.164 0.836
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.5737    0.77449 0.136 0.864
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.1414    0.74526 0.020 0.980
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.9775    0.45744 0.412 0.588
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.5059    0.73156 0.112 0.888
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.9393    0.45633 0.644 0.356
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.2236    0.75356 0.036 0.964
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.4022    0.70365 0.920 0.080
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.7376    0.73629 0.208 0.792
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.6343    0.69155 0.840 0.160
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0672    0.73704 0.008 0.992
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.9209    0.62296 0.336 0.664
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.7674    0.74117 0.224 0.776
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     2  0.8016    0.72722 0.244 0.756
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.6438    0.77589 0.164 0.836
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.9686    0.32510 0.604 0.396
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.5946    0.73080 0.144 0.856
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.7602    0.74410 0.220 0.780
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.9209    0.49620 0.336 0.664
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.9286    0.57438 0.344 0.656
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.6343    0.71437 0.160 0.840
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.0376    0.68834 0.996 0.004
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.5059    0.77091 0.112 0.888
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.8016    0.72722 0.244 0.756
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.9833    0.25004 0.576 0.424
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.9552    0.54969 0.376 0.624
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000    0.73162 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.8555    0.60165 0.720 0.280
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.8909    0.51696 0.692 0.308
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.6343    0.77253 0.160 0.840
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.7674    0.75056 0.224 0.776
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.5519    0.76058 0.128 0.872
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.2236    0.69748 0.964 0.036
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.9209    0.61469 0.336 0.664
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.9661    0.33318 0.608 0.392
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.7815    0.71789 0.232 0.768
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     2  0.8443    0.71359 0.272 0.728
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.9977    0.23951 0.472 0.528
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.7299    0.72498 0.204 0.796
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.5519    0.77761 0.128 0.872
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.4815    0.76961 0.104 0.896
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.2948    0.75845 0.052 0.948
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.6801    0.65497 0.820 0.180
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     2  0.8081    0.73046 0.248 0.752
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.5842    0.70029 0.860 0.140
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.9988   -0.02416 0.520 0.480
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.9909    0.20096 0.444 0.556
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.7602    0.61386 0.220 0.780
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0376    0.68834 0.996 0.004
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.9963    0.30349 0.464 0.536
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.8763    0.68327 0.296 0.704
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.9944    0.10172 0.544 0.456
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.3114    0.69172 0.944 0.056
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.8267    0.71564 0.260 0.740
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.8608    0.62473 0.284 0.716
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.5294    0.77561 0.120 0.880
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.7453    0.75748 0.212 0.788
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.8443    0.60884 0.728 0.272
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.1184    0.73382 0.016 0.984
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.0376    0.68834 0.996 0.004
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.4815    0.76961 0.104 0.896
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.9491    0.41041 0.632 0.368
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.5519    0.72805 0.128 0.872
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.2423    0.75351 0.040 0.960
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.6623    0.77128 0.172 0.828
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.6712    0.75702 0.176 0.824
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.6343    0.75740 0.160 0.840
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.8081    0.73201 0.248 0.752
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.3584    0.75809 0.068 0.932
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.4815    0.73267 0.104 0.896
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.5408    0.68610 0.876 0.124
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.4431    0.77351 0.092 0.908
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.1414    0.69477 0.980 0.020
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.4690    0.73170 0.100 0.900
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.1184    0.74220 0.016 0.984
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.3879    0.76827 0.076 0.924
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.1184    0.69263 0.984 0.016
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.8386    0.71686 0.268 0.732
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.2236    0.69748 0.964 0.036
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     2  0.9635    0.52078 0.388 0.612
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     2  0.6531    0.77644 0.168 0.832
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.9087    0.63016 0.324 0.676
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.7376    0.73629 0.208 0.792
#> D149276E-A961-49D6-8BDA-004E8264A0A1     2  0.9491    0.54993 0.368 0.632
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.1414    0.69477 0.980 0.020
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     2  0.9922    0.33908 0.448 0.552
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.2236    0.69748 0.964 0.036
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     2  0.8016    0.72303 0.244 0.756
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.5408    0.76306 0.124 0.876
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.8207    0.71517 0.256 0.744
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.7815    0.73656 0.232 0.768
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.8763    0.68551 0.296 0.704
#> 862D2F88-77A9-4363-A744-7738F49980E8     2  0.9393    0.57772 0.356 0.644
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.0376    0.68834 0.996 0.004
#> C8820FA6-3531-4515-A102-19100775E767     1  0.9993   -0.05937 0.516 0.484
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.6887    0.65330 0.816 0.184
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.9000    0.63122 0.316 0.684
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000    0.73162 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.2236    0.69748 0.964 0.036
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.9580    0.53319 0.380 0.620
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.3733    0.77007 0.072 0.928
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.0000    0.73162 0.000 1.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.9993    0.12336 0.516 0.484
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.4431    0.76954 0.092 0.908
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.9795    0.27171 0.584 0.416
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.7674    0.64474 0.776 0.224
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.6887    0.76652 0.184 0.816
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     2  0.8763    0.67926 0.296 0.704
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.8861    0.54160 0.696 0.304
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.9000    0.63122 0.316 0.684
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.5519    0.72805 0.128 0.872
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.9988    0.19318 0.480 0.520
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.7453    0.75990 0.212 0.788
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.5059    0.76172 0.112 0.888
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.7602    0.74795 0.220 0.780
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.6623    0.77486 0.172 0.828
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.4022    0.76981 0.080 0.920
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.6623    0.76489 0.172 0.828
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.6801    0.73897 0.180 0.820
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.5737    0.73644 0.136 0.864
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.3733    0.76261 0.072 0.928
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.9933    0.31345 0.452 0.548
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.2778    0.75820 0.048 0.952
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.6623    0.68878 0.828 0.172
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.0376    0.73206 0.004 0.996
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     2  0.7745    0.73983 0.228 0.772
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.7950    0.63233 0.760 0.240
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.8713    0.54895 0.708 0.292
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.0376    0.68834 0.996 0.004
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.3733    0.75809 0.072 0.928
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.9358    0.46584 0.648 0.352
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.9754    0.30183 0.592 0.408
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.6048    0.77486 0.148 0.852
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.9427    0.54182 0.360 0.640
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.9686    0.48898 0.396 0.604
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.7299    0.76112 0.204 0.796
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.9170    0.62215 0.332 0.668
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     2  0.7883    0.73587 0.236 0.764
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.5294    0.77601 0.120 0.880
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.9358    0.54924 0.352 0.648
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.7745    0.74684 0.228 0.772
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.5059    0.73156 0.112 0.888
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     1  0.9896    0.14896 0.560 0.440
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.9248    0.38707 0.340 0.660
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.9087    0.51636 0.676 0.324
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.7602    0.74877 0.220 0.780
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.2423    0.69808 0.960 0.040
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.0376    0.73206 0.004 0.996
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.4161    0.77451 0.084 0.916
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.9983   -0.01711 0.524 0.476
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.7528    0.74257 0.216 0.784
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.7528    0.75453 0.216 0.784
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     2  0.7299    0.75902 0.204 0.796
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.8955    0.64072 0.312 0.688
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.9522    0.42473 0.372 0.628
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.5408    0.77761 0.124 0.876
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.3431    0.76745 0.064 0.936
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.1633    0.69588 0.976 0.024
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     2  0.8267    0.72243 0.260 0.740
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.7056    0.76708 0.192 0.808
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.4815    0.73267 0.104 0.896
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.8555    0.71534 0.280 0.720
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.9170    0.62794 0.332 0.668
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.5294    0.77078 0.120 0.880
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.2603    0.70225 0.956 0.044
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.7453    0.75620 0.212 0.788
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.5178    0.77751 0.116 0.884
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.7883    0.72446 0.236 0.764
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.9248    0.58810 0.340 0.660
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.7376    0.73629 0.208 0.792
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.3431    0.76578 0.064 0.936
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.5178    0.77213 0.116 0.884
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000    0.73162 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     2  0.6531    0.77497 0.168 0.832
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.3114    0.69172 0.944 0.056
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.0376    0.73206 0.004 0.996
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.8608    0.61874 0.284 0.716
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     2  0.7528    0.75453 0.216 0.784
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.9358    0.57954 0.352 0.648
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.7745    0.74680 0.228 0.772
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.7219    0.76483 0.200 0.800
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.9833    0.40156 0.424 0.576
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.9522    0.54100 0.372 0.628
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.4690    0.73170 0.100 0.900
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.9815    0.42457 0.420 0.580
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.7376    0.74943 0.208 0.792
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.6801    0.76612 0.180 0.820
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.9909    0.13106 0.556 0.444
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.2423    0.75412 0.040 0.960
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.7950    0.73254 0.240 0.760
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.8207    0.72056 0.256 0.744
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.9795    0.27424 0.584 0.416
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.9710    0.31918 0.600 0.400
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.9988    0.20020 0.480 0.520
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.0672    0.73704 0.008 0.992
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.9996    0.12798 0.488 0.512
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.9896    0.08429 0.440 0.560
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.7950    0.66782 0.240 0.760
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.7453    0.75620 0.212 0.788
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.4298    0.77444 0.088 0.912
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     2  0.9909    0.21242 0.444 0.556
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.8386    0.57071 0.732 0.268
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.4431    0.77153 0.092 0.908
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.2236    0.69748 0.964 0.036
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.8386    0.58380 0.268 0.732
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.9522    0.42473 0.372 0.628
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.0376    0.68834 0.996 0.004
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.6343    0.77253 0.160 0.840
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.7376    0.73629 0.208 0.792
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.5946    0.78006 0.144 0.856
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.6343    0.77549 0.160 0.840
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.9635    0.38547 0.612 0.388
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000    0.73162 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     2  0.9710    0.49235 0.400 0.600
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.6801    0.77273 0.180 0.820
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.0376    0.68834 0.996 0.004
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.5178    0.69015 0.884 0.116
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.9881    0.17736 0.564 0.436
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.7453    0.74325 0.212 0.788
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.6531    0.77730 0.168 0.832
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.7299    0.75987 0.204 0.796
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.9087    0.63699 0.324 0.676
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.7376    0.66891 0.792 0.208
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  1.0000   -0.14630 0.504 0.496
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.9393    0.43911 0.644 0.356
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9833    0.22743 0.424 0.576
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0376    0.73435 0.004 0.996
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.5946    0.77835 0.144 0.856
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0672    0.73701 0.008 0.992
#> 0331645C-74A4-4E78-BDB8-4176735DE096     2  0.8081    0.72987 0.248 0.752
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000    0.73162 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.9996    0.16886 0.488 0.512
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.8861    0.54160 0.696 0.304
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.2423    0.75351 0.040 0.960
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.5737    0.69765 0.864 0.136
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.8763    0.66637 0.296 0.704
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  1.0000   -0.14630 0.504 0.496
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0376    0.68834 0.996 0.004
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     1  0.9954    0.19757 0.540 0.460
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.8016    0.72722 0.244 0.756
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.0000    0.73162 0.000 1.000
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.4939    0.72987 0.108 0.892
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.1184    0.73816 0.016 0.984
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.4161    0.77266 0.084 0.916
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.9522    0.38341 0.628 0.372
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.5629    0.77638 0.132 0.868
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.4298    0.77444 0.088 0.912
#> E1833486-2998-4804-A535-EBF25A992392     2  0.3274    0.76302 0.060 0.940
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000    0.73162 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     2  0.7674    0.73637 0.224 0.776
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.1184    0.68537 0.984 0.016
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.9087    0.53035 0.324 0.676
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.5629    0.76755 0.132 0.868
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.6801    0.77172 0.180 0.820
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.1414    0.69477 0.980 0.020
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     2  0.7883    0.73561 0.236 0.764
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.4161    0.77173 0.084 0.916
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000    0.73162 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.1843    0.74755 0.028 0.972
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     2  1.0000    0.16699 0.496 0.504
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.4690    0.73170 0.100 0.900
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.9358    0.51543 0.352 0.648
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.0376    0.68834 0.996 0.004
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.1633    0.74905 0.024 0.976
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.5946    0.77776 0.144 0.856
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.9754    0.46628 0.408 0.592
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.5737    0.77449 0.136 0.864
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000    0.73162 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.5737    0.69853 0.864 0.136
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.7883    0.74604 0.236 0.764
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.4815    0.77030 0.104 0.896
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.8763    0.66637 0.296 0.704
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.8327    0.71805 0.264 0.736
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.4690    0.73170 0.100 0.900
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.6801    0.76612 0.180 0.820
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.1843    0.74796 0.028 0.972
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.5629    0.78109 0.132 0.868
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.3733    0.75809 0.072 0.928
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     2  0.9993    0.23037 0.484 0.516
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.2948    0.75845 0.052 0.948
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.3431    0.76497 0.064 0.936
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.5629    0.77657 0.132 0.868
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     2  0.7745    0.74244 0.228 0.772
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.4815    0.73267 0.104 0.896
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.5178    0.73066 0.116 0.884
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.9358    0.58266 0.352 0.648
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.9522    0.42473 0.372 0.628
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.2043    0.75167 0.032 0.968
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.6148    0.69359 0.848 0.152
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.7299    0.72498 0.204 0.796
#> 457090A2-AE7F-4E68-85EA-032DE8411110     2  0.8016    0.72793 0.244 0.756
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.4161    0.77224 0.084 0.916
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.9850    0.23738 0.572 0.428
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.6247    0.72811 0.156 0.844
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.7602    0.73826 0.220 0.780
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.7219    0.63779 0.800 0.200
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.4690    0.77568 0.100 0.900
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.7674    0.64474 0.776 0.224
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.9209    0.49620 0.336 0.664
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.6148    0.75507 0.152 0.848
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.2948    0.75921 0.052 0.948
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.9635    0.50848 0.388 0.612
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.9209    0.61469 0.336 0.664
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.9993    0.18043 0.484 0.516
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.8443    0.59640 0.728 0.272
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.3879    0.76578 0.076 0.924
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.6438    0.69058 0.836 0.164
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.4022    0.70375 0.920 0.080
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.8608    0.69857 0.284 0.716
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.9358    0.45795 0.648 0.352
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.1414    0.74595 0.020 0.980
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.9286    0.57438 0.344 0.656
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.9881    0.26535 0.564 0.436
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.3431    0.75903 0.064 0.936
#> 80936433-AA91-4219-98F1-706C36298060     2  0.5629    0.77045 0.132 0.868
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.0376    0.68834 0.996 0.004
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.6438    0.77866 0.164 0.836
#> D85CB054-7F54-4383-96C0-6C99761B84E7     2  0.9358    0.60083 0.352 0.648
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.1414    0.69407 0.980 0.020
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.8327    0.59027 0.264 0.736
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.7815    0.73656 0.232 0.768
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.6531    0.68910 0.832 0.168
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.9170    0.50968 0.668 0.332
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.9686    0.32510 0.604 0.396
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     2  0.9686    0.50109 0.396 0.604
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.5408    0.77033 0.124 0.876
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.2948    0.75845 0.052 0.948
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.0376    0.68834 0.996 0.004
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.8016    0.62686 0.756 0.244
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.2236    0.69748 0.964 0.036
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.7815    0.71789 0.232 0.768
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.6887    0.68185 0.816 0.184
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.7219    0.76163 0.200 0.800
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.4022    0.76951 0.080 0.920
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.7453    0.66171 0.788 0.212
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.7376    0.76058 0.208 0.792
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.6438    0.77866 0.164 0.836
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.8499    0.60436 0.724 0.276
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.9983   -0.00891 0.524 0.476
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.8909    0.55498 0.692 0.308
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.3114    0.75459 0.056 0.944
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.5059    0.77091 0.112 0.888
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.9491    0.41500 0.632 0.368
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.7883    0.73148 0.236 0.764
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.5294    0.77769 0.120 0.880
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.4815    0.77030 0.104 0.896
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.2236    0.69748 0.964 0.036
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.8081    0.72219 0.248 0.752
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.0376    0.68834 0.996 0.004
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.9044    0.54473 0.680 0.320
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.9044    0.65010 0.320 0.680
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.5294    0.72758 0.120 0.880
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.9209    0.61469 0.336 0.664
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.8813    0.57265 0.700 0.300
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.5294    0.77182 0.120 0.880
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     2  0.7883    0.74269 0.236 0.764
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.6148    0.69801 0.848 0.152
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.5178    0.76448 0.116 0.884
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.5842    0.74903 0.140 0.860
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.0376    0.68834 0.996 0.004
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.5519    0.77262 0.128 0.872
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     2  0.9460    0.56674 0.364 0.636
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.5408    0.77761 0.124 0.876
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.5294    0.77078 0.120 0.880
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.5519    0.77578 0.128 0.872
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.4022    0.76925 0.080 0.920
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.4431    0.77153 0.092 0.908
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     2  0.7299    0.75902 0.204 0.796
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     2  0.9358    0.59895 0.352 0.648
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.8386    0.71025 0.268 0.732
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.9970    0.03002 0.532 0.468
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.8327    0.72088 0.264 0.736
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.6712    0.76925 0.176 0.824
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0000    0.73162 0.000 1.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.9909    0.17083 0.556 0.444
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.8608    0.61019 0.284 0.716
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.4815    0.76182 0.104 0.896
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.6531    0.68910 0.832 0.168
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.5737    0.78084 0.136 0.864
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.3274    0.76302 0.060 0.940
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.7139    0.67616 0.804 0.196
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     2  0.7602    0.75291 0.220 0.780
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.7376    0.64783 0.792 0.208
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.1184    0.69357 0.984 0.016
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.1184    0.69357 0.984 0.016
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.5737    0.70147 0.864 0.136
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9954    0.05915 0.540 0.460
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.6887    0.68091 0.816 0.184
#> C33059A9-A313-4806-B43B-0031365F3BE4     2  0.9286    0.60297 0.344 0.656
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.4298    0.77219 0.088 0.912
#> 1122039D-5785-4F70-9916-17C585453512     1  0.3114    0.69172 0.944 0.056
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.6712    0.66057 0.824 0.176
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.5737    0.77787 0.136 0.864
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.9963    0.21628 0.464 0.536
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9000    0.60973 0.316 0.684
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.7139    0.75701 0.196 0.804
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.9775    0.42907 0.412 0.588
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.3114    0.69172 0.944 0.056
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.8144    0.63222 0.748 0.252
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     2  0.9209    0.62115 0.336 0.664
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.0000    0.73162 0.000 1.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.9710    0.48574 0.400 0.600
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     1  1.0000   -0.11903 0.504 0.496
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.6048    0.69804 0.852 0.148
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.9686    0.49170 0.396 0.604
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.6343    0.77198 0.160 0.840
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.9044    0.65698 0.320 0.680
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.5519    0.77617 0.128 0.872
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.5059    0.77998 0.112 0.888
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.9922    0.32611 0.448 0.552
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     2  0.7376    0.75533 0.208 0.792
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     2  0.7376    0.75533 0.208 0.792
#> EB7883EB-0079-4548-9132-169E94A698BA     2  0.8016    0.72722 0.244 0.756
#> E6446572-BFA9-4018-89B3-7E4519EBE072     2  0.9988    0.18528 0.480 0.520
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.0376    0.68834 0.996 0.004
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.9977    0.03943 0.528 0.472
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.3431    0.75903 0.064 0.936
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.5294    0.74389 0.120 0.880
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.6973    0.74078 0.188 0.812
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     2  0.9358    0.60135 0.352 0.648
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.8861    0.68252 0.304 0.696
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     2  0.8327    0.70468 0.264 0.736
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.9323    0.47658 0.652 0.348

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.410           0.740       0.860         0.4908 0.503   0.503
#> 3 3 0.680           0.824       0.896         0.3304 0.640   0.402
#> 4 4 0.558           0.655       0.780         0.1066 0.807   0.526
#> 5 5 0.623           0.576       0.757         0.0701 0.920   0.739
#> 6 6 0.643           0.506       0.702         0.0478 0.853   0.501

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0672     0.7906 0.008 0.992
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.7602     0.7226 0.780 0.220
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.7674     0.7710 0.224 0.776
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.7528     0.7342 0.784 0.216
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.9866     0.4616 0.568 0.432
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.8763     0.7408 0.296 0.704
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.5737     0.6757 0.136 0.864
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0672     0.8586 0.992 0.008
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.8763     0.7408 0.296 0.704
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.8813     0.7426 0.300 0.700
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0672     0.7906 0.008 0.992
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.6531     0.6797 0.832 0.168
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0376     0.7922 0.004 0.996
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.9608     0.6106 0.384 0.616
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.7528     0.7264 0.784 0.216
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.8763     0.7408 0.296 0.704
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.7745     0.7245 0.772 0.228
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.7940 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.9993     0.3253 0.516 0.484
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.7940 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.1843     0.7904 0.028 0.972
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.7940 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.8560 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.7940 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.1414     0.8551 0.980 0.020
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.7940 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.8763     0.7408 0.296 0.704
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0672     0.8586 0.992 0.008
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0672     0.8586 0.992 0.008
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0672     0.8586 0.992 0.008
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.9815     0.5620 0.420 0.580
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.7940 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.7745     0.7245 0.772 0.228
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.5737     0.7284 0.864 0.136
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.8763     0.7408 0.296 0.704
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.7674     0.7237 0.776 0.224
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.8955     0.6340 0.688 0.312
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0672     0.8586 0.992 0.008
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0672     0.8586 0.992 0.008
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.7815     0.7210 0.768 0.232
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.3114     0.8221 0.944 0.056
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0672     0.8586 0.992 0.008
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.7940 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.8560 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.7745     0.7245 0.772 0.228
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.8763     0.7408 0.296 0.704
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.7940 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0672     0.8586 0.992 0.008
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  0.8861     0.7395 0.304 0.696
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.7602     0.5444 0.220 0.780
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0672     0.8586 0.992 0.008
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.7674     0.5735 0.776 0.224
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0376     0.7924 0.004 0.996
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.8763     0.7408 0.296 0.704
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0672     0.8586 0.992 0.008
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.3879     0.8216 0.924 0.076
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.7940 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.8813     0.6459 0.700 0.300
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.8763     0.7408 0.296 0.704
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.9522     0.1419 0.372 0.628
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0672     0.8586 0.992 0.008
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.2778     0.7638 0.048 0.952
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0672     0.8586 0.992 0.008
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.8560 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.9850    -0.1591 0.572 0.428
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.8813     0.7403 0.300 0.700
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0672     0.7906 0.008 0.992
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.8560 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0672     0.8586 0.992 0.008
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0672     0.8586 0.992 0.008
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.7940 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.7139     0.6865 0.196 0.804
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.7940 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.7940 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.7602     0.7719 0.220 0.780
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.7745     0.7245 0.772 0.228
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.8763     0.7408 0.296 0.704
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0672     0.7906 0.008 0.992
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.9896     0.5202 0.440 0.560
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.7602     0.7719 0.220 0.780
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0672     0.8586 0.992 0.008
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.7940 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0672     0.8586 0.992 0.008
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.7602     0.7719 0.220 0.780
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.3274     0.8333 0.940 0.060
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.7940 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0672     0.8586 0.992 0.008
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.7815     0.7688 0.232 0.768
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0672     0.8586 0.992 0.008
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.7940 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0672     0.8586 0.992 0.008
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.8763     0.7408 0.296 0.704
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0376     0.8575 0.996 0.004
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.7940 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0672     0.8586 0.992 0.008
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0672     0.7906 0.008 0.992
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.9323     0.2237 0.348 0.652
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0672     0.7906 0.008 0.992
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.7745     0.7245 0.772 0.228
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.7940 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0672     0.8586 0.992 0.008
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0672     0.8586 0.992 0.008
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.6247     0.7860 0.156 0.844
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.7940 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0672     0.8586 0.992 0.008
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.9850     0.5427 0.428 0.572
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.0672     0.8586 0.992 0.008
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.8763     0.7408 0.296 0.704
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0376     0.7924 0.004 0.996
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.4431     0.8123 0.908 0.092
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.9775     0.4908 0.588 0.412
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.9896     0.4459 0.560 0.440
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0672     0.7906 0.008 0.992
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     2  0.9993     0.4112 0.484 0.516
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.8763     0.6398 0.704 0.296
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.7940 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.8861     0.7395 0.304 0.696
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.7940 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.8763     0.7408 0.296 0.704
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.8560 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.1184     0.8539 0.984 0.016
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0672     0.8586 0.992 0.008
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.9963     0.3939 0.536 0.464
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.8861     0.7395 0.304 0.696
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0672     0.7906 0.008 0.992
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.6801     0.7578 0.820 0.180
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.8386     0.6837 0.732 0.268
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.8763     0.7408 0.296 0.704
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0672     0.8586 0.992 0.008
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.8608     0.4515 0.284 0.716
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.6531     0.6797 0.832 0.168
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0672     0.7906 0.008 0.992
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.8763     0.7408 0.296 0.704
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.8763     0.7408 0.296 0.704
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0376     0.8575 0.996 0.004
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.8207     0.7603 0.256 0.744
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.7745     0.7245 0.772 0.228
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000     0.7940 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0376     0.8575 0.996 0.004
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.7940 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.8763     0.7408 0.296 0.704
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.8763     0.7408 0.296 0.704
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.7940 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.7940 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0672     0.8586 0.992 0.008
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.7940 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.7940 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.8560 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.8763     0.7408 0.296 0.704
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0672     0.8586 0.992 0.008
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.7940 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.8763     0.7408 0.296 0.704
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.7815     0.7687 0.232 0.768
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.8560 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.8813     0.7426 0.300 0.700
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.8560 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.8560 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     2  0.8909     0.7359 0.308 0.692
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.8081     0.7052 0.752 0.248
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.7940 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0672     0.8586 0.992 0.008
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0672     0.8586 0.992 0.008
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0672     0.8586 0.992 0.008
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.8560 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.1414     0.8510 0.980 0.020
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.7940 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0938     0.8565 0.988 0.012
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.8763     0.7408 0.296 0.704
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0672     0.8586 0.992 0.008
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0672     0.8586 0.992 0.008
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.7745     0.7245 0.772 0.228
#> C8820FA6-3531-4515-A102-19100775E767     1  0.2236     0.8481 0.964 0.036
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.8560 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.7940 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.7940 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.8560 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.9970     0.3783 0.532 0.468
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.8763     0.7408 0.296 0.704
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.8713     0.7433 0.292 0.708
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0672     0.7906 0.008 0.992
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.8813     0.7372 0.300 0.700
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0672     0.8586 0.992 0.008
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.8861     0.6410 0.696 0.304
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.9635     0.6205 0.388 0.612
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.8560 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.8499     0.6747 0.724 0.276
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.7940 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.7940 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.5629     0.7337 0.868 0.132
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.8861     0.7337 0.304 0.696
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.7940 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.8763     0.7408 0.296 0.704
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.7602     0.7719 0.220 0.780
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.8763     0.7408 0.296 0.704
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.8443     0.7535 0.272 0.728
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.7940 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.7940 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.7940 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.2603     0.8321 0.956 0.044
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.7815     0.7688 0.232 0.768
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0672     0.8586 0.992 0.008
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.7139     0.7787 0.196 0.804
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0938     0.8564 0.988 0.012
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.6343     0.7748 0.840 0.160
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.5408     0.7342 0.876 0.124
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.7745     0.7245 0.772 0.228
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.7940 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0376     0.8575 0.996 0.004
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0672     0.8586 0.992 0.008
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.8813     0.7367 0.300 0.700
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0672     0.7906 0.008 0.992
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.9909     0.4814 0.444 0.556
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.9170     0.6991 0.332 0.668
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.9944     0.0725 0.544 0.456
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0672     0.8586 0.992 0.008
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.8763     0.7408 0.296 0.704
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  1.0000    -0.2752 0.496 0.504
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.8763     0.7408 0.296 0.704
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.7940 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.8267     0.4749 0.260 0.740
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.1184     0.7921 0.016 0.984
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.7453     0.7338 0.788 0.212
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.2423     0.8463 0.960 0.040
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.8560 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.7453     0.7757 0.212 0.788
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.7602     0.7719 0.220 0.780
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.8560 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.7940 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.9896     0.5202 0.440 0.560
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0672     0.8586 0.992 0.008
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.7940 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0672     0.7906 0.008 0.992
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.8861     0.7395 0.304 0.696
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.8763     0.7408 0.296 0.704
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0672     0.8586 0.992 0.008
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.1184     0.8539 0.984 0.016
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.8763     0.7408 0.296 0.704
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.7940 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000     0.7940 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0672     0.8586 0.992 0.008
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.8813     0.7372 0.300 0.700
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.8560 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.4161     0.7935 0.916 0.084
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.8763     0.7452 0.296 0.704
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.7940 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0376     0.7924 0.004 0.996
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.7940 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.8763     0.7408 0.296 0.704
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.8763     0.7408 0.296 0.704
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.4939     0.7913 0.108 0.892
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.9944    -0.2269 0.544 0.456
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.7815     0.7210 0.768 0.232
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.6712     0.7838 0.176 0.824
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0672     0.7906 0.008 0.992
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.9970    -0.2681 0.532 0.468
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.9963     0.3762 0.536 0.464
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.4022     0.7975 0.920 0.080
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000     0.7940 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.7940 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.4690     0.7750 0.900 0.100
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.1633     0.7949 0.024 0.976
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.1843     0.8516 0.972 0.028
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.8861     0.7326 0.304 0.696
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.7940 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.8443     0.6808 0.272 0.728
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.7602     0.7719 0.220 0.780
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.5294     0.6951 0.120 0.880
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.9710     0.5887 0.400 0.600
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0672     0.8586 0.992 0.008
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0672     0.8586 0.992 0.008
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.9044     0.3220 0.320 0.680
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.8713     0.7433 0.292 0.708
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.5629     0.6802 0.132 0.868
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.1843     0.7904 0.028 0.972
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.7940 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.8763     0.7408 0.296 0.704
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.7602     0.7719 0.220 0.780
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     2  0.9909     0.5104 0.444 0.556
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.0672     0.7906 0.008 0.992
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.8713     0.7433 0.292 0.708
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.8560 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000     0.7940 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.0672     0.7906 0.008 0.992
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.7745     0.7245 0.772 0.228
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.7674     0.7632 0.224 0.776
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.7940 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.4815     0.7918 0.104 0.896
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.8763     0.7408 0.296 0.704
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.9815     0.4756 0.580 0.420
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.4161     0.7928 0.084 0.916
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0672     0.8586 0.992 0.008
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.4939     0.7914 0.108 0.892
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.7745     0.7245 0.772 0.228
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.7815     0.7210 0.768 0.232
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.9933     0.4208 0.548 0.452
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.7940 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.6712     0.7824 0.176 0.824
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.9044     0.7140 0.320 0.680
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.9661     0.6141 0.392 0.608
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0672     0.8586 0.992 0.008
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0672     0.8586 0.992 0.008
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.8763     0.6398 0.704 0.296
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.1184     0.7932 0.016 0.984
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.7299     0.7765 0.204 0.796
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0938     0.7949 0.012 0.988
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.7815     0.7688 0.232 0.768
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.1184     0.8539 0.984 0.016
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.6148     0.7863 0.152 0.848
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.8443     0.4285 0.272 0.728
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.7950     0.7132 0.760 0.240
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.7674     0.7710 0.224 0.776
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0376     0.8575 0.996 0.004
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.7940 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.8560 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.6623     0.7636 0.828 0.172
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0672     0.7906 0.008 0.992
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0672     0.8586 0.992 0.008
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.8713     0.7433 0.292 0.708
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.7940 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.7815     0.7705 0.232 0.768
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.8327     0.7567 0.264 0.736
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.9866     0.4616 0.568 0.432
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.8763     0.7408 0.296 0.704
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.4022     0.7933 0.080 0.920
#> E1833486-2998-4804-A535-EBF25A992392     2  0.8763     0.7408 0.296 0.704
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.7940 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0672     0.8586 0.992 0.008
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.7602     0.7226 0.780 0.220
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0672     0.7906 0.008 0.992
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000     0.7940 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.7940 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.4431     0.8178 0.908 0.092
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.8560 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.8713     0.7434 0.292 0.708
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.7940 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.7602     0.7719 0.220 0.780
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.8560 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.7940 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0376     0.7926 0.004 0.996
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.7745     0.7245 0.772 0.228
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.8443     0.7535 0.272 0.728
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.8763     0.7408 0.296 0.704
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0672     0.8586 0.992 0.008
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.8813     0.7372 0.300 0.700
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.7674     0.7710 0.224 0.776
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0672     0.8586 0.992 0.008
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.7815     0.7705 0.232 0.768
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.9833     0.5542 0.424 0.576
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.7940 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.8608     0.4299 0.716 0.284
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.7940 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.7940 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.6973     0.7801 0.188 0.812
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.9358     0.6750 0.352 0.648
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.7940 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0672     0.8586 0.992 0.008
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.8763     0.7408 0.296 0.704
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.8763     0.7408 0.296 0.704
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.8861     0.7395 0.304 0.696
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0672     0.8586 0.992 0.008
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.7940 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.7940 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0672     0.8586 0.992 0.008
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.0672     0.7906 0.008 0.992
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.7602     0.7719 0.220 0.780
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0672     0.8586 0.992 0.008
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.7940 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0376     0.8575 0.996 0.004
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9358     0.6759 0.352 0.648
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0672     0.8586 0.992 0.008
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0376     0.7922 0.004 0.996
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.9522     0.1113 0.628 0.372
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.9881    -0.1564 0.564 0.436
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.7376     0.7755 0.208 0.792
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.7815     0.7210 0.768 0.232
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.0672     0.7906 0.008 0.992
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0376     0.7924 0.004 0.996
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.8763     0.7408 0.296 0.704
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.9944     0.4107 0.544 0.456
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.9795    -0.0262 0.416 0.584
#> E789661A-C027-405D-9F76-E6D52CE3018B     1  0.9993     0.3451 0.516 0.484
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.7745     0.7245 0.772 0.228
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.7940 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0672     0.8586 0.992 0.008
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0376     0.8575 0.996 0.004
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.5294     0.7507 0.880 0.120
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0376     0.8575 0.996 0.004
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.7602     0.7719 0.220 0.780
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.9850    -0.0729 0.428 0.572
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0672     0.7906 0.008 0.992
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.7940 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.7940 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.7674     0.7237 0.776 0.224
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.8443     0.7567 0.272 0.728
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0672     0.8586 0.992 0.008
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.8560 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.7940 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.3733     0.8063 0.928 0.072
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0672     0.8586 0.992 0.008
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.8560 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0672     0.8586 0.992 0.008
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0672     0.8586 0.992 0.008
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.8763     0.7408 0.296 0.704
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.8763     0.7408 0.296 0.704
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.7745     0.7245 0.772 0.228
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.6887     0.7524 0.816 0.184
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.8560 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.7940 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0672     0.8586 0.992 0.008
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.9954    -0.2215 0.540 0.460
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.8763     0.7408 0.296 0.704
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0672     0.8586 0.992 0.008
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.7056     0.6404 0.808 0.192
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.8207     0.7600 0.256 0.744
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0672     0.8586 0.992 0.008
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.8813     0.6405 0.700 0.300
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.5946     0.7824 0.856 0.144
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000     0.7940 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.7940 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0672     0.8586 0.992 0.008
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.7940 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.8763     0.7408 0.296 0.704
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.8713     0.7433 0.292 0.708
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.8560 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.7940 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.7745     0.7245 0.772 0.228
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0672     0.8586 0.992 0.008
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.9754     0.5850 0.408 0.592
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.7940 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.9933     0.4209 0.548 0.452
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0672     0.8586 0.992 0.008
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.9491     0.1566 0.632 0.368
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.2043     0.8361 0.968 0.032
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0672     0.8586 0.992 0.008
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.7940 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.7940 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.7745     0.7245 0.772 0.228
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.8763     0.7408 0.296 0.704
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0672     0.8586 0.992 0.008
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.8861     0.7395 0.304 0.696
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.8763     0.7408 0.296 0.704
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.8861     0.7395 0.304 0.696
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.8763     0.7408 0.296 0.704
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.7674     0.7710 0.224 0.776
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.6623     0.6626 0.828 0.172
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0672     0.8586 0.992 0.008
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0672     0.8586 0.992 0.008
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.8813     0.6359 0.700 0.300
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.9460     0.6025 0.364 0.636
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.8861     0.7395 0.304 0.696
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.6148     0.7863 0.152 0.848
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0672     0.8586 0.992 0.008
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0672     0.7906 0.008 0.992
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.7940 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0672     0.8586 0.992 0.008
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.8763     0.7408 0.296 0.704
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.8763     0.7408 0.296 0.704
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0672     0.8586 0.992 0.008
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.8608     0.4186 0.716 0.284
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.8763     0.6398 0.704 0.296
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.6531     0.7694 0.832 0.168
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.6973     0.7553 0.812 0.188
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0672     0.8586 0.992 0.008
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.8861     0.6324 0.696 0.304
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0672     0.8586 0.992 0.008
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0672     0.8586 0.992 0.008
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.8763     0.7408 0.296 0.704
#> 1122039D-5785-4F70-9916-17C585453512     1  0.7745     0.7245 0.772 0.228
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.6048     0.6997 0.852 0.148
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.8861     0.7395 0.304 0.696
#> C56C7ED7-A684-40CC-B426-B108E2248467     1  0.8955     0.6336 0.688 0.312
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9491     0.1813 0.368 0.632
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.7940 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0672     0.8586 0.992 0.008
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.7674     0.7237 0.776 0.224
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0672     0.8586 0.992 0.008
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.8560 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.8713     0.7433 0.292 0.708
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.6712     0.6659 0.824 0.176
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.8207     0.4694 0.256 0.744
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0672     0.8586 0.992 0.008
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.9998     0.3036 0.508 0.492
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.8813     0.7367 0.300 0.700
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.3114     0.8220 0.944 0.056
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.8861     0.7395 0.304 0.696
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.8763     0.7408 0.296 0.704
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.9552     0.1276 0.376 0.624
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.8560 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000     0.8560 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0672     0.8586 0.992 0.008
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0672     0.8586 0.992 0.008
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.7674     0.7237 0.776 0.224
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0672     0.8586 0.992 0.008
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.7940 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.6343     0.7859 0.160 0.840
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.7940 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.8560 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0938     0.8578 0.988 0.012
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0672     0.8586 0.992 0.008
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0672     0.8586 0.992 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.815           0.879       0.947         0.5008 0.499   0.499
#> 3 3 0.861           0.885       0.952         0.3334 0.675   0.438
#> 4 4 0.688           0.700       0.857         0.1197 0.838   0.567
#> 5 5 0.652           0.323       0.655         0.0653 0.865   0.544
#> 6 6 0.722           0.577       0.777         0.0418 0.850   0.426

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0000     0.9446 0.000 1.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.1633     0.9323 0.976 0.024
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.1633     0.9423 0.024 0.976
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.1633     0.9323 0.976 0.024
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.4815     0.8684 0.896 0.104
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.1633     0.9423 0.024 0.976
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.8443     0.6081 0.272 0.728
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000     0.9401 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.1633     0.9423 0.024 0.976
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.1633     0.9423 0.024 0.976
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0000     0.9446 0.000 1.000
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.6801     0.7559 0.820 0.180
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000     0.9446 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.7815     0.7120 0.232 0.768
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.1633     0.9323 0.976 0.024
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.1633     0.9423 0.024 0.976
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.1633     0.9323 0.976 0.024
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.9446 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.8386     0.6506 0.732 0.268
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.9446 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000     0.9446 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.9446 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.9401 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.9446 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.1633     0.9323 0.976 0.024
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.9446 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.1633     0.9423 0.024 0.976
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0000     0.9401 1.000 0.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0000     0.9401 1.000 0.000
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000     0.9401 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.9988     0.1198 0.480 0.520
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.9446 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.1633     0.9323 0.976 0.024
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.3584     0.8877 0.932 0.068
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.1633     0.9423 0.024 0.976
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.1633     0.9323 0.976 0.024
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.1633     0.9323 0.976 0.024
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000     0.9401 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.9401 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.1633     0.9323 0.976 0.024
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0938     0.9339 0.988 0.012
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000     0.9401 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.9446 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.9401 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.1633     0.9323 0.976 0.024
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.1633     0.9423 0.024 0.976
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.9446 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0000     0.9401 1.000 0.000
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  0.7674     0.7215 0.224 0.776
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.6712     0.7608 0.176 0.824
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.9401 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.3274     0.8954 0.940 0.060
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0000     0.9446 0.000 1.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.1633     0.9423 0.024 0.976
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.9401 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.1633     0.9323 0.976 0.024
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.9446 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.1633     0.9323 0.976 0.024
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.1633     0.9423 0.024 0.976
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.9833     0.2340 0.424 0.576
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000     0.9401 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.2043     0.9240 0.032 0.968
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000     0.9401 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.9401 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.6531     0.7761 0.832 0.168
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.1633     0.9423 0.024 0.976
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000     0.9446 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.9401 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000     0.9401 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.9401 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.9446 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.7376     0.7206 0.208 0.792
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.9446 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.9446 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.1633     0.9423 0.024 0.976
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.1633     0.9323 0.976 0.024
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.1633     0.9423 0.024 0.976
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0000     0.9446 0.000 1.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.9170     0.4950 0.668 0.332
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.1633     0.9423 0.024 0.976
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0000     0.9401 1.000 0.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.9446 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000     0.9401 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.1633     0.9423 0.024 0.976
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.1414     0.9338 0.980 0.020
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.9446 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.9401 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.1633     0.9423 0.024 0.976
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.9401 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.9446 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.9401 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.1633     0.9423 0.024 0.976
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000     0.9401 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.9446 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000     0.9401 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0000     0.9446 0.000 1.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.9815     0.2466 0.420 0.580
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000     0.9446 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.1633     0.9323 0.976 0.024
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.9446 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.9401 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.9401 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0000     0.9446 0.000 1.000
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.9446 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000     0.9401 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.7883     0.7044 0.236 0.764
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.1633     0.9323 0.976 0.024
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.8386     0.6466 0.268 0.732
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000     0.9446 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.1633     0.9323 0.976 0.024
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.4022     0.8917 0.920 0.080
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.6343     0.8064 0.840 0.160
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000     0.9446 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.9896     0.1980 0.560 0.440
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.1633     0.9323 0.976 0.024
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.9446 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.1633     0.9423 0.024 0.976
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.9446 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.1633     0.9423 0.024 0.976
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.9401 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000     0.9401 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.9401 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.8661     0.6171 0.712 0.288
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.5519     0.8475 0.128 0.872
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000     0.9446 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.1633     0.9323 0.976 0.024
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.1633     0.9323 0.976 0.024
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.1633     0.9423 0.024 0.976
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.9401 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.7376     0.7251 0.208 0.792
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.6623     0.7669 0.828 0.172
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.9446 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.1633     0.9423 0.024 0.976
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.1633     0.9423 0.024 0.976
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.9401 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.1633     0.9423 0.024 0.976
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.1633     0.9323 0.976 0.024
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000     0.9446 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000     0.9401 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.9446 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.1633     0.9423 0.024 0.976
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.1633     0.9423 0.024 0.976
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.9446 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.9446 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000     0.9401 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.9446 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.9446 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.9401 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.1633     0.9423 0.024 0.976
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.9401 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.9446 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.1633     0.9423 0.024 0.976
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.1633     0.9423 0.024 0.976
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.9401 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.1633     0.9423 0.024 0.976
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.9401 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.9401 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     2  0.9795     0.3108 0.416 0.584
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.1633     0.9323 0.976 0.024
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.9446 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000     0.9401 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.9401 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.9401 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.9401 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000     0.9401 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.9446 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000     0.9401 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.9977     0.1202 0.472 0.528
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000     0.9401 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.9401 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.1633     0.9323 0.976 0.024
#> C8820FA6-3531-4515-A102-19100775E767     1  0.1633     0.9323 0.976 0.024
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.9401 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.9446 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.9446 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.9401 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.2948     0.9174 0.948 0.052
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.1633     0.9423 0.024 0.976
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.1633     0.9423 0.024 0.976
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0000     0.9446 0.000 1.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.1633     0.9423 0.024 0.976
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.9401 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.1633     0.9323 0.976 0.024
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.8016     0.7003 0.244 0.756
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.9401 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.1633     0.9323 0.976 0.024
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.9446 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.9446 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0000     0.9401 1.000 0.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.9866     0.2315 0.568 0.432
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.9446 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.1633     0.9423 0.024 0.976
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.1633     0.9423 0.024 0.976
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.1633     0.9423 0.024 0.976
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.1633     0.9423 0.024 0.976
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.9446 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.9446 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.9446 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.0000     0.9401 1.000 0.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.1633     0.9423 0.024 0.976
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0938     0.9365 0.988 0.012
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.0672     0.9440 0.008 0.992
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.9401 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.1633     0.9323 0.976 0.024
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.4431     0.8633 0.908 0.092
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.1633     0.9323 0.976 0.024
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.9446 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.9401 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0000     0.9401 1.000 0.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.9833     0.2487 0.576 0.424
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000     0.9446 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.9983     0.1032 0.524 0.476
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.9710     0.3287 0.600 0.400
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.9850     0.2909 0.572 0.428
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.9401 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.1633     0.9423 0.024 0.976
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     1  0.8207     0.6706 0.744 0.256
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.2043     0.9384 0.032 0.968
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.9446 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.9710     0.3078 0.400 0.600
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.0000     0.9446 0.000 1.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.1633     0.9323 0.976 0.024
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.1414     0.9338 0.980 0.020
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.9401 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.1633     0.9423 0.024 0.976
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.1633     0.9423 0.024 0.976
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.9401 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.9446 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.9170     0.4970 0.668 0.332
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000     0.9401 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.9446 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0000     0.9446 0.000 1.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.1633     0.9423 0.024 0.976
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.1633     0.9423 0.024 0.976
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.9401 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0000     0.9401 1.000 0.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.8144     0.6739 0.252 0.748
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.9446 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000     0.9446 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000     0.9401 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.1633     0.9423 0.024 0.976
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.9401 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.1633     0.9258 0.976 0.024
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.1633     0.9423 0.024 0.976
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.9446 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000     0.9446 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.9446 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.1633     0.9423 0.024 0.976
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.1633     0.9423 0.024 0.976
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000     0.9446 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.7056     0.7401 0.808 0.192
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.1633     0.9323 0.976 0.024
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.1633     0.9423 0.024 0.976
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000     0.9446 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.3733     0.8860 0.928 0.072
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.6623     0.7913 0.828 0.172
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0000     0.9401 1.000 0.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000     0.9446 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.9446 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000     0.9401 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000     0.9446 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.1184     0.9352 0.984 0.016
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.9933     0.1602 0.548 0.452
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.9446 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.7139     0.7539 0.196 0.804
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.1633     0.9423 0.024 0.976
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.7056     0.7404 0.192 0.808
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.7674     0.6941 0.776 0.224
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0376     0.9390 0.996 0.004
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000     0.9401 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.9635     0.3408 0.388 0.612
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.1633     0.9423 0.024 0.976
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.6801     0.7571 0.180 0.820
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0000     0.9446 0.000 1.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.9446 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.1633     0.9423 0.024 0.976
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.1633     0.9423 0.024 0.976
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     2  0.9850     0.2751 0.428 0.572
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.2603     0.9145 0.044 0.956
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.1633     0.9423 0.024 0.976
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.9401 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000     0.9446 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.2236     0.9215 0.036 0.964
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.1633     0.9323 0.976 0.024
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.2236     0.9208 0.036 0.964
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.9446 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000     0.9446 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.1633     0.9423 0.024 0.976
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.8081     0.6853 0.752 0.248
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000     0.9446 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.9401 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0938     0.9436 0.012 0.988
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.1633     0.9323 0.976 0.024
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.1633     0.9323 0.976 0.024
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.7883     0.7040 0.764 0.236
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.9446 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.1414     0.9428 0.020 0.980
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.9661     0.3461 0.608 0.392
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.9988     0.0890 0.520 0.480
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000     0.9401 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.9401 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.1633     0.9323 0.976 0.024
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.0000     0.9446 0.000 1.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.1633     0.9423 0.024 0.976
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.9446 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.1633     0.9423 0.024 0.976
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000     0.9401 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0672     0.9440 0.008 0.992
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.8955     0.5268 0.312 0.688
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.1633     0.9323 0.976 0.024
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.1633     0.9423 0.024 0.976
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.9401 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.9446 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.9401 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.1633     0.9323 0.976 0.024
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000     0.9446 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000     0.9401 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.1633     0.9423 0.024 0.976
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.9446 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.1633     0.9423 0.024 0.976
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.1633     0.9423 0.024 0.976
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.6343     0.8061 0.840 0.160
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.9896     0.2324 0.440 0.560
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000     0.9446 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.1633     0.9423 0.024 0.976
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.9446 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.9401 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.1633     0.9323 0.976 0.024
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000     0.9446 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000     0.9446 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.9446 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.1633     0.9323 0.976 0.024
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.9401 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.1633     0.9423 0.024 0.976
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.9446 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.1633     0.9423 0.024 0.976
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.9401 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.9446 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000     0.9446 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.1633     0.9323 0.976 0.024
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.1633     0.9423 0.024 0.976
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.1633     0.9423 0.024 0.976
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0000     0.9401 1.000 0.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.1633     0.9423 0.024 0.976
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.1633     0.9423 0.024 0.976
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.9401 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.1633     0.9423 0.024 0.976
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.8016     0.6994 0.244 0.756
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.9446 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0938     0.9341 0.988 0.012
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.9446 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.9446 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.1633     0.9423 0.024 0.976
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.8608     0.6206 0.284 0.716
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.9446 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000     0.9401 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.1633     0.9423 0.024 0.976
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.1633     0.9423 0.024 0.976
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.9491     0.4398 0.368 0.632
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000     0.9401 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.9446 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.9446 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000     0.9401 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.0000     0.9446 0.000 1.000
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.1633     0.9423 0.024 0.976
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.9401 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.9446 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.9401 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.7219     0.7581 0.200 0.800
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.9401 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000     0.9446 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.4690     0.8546 0.900 0.100
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.9754     0.2972 0.592 0.408
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.1633     0.9423 0.024 0.976
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.1633     0.9323 0.976 0.024
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.0000     0.9446 0.000 1.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000     0.9446 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.1633     0.9423 0.024 0.976
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.3431     0.9058 0.936 0.064
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     1  0.9795     0.3259 0.584 0.416
#> E789661A-C027-405D-9F76-E6D52CE3018B     1  0.9775     0.3369 0.588 0.412
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.1633     0.9323 0.976 0.024
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.9446 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.9401 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.9401 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0000     0.9401 1.000 0.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000     0.9401 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.1633     0.9423 0.024 0.976
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     1  0.9881     0.2668 0.564 0.436
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0000     0.9446 0.000 1.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.9446 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.9446 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.1633     0.9323 0.976 0.024
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.6801     0.7811 0.180 0.820
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000     0.9401 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.9401 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.9446 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000     0.9401 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.9401 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.9401 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000     0.9401 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.9401 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.1633     0.9423 0.024 0.976
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.1633     0.9423 0.024 0.976
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.1633     0.9323 0.976 0.024
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.1633     0.9323 0.976 0.024
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.9401 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.9446 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000     0.9401 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.1633     0.9268 0.976 0.024
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.1633     0.9423 0.024 0.976
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000     0.9401 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0000     0.9401 1.000 0.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.8763     0.5966 0.296 0.704
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000     0.9401 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.1633     0.9323 0.976 0.024
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.1633     0.9323 0.976 0.024
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000     0.9446 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.9446 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0000     0.9401 1.000 0.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.9446 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.1633     0.9423 0.024 0.976
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.1633     0.9423 0.024 0.976
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.9401 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.9446 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.1633     0.9323 0.976 0.024
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.9401 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.9661     0.3913 0.392 0.608
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.9446 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.8016     0.6926 0.756 0.244
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.9401 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.9286     0.4627 0.656 0.344
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000     0.9401 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.9401 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.9446 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.9446 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.1633     0.9323 0.976 0.024
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.1843     0.9401 0.028 0.972
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.9401 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.1633     0.9423 0.024 0.976
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.1633     0.9423 0.024 0.976
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.9922     0.1710 0.552 0.448
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.1633     0.9423 0.024 0.976
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.1633     0.9423 0.024 0.976
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0376     0.9383 0.996 0.004
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000     0.9401 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000     0.9401 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.1633     0.9323 0.976 0.024
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.6801     0.7571 0.180 0.820
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.2236     0.9349 0.036 0.964
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.1633     0.9423 0.024 0.976
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.9401 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000     0.9446 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.9446 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.9401 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  1.0000     0.0100 0.500 0.500
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.1633     0.9423 0.024 0.976
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.9401 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0938     0.9340 0.988 0.012
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.1633     0.9323 0.976 0.024
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.1633     0.9323 0.976 0.024
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.1633     0.9323 0.976 0.024
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.9401 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.1633     0.9323 0.976 0.024
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.9401 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.9401 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.1633     0.9423 0.024 0.976
#> 1122039D-5785-4F70-9916-17C585453512     1  0.1633     0.9323 0.976 0.024
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.4022     0.8758 0.920 0.080
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.1633     0.9423 0.024 0.976
#> C56C7ED7-A684-40CC-B426-B108E2248467     1  0.2603     0.9211 0.956 0.044
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     1  0.9552     0.4280 0.624 0.376
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.9446 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0000     0.9401 1.000 0.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.1633     0.9323 0.976 0.024
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000     0.9401 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.9401 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.1633     0.9423 0.024 0.976
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.3431     0.8929 0.936 0.064
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.9358     0.4353 0.352 0.648
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.9401 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.8144     0.6771 0.748 0.252
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.9998     0.0147 0.508 0.492
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000     0.9401 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.1633     0.9423 0.024 0.976
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.1633     0.9423 0.024 0.976
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.9833     0.2340 0.424 0.576
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.9401 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000     0.9401 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.9401 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.9401 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.1633     0.9323 0.976 0.024
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000     0.9401 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.9446 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.1633     0.9423 0.024 0.976
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.9446 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.9401 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.1633     0.9323 0.976 0.024
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000     0.9401 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.9401 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.456           0.784       0.894         0.4754 0.526   0.526
#> 3 3 0.442           0.706       0.814         0.3016 0.843   0.710
#> 4 4 0.505           0.581       0.789         0.1539 0.759   0.474
#> 5 5 0.634           0.582       0.791         0.0707 0.897   0.670
#> 6 6 0.609           0.440       0.694         0.0429 0.855   0.532

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.7219     0.6800 0.200 0.800
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.7219     0.7498 0.800 0.200
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.5842     0.8170 0.140 0.860
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.9608     0.5597 0.616 0.384
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.9710     0.5296 0.600 0.400
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.0000     0.8615 1.000 0.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.2423     0.8761 0.040 0.960
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000     0.8615 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.6247     0.8025 0.156 0.844
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.6438     0.7728 0.836 0.164
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     1  0.9661     0.5453 0.608 0.392
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0000     0.8615 1.000 0.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000     0.8977 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.7299     0.7456 0.796 0.204
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.6623     0.7692 0.828 0.172
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.5946     0.7882 0.856 0.144
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.7139     0.7522 0.804 0.196
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.7453     0.6589 0.212 0.788
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.9850     0.4681 0.572 0.428
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.8977 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000     0.8977 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.8977 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.8615 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.8977 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.1633     0.8562 0.976 0.024
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.8977 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.0376     0.8609 0.996 0.004
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0000     0.8615 1.000 0.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0000     0.8615 1.000 0.000
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000     0.8615 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.6887     0.7537 0.816 0.184
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.8977 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.9608     0.5597 0.616 0.384
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000     0.8615 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0000     0.8615 1.000 0.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.6973     0.7585 0.812 0.188
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.2423     0.8522 0.960 0.040
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0672     0.8601 0.992 0.008
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.1184     0.8581 0.984 0.016
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.9608     0.5597 0.616 0.384
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0000     0.8615 1.000 0.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.1843     0.8553 0.972 0.028
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.8977 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.8615 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.6712     0.7658 0.824 0.176
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.6247     0.7800 0.844 0.156
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.8977 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.4298     0.8313 0.912 0.088
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.8661     0.5459 0.712 0.288
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.9988    -0.1972 0.480 0.520
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.8615 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0000     0.8615 1.000 0.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     1  0.9732     0.5217 0.596 0.404
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0000     0.8615 1.000 0.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.8615 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.3114     0.8426 0.944 0.056
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.8977 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.9608     0.5597 0.616 0.384
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.7139     0.7434 0.804 0.196
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     1  0.9608     0.5597 0.616 0.384
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000     0.8615 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000     0.8977 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.8016     0.7038 0.756 0.244
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.8615 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     2  0.9988     0.0616 0.480 0.520
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.7139     0.7434 0.804 0.196
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000     0.8977 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.8615 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000     0.8615 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.8615 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     1  0.9661     0.5453 0.608 0.392
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.9552     0.5047 0.624 0.376
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.8977 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.8977 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.8081     0.7033 0.248 0.752
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.9608     0.5597 0.616 0.384
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.6973     0.7717 0.188 0.812
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9661     0.1704 0.392 0.608
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.7056     0.7652 0.192 0.808
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.7528     0.7270 0.784 0.216
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.2043     0.8536 0.968 0.032
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.8977 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000     0.8615 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.4431     0.8512 0.092 0.908
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.1184     0.8579 0.984 0.016
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.8977 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.8615 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.6623     0.7881 0.172 0.828
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000     0.8615 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.8977 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.8615 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.4690     0.7958 0.900 0.100
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000     0.8615 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.8977 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0000     0.8615 1.000 0.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.9710     0.5297 0.600 0.400
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000     0.8977 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000     0.8977 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.7299     0.7475 0.796 0.204
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.8977 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.8615 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.8615 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.4431     0.8512 0.092 0.908
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.8977 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000     0.8615 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  1.0000     0.1167 0.504 0.496
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.2423     0.8760 0.040 0.960
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0000     0.8615 1.000 0.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000     0.8977 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.8615 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.9552     0.5714 0.624 0.376
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.9686     0.5360 0.604 0.396
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000     0.8977 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000     0.8615 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.9608     0.5597 0.616 0.384
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.8977 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000     0.8615 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.8977 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.6438     0.7953 0.164 0.836
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.8615 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.4690     0.8137 0.900 0.100
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.8615 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000     0.8977 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000     0.8615 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000     0.8977 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.6531     0.7707 0.832 0.168
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.7219     0.7498 0.800 0.200
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.1184     0.8582 0.984 0.016
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.8615 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.0376     0.8959 0.004 0.996
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0000     0.8615 1.000 0.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.8977 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.9866     0.3350 0.568 0.432
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.2423     0.8496 0.960 0.040
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.8615 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.6531     0.7918 0.168 0.832
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.9522     0.5778 0.628 0.372
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000     0.8977 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0672     0.8601 0.992 0.008
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.8977 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.6531     0.7927 0.168 0.832
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.9866     0.1017 0.432 0.568
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.8977 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0376     0.8965 0.004 0.996
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.7745     0.7185 0.772 0.228
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.8977 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.8977 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.8615 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.0000     0.8615 1.000 0.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.5059     0.8115 0.888 0.112
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.8977 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.9323     0.5015 0.652 0.348
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.6887     0.7743 0.184 0.816
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.8615 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0938     0.8592 0.988 0.012
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.8615 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.8615 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000     0.8615 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.9661     0.5453 0.608 0.392
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.8977 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000     0.8615 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.1633     0.8564 0.976 0.024
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.8615 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.8615 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000     0.8615 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.8977 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.7883     0.7134 0.764 0.236
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0000     0.8615 1.000 0.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000     0.8615 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.8615 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.9608     0.5597 0.616 0.384
#> C8820FA6-3531-4515-A102-19100775E767     1  0.6887     0.7591 0.816 0.184
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.8615 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0672     0.8939 0.008 0.992
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.8977 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.8615 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.8813     0.6604 0.700 0.300
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.6623     0.7650 0.828 0.172
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.6623     0.7881 0.172 0.828
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.4298     0.8544 0.088 0.912
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.5737     0.7933 0.864 0.136
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000     0.8615 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.9608     0.5597 0.616 0.384
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.6247     0.8025 0.156 0.844
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.2778     0.8487 0.952 0.048
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.9522     0.5779 0.628 0.372
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.8977 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.8977 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0000     0.8615 1.000 0.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0000     0.8615 1.000 0.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.8977 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.6712     0.7639 0.824 0.176
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.9491     0.5805 0.632 0.368
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.6438     0.7963 0.164 0.836
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.4690     0.8316 0.100 0.900
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.8977 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.8977 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.8977 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.6801     0.7639 0.820 0.180
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.2423     0.8812 0.040 0.960
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.8555     0.6927 0.720 0.280
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.6048     0.8099 0.148 0.852
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.8615 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.6531     0.7726 0.832 0.168
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000     0.8615 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.9608     0.5597 0.616 0.384
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.8977 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.8615 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0000     0.8615 1.000 0.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.4939     0.8134 0.892 0.108
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000     0.8977 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.1843     0.8552 0.972 0.028
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.0000     0.8615 1.000 0.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.9129     0.3918 0.328 0.672
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.8615 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.7219     0.7400 0.800 0.200
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     1  0.9608     0.5597 0.616 0.384
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.8813     0.6328 0.700 0.300
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.8977 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.9608     0.2077 0.384 0.616
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.7139     0.6912 0.196 0.804
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.6531     0.7715 0.832 0.168
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.9580     0.5654 0.620 0.380
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.8615 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.6343     0.8006 0.160 0.840
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.1414     0.8914 0.020 0.980
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.8615 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.1633     0.8867 0.024 0.976
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.9896     0.2272 0.560 0.440
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0672     0.8601 0.992 0.008
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.8977 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.7056     0.6936 0.192 0.808
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000     0.8615 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.6343     0.7990 0.160 0.840
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0672     0.8601 0.992 0.008
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0672     0.8601 0.992 0.008
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.2423     0.8425 0.960 0.040
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.8977 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.9129     0.6277 0.672 0.328
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000     0.8615 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.6887     0.7537 0.816 0.184
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.8615 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0000     0.8615 1.000 0.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.7139     0.7434 0.804 0.196
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.8977 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000     0.8977 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.8977 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.6973     0.7695 0.188 0.812
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.4815     0.8151 0.896 0.104
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000     0.8977 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0000     0.8615 1.000 0.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.9993     0.3144 0.516 0.484
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.5737     0.8203 0.136 0.864
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.7139     0.6869 0.196 0.804
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.4815     0.8107 0.896 0.104
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.2603     0.8463 0.956 0.044
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0000     0.8615 1.000 0.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0672     0.8953 0.008 0.992
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.8977 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0000     0.8615 1.000 0.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0376     0.8965 0.004 0.996
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.7299     0.7487 0.204 0.796
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0000     0.8615 1.000 0.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.8977 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.9129     0.6288 0.672 0.328
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.4161     0.8574 0.084 0.916
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0376     0.8965 0.004 0.996
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000     0.8615 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.6712     0.7671 0.824 0.176
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.1843     0.8553 0.972 0.028
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     1  0.9580     0.5658 0.620 0.380
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.6531     0.7913 0.168 0.832
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000     0.8977 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0000     0.8977 0.000 1.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.8977 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0000     0.8615 1.000 0.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.1414     0.8905 0.020 0.980
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000     0.8615 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.9661     0.5438 0.608 0.392
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.6247     0.8025 0.156 0.844
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.8615 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     1  0.9635     0.5526 0.612 0.388
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.9710     0.1392 0.400 0.600
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.9608     0.5597 0.616 0.384
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.0376     0.8965 0.004 0.996
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.8977 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     1  0.9977     0.3471 0.528 0.472
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.9922     0.3193 0.448 0.552
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.9608     0.5597 0.616 0.384
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000     0.8977 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.8615 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.5519     0.8267 0.128 0.872
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.7219     0.7498 0.800 0.200
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.9460     0.2720 0.364 0.636
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.9732     0.1237 0.404 0.596
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.8977 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.6343     0.7990 0.160 0.840
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0000     0.8615 1.000 0.000
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.4298     0.8542 0.088 0.912
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.4161     0.8272 0.916 0.084
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.8615 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.8763     0.6725 0.704 0.296
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.9993     0.2685 0.516 0.484
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.2948     0.8753 0.052 0.948
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.8977 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.6712     0.7835 0.176 0.824
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000     0.8615 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.5842     0.8170 0.140 0.860
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000     0.8977 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.9248     0.6215 0.660 0.340
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.5178     0.8359 0.116 0.884
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.8615 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.8977 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.8615 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.6712     0.7669 0.824 0.176
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.7950     0.6083 0.240 0.760
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.2948     0.8446 0.948 0.052
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.6343     0.7990 0.160 0.840
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.8977 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.9460     0.4683 0.364 0.636
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  1.0000     0.0396 0.496 0.504
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.9795     0.4982 0.584 0.416
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0000     0.8615 1.000 0.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0376     0.8965 0.004 0.996
#> E1833486-2998-4804-A535-EBF25A992392     1  0.9491     0.4516 0.632 0.368
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.8977 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.8615 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.8499     0.6924 0.724 0.276
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000     0.8977 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0376     0.8965 0.004 0.996
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     1  0.9635     0.5526 0.612 0.388
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.4298     0.8266 0.912 0.088
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.8615 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.7883     0.7078 0.764 0.236
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.8977 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.6048     0.8099 0.148 0.852
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.8615 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.8977 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000     0.8977 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.9608     0.5597 0.616 0.384
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.6801     0.7786 0.180 0.820
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.7453     0.7304 0.788 0.212
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.4022     0.8352 0.920 0.080
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.6247     0.8025 0.156 0.844
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.6623     0.7881 0.172 0.828
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.8615 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0000     0.8615 1.000 0.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.4022     0.8599 0.080 0.920
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.8977 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0000     0.8615 1.000 0.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.8977 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.8977 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.6048     0.8099 0.148 0.852
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.2948     0.8469 0.948 0.052
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.8977 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0672     0.8601 0.992 0.008
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.6048     0.8159 0.148 0.852
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.7139     0.7434 0.804 0.196
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0000     0.8615 1.000 0.000
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.4939     0.8107 0.892 0.108
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.8977 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.8977 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.2043     0.8535 0.968 0.032
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.9754     0.1073 0.408 0.592
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.6623     0.7875 0.172 0.828
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0672     0.8601 0.992 0.008
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.8977 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.8615 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0672     0.8601 0.992 0.008
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.8615 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000     0.8977 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.7602     0.7246 0.780 0.220
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000     0.8615 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0938     0.8937 0.012 0.988
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.9608     0.5597 0.616 0.384
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.6801     0.7127 0.180 0.820
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000     0.8977 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.6438     0.7953 0.164 0.836
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.9944    -0.1033 0.456 0.544
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     1  0.9608     0.5597 0.616 0.384
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000     0.8977 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.9286     0.6166 0.656 0.344
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.8977 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.8615 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.1184     0.8583 0.984 0.016
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.6887     0.7583 0.816 0.184
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000     0.8615 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.6438     0.7953 0.164 0.836
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000     0.8977 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.2043     0.8792 0.032 0.968
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.8977 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.8977 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.6887     0.7600 0.816 0.184
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0000     0.8615 1.000 0.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000     0.8615 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.8615 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.8977 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000     0.8615 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.8615 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.8615 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000     0.8615 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.8615 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.7139     0.7434 0.804 0.196
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.6531     0.7913 0.168 0.832
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.9608     0.5597 0.616 0.384
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0000     0.8615 1.000 0.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.8615 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.8977 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.1843     0.8547 0.972 0.028
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.7139     0.7451 0.804 0.196
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0000     0.8615 1.000 0.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.1184     0.8581 0.984 0.016
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.8327     0.6925 0.736 0.264
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.7139     0.7434 0.804 0.196
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0376     0.8608 0.996 0.004
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.8207     0.5697 0.256 0.744
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.6531     0.7707 0.832 0.168
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0376     0.8965 0.004 0.996
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.8977 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0000     0.8615 1.000 0.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.8977 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0000     0.8615 1.000 0.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.3879     0.8622 0.076 0.924
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.8615 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.8977 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.9608     0.5597 0.616 0.384
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.8615 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.7815     0.7167 0.768 0.232
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.8977 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.9608     0.5597 0.616 0.384
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.8615 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0000     0.8615 1.000 0.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0938     0.8593 0.988 0.012
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0376     0.8608 0.996 0.004
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.8977 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.8977 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.9608     0.5597 0.616 0.384
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.6887     0.7541 0.816 0.184
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.8267     0.6899 0.740 0.260
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000     0.8615 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     1  0.9661     0.3920 0.608 0.392
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000     0.8615 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.7883     0.7012 0.764 0.236
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.3733     0.8644 0.072 0.928
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0376     0.8608 0.996 0.004
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000     0.8615 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0000     0.8615 1.000 0.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.7376     0.6660 0.208 0.792
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.0000     0.8977 0.000 1.000
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0000     0.8615 1.000 0.000
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.5842     0.8170 0.140 0.860
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.8615 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000     0.8977 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.8977 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.8615 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0000     0.8615 1.000 0.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.7139     0.7434 0.804 0.196
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.8615 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.1633     0.8568 0.976 0.024
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.9635     0.5527 0.612 0.388
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.6712     0.7642 0.824 0.176
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.7139     0.7522 0.804 0.196
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.8615 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.8763     0.6730 0.704 0.296
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.8615 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.8615 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.7139     0.7434 0.804 0.196
#> 1122039D-5785-4F70-9916-17C585453512     1  0.9393     0.6005 0.644 0.356
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000     0.8615 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0000     0.8615 1.000 0.000
#> C56C7ED7-A684-40CC-B426-B108E2248467     1  0.9608     0.5597 0.616 0.384
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     1  0.9608     0.5597 0.616 0.384
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.8977 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0938     0.8593 0.988 0.012
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.9881     0.4447 0.564 0.436
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000     0.8615 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.8615 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.6623     0.7875 0.172 0.828
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.5408     0.8296 0.124 0.876
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.7139     0.6871 0.196 0.804
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0672     0.8601 0.992 0.008
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.9608     0.5597 0.616 0.384
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0000     0.8615 1.000 0.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0000     0.8615 1.000 0.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0000     0.8615 1.000 0.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.0938     0.8574 0.988 0.012
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000     0.8977 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.8615 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000     0.8615 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.8615 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.8615 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.9608     0.5597 0.616 0.384
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000     0.8615 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.8977 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.5737     0.8205 0.136 0.864
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.8977 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.8615 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.9491     0.5812 0.632 0.368
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.4298     0.8281 0.912 0.088
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.8615 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.980           0.948       0.969          0.480 0.521   0.521
#> 3 3 0.617           0.666       0.841          0.245 0.902   0.813
#> 4 4 0.486           0.532       0.741          0.134 0.838   0.646
#> 5 5 0.496           0.367       0.670          0.083 0.884   0.681
#> 6 6 0.559           0.347       0.681          0.073 0.799   0.423

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.5629     0.8642 0.132 0.868
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.0938     0.9695 0.012 0.988
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     1  0.0672     0.9747 0.992 0.008
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.3114     0.9389 0.056 0.944
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0938     0.9695 0.012 0.988
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     1  0.0938     0.9714 0.988 0.012
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.4161     0.9149 0.084 0.916
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0376     0.9749 0.996 0.004
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.0672     0.9747 0.992 0.008
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0672     0.9747 0.992 0.008
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.1414     0.9711 0.020 0.980
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.0938     0.9714 0.988 0.012
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.1414     0.9711 0.020 0.980
#> 1C710173-532F-4435-BCE9-287AD8D247D9     1  0.0938     0.9735 0.988 0.012
#> 5AB5396F-925B-469C-B240-FB37991004DD     2  0.2603     0.9490 0.044 0.956
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0672     0.9747 0.992 0.008
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0938     0.9695 0.012 0.988
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.1414     0.9711 0.020 0.980
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.0938     0.9695 0.012 0.988
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.1414     0.9711 0.020 0.980
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.1184     0.9666 0.016 0.984
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.1184     0.9666 0.016 0.984
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.1184     0.9722 0.984 0.016
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.1184     0.9693 0.016 0.984
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0938     0.9728 0.988 0.012
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.1414     0.9711 0.020 0.980
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     1  0.0938     0.9714 0.988 0.012
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0938     0.9742 0.988 0.012
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.0938     0.9714 0.988 0.012
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0938     0.9714 0.988 0.012
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.0672     0.9747 0.992 0.008
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.1414     0.9711 0.020 0.980
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0938     0.9695 0.012 0.988
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0672     0.9747 0.992 0.008
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0672     0.9747 0.992 0.008
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.1184     0.9681 0.016 0.984
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.9393     0.4551 0.356 0.644
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0938     0.9742 0.988 0.012
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0938     0.9728 0.988 0.012
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.0938     0.9695 0.012 0.988
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.0672     0.9747 0.992 0.008
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0938     0.9714 0.988 0.012
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.1184     0.9666 0.016 0.984
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0938     0.9728 0.988 0.012
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.0672     0.9647 0.008 0.992
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.0000     0.9745 1.000 0.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.1414     0.9711 0.020 0.980
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0938     0.9742 0.988 0.012
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0938     0.9714 0.988 0.012
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.1414     0.9711 0.020 0.980
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0938     0.9742 0.988 0.012
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0938     0.9714 0.988 0.012
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.1633     0.9709 0.024 0.976
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     1  0.0938     0.9714 0.988 0.012
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.1184     0.9729 0.984 0.016
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.4690     0.9001 0.900 0.100
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.1184     0.9666 0.016 0.984
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0938     0.9695 0.012 0.988
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     1  0.0000     0.9745 1.000 0.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.1184     0.9705 0.016 0.984
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.1184     0.9710 0.984 0.016
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.1414     0.9711 0.020 0.980
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0938     0.9736 0.988 0.012
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.1184     0.9710 0.984 0.016
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.0672     0.9743 0.992 0.008
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0672     0.9747 0.992 0.008
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.1414     0.9711 0.020 0.980
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.1633     0.9693 0.976 0.024
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.1184     0.9710 0.984 0.016
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.1184     0.9729 0.984 0.016
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.1414     0.9711 0.020 0.980
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.9933     0.1880 0.452 0.548
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.1414     0.9711 0.020 0.980
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.1414     0.9711 0.020 0.980
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     1  0.0938     0.9714 0.988 0.012
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.0938     0.9695 0.012 0.988
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0938     0.9714 0.988 0.012
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.7528     0.7511 0.216 0.784
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.0938     0.9714 0.988 0.012
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     1  0.0938     0.9714 0.988 0.012
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.1184     0.9710 0.984 0.016
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.1414     0.9711 0.020 0.980
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.1633     0.9693 0.976 0.024
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.0672     0.9747 0.992 0.008
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.7139     0.7756 0.804 0.196
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.1184     0.9666 0.016 0.984
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.1184     0.9729 0.984 0.016
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     1  0.0672     0.9747 0.992 0.008
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0938     0.9742 0.988 0.012
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.1184     0.9666 0.016 0.984
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0938     0.9742 0.988 0.012
#> 4D361EA8-1F79-4B89-841B-87F83215D805     1  0.0938     0.9714 0.988 0.012
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.1414     0.9706 0.980 0.020
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.1414     0.9711 0.020 0.980
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0672     0.9747 0.992 0.008
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.1414     0.9711 0.020 0.980
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.1184     0.9705 0.016 0.984
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.1414     0.9711 0.020 0.980
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.0938     0.9695 0.012 0.988
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.1414     0.9711 0.020 0.980
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0938     0.9742 0.988 0.012
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.1184     0.9729 0.984 0.016
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  0.1184     0.9708 0.984 0.016
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.1414     0.9711 0.020 0.980
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.1184     0.9729 0.984 0.016
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0672     0.9747 0.992 0.008
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.4815     0.8869 0.896 0.104
#> AE903797-7FFB-44A1-B834-C644784B5DC2     1  0.0938     0.9714 0.988 0.012
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.1414     0.9711 0.020 0.980
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.9983     0.0753 0.524 0.476
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.6973     0.7821 0.188 0.812
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0938     0.9660 0.012 0.988
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.1184     0.9666 0.016 0.984
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0938     0.9714 0.988 0.012
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0938     0.9695 0.012 0.988
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.1414     0.9711 0.020 0.980
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0672     0.9747 0.992 0.008
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.1414     0.9711 0.020 0.980
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     1  0.0672     0.9747 0.992 0.008
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.1184     0.9708 0.984 0.016
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0938     0.9742 0.988 0.012
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.1184     0.9729 0.984 0.016
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0938     0.9660 0.012 0.988
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0938     0.9735 0.988 0.012
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.1414     0.9711 0.020 0.980
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     2  0.1414     0.9690 0.020 0.980
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.1184     0.9635 0.016 0.984
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     1  0.0938     0.9714 0.988 0.012
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.1184     0.9729 0.984 0.016
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.1414     0.9711 0.020 0.980
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0672     0.9747 0.992 0.008
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.1414     0.9711 0.020 0.980
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     1  0.0672     0.9747 0.992 0.008
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     1  0.0938     0.9714 0.988 0.012
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0672     0.9734 0.992 0.008
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.0672     0.9747 0.992 0.008
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.0938     0.9695 0.012 0.988
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.1414     0.9711 0.020 0.980
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.1633     0.9693 0.976 0.024
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.1414     0.9711 0.020 0.980
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     1  0.0672     0.9747 0.992 0.008
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     1  0.0672     0.9747 0.992 0.008
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.1184     0.9666 0.016 0.984
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.1184     0.9666 0.016 0.984
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0672     0.9747 0.992 0.008
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.1184     0.9666 0.016 0.984
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.1414     0.9711 0.020 0.980
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.1414     0.9698 0.980 0.020
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     1  0.0672     0.9747 0.992 0.008
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.1414     0.9721 0.980 0.020
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.1414     0.9711 0.020 0.980
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     1  0.0672     0.9747 0.992 0.008
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     1  0.0672     0.9747 0.992 0.008
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0938     0.9728 0.988 0.012
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0938     0.9714 0.988 0.012
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.1633     0.9693 0.976 0.024
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.1184     0.9729 0.984 0.016
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0672     0.9747 0.992 0.008
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0938     0.9660 0.012 0.988
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.1184     0.9666 0.016 0.984
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.1184     0.9710 0.984 0.016
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.1414     0.9721 0.980 0.020
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.1184     0.9710 0.984 0.016
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.1414     0.9721 0.980 0.020
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0672     0.9747 0.992 0.008
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.1184     0.9666 0.016 0.984
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0938     0.9742 0.988 0.012
#> CA86A053-8669-43F5-947A-9D6D368E7087     1  0.0938     0.9714 0.988 0.012
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0672     0.9748 0.992 0.008
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0938     0.9742 0.988 0.012
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.1184     0.9697 0.016 0.984
#> C8820FA6-3531-4515-A102-19100775E767     1  0.7815     0.7093 0.768 0.232
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0672     0.9747 0.992 0.008
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.1414     0.9711 0.020 0.980
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.1633     0.9696 0.024 0.976
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.1414     0.9721 0.980 0.020
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.6048     0.8393 0.148 0.852
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.0672     0.9747 0.992 0.008
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0672     0.9747 0.992 0.008
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.2603     0.9509 0.044 0.956
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0672     0.9747 0.992 0.008
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0672     0.9734 0.992 0.008
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0938     0.9695 0.012 0.988
#> 440AD09A-D756-4197-9997-ED5418FE4D95     1  0.0376     0.9749 0.996 0.004
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0672     0.9747 0.992 0.008
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0672     0.9647 0.008 0.992
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0938     0.9701 0.012 0.988
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.1414     0.9711 0.020 0.980
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.1184     0.9710 0.984 0.016
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0938     0.9714 0.988 0.012
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.1184     0.9666 0.016 0.984
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     1  0.0672     0.9747 0.992 0.008
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     1  0.0938     0.9735 0.988 0.012
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     1  0.0672     0.9747 0.992 0.008
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     1  0.0672     0.9747 0.992 0.008
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.1414     0.9711 0.020 0.980
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.1414     0.9711 0.020 0.980
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.1414     0.9711 0.020 0.980
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.1184     0.9744 0.984 0.016
#> 354669B6-34E9-44AA-91B2-882423F50B0A     1  0.0672     0.9747 0.992 0.008
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0938     0.9728 0.988 0.012
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.7883     0.6991 0.764 0.236
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0672     0.9747 0.992 0.008
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.8144     0.6797 0.252 0.748
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0938     0.9735 0.988 0.012
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.0938     0.9695 0.012 0.988
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.1184     0.9666 0.016 0.984
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.1184     0.9729 0.984 0.016
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.1414     0.9698 0.980 0.020
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0672     0.9747 0.992 0.008
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.1184     0.9666 0.016 0.984
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.0938     0.9714 0.988 0.012
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.0672     0.9746 0.992 0.008
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.8713     0.5680 0.708 0.292
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0938     0.9742 0.988 0.012
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     1  0.0672     0.9747 0.992 0.008
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.1184     0.9705 0.016 0.984
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     1  0.0938     0.9714 0.988 0.012
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.1414     0.9711 0.020 0.980
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.1184     0.9666 0.016 0.984
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.4161     0.9136 0.084 0.916
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.3733     0.9192 0.072 0.928
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.8081     0.6790 0.752 0.248
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.1414     0.9721 0.980 0.020
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.2948     0.9423 0.948 0.052
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     1  0.0938     0.9714 0.988 0.012
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.1184     0.9710 0.984 0.016
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.1184     0.9666 0.016 0.984
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.0938     0.9714 0.988 0.012
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0938     0.9742 0.988 0.012
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.1184     0.9666 0.016 0.984
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.1414     0.9711 0.020 0.980
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0938     0.9714 0.988 0.012
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000     0.9745 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0938     0.9728 0.988 0.012
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0376     0.9739 0.996 0.004
#> CB5BF694-0353-45D4-857B-0229792F9CF6     1  0.0938     0.9714 0.988 0.012
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.1414     0.9711 0.020 0.980
#> CA2CBBF1-225A-43BB-A197-04F521329592     1  0.9850     0.2412 0.572 0.428
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0672     0.9747 0.992 0.008
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     1  0.0672     0.9747 0.992 0.008
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.1184     0.9722 0.984 0.016
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.0938     0.9714 0.988 0.012
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0672     0.9747 0.992 0.008
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.1184     0.9666 0.016 0.984
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.1184     0.9666 0.016 0.984
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.1184     0.9666 0.016 0.984
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     1  0.0938     0.9714 0.988 0.012
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0672     0.9747 0.992 0.008
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     1  0.5178     0.8681 0.884 0.116
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0938     0.9714 0.988 0.012
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.1414     0.9690 0.020 0.980
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.3114     0.9387 0.944 0.056
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.1414     0.9711 0.020 0.980
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.0938     0.9714 0.988 0.012
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.1184     0.9704 0.016 0.984
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.0938     0.9714 0.988 0.012
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.1843     0.9624 0.028 0.972
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.1414     0.9711 0.020 0.980
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.0938     0.9714 0.988 0.012
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.6343     0.8300 0.160 0.840
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.2603     0.9545 0.956 0.044
#> A5B3738D-D197-4463-8FED-51F69AC17873     1  0.0672     0.9747 0.992 0.008
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.1843     0.9702 0.028 0.972
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.3733     0.9194 0.928 0.072
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     1  0.0672     0.9747 0.992 0.008
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.3879     0.9227 0.076 0.924
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0938     0.9714 0.988 0.012
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.1414     0.9721 0.980 0.020
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0938     0.9714 0.988 0.012
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.1184     0.9666 0.016 0.984
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0000     0.9745 1.000 0.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.1184     0.9705 0.016 0.984
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.1184     0.9666 0.016 0.984
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.1414     0.9711 0.020 0.980
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     1  0.0938     0.9714 0.988 0.012
#> D249B589-22E5-4678-9757-FF6A7E4553E5     1  0.0376     0.9749 0.996 0.004
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0938     0.9735 0.988 0.012
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.4939     0.8874 0.108 0.892
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     1  0.0672     0.9747 0.992 0.008
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.1414     0.9721 0.980 0.020
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.1414     0.9711 0.020 0.980
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.1414     0.9711 0.020 0.980
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.0938     0.9695 0.012 0.988
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     1  0.9491     0.4086 0.632 0.368
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.1184     0.9666 0.016 0.984
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     1  0.9552     0.3870 0.624 0.376
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     1  0.0938     0.9714 0.988 0.012
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.1184     0.9666 0.016 0.984
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     1  0.5737     0.8475 0.864 0.136
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0672     0.9747 0.992 0.008
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     1  0.9850     0.2469 0.572 0.428
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.0938     0.9695 0.012 0.988
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.0938     0.9695 0.012 0.988
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0938     0.9660 0.012 0.988
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.1184     0.9666 0.016 0.984
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     1  0.0938     0.9714 0.988 0.012
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.0938     0.9714 0.988 0.012
#> 01094832-E561-4A90-AA32-9A548FE136B7     1  0.0938     0.9714 0.988 0.012
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.1184     0.9729 0.984 0.016
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.1414     0.9698 0.980 0.020
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0672     0.9647 0.008 0.992
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.9775     0.3258 0.412 0.588
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     1  0.0376     0.9739 0.996 0.004
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.7299     0.7673 0.204 0.796
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     1  0.0938     0.9714 0.988 0.012
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0672     0.9728 0.992 0.008
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     1  0.4298     0.9052 0.912 0.088
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.1184     0.9666 0.016 0.984
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.1184     0.9697 0.016 0.984
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     1  0.0672     0.9747 0.992 0.008
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.1184     0.9722 0.984 0.016
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.1414     0.9711 0.020 0.980
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.1414     0.9698 0.980 0.020
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     2  0.1414     0.9690 0.020 0.980
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.1184     0.9666 0.016 0.984
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0938     0.9742 0.988 0.012
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  0.0938     0.9714 0.988 0.012
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.1414     0.9711 0.020 0.980
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0376     0.9739 0.996 0.004
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     1  0.0938     0.9714 0.988 0.012
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0938     0.9695 0.012 0.988
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     1  0.0672     0.9747 0.992 0.008
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     1  0.9988     0.0610 0.520 0.480
#> E1833486-2998-4804-A535-EBF25A992392     1  0.0672     0.9747 0.992 0.008
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.1414     0.9681 0.020 0.980
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0938     0.9742 0.988 0.012
#> E56486B8-FAAE-42BF-B67E-D253783B1043     2  0.0938     0.9695 0.012 0.988
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.1414     0.9711 0.020 0.980
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.1843     0.9702 0.028 0.972
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.1414     0.9711 0.020 0.980
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     2  0.9661     0.3920 0.392 0.608
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0938     0.9714 0.988 0.012
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     1  0.0000     0.9745 1.000 0.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.1184     0.9666 0.016 0.984
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     1  0.0672     0.9747 0.992 0.008
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0938     0.9742 0.988 0.012
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.1414     0.9711 0.020 0.980
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.2603     0.9561 0.044 0.956
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.0938     0.9695 0.012 0.988
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     1  0.0938     0.9714 0.988 0.012
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     1  0.0938     0.9714 0.988 0.012
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0672     0.9739 0.992 0.008
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     1  0.0376     0.9749 0.996 0.004
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     1  0.0672     0.9747 0.992 0.008
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.1414     0.9721 0.980 0.020
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.1184     0.9708 0.984 0.016
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.0672     0.9747 0.992 0.008
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.1184     0.9666 0.016 0.984
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.0672     0.9747 0.992 0.008
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.1414     0.9711 0.020 0.980
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.1184     0.9666 0.016 0.984
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     1  0.1184     0.9744 0.984 0.016
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.0938     0.9714 0.988 0.012
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.1184     0.9666 0.016 0.984
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0938     0.9728 0.988 0.012
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.0672     0.9747 0.992 0.008
#> 985FEEC2-9737-4018-80DF-21A07AB47900     1  0.0672     0.9747 0.992 0.008
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0672     0.9747 0.992 0.008
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0938     0.9742 0.988 0.012
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.1414     0.9711 0.020 0.980
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.1414     0.9711 0.020 0.980
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0672     0.9738 0.992 0.008
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.1414     0.9711 0.020 0.980
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     1  0.0938     0.9714 0.988 0.012
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0938     0.9728 0.988 0.012
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.1414     0.9711 0.020 0.980
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0938     0.9742 0.988 0.012
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0938     0.9714 0.988 0.012
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.1414     0.9698 0.980 0.020
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.1414     0.9711 0.020 0.980
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0672     0.9747 0.992 0.008
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0938     0.9735 0.988 0.012
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     1  0.0672     0.9747 0.992 0.008
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0938     0.9695 0.012 0.988
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.1414     0.9711 0.020 0.980
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.1184     0.9666 0.016 0.984
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.0672     0.9747 0.992 0.008
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.4431     0.9028 0.092 0.908
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.1184     0.9705 0.016 0.984
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.1184     0.9679 0.016 0.984
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0672     0.9647 0.008 0.992
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.1184     0.9666 0.016 0.984
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.1414     0.9698 0.980 0.020
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.1414     0.9721 0.980 0.020
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.0672     0.9747 0.992 0.008
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.1633     0.9693 0.976 0.024
#> B57C849C-28B1-4315-885C-330B9C9482B3     1  0.0938     0.9714 0.988 0.012
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.1184     0.9705 0.016 0.984
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.1184     0.9666 0.016 0.984
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.1414     0.9711 0.020 0.980
#> 80936433-AA91-4219-98F1-706C36298060     2  0.1414     0.9711 0.020 0.980
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     2  0.0938     0.9695 0.012 0.988
#> 241F589C-D559-43D7-8340-31EBCEB36E14     1  0.0938     0.9735 0.988 0.012
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.1184     0.9710 0.984 0.016
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.1414     0.9721 0.980 0.020
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.1414     0.9711 0.020 0.980
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0672     0.9747 0.992 0.008
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.1414     0.9698 0.980 0.020
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.1184     0.9710 0.984 0.016
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.1633     0.9693 0.976 0.024
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0938     0.9742 0.988 0.012
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0672     0.9747 0.992 0.008
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0672     0.9747 0.992 0.008
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.0938     0.9695 0.012 0.988
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.9491     0.4349 0.368 0.632
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.1414     0.9721 0.980 0.020
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.1184     0.9666 0.016 0.984
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0938     0.9728 0.988 0.012
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.0000     0.9745 1.000 0.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     1  0.0938     0.9714 0.988 0.012
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.1414     0.9721 0.980 0.020
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.0672     0.9747 0.992 0.008
#> D9364524-CD1F-4C45-A2EF-8CB401487001     1  0.0938     0.9735 0.988 0.012
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0938     0.9728 0.988 0.012
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0672     0.9647 0.008 0.992
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.6438     0.8157 0.164 0.836
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.1184     0.9666 0.016 0.984
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.1414     0.9711 0.020 0.980
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.1414     0.9698 0.980 0.020
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.1184     0.9666 0.016 0.984
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     1  0.0672     0.9747 0.992 0.008
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     1  0.0672     0.9747 0.992 0.008
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.1414     0.9721 0.980 0.020
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.1184     0.9666 0.016 0.984
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.0938     0.9695 0.012 0.988
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.1414     0.9698 0.980 0.020
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.0672     0.9728 0.992 0.008
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.1414     0.9711 0.020 0.980
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0938     0.9695 0.012 0.988
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.1184     0.9729 0.984 0.016
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0672     0.9747 0.992 0.008
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0938     0.9742 0.988 0.012
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.1414     0.9721 0.980 0.020
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.1843     0.9702 0.028 0.972
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.1414     0.9711 0.020 0.980
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.0938     0.9695 0.012 0.988
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0672     0.9747 0.992 0.008
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0672     0.9738 0.992 0.008
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0672     0.9747 0.992 0.008
#> C075F09E-623C-46ED-B927-889B48F450B3     1  0.0672     0.9747 0.992 0.008
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0672     0.9747 0.992 0.008
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.0672     0.9747 0.992 0.008
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     1  0.0672     0.9747 0.992 0.008
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000     0.9745 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0938     0.9714 0.988 0.012
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0376     0.9749 0.996 0.004
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0672     0.9647 0.008 0.992
#> 816CF68B-8476-4960-9F05-FB959A686323     1  0.1184     0.9712 0.984 0.016
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0672     0.9747 0.992 0.008
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     1  0.4161     0.9096 0.916 0.084
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.1184     0.9710 0.984 0.016
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.1414     0.9711 0.020 0.980
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.1184     0.9666 0.016 0.984
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.1414     0.9698 0.980 0.020
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     1  0.0938     0.9714 0.988 0.012
#> 5E03E52F-957D-455B-A007-19714FAA818A     1  0.0672     0.9747 0.992 0.008
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.1184     0.9729 0.984 0.016
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0672     0.9747 0.992 0.008
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     2  0.1184     0.9697 0.016 0.984
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     2  0.3584     0.9274 0.068 0.932
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.0938     0.9695 0.012 0.988
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.1184     0.9729 0.984 0.016
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.0938     0.9667 0.012 0.988
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.1184     0.9729 0.984 0.016
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0938     0.9728 0.988 0.012
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     1  0.0672     0.9747 0.992 0.008
#> 1122039D-5785-4F70-9916-17C585453512     2  0.1414     0.9690 0.020 0.980
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0376     0.9739 0.996 0.004
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.0672     0.9747 0.992 0.008
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.0938     0.9695 0.012 0.988
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.1414     0.9711 0.020 0.980
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.3114     0.9414 0.056 0.944
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0938     0.9742 0.988 0.012
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.1184     0.9697 0.016 0.984
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.1184     0.9729 0.984 0.016
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0938     0.9742 0.988 0.012
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0938     0.9714 0.988 0.012
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.1184     0.9710 0.984 0.016
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.1414     0.9708 0.020 0.980
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.1414     0.9721 0.980 0.020
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.0938     0.9695 0.012 0.988
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     1  0.0672     0.9747 0.992 0.008
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.0938     0.9714 0.988 0.012
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0672     0.9747 0.992 0.008
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     1  0.0938     0.9714 0.988 0.012
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.1184     0.9705 0.016 0.984
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0938     0.9742 0.988 0.012
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0672     0.9747 0.992 0.008
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0938     0.9742 0.988 0.012
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.1414     0.9698 0.980 0.020
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.0938     0.9695 0.012 0.988
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.1414     0.9698 0.980 0.020
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.1414     0.9711 0.020 0.980
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.6531     0.7993 0.832 0.168
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.1414     0.9711 0.020 0.980
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0938     0.9714 0.988 0.012
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0672     0.9747 0.992 0.008
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0938     0.9742 0.988 0.012
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.1414     0.9698 0.980 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.797           0.881       0.951         0.4983 0.502   0.502
#> 3 3 0.528           0.716       0.852         0.3294 0.711   0.485
#> 4 4 0.511           0.506       0.705         0.1029 0.773   0.470
#> 5 5 0.709           0.703       0.858         0.0681 0.842   0.533
#> 6 6 0.734           0.667       0.809         0.0431 0.925   0.692

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     2  0.0000    0.94890 0.000 1.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.0000    0.94406 1.000 0.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0000    0.94890 0.000 1.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.0000    0.94406 1.000 0.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     1  0.1633    0.92800 0.976 0.024
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.0000    0.94890 0.000 1.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.9686    0.36511 0.396 0.604
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.6438    0.79874 0.836 0.164
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.0000    0.94890 0.000 1.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     2  0.0000    0.94890 0.000 1.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0000    0.94890 0.000 1.000
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     1  0.8909    0.58116 0.692 0.308
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.5519    0.82914 0.128 0.872
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.4161    0.87929 0.084 0.916
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.0000    0.94406 1.000 0.000
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.0000    0.94890 0.000 1.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.0000    0.94406 1.000 0.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0672    0.94327 0.008 0.992
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.9954    0.17124 0.460 0.540
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000    0.94890 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000    0.94890 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000    0.94890 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000    0.94406 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000    0.94890 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000    0.94406 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000    0.94890 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.0376    0.94612 0.004 0.996
#> EE97212E-8D5D-4548-8DD2-317049601FDB     1  0.0000    0.94406 1.000 0.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.2043    0.92362 0.968 0.032
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.6247    0.80793 0.844 0.156
#> 97C34F1F-2002-4771-8D99-511EA08591CD     1  0.9710    0.37184 0.600 0.400
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000    0.94890 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     1  0.0000    0.94406 1.000 0.000
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.8909    0.58119 0.692 0.308
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.0000    0.94890 0.000 1.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.0000    0.94406 1.000 0.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     1  0.0000    0.94406 1.000 0.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000    0.94406 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000    0.94406 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.0000    0.94406 1.000 0.000
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     1  0.7219    0.75356 0.800 0.200
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0672    0.93955 0.992 0.008
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000    0.94890 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000    0.94406 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     1  0.0000    0.94406 1.000 0.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.0000    0.94890 0.000 1.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000    0.94890 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0000    0.94406 1.000 0.000
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     2  0.0000    0.94890 0.000 1.000
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.6887    0.75998 0.184 0.816
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000    0.94406 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.9248    0.51606 0.660 0.340
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.0938    0.94039 0.012 0.988
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.0000    0.94890 0.000 1.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000    0.94406 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000    0.94406 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000    0.94890 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     1  0.0000    0.94406 1.000 0.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.0000    0.94890 0.000 1.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.9522    0.42224 0.372 0.628
#> A77DDA16-167D-4444-8C58-526C99F2B406     1  0.0000    0.94406 1.000 0.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.6531    0.78088 0.168 0.832
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     1  0.0000    0.94406 1.000 0.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000    0.94406 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     2  0.7674    0.70286 0.224 0.776
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     2  0.0000    0.94890 0.000 1.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     2  0.0000    0.94890 0.000 1.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000    0.94406 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000    0.94406 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000    0.94406 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0376    0.94609 0.004 0.996
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     2  0.0000    0.94890 0.000 1.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000    0.94890 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000    0.94890 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.0000    0.94890 0.000 1.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.0000    0.94406 1.000 0.000
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.0000    0.94890 0.000 1.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0000    0.94890 0.000 1.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     1  0.3584    0.89539 0.932 0.068
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000    0.94890 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     1  0.0000    0.94406 1.000 0.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000    0.94890 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     1  0.0000    0.94406 1.000 0.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.0000    0.94890 0.000 1.000
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     1  0.0000    0.94406 1.000 0.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000    0.94890 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000    0.94406 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0000    0.94890 0.000 1.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     1  0.0000    0.94406 1.000 0.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000    0.94890 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000    0.94406 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.8267    0.62642 0.260 0.740
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000    0.94406 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0672    0.94326 0.008 0.992
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     1  0.0938    0.93710 0.988 0.012
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     2  0.0000    0.94890 0.000 1.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.9522    0.42226 0.372 0.628
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000    0.94890 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.0000    0.94406 1.000 0.000
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000    0.94890 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000    0.94406 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000    0.94406 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0000    0.94890 0.000 1.000
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000    0.94890 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000    0.94406 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     2  0.0000    0.94890 0.000 1.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.0672    0.93948 0.992 0.008
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.7453    0.70871 0.212 0.788
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000    0.94890 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000    0.94406 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     1  0.0000    0.94406 1.000 0.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     1  0.0672    0.93918 0.992 0.008
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.3114    0.90386 0.056 0.944
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     2  0.3114    0.90217 0.056 0.944
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.0000    0.94406 1.000 0.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000    0.94890 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     2  0.0000    0.94890 0.000 1.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000    0.94890 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.0000    0.94890 0.000 1.000
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000    0.94406 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000    0.94406 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000    0.94406 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     1  0.9460    0.41460 0.636 0.364
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     2  0.0000    0.94890 0.000 1.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0000    0.94890 0.000 1.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0000    0.94406 1.000 0.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     1  0.0000    0.94406 1.000 0.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000    0.94890 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000    0.94406 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.4161    0.87686 0.084 0.916
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.8144    0.67843 0.748 0.252
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000    0.94890 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.0000    0.94890 0.000 1.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.0938    0.93998 0.012 0.988
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000    0.94406 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.0000    0.94890 0.000 1.000
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.0000    0.94406 1.000 0.000
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000    0.94890 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000    0.94406 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000    0.94890 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.0000    0.94890 0.000 1.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.0000    0.94890 0.000 1.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000    0.94890 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000    0.94890 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.0000    0.94406 1.000 0.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000    0.94890 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000    0.94890 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000    0.94406 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.0000    0.94890 0.000 1.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000    0.94406 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000    0.94890 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.0000    0.94890 0.000 1.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.0000    0.94890 0.000 1.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000    0.94406 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.0000    0.94890 0.000 1.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000    0.94406 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000    0.94406 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     2  0.2948    0.90588 0.052 0.948
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     1  0.0000    0.94406 1.000 0.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000    0.94890 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0672    0.93955 0.992 0.008
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000    0.94406 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000    0.94406 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000    0.94406 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.1184    0.93454 0.984 0.016
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000    0.94890 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000    0.94406 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.9944    0.12222 0.456 0.544
#> FDDECB98-0151-4207-BC4E-040E121703DB     1  0.0000    0.94406 1.000 0.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000    0.94406 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.0000    0.94406 1.000 0.000
#> C8820FA6-3531-4515-A102-19100775E767     1  0.0000    0.94406 1.000 0.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.2948    0.90826 0.948 0.052
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0938    0.94038 0.012 0.988
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000    0.94890 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000    0.94406 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     1  0.7674    0.72950 0.776 0.224
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.0000    0.94890 0.000 1.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.0000    0.94890 0.000 1.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     2  0.0000    0.94890 0.000 1.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.0000    0.94890 0.000 1.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     1  0.0000    0.94406 1.000 0.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     1  0.2043    0.92203 0.968 0.032
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.4562    0.86273 0.096 0.904
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000    0.94406 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     1  0.0000    0.94406 1.000 0.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000    0.94890 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000    0.94890 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     1  0.0000    0.94406 1.000 0.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.9710    0.37271 0.600 0.400
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000    0.94890 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.4562    0.86217 0.096 0.904
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.0000    0.94890 0.000 1.000
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.0000    0.94890 0.000 1.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.0000    0.94890 0.000 1.000
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000    0.94890 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000    0.94890 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000    0.94890 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.6801    0.78052 0.820 0.180
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.0000    0.94890 0.000 1.000
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000    0.94406 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.0000    0.94890 0.000 1.000
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.6531    0.79406 0.832 0.168
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     1  0.0000    0.94406 1.000 0.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     2  0.7453    0.71620 0.212 0.788
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.0000    0.94406 1.000 0.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000    0.94890 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000    0.94406 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     1  0.0000    0.94406 1.000 0.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.9988    0.03097 0.480 0.520
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000    0.94890 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     1  0.3114    0.90446 0.944 0.056
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     1  0.9491    0.45286 0.632 0.368
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     1  0.0000    0.94406 1.000 0.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0376    0.94186 0.996 0.004
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.0000    0.94890 0.000 1.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.9850    0.27308 0.428 0.572
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  1.0000   -0.04036 0.496 0.504
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000    0.94890 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.9087    0.52824 0.324 0.676
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     2  0.0000    0.94890 0.000 1.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.0000    0.94406 1.000 0.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.9993    0.02558 0.516 0.484
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000    0.94406 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.0000    0.94890 0.000 1.000
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000    0.94890 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000    0.94406 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000    0.94890 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     1  0.5946    0.82300 0.856 0.144
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000    0.94406 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000    0.94890 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     2  0.0000    0.94890 0.000 1.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     2  0.0000    0.94890 0.000 1.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.0000    0.94890 0.000 1.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000    0.94406 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.2043    0.92362 0.968 0.032
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.8955    0.52302 0.312 0.688
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000    0.94890 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000    0.94890 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.3274    0.90175 0.940 0.060
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.4298    0.87041 0.088 0.912
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000    0.94406 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     1  0.6712    0.78428 0.824 0.176
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.0000    0.94890 0.000 1.000
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0938    0.94041 0.012 0.988
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.3274    0.89992 0.060 0.940
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000    0.94890 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.0000    0.94890 0.000 1.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.0000    0.94890 0.000 1.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000    0.94890 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.9209    0.52459 0.664 0.336
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.6247    0.79611 0.844 0.156
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.0000    0.94890 0.000 1.000
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000    0.94890 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.7528    0.73188 0.784 0.216
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     1  0.8016    0.66812 0.756 0.244
#> 3AB58B87-7012-428A-8A83-6DD31D159150     1  0.7376    0.74288 0.792 0.208
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000    0.94890 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0376    0.94613 0.004 0.996
#> DC144A81-90F8-4984-96D4-6C4E7368C162     1  0.1633    0.92952 0.976 0.024
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000    0.94890 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.0000    0.94406 1.000 0.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.9933    0.13628 0.452 0.548
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000    0.94890 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.7219    0.73845 0.200 0.800
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.0000    0.94890 0.000 1.000
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.7299    0.73367 0.204 0.796
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.9710    0.37205 0.600 0.400
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000    0.94406 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     1  0.0000    0.94406 1.000 0.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.7815    0.69156 0.232 0.768
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.0000    0.94890 0.000 1.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.8267    0.64693 0.260 0.740
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0000    0.94890 0.000 1.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000    0.94890 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.4298    0.87059 0.088 0.912
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000    0.94890 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     2  0.0000    0.94890 0.000 1.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     2  0.0000    0.94890 0.000 1.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.0000    0.94890 0.000 1.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000    0.94406 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000    0.94890 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     2  0.0000    0.94890 0.000 1.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.0000    0.94406 1.000 0.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.1843    0.92758 0.028 0.972
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000    0.94890 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000    0.94890 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.0672    0.94319 0.008 0.992
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0000    0.94890 0.000 1.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000    0.94890 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.2603    0.91448 0.956 0.044
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0000    0.94890 0.000 1.000
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.0000    0.94406 1.000 0.000
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.0000    0.94406 1.000 0.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     1  0.9170    0.49212 0.668 0.332
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000    0.94890 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0000    0.94890 0.000 1.000
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  1.0000   -0.03462 0.496 0.504
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.2778    0.91075 0.048 0.952
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000    0.94406 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000    0.94406 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.0000    0.94406 1.000 0.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     2  0.0000    0.94890 0.000 1.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000    0.94890 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000    0.94890 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0000    0.94890 0.000 1.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.5737    0.83010 0.864 0.136
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000    0.94890 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.7602    0.70962 0.220 0.780
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     1  0.0000    0.94406 1.000 0.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.0000    0.94890 0.000 1.000
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000    0.94406 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000    0.94890 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000    0.94406 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0000    0.94406 1.000 0.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000    0.94890 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000    0.94406 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.0000    0.94890 0.000 1.000
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000    0.94890 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     2  0.0000    0.94890 0.000 1.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.0000    0.94890 0.000 1.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     1  0.1184    0.93378 0.984 0.016
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.9954    0.10741 0.460 0.540
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000    0.94890 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.0000    0.94890 0.000 1.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000    0.94890 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000    0.94406 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.0000    0.94406 1.000 0.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     2  0.0000    0.94890 0.000 1.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000    0.94890 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000    0.94890 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000    0.94406 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.1414    0.93193 0.980 0.020
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000    0.94890 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000    0.94890 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.0000    0.94890 0.000 1.000
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000    0.94406 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000    0.94890 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0376    0.94614 0.004 0.996
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.0000    0.94406 1.000 0.000
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.0000    0.94890 0.000 1.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.0000    0.94890 0.000 1.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     1  0.0000    0.94406 1.000 0.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.0000    0.94890 0.000 1.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000    0.94890 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000    0.94406 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.0000    0.94890 0.000 1.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.3114    0.90509 0.056 0.944
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000    0.94890 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     1  0.4690    0.86609 0.900 0.100
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000    0.94890 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000    0.94890 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0000    0.94890 0.000 1.000
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.0000    0.94890 0.000 1.000
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000    0.94890 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000    0.94406 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.0000    0.94890 0.000 1.000
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.0000    0.94890 0.000 1.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.0000    0.94890 0.000 1.000
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000    0.94406 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000    0.94890 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000    0.94890 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.0000    0.94406 1.000 0.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.2423    0.91785 0.040 0.960
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.0000    0.94890 0.000 1.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000    0.94406 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000    0.94890 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000    0.94406 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.3879    0.88282 0.076 0.924
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000    0.94406 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.3879    0.88473 0.076 0.924
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.9460    0.45902 0.636 0.364
#> 34ED910C-7470-4552-8561-D01D59190521     2  0.0000    0.94890 0.000 1.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0000    0.94890 0.000 1.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.0000    0.94406 1.000 0.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     2  0.0000    0.94890 0.000 1.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000    0.94890 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.0000    0.94890 0.000 1.000
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.3879    0.88423 0.924 0.076
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     1  0.8016    0.66682 0.756 0.244
#> E789661A-C027-405D-9F76-E6D52CE3018B     1  0.9922    0.16500 0.552 0.448
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.0000    0.94406 1.000 0.000
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000    0.94890 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000    0.94406 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000    0.94406 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     1  0.1843    0.92678 0.972 0.028
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000    0.94406 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.0000    0.94890 0.000 1.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     1  0.5294    0.83936 0.880 0.120
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     2  0.0000    0.94890 0.000 1.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000    0.94890 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000    0.94890 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.0000    0.94406 1.000 0.000
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.0376    0.94612 0.004 0.996
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000    0.94406 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000    0.94406 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000    0.94890 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.7602    0.72625 0.780 0.220
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000    0.94406 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000    0.94406 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     1  0.0000    0.94406 1.000 0.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000    0.94406 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.0000    0.94890 0.000 1.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.0000    0.94890 0.000 1.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.0000    0.94406 1.000 0.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0000    0.94406 1.000 0.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000    0.94406 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000    0.94890 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     1  0.0000    0.94406 1.000 0.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     1  0.8499    0.63901 0.724 0.276
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.0000    0.94890 0.000 1.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     1  0.0000    0.94406 1.000 0.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     1  0.1633    0.92939 0.976 0.024
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0376    0.94612 0.004 0.996
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000    0.94406 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.0000    0.94406 1.000 0.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.0000    0.94406 1.000 0.000
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000    0.94890 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.2603    0.91451 0.044 0.956
#> E4F45B0B-91FA-49C0-9772-27321D23104B     1  0.0000    0.94406 1.000 0.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000    0.94890 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.0000    0.94890 0.000 1.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.0000    0.94890 0.000 1.000
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000    0.94406 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000    0.94890 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.0000    0.94406 1.000 0.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000    0.94406 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.9686    0.38481 0.604 0.396
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000    0.94890 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     1  0.2043    0.92210 0.968 0.032
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000    0.94406 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.9881    0.26824 0.564 0.436
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000    0.94406 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000    0.94406 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000    0.94890 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000    0.94890 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.0000    0.94406 1.000 0.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.6148    0.79464 0.152 0.848
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000    0.94406 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.0000    0.94890 0.000 1.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.0000    0.94890 0.000 1.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.9922    0.15009 0.448 0.552
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.0000    0.94890 0.000 1.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0000    0.94890 0.000 1.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.4431    0.87386 0.908 0.092
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.5629    0.83417 0.868 0.132
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     1  0.0376    0.94186 0.996 0.004
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.6048    0.80627 0.852 0.148
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.6801    0.76530 0.180 0.820
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.1414    0.93362 0.020 0.980
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0000    0.94890 0.000 1.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000    0.94406 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000    0.94890 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000    0.94890 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000    0.94406 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.9996   -0.00146 0.488 0.512
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.0000    0.94890 0.000 1.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000    0.94406 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.8081    0.68488 0.752 0.248
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.4690    0.86041 0.900 0.100
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000    0.94406 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000    0.94406 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000    0.94406 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9460    0.41493 0.636 0.364
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000    0.94406 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000    0.94406 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.0000    0.94890 0.000 1.000
#> 1122039D-5785-4F70-9916-17C585453512     1  0.0000    0.94406 1.000 0.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.8861    0.58905 0.696 0.304
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.0000    0.94890 0.000 1.000
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.9963    0.15752 0.464 0.536
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9286    0.48727 0.344 0.656
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000    0.94890 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0000    0.94406 1.000 0.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.0672    0.93921 0.992 0.008
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000    0.94406 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000    0.94406 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.0000    0.94890 0.000 1.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     1  0.0000    0.94406 1.000 0.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.9286    0.48655 0.344 0.656
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000    0.94406 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.8661    0.58562 0.712 0.288
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.9996   -0.00208 0.488 0.512
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     1  0.7139    0.75887 0.804 0.196
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.0000    0.94890 0.000 1.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.0000    0.94890 0.000 1.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.9850    0.27302 0.428 0.572
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000    0.94406 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.2043    0.92379 0.968 0.032
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000    0.94406 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000    0.94406 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.0000    0.94406 1.000 0.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     1  0.0000    0.94406 1.000 0.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000    0.94890 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.0000    0.94890 0.000 1.000
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000    0.94890 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0938    0.93710 0.988 0.012
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0376    0.94188 0.996 0.004
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000    0.94406 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000    0.94406 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.190           0.676       0.825         0.4159 0.556   0.556
#> 3 3 0.223           0.506       0.656         0.3871 0.664   0.478
#> 4 4 0.305           0.462       0.694         0.1383 0.778   0.541
#> 5 5 0.394           0.495       0.683         0.0848 0.842   0.598
#> 6 6 0.459           0.491       0.689         0.0454 0.920   0.743

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.0000    0.76246 1.000 0.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.0000    0.76246 1.000 0.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.9209    0.60813 0.336 0.664
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.9087    0.63046 0.324 0.676
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000    0.77412 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.5519    0.78713 0.128 0.872
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.4431    0.79224 0.092 0.908
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     2  0.8955    0.65147 0.312 0.688
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.9775    0.43621 0.412 0.588
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.6531    0.73628 0.832 0.168
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.9248    0.53683 0.340 0.660
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.9044    0.64202 0.320 0.680
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000    0.77412 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.0000    0.77412 0.000 1.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     2  0.9954    0.25827 0.460 0.540
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.9775    0.43730 0.412 0.588
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.8713    0.60569 0.708 0.292
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.5294    0.76722 0.120 0.880
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.9087    0.57118 0.324 0.676
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000    0.77412 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     1  0.0000    0.76246 1.000 0.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000    0.77412 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000    0.76246 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000    0.77412 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.5408    0.77316 0.876 0.124
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000    0.77412 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.5737    0.78682 0.136 0.864
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.6148    0.78227 0.152 0.848
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     2  0.9044    0.63861 0.320 0.680
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.3733    0.77587 0.928 0.072
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.6887    0.76590 0.184 0.816
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000    0.77412 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.9129    0.62407 0.328 0.672
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.9983    0.20282 0.476 0.524
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.9909    0.31747 0.444 0.556
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.8909    0.64185 0.308 0.692
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.1414    0.78244 0.020 0.980
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.9686    0.47944 0.396 0.604
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000    0.76246 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.6048    0.76530 0.852 0.148
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.7815    0.74332 0.232 0.768
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     2  0.8443    0.70130 0.272 0.728
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000    0.77412 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000    0.76246 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.8081    0.72445 0.248 0.752
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.9580    0.51532 0.380 0.620
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.9686    0.48143 0.396 0.604
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.9170    0.52593 0.668 0.332
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.3733    0.77587 0.928 0.072
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.3879    0.77934 0.076 0.924
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.9988    0.01494 0.520 0.480
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.9000    0.56183 0.684 0.316
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.9909    0.34872 0.444 0.556
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.2423    0.78769 0.040 0.960
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.5059    0.77690 0.888 0.112
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.9635    0.37686 0.612 0.388
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000    0.77412 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0000    0.77412 0.000 1.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.4690    0.79218 0.100 0.900
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000    0.77412 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.7139    0.76059 0.196 0.804
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000    0.77412 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.6712    0.77587 0.176 0.824
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     2  0.9850    0.37189 0.428 0.572
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.9393    0.46585 0.644 0.356
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.5519    0.76319 0.872 0.128
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.1184    0.76855 0.984 0.016
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     2  0.9970    0.23055 0.468 0.532
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     2  0.9358    0.58043 0.352 0.648
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.6623    0.74976 0.828 0.172
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.9635    0.50141 0.388 0.612
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.0000    0.76246 1.000 0.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.1843    0.78448 0.028 0.972
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.9635    0.50141 0.388 0.612
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.4161    0.79246 0.084 0.916
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.6048    0.76530 0.852 0.148
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.9795    0.42702 0.416 0.584
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9087    0.63032 0.324 0.676
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.7453    0.75342 0.212 0.788
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.2043    0.78498 0.032 0.968
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.7950    0.73070 0.240 0.760
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.5178    0.79035 0.116 0.884
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.5178    0.79283 0.116 0.884
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.9580    0.52442 0.380 0.620
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.6623    0.77527 0.172 0.828
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000    0.77412 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.6247    0.76008 0.844 0.156
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.7745    0.74159 0.228 0.772
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.8327    0.71056 0.264 0.736
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.1184    0.78090 0.016 0.984
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.9427    0.46498 0.640 0.360
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.2423    0.78769 0.040 0.960
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.8909    0.64185 0.308 0.692
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000    0.77412 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.7674    0.74507 0.224 0.776
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.2778    0.77516 0.952 0.048
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000    0.77412 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.3274    0.78293 0.060 0.940
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.3114    0.77888 0.944 0.056
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.1633    0.78332 0.024 0.976
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.9209    0.61123 0.336 0.664
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.3733    0.78007 0.928 0.072
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.6048    0.78155 0.148 0.852
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.5294    0.79160 0.120 0.880
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.6247    0.76488 0.844 0.156
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0000    0.76246 1.000 0.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.7950    0.68653 0.760 0.240
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.8661    0.68908 0.288 0.712
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.5737    0.77478 0.136 0.864
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000    0.76246 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000    0.77412 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000    0.77412 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.4815    0.77547 0.104 0.896
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.9635    0.37686 0.612 0.388
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.6973    0.74324 0.188 0.812
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000    0.77412 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.6531    0.73628 0.832 0.168
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0376    0.77473 0.004 0.996
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.8661    0.67985 0.288 0.712
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000    0.76246 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.2948    0.77708 0.948 0.052
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.7602    0.70855 0.780 0.220
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000    0.77412 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000    0.76246 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     1  0.9248    0.51697 0.660 0.340
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.1414    0.76988 0.980 0.020
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.2948    0.78935 0.052 0.948
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.4690    0.79086 0.100 0.900
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.6712    0.74768 0.824 0.176
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.7299    0.71439 0.796 0.204
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.7745    0.74548 0.228 0.772
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.5408    0.76448 0.124 0.876
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.4298    0.79182 0.088 0.912
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.5946    0.78556 0.144 0.856
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.4690    0.77863 0.900 0.100
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.9996    0.16657 0.488 0.512
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.8813    0.59138 0.700 0.300
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.1414    0.78134 0.020 0.980
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.9963    0.11172 0.536 0.464
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000    0.77412 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.6148    0.78056 0.152 0.848
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.8555    0.69229 0.280 0.720
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000    0.77412 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000    0.77412 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.9358    0.58128 0.352 0.648
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000    0.77412 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000    0.77412 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000    0.76246 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.7376    0.76024 0.208 0.792
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000    0.76246 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000    0.77412 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.7299    0.76115 0.204 0.796
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.4690    0.79138 0.100 0.900
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000    0.76246 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.9635    0.37686 0.612 0.388
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000    0.76246 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.3879    0.77661 0.924 0.076
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.8081    0.66139 0.752 0.248
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.4690    0.79115 0.100 0.900
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000    0.77412 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.9686    0.35704 0.604 0.396
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.6343    0.75783 0.840 0.160
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.9775    0.29735 0.588 0.412
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000    0.76246 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.9427    0.46498 0.640 0.360
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000    0.77412 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.9170    0.52960 0.668 0.332
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.5842    0.78428 0.140 0.860
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.4690    0.79218 0.100 0.900
#> 862D2F88-77A9-4363-A744-7738F49980E8     2  1.0000    0.12291 0.496 0.504
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.8861    0.58580 0.696 0.304
#> C8820FA6-3531-4515-A102-19100775E767     2  0.8499    0.69635 0.276 0.724
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000    0.76246 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000    0.77412 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.9552    0.52677 0.376 0.624
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000    0.76246 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.5842    0.78592 0.140 0.860
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.7602    0.74493 0.220 0.780
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.9732    0.33048 0.596 0.404
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.1184    0.76855 0.984 0.016
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.9580    0.51532 0.380 0.620
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.8016    0.73101 0.244 0.756
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.9129    0.62407 0.328 0.672
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.7299    0.75580 0.204 0.796
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.8081    0.65604 0.752 0.248
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000    0.77412 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000    0.77412 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000    0.77412 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.3879    0.79213 0.076 0.924
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.9087    0.62921 0.324 0.676
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000    0.77412 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.7883    0.73464 0.236 0.764
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.9522    0.52948 0.372 0.628
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.1414    0.78195 0.020 0.980
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.8144    0.72154 0.252 0.748
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000    0.77412 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000    0.77412 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000    0.77412 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.9795    0.42711 0.416 0.584
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.8909    0.65440 0.308 0.692
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.4431    0.77881 0.908 0.092
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.9661    0.49474 0.392 0.608
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     2  0.9000    0.64475 0.316 0.684
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.1843    0.78471 0.028 0.972
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000    0.76246 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.8861    0.58580 0.696 0.304
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000    0.77412 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.3879    0.77661 0.924 0.076
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.8144    0.72048 0.252 0.748
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.9608    0.50516 0.384 0.616
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.6887    0.74439 0.184 0.816
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.2043    0.78577 0.032 0.968
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.6247    0.77867 0.156 0.844
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.0000    0.77412 0.000 1.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.7376    0.72338 0.792 0.208
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.9491    0.53676 0.368 0.632
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.5519    0.76900 0.128 0.872
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.7950    0.73397 0.240 0.760
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000    0.77412 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.6048    0.76331 0.148 0.852
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.2778    0.77606 0.952 0.048
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.8861    0.65075 0.304 0.696
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.2948    0.77784 0.948 0.052
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000    0.76246 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.4022    0.77923 0.920 0.080
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.6048    0.78542 0.148 0.852
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.3733    0.77587 0.928 0.072
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.5408    0.78888 0.124 0.876
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.7453    0.75290 0.212 0.788
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.9996   -0.04739 0.512 0.488
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000    0.77412 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.9248    0.51697 0.660 0.340
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.9460    0.44489 0.636 0.364
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.9881    0.20173 0.564 0.436
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000    0.76246 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.6887    0.74468 0.816 0.184
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.7745    0.74378 0.228 0.772
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000    0.77412 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.6148    0.78308 0.152 0.848
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.8499    0.69910 0.276 0.724
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.6712    0.76981 0.176 0.824
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.3733    0.77587 0.928 0.072
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.7602    0.74868 0.220 0.780
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.9552    0.51871 0.376 0.624
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000    0.77412 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.2778    0.77976 0.048 0.952
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0376    0.77600 0.004 0.996
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.7056    0.76403 0.192 0.808
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.9754    0.45394 0.408 0.592
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.9209    0.60813 0.336 0.664
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.9732    0.32906 0.596 0.404
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.7299    0.71439 0.796 0.204
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.9522    0.42940 0.628 0.372
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.7139    0.73319 0.196 0.804
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     2  0.8499    0.69709 0.276 0.724
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.2236    0.78155 0.036 0.964
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.7376    0.76024 0.208 0.792
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0376    0.77459 0.004 0.996
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.1843    0.78005 0.028 0.972
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.2778    0.78948 0.048 0.952
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.3733    0.79156 0.072 0.928
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.9491    0.55029 0.368 0.632
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.6623    0.77485 0.172 0.828
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000    0.77412 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.8955    0.63713 0.312 0.688
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.1414    0.78195 0.020 0.980
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.2236    0.78695 0.036 0.964
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.9209    0.61687 0.336 0.664
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.6343    0.75783 0.840 0.160
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.8909    0.65880 0.308 0.692
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.6887    0.74439 0.184 0.816
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.9993    0.18578 0.484 0.516
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.1633    0.78310 0.024 0.976
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     1  0.0000    0.76246 1.000 0.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000    0.77412 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.4022    0.79157 0.080 0.920
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.7745    0.74006 0.228 0.772
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000    0.76246 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.0000    0.76246 1.000 0.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.7376    0.75310 0.208 0.792
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000    0.76246 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.9635    0.50141 0.388 0.612
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.1184    0.76855 0.984 0.016
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.8861    0.58580 0.696 0.304
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.8661    0.67985 0.288 0.712
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000    0.77412 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.6247    0.78438 0.156 0.844
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.0000    0.77412 0.000 1.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.0000    0.76246 1.000 0.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.1184    0.78032 0.016 0.984
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.6973    0.74319 0.812 0.188
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0376    0.77459 0.004 0.996
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.8713    0.60569 0.708 0.292
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.4022    0.77947 0.920 0.080
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0000    0.77412 0.000 1.000
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0938    0.77929 0.012 0.988
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0672    0.77446 0.008 0.992
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.8386    0.70885 0.268 0.732
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0672    0.77778 0.008 0.992
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.8267    0.65983 0.740 0.260
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     2  0.9129    0.62371 0.328 0.672
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.6148    0.76480 0.152 0.848
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.6973    0.72175 0.812 0.188
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.2043    0.78510 0.032 0.968
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.2423    0.78775 0.040 0.960
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.3584    0.79103 0.068 0.932
#> 0331645C-74A4-4E78-BDB8-4176735DE096     2  0.9087    0.63429 0.324 0.676
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.2043    0.78498 0.032 0.968
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0376    0.77477 0.004 0.996
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.1843    0.78471 0.028 0.972
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.8661    0.67985 0.288 0.712
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.5408    0.77316 0.876 0.124
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000    0.77412 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     2  0.9970    0.24259 0.468 0.532
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0000    0.76246 1.000 0.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.8207    0.69250 0.256 0.744
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.9635    0.50324 0.388 0.612
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.9922    0.32592 0.448 0.552
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.2948    0.78803 0.052 0.948
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.6531    0.73628 0.832 0.168
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.3733    0.79075 0.072 0.928
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000    0.77412 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.9393    0.57378 0.356 0.644
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.1414    0.78230 0.020 0.980
#> E1833486-2998-4804-A535-EBF25A992392     2  0.5629    0.78610 0.132 0.868
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0376    0.77473 0.004 0.996
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.9427    0.46498 0.640 0.360
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.0000    0.76246 1.000 0.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.6048    0.74450 0.852 0.148
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000    0.77412 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.6048    0.78354 0.148 0.852
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.6343    0.75783 0.840 0.160
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     2  0.9460    0.55046 0.364 0.636
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.5059    0.79141 0.112 0.888
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000    0.77412 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.9393    0.56138 0.356 0.644
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.3733    0.77587 0.928 0.072
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000    0.77412 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.6343    0.78001 0.160 0.840
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.6048    0.76530 0.852 0.148
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.8555    0.69316 0.280 0.720
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.6973    0.76793 0.188 0.812
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.8386    0.70634 0.268 0.732
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.7602    0.74778 0.220 0.780
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.1414    0.78195 0.020 0.980
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.6343    0.75783 0.840 0.160
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.7056    0.75058 0.192 0.808
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.9170    0.52960 0.668 0.332
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.2948    0.78941 0.052 0.948
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.3114    0.79019 0.056 0.944
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000    0.77412 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000    0.77412 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0376    0.77459 0.004 0.996
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.9998   -0.07007 0.508 0.492
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000    0.77412 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.3733    0.77587 0.928 0.072
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.9580    0.41169 0.620 0.380
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.5294    0.78823 0.120 0.880
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.9710    0.46595 0.400 0.600
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.9993   -0.00724 0.516 0.484
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000    0.77412 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000    0.77412 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.9580    0.52570 0.380 0.620
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     1  0.9248    0.51697 0.660 0.340
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.1414    0.78195 0.020 0.980
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.8763    0.61636 0.704 0.296
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000    0.77412 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.5946    0.77022 0.856 0.144
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.9286    0.60176 0.344 0.656
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.9000    0.56183 0.684 0.316
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000    0.77412 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.9850    0.39566 0.428 0.572
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000    0.76246 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.2603    0.78870 0.044 0.956
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.9129    0.62407 0.328 0.672
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.2778    0.77516 0.952 0.048
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0376    0.77477 0.004 0.996
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.9866    0.37676 0.432 0.568
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.8813    0.65032 0.300 0.700
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000    0.77412 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.4815    0.79066 0.104 0.896
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.8144    0.72131 0.252 0.748
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.5408    0.79095 0.124 0.876
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.5946    0.76655 0.856 0.144
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000    0.76246 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.6148    0.78227 0.152 0.848
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     2  0.9129    0.62074 0.328 0.672
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.3431    0.79072 0.064 0.936
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000    0.77412 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.0000    0.76246 1.000 0.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000    0.77412 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000    0.77412 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.3114    0.77888 0.944 0.056
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.3431    0.79162 0.064 0.936
#> D85CB054-7F54-4383-96C0-6C99761B84E7     2  0.8443    0.70524 0.272 0.728
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000    0.76246 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.9635    0.50141 0.388 0.612
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.9754    0.43386 0.408 0.592
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.5842    0.76795 0.860 0.140
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.3879    0.77661 0.924 0.076
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.0000    0.77412 0.000 1.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  1.0000   -0.09122 0.500 0.500
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.9635    0.38418 0.612 0.388
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.9686    0.35834 0.604 0.396
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.3431    0.77884 0.936 0.064
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.6887    0.74574 0.184 0.816
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000    0.76246 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.4815    0.77547 0.104 0.896
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.8608    0.69144 0.284 0.716
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.7674    0.74201 0.224 0.776
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.7299    0.76115 0.204 0.796
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.2948    0.79016 0.052 0.948
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.9933    0.30972 0.452 0.548
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.2778    0.78943 0.048 0.952
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.6247    0.76488 0.844 0.156
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.5946    0.76521 0.144 0.856
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.9460    0.45535 0.636 0.364
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.5946    0.78703 0.144 0.856
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.7950    0.73131 0.240 0.760
#> E4F45B0B-91FA-49C0-9772-27321D23104B     2  0.7950    0.72949 0.240 0.760
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.8955    0.65272 0.312 0.688
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.9427    0.54770 0.360 0.640
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.8661    0.67985 0.288 0.712
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000    0.76246 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.6048    0.78354 0.148 0.852
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.5059    0.77688 0.888 0.112
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  1.0000   -0.09224 0.504 0.496
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.9427    0.56167 0.360 0.640
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000    0.77412 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000    0.77412 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.6623    0.75094 0.828 0.172
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.8207    0.66702 0.744 0.256
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.8081    0.65604 0.752 0.248
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.8661    0.61281 0.712 0.288
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000    0.77412 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000    0.77412 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.8207    0.66346 0.744 0.256
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.9896    0.18662 0.560 0.440
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     2  0.9944    0.29163 0.456 0.544
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.9988    0.16702 0.480 0.520
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.7745    0.74159 0.228 0.772
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.9815    0.40363 0.420 0.580
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.9850    0.38322 0.428 0.572
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.2043    0.78498 0.032 0.968
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  1.0000   -0.08877 0.504 0.496
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.9775    0.29735 0.588 0.412
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.8327    0.70977 0.264 0.736
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.5629    0.76994 0.132 0.868
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.8661    0.67985 0.288 0.712
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.9963    0.06375 0.536 0.464
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.2603    0.78735 0.044 0.956
#> B23A1419-0406-48BF-813B-B6ED6FD98789     2  0.9000    0.64854 0.316 0.684
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.7219    0.72977 0.200 0.800
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000    0.77412 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.5408    0.77316 0.876 0.124
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.5737    0.78682 0.136 0.864
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.6438    0.77591 0.164 0.836
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.5408    0.77316 0.876 0.124
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.9998   -0.05509 0.508 0.492
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.0000    0.76246 1.000 0.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000    0.76246 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000    0.76246 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.6623    0.74976 0.828 0.172
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.9044    0.57441 0.320 0.680
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.4562    0.77844 0.904 0.096
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.1184    0.76826 0.984 0.016
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.7602    0.74493 0.220 0.780
#> 1122039D-5785-4F70-9916-17C585453512     1  0.0000    0.76246 1.000 0.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000    0.76246 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.9608    0.48549 0.384 0.616
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.9635    0.50141 0.388 0.612
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.8327    0.70588 0.264 0.736
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.7950    0.73131 0.240 0.760
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.9393    0.57857 0.356 0.644
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.0000    0.76246 1.000 0.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.3431    0.77959 0.936 0.064
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.5946    0.77022 0.856 0.144
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.9993    0.18692 0.484 0.516
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.4161    0.79204 0.084 0.916
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.5842    0.76695 0.140 0.860
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.6887    0.74164 0.816 0.184
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.5519    0.76900 0.128 0.872
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.8081    0.72469 0.248 0.752
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.9087    0.63017 0.324 0.676
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.8081    0.66139 0.752 0.248
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.8499    0.69853 0.276 0.724
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000    0.77412 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.8909    0.56401 0.692 0.308
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.8909    0.56401 0.692 0.308
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.5519    0.77525 0.872 0.128
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.6148    0.76732 0.848 0.152
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.8207    0.66346 0.744 0.256
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     2  0.8144    0.72046 0.252 0.748
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.4939    0.78953 0.108 0.892
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.9795    0.42628 0.416 0.584
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000    0.77412 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     2  0.9977    0.21169 0.472 0.528
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.9608    0.51116 0.384 0.616
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.9170    0.52960 0.668 0.332
#> 2785594A-571A-46B4-A901-CB9C62DC6174     2  0.9044    0.63476 0.320 0.680

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.878           0.949       0.976         0.4948 0.506   0.506
#> 3 3 0.777           0.831       0.933         0.2343 0.626   0.415
#> 4 4 0.657           0.781       0.889         0.1602 0.755   0.473
#> 5 5 0.875           0.851       0.939         0.0798 0.866   0.592
#> 6 6 0.717           0.607       0.794         0.0549 0.943   0.773

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.0000      0.983 1.000 0.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.0000      0.983 1.000 0.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0000      0.969 0.000 1.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.6887      0.799 0.184 0.816
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000      0.969 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.0000      0.969 0.000 1.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.0000      0.969 0.000 1.000
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000      0.983 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.0000      0.983 1.000 0.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0000      0.983 1.000 0.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.0376      0.966 0.004 0.996
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.0000      0.969 0.000 1.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000      0.969 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.0000      0.969 0.000 1.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.0000      0.983 1.000 0.000
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0000      0.983 1.000 0.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.0000      0.983 1.000 0.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000      0.969 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.0000      0.969 0.000 1.000
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000      0.969 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     1  0.0000      0.983 1.000 0.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000      0.969 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000      0.983 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000      0.969 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000      0.983 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000      0.969 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.0000      0.969 0.000 1.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.0000      0.969 0.000 1.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     2  0.7674      0.744 0.224 0.776
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000      0.983 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.0000      0.969 0.000 1.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000      0.969 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.6148      0.837 0.152 0.848
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000      0.983 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0000      0.983 1.000 0.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.0000      0.983 1.000 0.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000      0.969 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000      0.983 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000      0.983 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.0000      0.983 1.000 0.000
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.0000      0.969 0.000 1.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     2  0.7219      0.778 0.200 0.800
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000      0.969 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000      0.983 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.6438      0.824 0.164 0.836
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.7745      0.693 0.772 0.228
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     1  0.0000      0.983 1.000 0.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0000      0.983 1.000 0.000
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0000      0.983 1.000 0.000
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.0000      0.969 0.000 1.000
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000      0.983 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0000      0.983 1.000 0.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     1  0.0000      0.983 1.000 0.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.0000      0.969 0.000 1.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000      0.983 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000      0.983 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000      0.969 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0000      0.969 0.000 1.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.0000      0.969 0.000 1.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000      0.969 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.0000      0.969 0.000 1.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000      0.969 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.0000      0.969 0.000 1.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000      0.983 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.0000      0.983 1.000 0.000
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0000      0.983 1.000 0.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.0000      0.983 1.000 0.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000      0.983 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000      0.983 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000      0.983 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000      0.969 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.0000      0.983 1.000 0.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000      0.969 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000      0.969 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.0000      0.969 0.000 1.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.0000      0.983 1.000 0.000
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0000      0.983 1.000 0.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.9129      0.520 0.328 0.672
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.0000      0.969 0.000 1.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000      0.969 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.6343      0.828 0.160 0.840
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000      0.969 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.0000      0.969 0.000 1.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.0000      0.983 1.000 0.000
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.2236      0.942 0.036 0.964
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000      0.969 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000      0.983 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0000      0.969 0.000 1.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.6531      0.819 0.168 0.832
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000      0.969 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000      0.983 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.0000      0.969 0.000 1.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.0000      0.969 0.000 1.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000      0.969 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.6531      0.819 0.168 0.832
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.0000      0.983 1.000 0.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000      0.969 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000      0.969 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.0000      0.983 1.000 0.000
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000      0.969 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.7056      0.752 0.808 0.192
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000      0.983 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0000      0.969 0.000 1.000
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000      0.969 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000      0.983 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0000      0.983 1.000 0.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.0000      0.983 1.000 0.000
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.6343      0.828 0.160 0.840
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000      0.969 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000      0.983 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000      0.969 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000      0.969 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000      0.969 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000      0.983 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0000      0.969 0.000 1.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000      0.969 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000      0.983 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000      0.969 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.6438      0.824 0.164 0.836
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000      0.983 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000      0.983 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000      0.983 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000      0.969 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000      0.983 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.0672      0.963 0.008 0.992
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0000      0.983 1.000 0.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.0000      0.969 0.000 1.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000      0.969 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000      0.983 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.0000      0.983 1.000 0.000
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.9170      0.550 0.332 0.668
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000      0.969 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.0000      0.969 0.000 1.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.0000      0.969 0.000 1.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000      0.983 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.0000      0.983 1.000 0.000
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.0000      0.983 1.000 0.000
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000      0.969 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000      0.983 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000      0.969 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.0000      0.969 0.000 1.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.6531      0.819 0.168 0.832
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000      0.969 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000      0.969 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.9286      0.522 0.344 0.656
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000      0.969 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000      0.969 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000      0.983 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.5737      0.853 0.136 0.864
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000      0.983 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000      0.969 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.0000      0.969 0.000 1.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.0000      0.969 0.000 1.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000      0.983 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0000      0.983 1.000 0.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000      0.983 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000      0.983 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000      0.983 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0000      0.969 0.000 1.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000      0.969 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000      0.983 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000      0.983 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000      0.983 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000      0.983 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000      0.983 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000      0.969 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000      0.983 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.0000      0.969 0.000 1.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.0000      0.969 0.000 1.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000      0.983 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.0000      0.983 1.000 0.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0938      0.961 0.012 0.988
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000      0.983 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000      0.969 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.6973      0.794 0.188 0.812
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000      0.983 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.0000      0.969 0.000 1.000
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.6531      0.819 0.168 0.832
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0000      0.983 1.000 0.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.0000      0.983 1.000 0.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0938      0.971 0.988 0.012
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.0000      0.969 0.000 1.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000      0.969 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.6438      0.824 0.164 0.836
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000      0.983 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000      0.969 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000      0.969 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000      0.969 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.0000      0.969 0.000 1.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0000      0.983 1.000 0.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000      0.969 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.6531      0.819 0.168 0.832
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.2778      0.934 0.048 0.952
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.0000      0.969 0.000 1.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.6438      0.824 0.164 0.836
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000      0.969 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000      0.969 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000      0.969 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.0000      0.983 1.000 0.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.6801      0.804 0.180 0.820
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000      0.983 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.8081      0.706 0.248 0.752
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000      0.983 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.0000      0.969 0.000 1.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000      0.983 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.0000      0.983 1.000 0.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000      0.969 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000      0.983 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.6531      0.819 0.168 0.832
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0000      0.983 1.000 0.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000      0.969 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.0000      0.969 0.000 1.000
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.0000      0.969 0.000 1.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.0000      0.969 0.000 1.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000      0.983 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.0000      0.969 0.000 1.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.0000      0.969 0.000 1.000
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.0000      0.969 0.000 1.000
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000      0.969 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.0000      0.969 0.000 1.000
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.0000      0.983 1.000 0.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.0000      0.969 0.000 1.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.0000      0.983 1.000 0.000
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000      0.983 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.0000      0.983 1.000 0.000
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000      0.969 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000      0.983 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000      0.969 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.0000      0.969 0.000 1.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000      0.983 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000      0.969 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.8144      0.670 0.748 0.252
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000      0.983 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000      0.983 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000      0.983 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0000      0.983 1.000 0.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.0000      0.969 0.000 1.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000      0.969 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000      0.969 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.6623      0.815 0.172 0.828
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.0000      0.969 0.000 1.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000      0.983 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.6438      0.824 0.164 0.836
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0000      0.983 1.000 0.000
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000      0.969 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000      0.969 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000      0.969 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.5294      0.869 0.120 0.880
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0000      0.983 1.000 0.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000      0.969 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0000      0.983 1.000 0.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.0000      0.983 1.000 0.000
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.7376      0.743 0.208 0.792
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000      0.969 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.8207      0.643 0.744 0.256
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.0000      0.969 0.000 1.000
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.6343      0.828 0.160 0.840
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000      0.969 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000      0.969 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.0000      0.969 0.000 1.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000      0.969 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.9850      0.212 0.572 0.428
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.0000      0.969 0.000 1.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000      0.969 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.8016      0.667 0.756 0.244
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.0000      0.969 0.000 1.000
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0000      0.969 0.000 1.000
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000      0.983 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000      0.983 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.0000      0.969 0.000 1.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.0000      0.969 0.000 1.000
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0000      0.983 1.000 0.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000      0.969 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     1  0.0000      0.983 1.000 0.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000      0.969 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.0000      0.969 0.000 1.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000      0.969 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000      0.983 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.0000      0.983 1.000 0.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.0000      0.969 0.000 1.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000      0.983 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0376      0.966 0.004 0.996
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.0000      0.983 1.000 0.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.6973      0.757 0.812 0.188
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.6531      0.819 0.168 0.832
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000      0.969 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000      0.969 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.0000      0.969 0.000 1.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.0000      0.983 1.000 0.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000      0.969 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000      0.983 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0000      0.969 0.000 1.000
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.0000      0.983 1.000 0.000
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.0000      0.983 1.000 0.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0000      0.969 0.000 1.000
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000      0.969 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0000      0.969 0.000 1.000
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.6343      0.828 0.160 0.840
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0000      0.969 0.000 1.000
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000      0.983 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000      0.983 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0000      0.969 0.000 1.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.0000      0.983 1.000 0.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000      0.969 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000      0.969 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0000      0.969 0.000 1.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000      0.983 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000      0.969 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000      0.969 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000      0.969 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.0000      0.969 0.000 1.000
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000      0.983 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000      0.969 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000      0.983 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0000      0.983 1.000 0.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000      0.969 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000      0.983 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.6973      0.794 0.188 0.812
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000      0.969 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0000      0.983 1.000 0.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.0000      0.969 0.000 1.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000      0.969 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.0000      0.969 0.000 1.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000      0.969 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.0000      0.969 0.000 1.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000      0.969 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000      0.983 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.0000      0.983 1.000 0.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.0000      0.983 1.000 0.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000      0.969 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000      0.969 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000      0.983 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000      0.983 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000      0.969 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000      0.969 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.0376      0.966 0.004 0.996
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000      0.983 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000      0.969 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000      0.969 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.0000      0.983 1.000 0.000
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.0000      0.969 0.000 1.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.0000      0.969 0.000 1.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.5294      0.869 0.120 0.880
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.0000      0.969 0.000 1.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000      0.969 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000      0.983 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.0000      0.969 0.000 1.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.0000      0.983 1.000 0.000
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000      0.969 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.0000      0.969 0.000 1.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000      0.969 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000      0.969 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0000      0.969 0.000 1.000
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.0000      0.983 1.000 0.000
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000      0.969 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000      0.983 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.0000      0.983 1.000 0.000
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.0000      0.969 0.000 1.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.9866      0.248 0.568 0.432
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000      0.983 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000      0.969 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000      0.969 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.8608      0.643 0.284 0.716
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.0672      0.963 0.008 0.992
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.0000      0.969 0.000 1.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000      0.983 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000      0.969 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000      0.983 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0000      0.983 1.000 0.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000      0.983 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000      0.969 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0000      0.983 1.000 0.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000      0.983 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0000      0.969 0.000 1.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.9635      0.340 0.612 0.388
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.0000      0.983 1.000 0.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000      0.969 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.0000      0.983 1.000 0.000
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.0000      0.969 0.000 1.000
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000      0.969 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000      0.969 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.6531      0.819 0.168 0.832
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000      0.969 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000      0.983 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000      0.983 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.0000      0.969 0.000 1.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000      0.983 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.0000      0.969 0.000 1.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000      0.969 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.0000      0.983 1.000 0.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000      0.969 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000      0.969 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.0000      0.983 1.000 0.000
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.0000      0.969 0.000 1.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.3584      0.913 0.932 0.068
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000      0.983 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000      0.969 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000      0.983 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000      0.983 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000      0.983 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.0000      0.969 0.000 1.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000      0.983 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0000      0.983 1.000 0.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0000      0.983 1.000 0.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.0000      0.983 1.000 0.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.0000      0.969 0.000 1.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000      0.983 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000      0.969 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.0000      0.969 0.000 1.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.6531      0.819 0.168 0.832
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.0000      0.969 0.000 1.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.0000      0.969 0.000 1.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.6531      0.819 0.168 0.832
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0000      0.969 0.000 1.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000      0.983 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0000      0.969 0.000 1.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.0000      0.983 1.000 0.000
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000      0.969 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000      0.969 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     2  0.5294      0.869 0.120 0.880
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     1  0.0000      0.983 1.000 0.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.0000      0.969 0.000 1.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.6531      0.819 0.168 0.832
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000      0.983 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000      0.969 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.0000      0.983 1.000 0.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000      0.983 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.0000      0.983 1.000 0.000
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000      0.969 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000      0.969 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000      0.983 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0000      0.983 1.000 0.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000      0.983 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000      0.983 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000      0.969 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000      0.969 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.0000      0.983 1.000 0.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0000      0.983 1.000 0.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000      0.983 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000      0.983 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.3431      0.920 0.064 0.936
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000      0.983 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.0000      0.983 1.000 0.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0000      0.969 0.000 1.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000      0.983 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000      0.983 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.5059      0.877 0.112 0.888
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0000      0.969 0.000 1.000
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.6531      0.819 0.168 0.832
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0000      0.983 1.000 0.000
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0000      0.969 0.000 1.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000      0.983 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000      0.969 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000      0.969 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000      0.983 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.0000      0.969 0.000 1.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.0000      0.969 0.000 1.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000      0.983 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000      0.983 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.0000      0.983 1.000 0.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000      0.983 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000      0.983 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000      0.983 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.0000      0.969 0.000 1.000
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000      0.983 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000      0.983 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.0000      0.969 0.000 1.000
#> 1122039D-5785-4F70-9916-17C585453512     1  0.0000      0.983 1.000 0.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000      0.983 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.7453      0.738 0.212 0.788
#> C56C7ED7-A684-40CC-B426-B108E2248467     1  0.8909      0.542 0.692 0.308
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     1  0.9286      0.458 0.656 0.344
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000      0.969 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.6887      0.799 0.184 0.816
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.0000      0.983 1.000 0.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000      0.983 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000      0.983 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0000      0.983 1.000 0.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.0000      0.969 0.000 1.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0000      0.969 0.000 1.000
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000      0.983 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.0000      0.969 0.000 1.000
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.6438      0.824 0.164 0.836
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.0000      0.969 0.000 1.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0000      0.983 1.000 0.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.0000      0.969 0.000 1.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000      0.969 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000      0.983 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000      0.983 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000      0.983 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000      0.983 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.0000      0.983 1.000 0.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     2  0.6531      0.819 0.168 0.832
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000      0.969 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.8555      0.600 0.720 0.280
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000      0.969 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000      0.983 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0000      0.983 1.000 0.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000      0.983 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000      0.983 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.918           0.918       0.968         0.5009 0.500   0.500
#> 3 3 0.798           0.849       0.921         0.3046 0.737   0.527
#> 4 4 0.925           0.911       0.962         0.1370 0.850   0.602
#> 5 5 0.930           0.879       0.946         0.0524 0.908   0.674
#> 6 6 0.914           0.855       0.940         0.0423 0.938   0.730

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.0000     0.9828 1.000 0.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.0000     0.9828 1.000 0.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0000     0.9511 0.000 1.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     1  0.7139     0.7366 0.804 0.196
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000     0.9511 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.0000     0.9511 0.000 1.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.0000     0.9511 0.000 1.000
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     1  0.0000     0.9828 1.000 0.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.0000     0.9828 1.000 0.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0000     0.9828 1.000 0.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     2  0.6438     0.7847 0.164 0.836
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.0000     0.9511 0.000 1.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000     0.9511 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.0000     0.9511 0.000 1.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.0000     0.9828 1.000 0.000
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     1  0.0000     0.9828 1.000 0.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     1  0.0000     0.9828 1.000 0.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.9511 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     2  0.0376     0.9480 0.004 0.996
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.9511 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     1  0.0000     0.9828 1.000 0.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.9511 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.9828 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.9511 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     1  0.0000     0.9828 1.000 0.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.9511 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.0000     0.9511 0.000 1.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.0000     0.9511 0.000 1.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     1  0.3114     0.9243 0.944 0.056
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0000     0.9828 1.000 0.000
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.0000     0.9511 0.000 1.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.9511 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.9833     0.3098 0.424 0.576
#> C06D8112-0FA0-4607-988D-589D8694743F     1  0.0000     0.9828 1.000 0.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     1  0.0000     0.9828 1.000 0.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     1  0.0000     0.9828 1.000 0.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000     0.9511 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     1  0.0000     0.9828 1.000 0.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.0000     0.9828 1.000 0.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     1  0.0000     0.9828 1.000 0.000
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.0000     0.9511 0.000 1.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     1  0.0000     0.9828 1.000 0.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.9511 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.9828 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.9732     0.3617 0.404 0.596
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     1  0.0000     0.9828 1.000 0.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     1  0.0000     0.9828 1.000 0.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.0000     0.9828 1.000 0.000
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0000     0.9828 1.000 0.000
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.0000     0.9511 0.000 1.000
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     1  0.0000     0.9828 1.000 0.000
#> 4379559E-E467-49BD-9673-40A486146A3B     1  0.0000     0.9828 1.000 0.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     1  0.0000     0.9828 1.000 0.000
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.0000     0.9511 0.000 1.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     1  0.0000     0.9828 1.000 0.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000     0.9828 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.9511 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0000     0.9511 0.000 1.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.0000     0.9511 0.000 1.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000     0.9511 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.0000     0.9511 0.000 1.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000     0.9511 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.0000     0.9511 0.000 1.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0000     0.9828 1.000 0.000
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.0000     0.9828 1.000 0.000
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0000     0.9828 1.000 0.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.0000     0.9828 1.000 0.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000     0.9828 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     1  0.0000     0.9828 1.000 0.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     1  0.0000     0.9828 1.000 0.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.9511 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.0000     0.9828 1.000 0.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.9511 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.9511 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.0000     0.9511 0.000 1.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     1  0.0000     0.9828 1.000 0.000
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.0000     0.9828 1.000 0.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     1  0.9970     0.0851 0.532 0.468
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.0000     0.9511 0.000 1.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000     0.9511 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.8443     0.6317 0.272 0.728
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.9511 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.0000     0.9511 0.000 1.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.0000     0.9828 1.000 0.000
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.5059     0.8471 0.112 0.888
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.9511 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     1  0.0000     0.9828 1.000 0.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0000     0.9511 0.000 1.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.9977     0.1666 0.472 0.528
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.9511 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     1  0.0000     0.9828 1.000 0.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.0000     0.9511 0.000 1.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.8267     0.6449 0.260 0.740
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.9511 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.9944     0.2172 0.456 0.544
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.0000     0.9828 1.000 0.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000     0.9511 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.0000     0.9511 0.000 1.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     1  0.0000     0.9828 1.000 0.000
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.9511 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     1  0.0000     0.9828 1.000 0.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.0000     0.9828 1.000 0.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0000     0.9511 0.000 1.000
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.9511 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     1  0.0000     0.9828 1.000 0.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0000     0.9828 1.000 0.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     1  0.0000     0.9828 1.000 0.000
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.8763     0.5922 0.296 0.704
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000     0.9511 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.9828 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000     0.9511 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000     0.9511 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0000     0.9511 0.000 1.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000     0.9828 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0000     0.9511 0.000 1.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.9511 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000     0.9828 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.9511 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.9775     0.3414 0.412 0.588
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.9828 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     1  0.0000     0.9828 1.000 0.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     1  0.0000     0.9828 1.000 0.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000     0.9511 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000     0.9828 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     2  0.4298     0.8712 0.088 0.912
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.0000     0.9828 1.000 0.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.0000     0.9511 0.000 1.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000     0.9511 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     1  0.0000     0.9828 1.000 0.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.0000     0.9828 1.000 0.000
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     1  0.0000     0.9828 1.000 0.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.9511 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.0000     0.9511 0.000 1.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.0000     0.9511 0.000 1.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.0000     0.9828 1.000 0.000
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.0000     0.9828 1.000 0.000
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     1  0.0000     0.9828 1.000 0.000
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000     0.9511 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     1  0.0000     0.9828 1.000 0.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.9511 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.0000     0.9511 0.000 1.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.9795     0.3310 0.416 0.584
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.9511 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.9511 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     1  0.3733     0.9060 0.928 0.072
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.9511 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.9511 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.9828 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.2043     0.9246 0.032 0.968
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     1  0.0000     0.9828 1.000 0.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.9511 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.0000     0.9511 0.000 1.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.0000     0.9511 0.000 1.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.9828 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0000     0.9828 1.000 0.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.9828 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.0000     0.9828 1.000 0.000
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000     0.9828 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0000     0.9511 0.000 1.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0000     0.9511 0.000 1.000
#> D149276E-A961-49D6-8BDA-004E8264A0A1     1  0.0000     0.9828 1.000 0.000
#> D17803A2-4BF2-4382-A544-76E28695214F     1  0.0000     0.9828 1.000 0.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     1  0.0000     0.9828 1.000 0.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.9828 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     1  0.0000     0.9828 1.000 0.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.9511 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     1  0.0000     0.9828 1.000 0.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.0000     0.9511 0.000 1.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.0000     0.9511 0.000 1.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     1  0.0000     0.9828 1.000 0.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     1  0.0000     0.9828 1.000 0.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0376     0.9480 0.004 0.996
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.9828 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.9511 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     1  0.6623     0.7739 0.828 0.172
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.9828 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.0000     0.9511 0.000 1.000
#> D932B095-762B-4DD1-947D-9397E13610DA     1  0.7528     0.7039 0.784 0.216
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     1  0.0000     0.9828 1.000 0.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.0000     0.9828 1.000 0.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     1  0.0000     0.9828 1.000 0.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.0000     0.9511 0.000 1.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000     0.9511 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.9795     0.3311 0.416 0.584
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000     0.9828 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000     0.9511 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.9511 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.9511 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.0000     0.9511 0.000 1.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     1  0.0000     0.9828 1.000 0.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.9511 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.9983     0.1532 0.476 0.524
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.9963     0.1579 0.464 0.536
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.0000     0.9511 0.000 1.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.9850     0.2988 0.428 0.572
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.9511 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.9511 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.9511 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     1  0.0000     0.9828 1.000 0.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     1  0.5737     0.8252 0.864 0.136
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     1  0.0000     0.9828 1.000 0.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.0376     0.9789 0.996 0.004
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     1  0.0000     0.9828 1.000 0.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.0000     0.9511 0.000 1.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000     0.9828 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     1  0.0000     0.9828 1.000 0.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.9511 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.0000     0.9828 1.000 0.000
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.9970     0.1795 0.468 0.532
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     1  0.0000     0.9828 1.000 0.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.0000     0.9511 0.000 1.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.0000     0.9511 0.000 1.000
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.0000     0.9511 0.000 1.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.0000     0.9511 0.000 1.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     1  0.0000     0.9828 1.000 0.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.4690     0.8589 0.100 0.900
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.0000     0.9511 0.000 1.000
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.0000     0.9511 0.000 1.000
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.9511 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.0672     0.9448 0.008 0.992
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.0000     0.9828 1.000 0.000
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.0000     0.9511 0.000 1.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.0000     0.9828 1.000 0.000
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.9828 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.0000     0.9828 1.000 0.000
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000     0.9511 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000     0.9828 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.9511 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.0000     0.9511 0.000 1.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     1  0.0000     0.9828 1.000 0.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.9511 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.9963     0.0994 0.536 0.464
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000     0.9828 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     1  0.0000     0.9828 1.000 0.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.0000     0.9828 1.000 0.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     1  0.0000     0.9828 1.000 0.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.0000     0.9511 0.000 1.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.9511 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000     0.9511 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     1  0.0000     0.9828 1.000 0.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.0000     0.9511 0.000 1.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000     0.9828 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.9881     0.2764 0.436 0.564
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0000     0.9828 1.000 0.000
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.9511 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0000     0.9511 0.000 1.000
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.9511 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.4562     0.8640 0.096 0.904
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     1  0.0000     0.9828 1.000 0.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000     0.9511 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     1  0.0000     0.9828 1.000 0.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.0000     0.9828 1.000 0.000
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.9552     0.4094 0.376 0.624
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.0000     0.9511 0.000 1.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     1  0.0000     0.9828 1.000 0.000
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.0000     0.9511 0.000 1.000
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.8955     0.5656 0.312 0.688
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000     0.9511 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.9511 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.0000     0.9511 0.000 1.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000     0.9511 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.9044     0.5030 0.680 0.320
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.0000     0.9511 0.000 1.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.9511 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.9491     0.3882 0.632 0.368
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.0000     0.9511 0.000 1.000
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0000     0.9511 0.000 1.000
#> F0A7C257-B704-4969-93E0-C555C4904A43     1  0.0000     0.9828 1.000 0.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     1  0.0000     0.9828 1.000 0.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.0000     0.9511 0.000 1.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.0000     0.9511 0.000 1.000
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.0000     0.9828 1.000 0.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000     0.9511 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     1  0.0000     0.9828 1.000 0.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.9511 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.0000     0.9511 0.000 1.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000     0.9511 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000     0.9828 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.0000     0.9828 1.000 0.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.0000     0.9511 0.000 1.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.9828 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.1184     0.9383 0.016 0.984
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.0000     0.9828 1.000 0.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     1  0.0000     0.9828 1.000 0.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.9977     0.1666 0.472 0.528
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.9511 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000     0.9511 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.0000     0.9511 0.000 1.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.0000     0.9828 1.000 0.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000     0.9511 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     1  0.0000     0.9828 1.000 0.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0000     0.9511 0.000 1.000
#> BD06B72B-E059-4F23-98AF-87132382FB63     1  0.0000     0.9828 1.000 0.000
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     1  0.0000     0.9828 1.000 0.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0000     0.9511 0.000 1.000
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.9511 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0000     0.9511 0.000 1.000
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     1  0.9286     0.4478 0.656 0.344
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0000     0.9511 0.000 1.000
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     1  0.0000     0.9828 1.000 0.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     1  0.0000     0.9828 1.000 0.000
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0000     0.9511 0.000 1.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.0000     0.9828 1.000 0.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000     0.9511 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.9511 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0000     0.9511 0.000 1.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     1  0.0000     0.9828 1.000 0.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000     0.9511 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000     0.9511 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000     0.9511 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.0000     0.9511 0.000 1.000
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.0000     0.9828 1.000 0.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.9511 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.0000     0.9828 1.000 0.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.0000     0.9828 1.000 0.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     2  0.0000     0.9511 0.000 1.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     1  0.0000     0.9828 1.000 0.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     1  0.1843     0.9549 0.972 0.028
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.9511 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0000     0.9828 1.000 0.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.0000     0.9511 0.000 1.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000     0.9511 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.0000     0.9511 0.000 1.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000     0.9511 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.0000     0.9511 0.000 1.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.9511 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     1  0.0000     0.9828 1.000 0.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.0000     0.9828 1.000 0.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.0000     0.9828 1.000 0.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000     0.9511 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.9511 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     1  0.0000     0.9828 1.000 0.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.0000     0.9828 1.000 0.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000     0.9511 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.9511 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.7219     0.7369 0.200 0.800
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000     0.9828 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.9511 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000     0.9511 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.0000     0.9828 1.000 0.000
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.0000     0.9511 0.000 1.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.0000     0.9511 0.000 1.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.7299     0.7350 0.204 0.796
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.0000     0.9511 0.000 1.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000     0.9511 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.0000     0.9828 1.000 0.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.0000     0.9511 0.000 1.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     1  0.0000     0.9828 1.000 0.000
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.9511 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.0000     0.9511 0.000 1.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.0000     0.9511 0.000 1.000
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.9511 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0000     0.9511 0.000 1.000
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.0000     0.9828 1.000 0.000
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.9511 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.0000     0.9828 1.000 0.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     1  0.0000     0.9828 1.000 0.000
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.0000     0.9511 0.000 1.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.9710     0.3017 0.600 0.400
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     1  0.0000     0.9828 1.000 0.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.9511 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.9511 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     1  0.1414     0.9631 0.980 0.020
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     2  0.6531     0.7797 0.168 0.832
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.0000     0.9511 0.000 1.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     1  0.0000     0.9828 1.000 0.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.9511 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.0000     0.9828 1.000 0.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     1  0.0000     0.9828 1.000 0.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     1  0.0000     0.9828 1.000 0.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000     0.9511 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     1  0.0000     0.9828 1.000 0.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000     0.9828 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0000     0.9511 0.000 1.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     1  0.0000     0.9828 1.000 0.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.0000     0.9828 1.000 0.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000     0.9511 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     1  0.0000     0.9828 1.000 0.000
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.2603     0.9136 0.044 0.956
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000     0.9511 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000     0.9511 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     1  0.9996    -0.0285 0.512 0.488
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.9511 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     1  0.0000     0.9828 1.000 0.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.0000     0.9828 1.000 0.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.0000     0.9511 0.000 1.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     1  0.0000     0.9828 1.000 0.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.0000     0.9511 0.000 1.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000     0.9511 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.0000     0.9828 1.000 0.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.9511 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.9511 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.0000     0.9828 1.000 0.000
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.0000     0.9511 0.000 1.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     1  0.0000     0.9828 1.000 0.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.9828 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.9511 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     1  0.0000     0.9828 1.000 0.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     1  0.0000     0.9828 1.000 0.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000     0.9828 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.0000     0.9511 0.000 1.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     1  0.0000     0.9828 1.000 0.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     1  0.0000     0.9828 1.000 0.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     1  0.0000     0.9828 1.000 0.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     1  0.0000     0.9828 1.000 0.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.0000     0.9511 0.000 1.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.9828 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.9511 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.0376     0.9480 0.004 0.996
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.9977     0.1666 0.472 0.528
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.0000     0.9511 0.000 1.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.0000     0.9511 0.000 1.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.9993     0.1259 0.484 0.516
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0000     0.9511 0.000 1.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     1  0.0000     0.9828 1.000 0.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0000     0.9511 0.000 1.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     1  0.0000     0.9828 1.000 0.000
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000     0.9511 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.9511 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     2  0.6438     0.7877 0.164 0.836
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     1  0.0000     0.9828 1.000 0.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.0000     0.9511 0.000 1.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.9988     0.1396 0.480 0.520
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.9828 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.9511 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     1  0.0000     0.9828 1.000 0.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     1  0.0000     0.9828 1.000 0.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     1  0.0000     0.9828 1.000 0.000
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.9511 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000     0.9511 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     1  0.0000     0.9828 1.000 0.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     1  0.0000     0.9828 1.000 0.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000     0.9828 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     1  0.0000     0.9828 1.000 0.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.9511 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.9511 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     1  0.0000     0.9828 1.000 0.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     1  0.0000     0.9828 1.000 0.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     1  0.0000     0.9828 1.000 0.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000     0.9828 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.5842     0.8165 0.140 0.860
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000     0.9828 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     1  0.0000     0.9828 1.000 0.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0000     0.9511 0.000 1.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     1  0.0000     0.9828 1.000 0.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     1  0.0000     0.9828 1.000 0.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.7376     0.7294 0.208 0.792
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0000     0.9511 0.000 1.000
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.9988     0.1397 0.480 0.520
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0000     0.9828 1.000 0.000
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0000     0.9511 0.000 1.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     1  0.0000     0.9828 1.000 0.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000     0.9511 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.9511 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     1  0.0000     0.9828 1.000 0.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.0000     0.9511 0.000 1.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.0000     0.9511 0.000 1.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     1  0.0000     0.9828 1.000 0.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     1  0.0000     0.9828 1.000 0.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.0000     0.9828 1.000 0.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.0000     0.9828 1.000 0.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     1  0.0000     0.9828 1.000 0.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     1  0.0000     0.9828 1.000 0.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     2  0.0376     0.9480 0.004 0.996
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.0000     0.9828 1.000 0.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.0000     0.9828 1.000 0.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.0000     0.9511 0.000 1.000
#> 1122039D-5785-4F70-9916-17C585453512     1  0.0000     0.9828 1.000 0.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000     0.9828 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.9922     0.2097 0.448 0.552
#> C56C7ED7-A684-40CC-B426-B108E2248467     1  0.0000     0.9828 1.000 0.000
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     1  0.1414     0.9629 0.980 0.020
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.9511 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     1  0.0000     0.9828 1.000 0.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.0000     0.9828 1.000 0.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.0000     0.9828 1.000 0.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.0000     0.9828 1.000 0.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     1  0.0000     0.9828 1.000 0.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.0000     0.9511 0.000 1.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0000     0.9511 0.000 1.000
#> 1B73CE27-B464-41E6-BE27-90FA13683331     1  0.0000     0.9828 1.000 0.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.0000     0.9511 0.000 1.000
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.9661     0.3910 0.392 0.608
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.0376     0.9480 0.004 0.996
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0000     0.9828 1.000 0.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.0000     0.9511 0.000 1.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000     0.9511 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000     0.9828 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000     0.9828 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.0000     0.9828 1.000 0.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     1  0.0000     0.9828 1.000 0.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     1  0.0000     0.9828 1.000 0.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     2  0.9993     0.1265 0.484 0.516
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.9511 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.0000     0.9828 1.000 0.000
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.9511 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000     0.9828 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     1  0.0000     0.9828 1.000 0.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     1  0.0000     0.9828 1.000 0.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     1  0.0000     0.9828 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.960           0.932       0.961         0.3176 0.684   0.684
#> 3 3 0.909           0.911       0.962         0.6821 0.777   0.675
#> 4 4 0.884           0.879       0.954         0.1621 0.795   0.608
#> 5 5 0.906           0.889       0.957         0.1245 0.900   0.743
#> 6 6 0.810           0.822       0.924         0.0939 0.910   0.710

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.2423     0.9418 0.960 0.040
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.3431     0.9408 0.936 0.064
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0000     0.9716 0.000 1.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.0000     0.9716 0.000 1.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.2423     0.9509 0.040 0.960
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.0000     0.9716 0.000 1.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.0000     0.9716 0.000 1.000
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     2  0.0000     0.9716 0.000 1.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.0000     0.9716 0.000 1.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.2423     0.9418 0.960 0.040
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     1  0.7528     0.8036 0.784 0.216
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.0000     0.9716 0.000 1.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.2423     0.9509 0.040 0.960
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.2423     0.9509 0.040 0.960
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.8608     0.7044 0.716 0.284
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.6247     0.7916 0.156 0.844
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0000     0.9716 0.000 1.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.2423     0.9509 0.040 0.960
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.7950     0.7715 0.760 0.240
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.2423     0.9509 0.040 0.960
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.9954     0.0217 0.460 0.540
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.2423     0.9509 0.040 0.960
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.2423     0.9418 0.960 0.040
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.2423     0.9509 0.040 0.960
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     2  0.6438     0.7859 0.164 0.836
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.2423     0.9509 0.040 0.960
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.0000     0.9716 0.000 1.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.0000     0.9716 0.000 1.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     2  0.0000     0.9716 0.000 1.000
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.3879     0.9391 0.924 0.076
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.0000     0.9716 0.000 1.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.2423     0.9509 0.040 0.960
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000     0.9716 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.0000     0.9716 0.000 1.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.0000     0.9716 0.000 1.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.0000     0.9716 0.000 1.000
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000     0.9716 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.0000     0.9716 0.000 1.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     1  0.3431     0.9408 0.936 0.064
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.2778     0.9336 0.048 0.952
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.0000     0.9716 0.000 1.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     2  0.0000     0.9716 0.000 1.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.2423     0.9509 0.040 0.960
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.2423     0.9418 0.960 0.040
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.0000     0.9716 0.000 1.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.0000     0.9716 0.000 1.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000     0.9716 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.3879     0.9391 0.924 0.076
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.2423     0.9418 0.960 0.040
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.2423     0.9509 0.040 0.960
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     2  0.0000     0.9716 0.000 1.000
#> 4379559E-E467-49BD-9673-40A486146A3B     2  0.2423     0.9410 0.040 0.960
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.2778     0.9336 0.048 0.952
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.0000     0.9716 0.000 1.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     2  0.2778     0.9336 0.048 0.952
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.3879     0.9391 0.924 0.076
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.2423     0.9509 0.040 0.960
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.2423     0.9509 0.040 0.960
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.0000     0.9716 0.000 1.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.2423     0.9509 0.040 0.960
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.0000     0.9716 0.000 1.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.2423     0.9509 0.040 0.960
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.0000     0.9716 0.000 1.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     2  0.9833     0.1308 0.424 0.576
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.3879     0.9391 0.924 0.076
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.3879     0.9391 0.924 0.076
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.2423     0.9418 0.960 0.040
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.5408     0.9042 0.876 0.124
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     2  0.0000     0.9716 0.000 1.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     2  0.2778     0.9336 0.048 0.952
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000     0.9716 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.2423     0.9418 0.960 0.040
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.9716 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000     0.9716 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.0000     0.9716 0.000 1.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.1843     0.9514 0.028 0.972
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.0000     0.9716 0.000 1.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.0000     0.9716 0.000 1.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.0000     0.9716 0.000 1.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000     0.9716 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.0000     0.9716 0.000 1.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.9716 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.0000     0.9716 0.000 1.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.0000     0.9716 0.000 1.000
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.0000     0.9716 0.000 1.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.2423     0.9509 0.040 0.960
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     2  0.2423     0.9410 0.040 0.960
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0000     0.9716 0.000 1.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.0000     0.9716 0.000 1.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.9716 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     2  0.0000     0.9716 0.000 1.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.0000     0.9716 0.000 1.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.0000     0.9716 0.000 1.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.2423     0.9509 0.040 0.960
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.0000     0.9716 0.000 1.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.2423     0.9418 0.960 0.040
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.2423     0.9509 0.040 0.960
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.2423     0.9509 0.040 0.960
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.4562     0.8803 0.096 0.904
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.2236     0.9532 0.036 0.964
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.0000     0.9716 0.000 1.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     1  0.4815     0.9184 0.896 0.104
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0000     0.9716 0.000 1.000
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000     0.9716 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     2  0.0000     0.9716 0.000 1.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.2423     0.9418 0.960 0.040
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.0000     0.9716 0.000 1.000
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.0000     0.9716 0.000 1.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     2  0.0000     0.9716 0.000 1.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.2423     0.9418 0.960 0.040
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.2423     0.9509 0.040 0.960
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000     0.9716 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.0376     0.9697 0.004 0.996
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.3879     0.9391 0.924 0.076
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.0000     0.9716 0.000 1.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.2423     0.9509 0.040 0.960
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.2423     0.9418 0.960 0.040
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.2423     0.9509 0.040 0.960
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.0000     0.9716 0.000 1.000
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.2423     0.9418 0.960 0.040
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     2  0.9996    -0.0964 0.488 0.512
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     2  0.0000     0.9716 0.000 1.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.2423     0.9509 0.040 0.960
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.2423     0.9418 0.960 0.040
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     1  0.7883     0.7770 0.764 0.236
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     1  0.3879     0.9391 0.924 0.076
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.0000     0.9716 0.000 1.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000     0.9716 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     2  0.2778     0.9336 0.048 0.952
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.2778     0.9336 0.048 0.952
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.0000     0.9716 0.000 1.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.2423     0.9509 0.040 0.960
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.0000     0.9716 0.000 1.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.0000     0.9716 0.000 1.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.3879     0.9391 0.924 0.076
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.0000     0.9716 0.000 1.000
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.0000     0.9716 0.000 1.000
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0376     0.9697 0.004 0.996
#> CBEFE77E-A0EB-457D-A145-763654236EBB     2  0.2778     0.9336 0.048 0.952
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.2423     0.9509 0.040 0.960
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.0000     0.9716 0.000 1.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.0000     0.9716 0.000 1.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.2423     0.9509 0.040 0.960
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.2423     0.9509 0.040 0.960
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.0000     0.9716 0.000 1.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.2423     0.9509 0.040 0.960
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.2423     0.9509 0.040 0.960
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.2423     0.9418 0.960 0.040
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.0000     0.9716 0.000 1.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     2  0.9393     0.3845 0.356 0.644
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.2423     0.9509 0.040 0.960
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.0000     0.9716 0.000 1.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.0000     0.9716 0.000 1.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.2423     0.9418 0.960 0.040
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.4815     0.9204 0.896 0.104
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.2423     0.9418 0.960 0.040
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.3879     0.9391 0.924 0.076
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.3879     0.9391 0.924 0.076
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0000     0.9716 0.000 1.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.2423     0.9509 0.040 0.960
#> D149276E-A961-49D6-8BDA-004E8264A0A1     2  0.0000     0.9716 0.000 1.000
#> D17803A2-4BF2-4382-A544-76E28695214F     2  0.3114     0.9258 0.056 0.944
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     2  0.0000     0.9716 0.000 1.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.2423     0.9418 0.960 0.040
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     2  0.0000     0.9716 0.000 1.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.2423     0.9509 0.040 0.960
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.0000     0.9716 0.000 1.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.0000     0.9716 0.000 1.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.0000     0.9716 0.000 1.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     2  0.0000     0.9716 0.000 1.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.0000     0.9716 0.000 1.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0000     0.9716 0.000 1.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.2423     0.9418 0.960 0.040
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.2423     0.9509 0.040 0.960
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000     0.9716 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.2423     0.9418 0.960 0.040
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.0000     0.9716 0.000 1.000
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.0000     0.9716 0.000 1.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.0000     0.9716 0.000 1.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.2423     0.9418 0.960 0.040
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.0000     0.9716 0.000 1.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.0000     0.9716 0.000 1.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000     0.9716 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.0000     0.9716 0.000 1.000
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.2423     0.9418 0.960 0.040
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.2423     0.9509 0.040 0.960
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.2423     0.9509 0.040 0.960
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.2423     0.9509 0.040 0.960
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.0000     0.9716 0.000 1.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.0000     0.9716 0.000 1.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.2423     0.9509 0.040 0.960
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.0000     0.9716 0.000 1.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.0000     0.9716 0.000 1.000
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.0672     0.9678 0.008 0.992
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.0000     0.9716 0.000 1.000
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.2423     0.9509 0.040 0.960
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.2423     0.9509 0.040 0.960
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.2423     0.9509 0.040 0.960
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.0000     0.9716 0.000 1.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.0000     0.9716 0.000 1.000
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     2  0.2778     0.9336 0.048 0.952
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.0000     0.9716 0.000 1.000
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     2  0.0000     0.9716 0.000 1.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.0000     0.9716 0.000 1.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.2423     0.9418 0.960 0.040
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.0000     0.9716 0.000 1.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.2423     0.9509 0.040 0.960
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.3879     0.9391 0.924 0.076
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.0000     0.9716 0.000 1.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.0000     0.9716 0.000 1.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     2  0.2423     0.9509 0.040 0.960
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.0000     0.9716 0.000 1.000
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.0000     0.9716 0.000 1.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.2423     0.9509 0.040 0.960
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     2  0.0000     0.9716 0.000 1.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.0000     0.9716 0.000 1.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.2423     0.9509 0.040 0.960
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.0000     0.9716 0.000 1.000
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.2423     0.9509 0.040 0.960
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.6247     0.7888 0.156 0.844
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.2423     0.9418 0.960 0.040
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.0000     0.9716 0.000 1.000
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.9896     0.3361 0.560 0.440
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.2423     0.9418 0.960 0.040
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.3879     0.9391 0.924 0.076
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000     0.9716 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.2423     0.9418 0.960 0.040
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.9716 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.0000     0.9716 0.000 1.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     2  0.0000     0.9716 0.000 1.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.2423     0.9509 0.040 0.960
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.4298     0.9261 0.912 0.088
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.3879     0.9391 0.924 0.076
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.0000     0.9716 0.000 1.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     1  0.3584     0.9403 0.932 0.068
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     2  0.6712     0.7673 0.176 0.824
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.0000     0.9716 0.000 1.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.2423     0.9509 0.040 0.960
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000     0.9716 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.0000     0.9716 0.000 1.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.0000     0.9716 0.000 1.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.2423     0.9418 0.960 0.040
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.0000     0.9716 0.000 1.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.1843     0.9509 0.028 0.972
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.2423     0.9509 0.040 0.960
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.2423     0.9509 0.040 0.960
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.2423     0.9509 0.040 0.960
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.0000     0.9716 0.000 1.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.0000     0.9716 0.000 1.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000     0.9716 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     2  0.0000     0.9716 0.000 1.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.0000     0.9716 0.000 1.000
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     2  0.9460     0.3348 0.364 0.636
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.2043     0.9554 0.032 0.968
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     2  0.0000     0.9716 0.000 1.000
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.2423     0.9509 0.040 0.960
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.0000     0.9716 0.000 1.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.2423     0.9509 0.040 0.960
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.1414     0.9618 0.020 0.980
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.0000     0.9716 0.000 1.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000     0.9716 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.0000     0.9716 0.000 1.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.0000     0.9716 0.000 1.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.2423     0.9509 0.040 0.960
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.2948     0.9272 0.052 0.948
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.2423     0.9509 0.040 0.960
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0000     0.9716 0.000 1.000
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.0000     0.9716 0.000 1.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     2  0.2948     0.9298 0.052 0.948
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.0000     0.9716 0.000 1.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     2  0.2423     0.9509 0.040 0.960
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.0000     0.9716 0.000 1.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000     0.9716 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.3114     0.9260 0.056 0.944
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.2423     0.9509 0.040 0.960
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.0000     0.9716 0.000 1.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000     0.9716 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.2423     0.9418 0.960 0.040
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.2423     0.9418 0.960 0.040
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.0000     0.9716 0.000 1.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.2423     0.9418 0.960 0.040
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000     0.9716 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.2423     0.9418 0.960 0.040
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.0000     0.9716 0.000 1.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.0000     0.9716 0.000 1.000
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.2423     0.9509 0.040 0.960
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000     0.9716 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.2423     0.9509 0.040 0.960
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.2423     0.9418 0.960 0.040
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.2236     0.9532 0.036 0.964
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     2  0.2778     0.9336 0.048 0.952
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.2423     0.9509 0.040 0.960
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.2778     0.9336 0.048 0.952
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.2778     0.9336 0.048 0.952
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.2423     0.9509 0.040 0.960
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.9716 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.2423     0.9509 0.040 0.960
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.0000     0.9716 0.000 1.000
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0000     0.9716 0.000 1.000
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     2  0.2423     0.9410 0.040 0.960
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     2  0.0000     0.9716 0.000 1.000
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0000     0.9716 0.000 1.000
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.2423     0.9418 0.960 0.040
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000     0.9716 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.9716 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0000     0.9716 0.000 1.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     2  0.0000     0.9716 0.000 1.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000     0.9716 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.2043     0.9554 0.032 0.968
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000     0.9716 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.0000     0.9716 0.000 1.000
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     1  0.3879     0.9391 0.924 0.076
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.2423     0.9509 0.040 0.960
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.3879     0.9391 0.924 0.076
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     1  0.3431     0.9408 0.936 0.064
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     1  0.9896     0.3613 0.560 0.440
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.0000     0.9716 0.000 1.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.0000     0.9716 0.000 1.000
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.9716 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.2423     0.9418 0.960 0.040
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.0000     0.9716 0.000 1.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.2423     0.9509 0.040 0.960
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.0000     0.9716 0.000 1.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000     0.9716 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.0000     0.9716 0.000 1.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.2423     0.9509 0.040 0.960
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     2  0.0000     0.9716 0.000 1.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.2423     0.9418 0.960 0.040
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.2778     0.9416 0.952 0.048
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.2423     0.9509 0.040 0.960
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.9716 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     2  0.2778     0.9336 0.048 0.952
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.5408     0.9042 0.876 0.124
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000     0.9716 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.2423     0.9509 0.040 0.960
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.0000     0.9716 0.000 1.000
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.2423     0.9418 0.960 0.040
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.2423     0.9509 0.040 0.960
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000     0.9716 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.2778     0.9336 0.048 0.952
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.0000     0.9716 0.000 1.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.0000     0.9716 0.000 1.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.0000     0.9716 0.000 1.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.0000     0.9716 0.000 1.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000     0.9716 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     1  0.9983     0.2203 0.524 0.476
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.0000     0.9716 0.000 1.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.0000     0.9716 0.000 1.000
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.9716 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.0000     0.9716 0.000 1.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.2423     0.9509 0.040 0.960
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.2423     0.9509 0.040 0.960
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.2423     0.9509 0.040 0.960
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.2778     0.9336 0.048 0.952
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.2423     0.9509 0.040 0.960
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     1  0.3879     0.9391 0.924 0.076
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.0000     0.9716 0.000 1.000
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.0000     0.9716 0.000 1.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.0000     0.9716 0.000 1.000
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     2  0.0000     0.9716 0.000 1.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.2423     0.9509 0.040 0.960
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.2423     0.9509 0.040 0.960
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.0000     0.9716 0.000 1.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     1  0.5519     0.9007 0.872 0.128
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.0000     0.9716 0.000 1.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     2  0.0000     0.9716 0.000 1.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.2423     0.9509 0.040 0.960
#> 457090A2-AE7F-4E68-85EA-032DE8411110     1  0.3879     0.9391 0.924 0.076
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.0000     0.9716 0.000 1.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     2  0.0000     0.9716 0.000 1.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.2423     0.9509 0.040 0.960
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.0000     0.9716 0.000 1.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.2423     0.9418 0.960 0.040
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0000     0.9716 0.000 1.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000     0.9716 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.2423     0.9418 0.960 0.040
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.2423     0.9509 0.040 0.960
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.0000     0.9716 0.000 1.000
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.0000     0.9716 0.000 1.000
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.2423     0.9509 0.040 0.960
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000     0.9716 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0000     0.9716 0.000 1.000
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000     0.9716 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     2  0.2778     0.9336 0.048 0.952
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     1  0.2423     0.9418 0.960 0.040
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.0000     0.9716 0.000 1.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     2  0.0000     0.9716 0.000 1.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.0000     0.9716 0.000 1.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000     0.9716 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.2423     0.9418 0.960 0.040
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.2423     0.9509 0.040 0.960
#> 80936433-AA91-4219-98F1-706C36298060     2  0.2423     0.9509 0.040 0.960
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     1  0.3879     0.9391 0.924 0.076
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.0000     0.9716 0.000 1.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     2  0.0000     0.9716 0.000 1.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.2423     0.9418 0.960 0.040
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000     0.9716 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.0000     0.9716 0.000 1.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     2  0.0000     0.9716 0.000 1.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.2423     0.9418 0.960 0.040
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.0000     0.9716 0.000 1.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     2  0.0000     0.9716 0.000 1.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.0000     0.9716 0.000 1.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.0000     0.9716 0.000 1.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.3584     0.9131 0.068 0.932
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.2236     0.9532 0.036 0.964
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.2423     0.9418 0.960 0.040
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.0000     0.9716 0.000 1.000
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.0000     0.9716 0.000 1.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.0000     0.9716 0.000 1.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.0000     0.9716 0.000 1.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.0000     0.9716 0.000 1.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.0000     0.9716 0.000 1.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0000     0.9716 0.000 1.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     2  0.9248     0.4283 0.340 0.660
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.0000     0.9716 0.000 1.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.0000     0.9716 0.000 1.000
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000     0.9716 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.9716 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     2  0.0000     0.9716 0.000 1.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.9716 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.0000     0.9716 0.000 1.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.0000     0.9716 0.000 1.000
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.2423     0.9418 0.960 0.040
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.9716 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.2778     0.9336 0.048 0.952
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     2  0.0000     0.9716 0.000 1.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.0000     0.9716 0.000 1.000
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.2423     0.9509 0.040 0.960
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.2423     0.9509 0.040 0.960
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     2  0.0938     0.9637 0.012 0.988
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.2778     0.9336 0.048 0.952
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.3879     0.9391 0.924 0.076
#> 887E7408-C7D7-420F-A763-0EE70A316D17     2  0.0000     0.9716 0.000 1.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.2423     0.9509 0.040 0.960
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.2423     0.9509 0.040 0.960
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.2778     0.9336 0.048 0.952
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.0000     0.9716 0.000 1.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     2  0.0000     0.9716 0.000 1.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.5408     0.9042 0.876 0.124
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.0000     0.9716 0.000 1.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.9000     0.6482 0.684 0.316
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.0000     0.9716 0.000 1.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0000     0.9716 0.000 1.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     2  0.0000     0.9716 0.000 1.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     2  0.0000     0.9716 0.000 1.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.0000     0.9716 0.000 1.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.7453     0.6941 0.212 0.788
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.0000     0.9716 0.000 1.000
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.5842     0.8894 0.860 0.140
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0000     0.9716 0.000 1.000
#> B23A1419-0406-48BF-813B-B6ED6FD98789     2  0.0000     0.9716 0.000 1.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     2  0.0000     0.9716 0.000 1.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.2423     0.9509 0.040 0.960
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     2  0.9754     0.2224 0.408 0.592
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.0000     0.9716 0.000 1.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.0000     0.9716 0.000 1.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     2  0.2778     0.9336 0.048 0.952
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     2  0.0000     0.9716 0.000 1.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.2423     0.9418 0.960 0.040
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     1  0.9922     0.3119 0.552 0.448
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.9710     0.2495 0.400 0.600
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     2  0.0000     0.9716 0.000 1.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.9866     0.3839 0.568 0.432
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     1  0.3879     0.9391 0.924 0.076
#> C33059A9-A313-4806-B43B-0031365F3BE4     1  0.7815     0.7716 0.768 0.232
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.0000     0.9716 0.000 1.000
#> 1122039D-5785-4F70-9916-17C585453512     1  0.3879     0.9391 0.924 0.076
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.2423     0.9418 0.960 0.040
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  1.0000    -0.1610 0.496 0.504
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.0000     0.9716 0.000 1.000
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.0000     0.9716 0.000 1.000
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.9716 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.0000     0.9716 0.000 1.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.2423     0.9418 0.960 0.040
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     1  0.3879     0.9391 0.924 0.076
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     1  0.3879     0.9391 0.924 0.076
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.0000     0.9716 0.000 1.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.0000     0.9716 0.000 1.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0000     0.9716 0.000 1.000
#> 1B73CE27-B464-41E6-BE27-90FA13683331     2  0.0000     0.9716 0.000 1.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.0376     0.9697 0.004 0.996
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.0000     0.9716 0.000 1.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.0000     0.9716 0.000 1.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.5408     0.9042 0.876 0.124
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.0000     0.9716 0.000 1.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.2423     0.9509 0.040 0.960
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.4298     0.9318 0.912 0.088
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.3879     0.9391 0.924 0.076
#> EB7883EB-0079-4548-9132-169E94A698BA     1  0.8608     0.6902 0.716 0.284
#> E6446572-BFA9-4018-89B3-7E4519EBE072     2  0.9393     0.3844 0.356 0.644
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.2778     0.9336 0.048 0.952
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     2  0.0000     0.9716 0.000 1.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000     0.9716 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.0000     0.9716 0.000 1.000
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.2423     0.9509 0.040 0.960
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.3879     0.9391 0.924 0.076
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.0000     0.9716 0.000 1.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     2  0.0000     0.9716 0.000 1.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     2  0.0000     0.9716 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.834           0.913       0.963         0.2971 0.709   0.709
#> 3 3 0.433           0.455       0.667         0.7237 0.665   0.549
#> 4 4 0.696           0.646       0.843         0.2761 0.753   0.498
#> 5 5 0.734           0.822       0.905         0.0414 0.865   0.643
#> 6 6 0.788           0.823       0.904         0.0940 0.862   0.610

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.0000     0.9065 1.000 0.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     1  0.5629     0.8438 0.868 0.132
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0672     0.9639 0.008 0.992
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.7376     0.7122 0.208 0.792
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.0000     0.9701 0.000 1.000
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.0000     0.9701 0.000 1.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.0000     0.9701 0.000 1.000
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     2  0.0000     0.9701 0.000 1.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     1  0.6343     0.8242 0.840 0.160
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0000     0.9065 1.000 0.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     1  0.8909     0.6423 0.692 0.308
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.0000     0.9701 0.000 1.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000     0.9701 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.0000     0.9701 0.000 1.000
#> 5AB5396F-925B-469C-B240-FB37991004DD     2  0.0938     0.9607 0.012 0.988
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.0000     0.9701 0.000 1.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0376     0.9671 0.004 0.996
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.0000     0.9701 0.000 1.000
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.7950     0.7393 0.760 0.240
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.0000     0.9701 0.000 1.000
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     1  0.1184     0.9050 0.984 0.016
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000     0.9701 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000     0.9065 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0000     0.9701 0.000 1.000
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     2  0.0000     0.9701 0.000 1.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000     0.9701 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.0000     0.9701 0.000 1.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.0000     0.9701 0.000 1.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     2  0.0376     0.9671 0.004 0.996
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     2  0.0938     0.9607 0.012 0.988
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.0000     0.9701 0.000 1.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.0000     0.9701 0.000 1.000
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.2236     0.9372 0.036 0.964
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.0000     0.9701 0.000 1.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.0000     0.9701 0.000 1.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.0376     0.9671 0.004 0.996
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000     0.9701 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.0000     0.9701 0.000 1.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     2  0.9491     0.3689 0.368 0.632
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.9323     0.4225 0.348 0.652
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.0000     0.9701 0.000 1.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     2  0.0000     0.9701 0.000 1.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.0000     0.9701 0.000 1.000
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000     0.9065 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.0000     0.9701 0.000 1.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.0000     0.9701 0.000 1.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     1  0.1184     0.9050 0.984 0.016
#> 066B10C1-777F-4863-ACCA-6684310B913E     2  0.0672     0.9640 0.008 0.992
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.5946     0.8332 0.856 0.144
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     2  0.0938     0.9607 0.012 0.988
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     2  0.0000     0.9701 0.000 1.000
#> 4379559E-E467-49BD-9673-40A486146A3B     2  0.0000     0.9701 0.000 1.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     1  0.0938     0.9053 0.988 0.012
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.0000     0.9701 0.000 1.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     2  0.0000     0.9701 0.000 1.000
#> 311D089C-33F1-4722-9118-F56427C5C128     2  0.7745     0.6756 0.228 0.772
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.0000     0.9701 0.000 1.000
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.0000     0.9701 0.000 1.000
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.0000     0.9701 0.000 1.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000     0.9701 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.0000     0.9701 0.000 1.000
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000     0.9701 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.0000     0.9701 0.000 1.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     2  0.0938     0.9607 0.012 0.988
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.8386     0.7018 0.732 0.268
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.6801     0.8038 0.820 0.180
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.0000     0.9065 1.000 0.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     2  0.7219     0.7241 0.200 0.800
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     2  0.0000     0.9701 0.000 1.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     2  0.0000     0.9701 0.000 1.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     1  0.1184     0.9050 0.984 0.016
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.0000     0.9065 1.000 0.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000     0.9701 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     1  0.1184     0.9050 0.984 0.016
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.0000     0.9701 0.000 1.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.7674     0.6854 0.224 0.776
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     1  0.6801     0.8072 0.820 0.180
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     2  0.1184     0.9576 0.016 0.984
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.0000     0.9701 0.000 1.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000     0.9701 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.0000     0.9701 0.000 1.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000     0.9701 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.0000     0.9701 0.000 1.000
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     1  0.7056     0.7953 0.808 0.192
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.0000     0.9701 0.000 1.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000     0.9701 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     2  0.0000     0.9701 0.000 1.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0000     0.9701 0.000 1.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.0000     0.9701 0.000 1.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000     0.9701 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     2  0.0000     0.9701 0.000 1.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.0000     0.9701 0.000 1.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     2  0.0672     0.9640 0.008 0.992
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.0000     0.9701 0.000 1.000
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.0000     0.9701 0.000 1.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.0000     0.9065 1.000 0.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000     0.9701 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     2  0.2778     0.9268 0.048 0.952
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.7883     0.6646 0.236 0.764
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000     0.9701 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.0000     0.9701 0.000 1.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     2  0.0000     0.9701 0.000 1.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     2  0.0672     0.9640 0.008 0.992
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.9686     0.2470 0.396 0.604
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     2  0.0000     0.9701 0.000 1.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0000     0.9065 1.000 0.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.7815     0.6714 0.232 0.768
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.0000     0.9701 0.000 1.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     1  0.9393     0.5548 0.644 0.356
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000     0.9065 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000     0.9701 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000     0.9701 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     2  0.4815     0.8626 0.104 0.896
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     2  0.7950     0.6533 0.240 0.760
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     2  0.2043     0.9430 0.032 0.968
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000     0.9701 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000     0.9065 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000     0.9701 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.0000     0.9701 0.000 1.000
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000     0.9065 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     2  0.7674     0.6854 0.224 0.776
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     2  0.0000     0.9701 0.000 1.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000     0.9701 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000     0.9065 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     1  0.0000     0.9065 1.000 0.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     2  0.0672     0.9638 0.008 0.992
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.0000     0.9701 0.000 1.000
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000     0.9701 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     2  0.0000     0.9701 0.000 1.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     1  0.1184     0.9050 0.984 0.016
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.0000     0.9701 0.000 1.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.0000     0.9701 0.000 1.000
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.0000     0.9701 0.000 1.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.0000     0.9701 0.000 1.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     2  0.0938     0.9607 0.012 0.988
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     1  0.6973     0.7993 0.812 0.188
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.0376     0.9671 0.004 0.996
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000     0.9701 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     2  0.0000     0.9701 0.000 1.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.0000     0.9701 0.000 1.000
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.0000     0.9701 0.000 1.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.0000     0.9701 0.000 1.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000     0.9701 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000     0.9701 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.0000     0.9701 0.000 1.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.0000     0.9701 0.000 1.000
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000     0.9701 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000     0.9065 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.0000     0.9701 0.000 1.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     2  0.0000     0.9701 0.000 1.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000     0.9701 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.0000     0.9701 0.000 1.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.0000     0.9701 0.000 1.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000     0.9065 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     2  0.9522     0.3313 0.372 0.628
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000     0.9065 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     2  0.0938     0.9607 0.012 0.988
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.9170     0.5990 0.668 0.332
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0000     0.9701 0.000 1.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     2  0.0672     0.9640 0.008 0.992
#> D149276E-A961-49D6-8BDA-004E8264A0A1     2  0.0000     0.9701 0.000 1.000
#> D17803A2-4BF2-4382-A544-76E28695214F     2  0.0000     0.9701 0.000 1.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     2  0.0000     0.9701 0.000 1.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000     0.9065 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     2  0.0000     0.9701 0.000 1.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000     0.9701 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.0672     0.9638 0.008 0.992
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.0000     0.9701 0.000 1.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.0000     0.9701 0.000 1.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     2  0.0000     0.9701 0.000 1.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.0000     0.9701 0.000 1.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0000     0.9701 0.000 1.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000     0.9065 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000     0.9701 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     1  0.1184     0.9050 0.984 0.016
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000     0.9065 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.0000     0.9701 0.000 1.000
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.0000     0.9701 0.000 1.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.6973     0.7447 0.188 0.812
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.0000     0.9065 1.000 0.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.0000     0.9701 0.000 1.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.0000     0.9701 0.000 1.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000     0.9701 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.0000     0.9701 0.000 1.000
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.7950     0.7382 0.760 0.240
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000     0.9701 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000     0.9701 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.0000     0.9701 0.000 1.000
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.0000     0.9701 0.000 1.000
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.0000     0.9701 0.000 1.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000     0.9701 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.0000     0.9701 0.000 1.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.0672     0.9640 0.008 0.992
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.0000     0.9701 0.000 1.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.0000     0.9701 0.000 1.000
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.0000     0.9701 0.000 1.000
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000     0.9701 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000     0.9701 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.0000     0.9701 0.000 1.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.0000     0.9701 0.000 1.000
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     2  0.7674     0.6854 0.224 0.776
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     1  0.6148     0.8303 0.848 0.152
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     2  0.0000     0.9701 0.000 1.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.0000     0.9701 0.000 1.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000     0.9065 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.0000     0.9701 0.000 1.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.0000     0.9701 0.000 1.000
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     2  0.0938     0.9607 0.012 0.988
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.0000     0.9701 0.000 1.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.0000     0.9701 0.000 1.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     1  0.9977     0.2512 0.528 0.472
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.0000     0.9701 0.000 1.000
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.0000     0.9701 0.000 1.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.0000     0.9701 0.000 1.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     2  0.0000     0.9701 0.000 1.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.0000     0.9701 0.000 1.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     2  0.0938     0.9607 0.012 0.988
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.0000     0.9701 0.000 1.000
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000     0.9701 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     2  0.9977    -0.0435 0.472 0.528
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.0938     0.9053 0.988 0.012
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     2  0.0672     0.9640 0.008 0.992
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     1  0.6438     0.8207 0.836 0.164
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000     0.9065 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     1  0.0938     0.9053 0.988 0.012
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000     0.9701 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.7950     0.7382 0.760 0.240
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000     0.9701 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.0000     0.9701 0.000 1.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     2  0.0000     0.9701 0.000 1.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.0000     0.9701 0.000 1.000
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.0000     0.9065 1.000 0.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.9209     0.5911 0.664 0.336
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.0000     0.9701 0.000 1.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     2  0.7219     0.7253 0.200 0.800
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     2  0.0672     0.9638 0.008 0.992
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.0000     0.9701 0.000 1.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000     0.9701 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000     0.9701 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.0000     0.9701 0.000 1.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.0000     0.9701 0.000 1.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.7745     0.7521 0.772 0.228
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.0000     0.9701 0.000 1.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     2  0.0672     0.9640 0.008 0.992
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000     0.9701 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     2  0.0938     0.9607 0.012 0.988
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000     0.9701 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.0000     0.9701 0.000 1.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.0000     0.9701 0.000 1.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.5294     0.8407 0.120 0.880
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     2  0.0000     0.9701 0.000 1.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     1  0.1184     0.9050 0.984 0.016
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.6343     0.8210 0.840 0.160
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     2  0.9988    -0.0785 0.480 0.520
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     2  0.0000     0.9701 0.000 1.000
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.0000     0.9701 0.000 1.000
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.0000     0.9701 0.000 1.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.0000     0.9701 0.000 1.000
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.0000     0.9701 0.000 1.000
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.0000     0.9701 0.000 1.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000     0.9701 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     2  0.8661     0.5493 0.288 0.712
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.0000     0.9701 0.000 1.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000     0.9701 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     2  0.0938     0.9607 0.012 0.988
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.0000     0.9701 0.000 1.000
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0000     0.9701 0.000 1.000
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.0000     0.9701 0.000 1.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     2  0.0000     0.9701 0.000 1.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.0000     0.9701 0.000 1.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     1  0.9993     0.2044 0.516 0.484
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     1  0.1184     0.9050 0.984 0.016
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000     0.9701 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     1  0.1184     0.9050 0.984 0.016
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.0000     0.9701 0.000 1.000
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.0000     0.9701 0.000 1.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000     0.9701 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000     0.9065 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.0000     0.9065 1.000 0.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.0000     0.9701 0.000 1.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000     0.9065 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     1  0.1184     0.9050 0.984 0.016
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.0000     0.9065 1.000 0.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.0000     0.9701 0.000 1.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.7950     0.6571 0.240 0.760
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0000     0.9701 0.000 1.000
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000     0.9701 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.0000     0.9701 0.000 1.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     1  0.0938     0.9053 0.988 0.012
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000     0.9701 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     2  0.0000     0.9701 0.000 1.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.0000     0.9701 0.000 1.000
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.0376     0.9671 0.004 0.996
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.9993    -0.0626 0.484 0.516
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0000     0.9701 0.000 1.000
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000     0.9701 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0000     0.9701 0.000 1.000
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.0000     0.9701 0.000 1.000
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0000     0.9701 0.000 1.000
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     2  0.0000     0.9701 0.000 1.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     2  0.0000     0.9701 0.000 1.000
#> DFE32073-ECD2-4F98-B442-288938F69225     2  0.0672     0.9640 0.008 0.992
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.0000     0.9065 1.000 0.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000     0.9701 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000     0.9701 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0000     0.9701 0.000 1.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     2  0.0000     0.9701 0.000 1.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000     0.9701 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000     0.9701 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000     0.9701 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.1184     0.9566 0.016 0.984
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     2  0.0000     0.9701 0.000 1.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000     0.9701 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     2  0.0000     0.9701 0.000 1.000
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     2  0.9427     0.3912 0.360 0.640
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     1  0.8267     0.7145 0.740 0.260
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.0000     0.9701 0.000 1.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.7674     0.6864 0.224 0.776
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.0000     0.9701 0.000 1.000
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0000     0.9065 1.000 0.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.0000     0.9701 0.000 1.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000     0.9701 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.0000     0.9701 0.000 1.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000     0.9701 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.0000     0.9701 0.000 1.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000     0.9701 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     2  0.0000     0.9701 0.000 1.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.0000     0.9065 1.000 0.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.0000     0.9065 1.000 0.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000     0.9701 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000     0.9701 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     2  0.0000     0.9701 0.000 1.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     2  0.0000     0.9701 0.000 1.000
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000     0.9701 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000     0.9701 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.0000     0.9701 0.000 1.000
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.5408     0.8466 0.876 0.124
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000     0.9701 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.9977    -0.0128 0.472 0.528
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     1  0.9044     0.6184 0.680 0.320
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.0000     0.9701 0.000 1.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.0000     0.9701 0.000 1.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.0000     0.9701 0.000 1.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.0000     0.9701 0.000 1.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000     0.9701 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     2  0.0000     0.9701 0.000 1.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     2  0.0938     0.9607 0.012 0.988
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.7745     0.6784 0.228 0.772
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000     0.9701 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.0000     0.9701 0.000 1.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.2043     0.9411 0.032 0.968
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000     0.9701 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.0000     0.9701 0.000 1.000
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     1  0.8861     0.6498 0.696 0.304
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0000     0.9701 0.000 1.000
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     2  0.7139     0.7385 0.196 0.804
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.7745     0.6784 0.228 0.772
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.0000     0.9701 0.000 1.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     2  0.1633     0.9506 0.024 0.976
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     2  0.0000     0.9701 0.000 1.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000     0.9701 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000     0.9701 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.0000     0.9701 0.000 1.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     1  0.0000     0.9065 1.000 0.000
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.0000     0.9701 0.000 1.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     2  0.0000     0.9701 0.000 1.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000     0.9701 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     2  0.0000     0.9701 0.000 1.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.0000     0.9701 0.000 1.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     2  0.0000     0.9701 0.000 1.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.0000     0.9701 0.000 1.000
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.0000     0.9701 0.000 1.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000     0.9065 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0000     0.9701 0.000 1.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000     0.9701 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.0000     0.9065 1.000 0.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.0000     0.9701 0.000 1.000
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.0000     0.9701 0.000 1.000
#> A9195281-8CAE-45A8-8493-744E577907FA     2  0.0938     0.9607 0.012 0.988
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000     0.9701 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000     0.9701 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0000     0.9701 0.000 1.000
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0672     0.9639 0.008 0.992
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     2  0.0000     0.9701 0.000 1.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     2  0.9954     0.0533 0.460 0.540
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.0000     0.9701 0.000 1.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     2  0.0000     0.9701 0.000 1.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.0000     0.9701 0.000 1.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000     0.9701 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.0000     0.9065 1.000 0.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000     0.9701 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000     0.9701 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     2  0.9087     0.4836 0.324 0.676
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.0000     0.9701 0.000 1.000
#> D85CB054-7F54-4383-96C0-6C99761B84E7     2  0.0000     0.9701 0.000 1.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000     0.9065 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     1  0.1184     0.9050 0.984 0.016
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.0000     0.9701 0.000 1.000
#> 17CA5D73-4384-4645-83F8-587847043DD2     2  0.0000     0.9701 0.000 1.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.9248     0.5807 0.660 0.340
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.0000     0.9701 0.000 1.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     2  0.0000     0.9701 0.000 1.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.0000     0.9701 0.000 1.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.4161     0.8846 0.084 0.916
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.7674     0.6854 0.224 0.776
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     2  0.0938     0.9607 0.012 0.988
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000     0.9065 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     2  0.1633     0.9490 0.024 0.976
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.0000     0.9701 0.000 1.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.0000     0.9701 0.000 1.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.0000     0.9701 0.000 1.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.0000     0.9701 0.000 1.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.0000     0.9701 0.000 1.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0000     0.9701 0.000 1.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     2  0.0000     0.9701 0.000 1.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     2  0.1414     0.9542 0.020 0.980
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.0000     0.9701 0.000 1.000
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.5178     0.8451 0.116 0.884
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000     0.9701 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     2  0.0000     0.9701 0.000 1.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000     0.9701 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.0000     0.9701 0.000 1.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.0376     0.9670 0.004 0.996
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000     0.9065 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000     0.9701 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.0000     0.9701 0.000 1.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     2  0.0000     0.9701 0.000 1.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.0000     0.9701 0.000 1.000
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000     0.9701 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000     0.9701 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     2  0.0000     0.9701 0.000 1.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.0000     0.9701 0.000 1.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.8081     0.7278 0.752 0.248
#> 887E7408-C7D7-420F-A763-0EE70A316D17     2  0.0000     0.9701 0.000 1.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000     0.9701 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000     0.9701 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.0000     0.9701 0.000 1.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.0000     0.9701 0.000 1.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     2  0.0000     0.9701 0.000 1.000
#> EE40EE80-4520-4643-B906-48246BA616A7     2  0.0938     0.9607 0.012 0.988
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.0000     0.9701 0.000 1.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     2  0.0938     0.9607 0.012 0.988
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.0000     0.9701 0.000 1.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0000     0.9701 0.000 1.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     2  0.0000     0.9701 0.000 1.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     2  0.0000     0.9701 0.000 1.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.0000     0.9701 0.000 1.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     2  0.0938     0.9607 0.012 0.988
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.7056     0.7380 0.192 0.808
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     2  0.8016     0.6458 0.244 0.756
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.0376     0.9671 0.004 0.996
#> B23A1419-0406-48BF-813B-B6ED6FD98789     2  0.0000     0.9701 0.000 1.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     1  0.9661     0.4691 0.608 0.392
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000     0.9701 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     2  0.0000     0.9701 0.000 1.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.0000     0.9701 0.000 1.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.0000     0.9701 0.000 1.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     2  0.0000     0.9701 0.000 1.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     2  0.0000     0.9701 0.000 1.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.0000     0.9065 1.000 0.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     2  0.4939     0.8556 0.108 0.892
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.7056     0.7381 0.192 0.808
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     2  0.0000     0.9701 0.000 1.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.8813     0.6553 0.700 0.300
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     2  0.0000     0.9701 0.000 1.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     2  0.0000     0.9701 0.000 1.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.0000     0.9701 0.000 1.000
#> 1122039D-5785-4F70-9916-17C585453512     1  0.1184     0.9050 0.984 0.016
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000     0.9065 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     2  0.0672     0.9640 0.008 0.992
#> C56C7ED7-A684-40CC-B426-B108E2248467     1  0.1184     0.9050 0.984 0.016
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.0000     0.9701 0.000 1.000
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000     0.9701 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.0000     0.9701 0.000 1.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     1  0.0938     0.9053 0.988 0.012
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     2  0.0376     0.9670 0.004 0.996
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     2  0.0000     0.9701 0.000 1.000
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.0000     0.9701 0.000 1.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.0000     0.9701 0.000 1.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.0376     0.9671 0.004 0.996
#> 1B73CE27-B464-41E6-BE27-90FA13683331     2  0.0000     0.9701 0.000 1.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     2  0.4815     0.8625 0.104 0.896
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.0000     0.9701 0.000 1.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.0000     0.9701 0.000 1.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     2  0.9988    -0.0768 0.480 0.520
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.0000     0.9701 0.000 1.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.0000     0.9701 0.000 1.000
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     2  0.0938     0.9607 0.012 0.988
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     2  0.1184     0.9576 0.016 0.984
#> EB7883EB-0079-4548-9132-169E94A698BA     2  0.0000     0.9701 0.000 1.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     2  0.0000     0.9701 0.000 1.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.0000     0.9701 0.000 1.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     2  0.0000     0.9701 0.000 1.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0938     0.9606 0.012 0.988
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     1  0.2043     0.8985 0.968 0.032
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.0000     0.9701 0.000 1.000
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     2  0.0938     0.9607 0.012 0.988
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.0000     0.9701 0.000 1.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     2  0.0000     0.9701 0.000 1.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     2  0.0000     0.9701 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17541 rows and 500 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.939           0.951       0.979         0.3497 0.663   0.663
#> 3 3 0.678           0.817       0.903         0.7815 0.634   0.478
#> 4 4 0.712           0.776       0.897         0.1375 0.751   0.452
#> 5 5 0.694           0.703       0.854         0.0944 0.777   0.390
#> 6 6 0.643           0.558       0.755         0.0545 0.895   0.587

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> 922B74CF-AED1-4E9E-9650-4843F0A18820     1  0.0000      0.976 1.000 0.000
#> CABE3151-1EB4-4A3B-82A4-0F698C51D824     2  0.0000      0.978 0.000 1.000
#> F7946671-1EC2-4665-BB8D-CCBA87B69C33     2  0.0000      0.978 0.000 1.000
#> BA66828A-AADE-4F85-B297-8BE56D8D6E38     2  0.0000      0.978 0.000 1.000
#> BE685EF3-953B-483C-A99C-75FBF81D6615     2  0.3114      0.928 0.056 0.944
#> 8A79D5E3-AE96-4353-A1F6-B9910988C412     2  0.0000      0.978 0.000 1.000
#> 62DF1892-410B-420D-9EB2-ED032E55DEF7     2  0.0000      0.978 0.000 1.000
#> 947659EE-D92A-4D41-AEBA-B1DB9000141D     2  0.0000      0.978 0.000 1.000
#> 8414BA78-A8A9-4424-9C5A-9683128B1551     2  0.0000      0.978 0.000 1.000
#> 01032C59-1724-4B6D-85E7-76C087E0F50F     1  0.0000      0.976 1.000 0.000
#> A2A34964-65C3-4175-89B2-85405C5ABFE9     1  0.0000      0.976 1.000 0.000
#> 33580931-57FC-41D9-91B5-21EAE9BC0AF7     2  0.0000      0.978 0.000 1.000
#> 357A050A-ABEB-4516-933A-CDBEEEAD329F     2  0.0000      0.978 0.000 1.000
#> 1C710173-532F-4435-BCE9-287AD8D247D9     2  0.0376      0.975 0.004 0.996
#> 5AB5396F-925B-469C-B240-FB37991004DD     1  0.0000      0.976 1.000 0.000
#> 3F172B98-8CF6-4644-B58A-9B50F76731D2     2  0.0000      0.978 0.000 1.000
#> 08AA94B3-955B-45A2-A27C-524B5A6DDB79     2  0.0000      0.978 0.000 1.000
#> F4D81754-F220-405F-9DDC-AA27EA1C529B     2  0.9522      0.431 0.372 0.628
#> 6CCB94B6-2AF8-4CB7-8261-7A051ABA4783     1  0.0000      0.976 1.000 0.000
#> E190109B-2CAE-4D04-82F3-F1EDDD137BB6     2  0.5408      0.855 0.124 0.876
#> AB96957E-8B83-420D-876D-35DA9BC4A9B8     2  0.0000      0.978 0.000 1.000
#> 04B7448C-5DA4-489D-89AC-2927C1EBECEA     2  0.0000      0.978 0.000 1.000
#> 45A6FA0E-DA3E-4B29-9BB6-CED11625FDB6     1  0.0000      0.976 1.000 0.000
#> 5262FD57-1A06-4D0B-B9DD-85A601BA84BD     2  0.0376      0.975 0.004 0.996
#> 840EA89B-ADA6-4697-B133-7DD1CE4275E0     2  0.0000      0.978 0.000 1.000
#> AE03DEEA-AEE4-4D86-8D8E-13B6D81EA782     2  0.0000      0.978 0.000 1.000
#> 0503F117-8779-46DD-AD24-E41DC25B0ADB     2  0.0000      0.978 0.000 1.000
#> EE97212E-8D5D-4548-8DD2-317049601FDB     2  0.0000      0.978 0.000 1.000
#> 8586E94A-F9B6-4387-A877-A4B118EC1784     2  0.9358      0.476 0.352 0.648
#> 73C3D0A1-3F9B-458F-9909-EF64332D32B5     1  0.0938      0.967 0.988 0.012
#> 97C34F1F-2002-4771-8D99-511EA08591CD     2  0.0000      0.978 0.000 1.000
#> 8F07ADA6-C2B7-474E-8AAC-FAC995B8C2A2     2  0.7219      0.757 0.200 0.800
#> C880C6CA-292D-4CA3-840E-E905D4B5B277     2  0.0000      0.978 0.000 1.000
#> C06D8112-0FA0-4607-988D-589D8694743F     2  0.0000      0.978 0.000 1.000
#> CB56AEF9-15CC-414A-97E0-6AB5D480FC9B     2  0.0000      0.978 0.000 1.000
#> 3679E6F5-5F44-424C-A3F7-D8AED7D8C5D5     2  0.7299      0.752 0.204 0.796
#> EC7B4714-839A-4D6B-BA61-0A35B484DFC6     2  0.0000      0.978 0.000 1.000
#> 72B5431D-32A6-4216-A49B-7E4F275D2FA3     2  0.0000      0.978 0.000 1.000
#> A84EA172-9823-40E9-BC22-C882725DD1C8     2  0.0000      0.978 0.000 1.000
#> 07609CEF-97F7-4BDF-9321-B907620E8A64     2  0.0000      0.978 0.000 1.000
#> 5F28E34B-2267-4352-BBD2-17D86F2AE220     2  0.0000      0.978 0.000 1.000
#> 9DFED478-492A-401A-9742-14FA7D9AEFBC     2  0.0000      0.978 0.000 1.000
#> 2FE8D6DA-BB60-4F02-AFF7-B9A9A5C139C4     2  0.4939      0.874 0.108 0.892
#> 60EE5A75-84EC-419D-9540-0864A98EA293     1  0.0000      0.976 1.000 0.000
#> C85272A2-1AA0-4FE1-B757-43EE7F179FC0     2  0.0000      0.978 0.000 1.000
#> BFE95F66-6F9F-4431-B756-7A8DF5025DE0     2  0.0000      0.978 0.000 1.000
#> C8C8CEF5-DD76-4680-89DE-D8C8E8261A70     2  0.0000      0.978 0.000 1.000
#> 066B10C1-777F-4863-ACCA-6684310B913E     1  0.8327      0.658 0.736 0.264
#> 4BC159E4-2342-4E62-9B8A-FDA31533EB3E     1  0.0000      0.976 1.000 0.000
#> 0752001B-A5C1-4E1A-A88D-2DCAE1667B53     1  0.0000      0.976 1.000 0.000
#> 4A44F552-FC0B-45F9-95EA-C79B746B0D43     2  0.0000      0.978 0.000 1.000
#> 4379559E-E467-49BD-9673-40A486146A3B     2  0.0000      0.978 0.000 1.000
#> AFB4DDA2-FFB7-453F-A61D-334A62018A15     2  0.1843      0.954 0.028 0.972
#> 07F15081-CEFC-47E3-BECC-8A8B52AB097E     2  0.0000      0.978 0.000 1.000
#> C9993CB1-F653-4C1F-9D3B-52F638C24540     2  0.0000      0.978 0.000 1.000
#> 311D089C-33F1-4722-9118-F56427C5C128     1  0.0000      0.976 1.000 0.000
#> AFDBE143-6C36-4D68-A0D2-45CA3F0410B0     2  0.4161      0.900 0.084 0.916
#> 7364131F-000B-45D7-9AA2-953BA00FEB4A     2  0.1843      0.954 0.028 0.972
#> D97B363F-B7F4-46F3-B62F-E58549F401A8     2  0.0000      0.978 0.000 1.000
#> 7243B18C-D841-4B86-A9F6-52EAF341E643     2  0.0000      0.978 0.000 1.000
#> A77DDA16-167D-4444-8C58-526C99F2B406     2  0.3733      0.912 0.072 0.928
#> F92010B1-94DC-4BD3-BDE9-B3FCBE957A62     2  0.0000      0.978 0.000 1.000
#> 682099A3-074E-4CCD-A28B-748ADDA0DC01     2  0.0000      0.978 0.000 1.000
#> 371149D5-6A07-4DE4-87A1-EDCA516D7A52     1  0.0376      0.973 0.996 0.004
#> 7C72758D-B85C-405F-9A08-8EABCD455CDD     1  0.0000      0.976 1.000 0.000
#> 2E8315CB-2AC5-4E31-A3D6-718859565AA7     1  0.0000      0.976 1.000 0.000
#> CEE2741C-F60A-4E33-AB1F-3AC56245F780     1  0.0000      0.976 1.000 0.000
#> 89C20FCC-0624-4EB8-AC83-37C033EC8DD7     1  0.0000      0.976 1.000 0.000
#> 655C03A2-1D47-41DE-A5C9-91DF3F66F9AD     2  0.0000      0.978 0.000 1.000
#> 530DDD97-7352-4F72-8891-D3B8DA235EFD     2  0.0000      0.978 0.000 1.000
#> BD3C5FD0-9803-4C9F-8A7C-18B514E99C80     2  0.0000      0.978 0.000 1.000
#> 5A0D2277-C465-4DA1-8D0B-19C36366B85C     1  0.0000      0.976 1.000 0.000
#> 2107C7A8-5A67-4667-9120-82C2F15630D6     2  0.0000      0.978 0.000 1.000
#> DCD81371-253F-4672-AA92-9F27A338F68E     2  0.0000      0.978 0.000 1.000
#> AB839BD2-BAC0-48CB-AF5C-C31ACDF6272F     2  0.0000      0.978 0.000 1.000
#> C0711591-B971-4EC9-8205-0C1A5A6581B3     2  0.0000      0.978 0.000 1.000
#> 3D4A257A-EF56-4269-8ED8-16B355DE7090     2  0.0000      0.978 0.000 1.000
#> AFC2C1B1-D696-4797-AB1E-67F8D10A121B     1  0.0000      0.976 1.000 0.000
#> 3C671A8D-0D10-4E66-A698-ADE98F4F8F1A     2  0.0000      0.978 0.000 1.000
#> 6A611A0F-B310-4E69-B33B-84DFEFDFCF98     2  0.0000      0.978 0.000 1.000
#> 8FEABF7B-E48D-48A9-8D60-90CCBB68A320     2  0.0000      0.978 0.000 1.000
#> DD916B92-F40B-4D42-BE0E-A00C3AF6DB9A     2  0.0000      0.978 0.000 1.000
#> A72CB3AB-D1CA-4D45-8F10-E2BF57FAD114     2  0.1843      0.955 0.028 0.972
#> 5BFBB7A5-0B75-4DB0-9ED0-03B97A1CBD0D     2  0.9754      0.337 0.408 0.592
#> 6FAEF85C-EA5E-4F5E-B8B3-E01455A9DD8A     2  0.0000      0.978 0.000 1.000
#> 46351E5C-2438-4B6A-8343-DDF329086771     2  0.0000      0.978 0.000 1.000
#> 193CCAB7-B6CA-4F5C-87CC-D5BA394209BA     2  0.0000      0.978 0.000 1.000
#> 6F4C7C80-0C44-45BA-B540-39181A6A954B     2  0.0000      0.978 0.000 1.000
#> 7DB4CA69-DE0A-4305-B645-4D25F9C7B3F3     2  0.0000      0.978 0.000 1.000
#> B88C71E6-9239-4C74-B874-64BF27EDFA89     2  0.0000      0.978 0.000 1.000
#> 9E10EE54-3F8A-40D5-943B-3BF3925AC8D2     2  0.0000      0.978 0.000 1.000
#> 4D361EA8-1F79-4B89-841B-87F83215D805     2  0.0000      0.978 0.000 1.000
#> 6A57D69C-8E19-47F2-8261-1419A45995A3     1  0.0000      0.976 1.000 0.000
#> F10E1FF8-58F6-49FA-B4FD-47B31E8D0A1A     2  0.1633      0.958 0.024 0.976
#> F2FFBB73-9948-4AA3-AED9-2DB59D55DDB2     2  0.0000      0.978 0.000 1.000
#> 73F693A1-AC74-4648-8022-FC5340E5D1FE     1  0.0000      0.976 1.000 0.000
#> 9BD4B68C-CECF-482E-B810-9C5FC0B12322     2  0.0000      0.978 0.000 1.000
#> 31322670-76A2-4308-A71F-D8E00049519D     1  0.0000      0.976 1.000 0.000
#> 4EA0F3B9-62B4-48F7-9CE1-6E04DA9D1C4D     2  0.0000      0.978 0.000 1.000
#> 0F008777-8470-420B-9BFD-20F5DC5C86C4     2  0.0000      0.978 0.000 1.000
#> 889327AA-5C8C-4CE8-8016-7B2978FCAE81     2  0.0000      0.978 0.000 1.000
#> CB7C6043-CB13-4D0D-A997-2E74B58563AF     2  0.0000      0.978 0.000 1.000
#> E8327684-CDED-42F2-875C-A99E4D9E5571     1  0.8499      0.617 0.724 0.276
#> DCF88247-2CFB-4DEA-9668-4BDD9C71A8E1     2  0.0000      0.978 0.000 1.000
#> C4E3A6C5-4267-4BBF-9D11-5FAB5C4BB18B     2  0.0000      0.978 0.000 1.000
#> 6260F9B0-6665-4FFB-A0DA-7004AF3CEEB4     1  0.0000      0.976 1.000 0.000
#> D09064DF-70AE-4A49-9F70-2A8093C96724     2  0.0000      0.978 0.000 1.000
#> AE903797-7FFB-44A1-B834-C644784B5DC2     2  0.0000      0.978 0.000 1.000
#> D18B79BE-2A49-4A4C-B5E3-AB8AE34E00E1     1  0.0000      0.976 1.000 0.000
#> C44C898C-EEF9-4E03-911A-9D951312C380     1  0.0000      0.976 1.000 0.000
#> 8967E2BE-2AAD-4B27-A29B-F9E48625A3F1     2  0.0000      0.978 0.000 1.000
#> D04B63DE-03BA-4A63-92CA-D8054C3E238C     2  0.0000      0.978 0.000 1.000
#> 06AEB932-C26F-40E0-BC3F-EEB16CBA854F     1  0.0000      0.976 1.000 0.000
#> 291311CF-3283-4B1E-9CE5-F9D0D059B92E     1  0.0000      0.976 1.000 0.000
#> 5E493E8F-3F91-4481-88E9-3A88F5F21BC1     1  0.0000      0.976 1.000 0.000
#> A79C4685-5772-4BEE-8BBF-6F696BFCB3A4     2  0.0000      0.978 0.000 1.000
#> BA3ED88C-6C87-4989-A23F-CD0C9644B66B     1  0.0000      0.976 1.000 0.000
#> 9980293D-AF0A-4215-9688-C576B1F8B519     2  0.0000      0.978 0.000 1.000
#> AA3CC38B-D53A-49DA-86F7-792BD2E90159     2  0.0000      0.978 0.000 1.000
#> 1E8A580C-F3D4-417D-BB42-DE825BB84D40     1  0.0000      0.976 1.000 0.000
#> 5B52F233-86AE-43EB-9848-797FAF19DC95     2  0.0000      0.978 0.000 1.000
#> BFB9D106-9A1C-465C-81A0-58C27CAF5338     2  0.0000      0.978 0.000 1.000
#> 1D1CCCCA-5A5B-4139-BA62-7706D6163C20     2  0.0000      0.978 0.000 1.000
#> DAFB5BBB-0BAA-427B-A856-148CC6F35980     1  0.0000      0.976 1.000 0.000
#> 1D7483F7-F5D8-4F6C-8110-F383B63D01C9     1  0.0000      0.976 1.000 0.000
#> 8E14902D-6783-4B7D-BB15-BA5136239FD4     2  0.0000      0.978 0.000 1.000
#> 9AAF18A7-28CC-4B46-BF45-223913E0CF70     2  0.4161      0.900 0.084 0.916
#> AF08503F-B0E5-4C39-BA04-3823CEE0273E     2  0.0000      0.978 0.000 1.000
#> 654B538F-F998-439F-8B00-D5B9C3C470DC     2  0.0000      0.978 0.000 1.000
#> 0F901E0D-7B41-41AF-8947-ADDD64FE64F6     2  0.0000      0.978 0.000 1.000
#> DF05AC80-ED12-4B68-84E7-45D5C80774C0     2  0.0000      0.978 0.000 1.000
#> A5B70C7A-CC78-45ED-BC19-741012BC6E97     2  0.8763      0.597 0.296 0.704
#> 03A103AB-57BC-4C49-ADA9-FA58A6E5B636     2  0.0000      0.978 0.000 1.000
#> 4C9FCB99-177D-4A76-8E07-3AFAB6CCBBEB     2  0.0000      0.978 0.000 1.000
#> 24AB17A1-9C55-4205-B295-9C2B4285F2BB     1  0.9686      0.373 0.604 0.396
#> C42EB6B8-2CA4-413E-B217-FE9804BC0716     2  0.0000      0.978 0.000 1.000
#> D2ACADF8-4585-4DFD-BC22-57B76C78DEEF     2  0.0000      0.978 0.000 1.000
#> 62627085-3DCA-422B-AC4D-8C12CED13B86     2  0.0000      0.978 0.000 1.000
#> CBEFE77E-A0EB-457D-A145-763654236EBB     2  0.0000      0.978 0.000 1.000
#> 1C7A1C2F-9B9A-4CD5-A0AC-65F79E2535D8     2  0.4022      0.904 0.080 0.920
#> F6E0ACA6-1C1E-4401-B187-E2AD84E30F63     2  0.0000      0.978 0.000 1.000
#> A882BFC9-8052-49A4-8C71-EBE5534C20A0     2  0.0000      0.978 0.000 1.000
#> 25526BF4-9B21-40DD-9036-C2404FD425E5     2  0.0000      0.978 0.000 1.000
#> 8A529C29-26BE-42C9-A03E-C9CB406E6843     2  0.0000      0.978 0.000 1.000
#> 0DA09625-4E56-45FD-A4F2-8D425776F46D     2  0.0000      0.978 0.000 1.000
#> 20F768A8-77E3-4B27-8563-2502C8C518A3     2  0.6531      0.801 0.168 0.832
#> CA2F1F6C-3FBC-49E1-928A-320D631C7747     2  0.0000      0.978 0.000 1.000
#> 09AC4331-65DA-4D45-9D89-5942B836A2DF     1  0.0000      0.976 1.000 0.000
#> 29B5B851-7CBE-49D0-8288-0F3AA8B70F67     2  0.0000      0.978 0.000 1.000
#> 4132DCAF-5C32-4B49-A60E-4B4BC4826913     2  0.0000      0.978 0.000 1.000
#> 1FE342C8-7A40-433D-9896-6BAF94F6FFC0     2  0.0000      0.978 0.000 1.000
#> DB82192F-FE52-4FF5-BAA9-2B266B3678F3     2  0.0000      0.978 0.000 1.000
#> F60DD379-3D29-4C5B-8E74-A6C5B3D76406     2  0.0000      0.978 0.000 1.000
#> 0AC68E1E-EBE5-4C05-AF60-39B68777E2AA     1  0.0000      0.976 1.000 0.000
#> 7EB14F25-A221-4754-BB56-6DEA700355AE     1  0.0000      0.976 1.000 0.000
#> 70F9FC41-6202-4B58-9C7C-9946E103E319     1  0.0000      0.976 1.000 0.000
#> 23238B08-AA91-46A3-B147-91185A5FAE3F     1  0.7950      0.696 0.760 0.240
#> DAB49A2E-BBFD-459B-B156-726D8D91D598     1  0.0000      0.976 1.000 0.000
#> 2988B841-8EDC-4C7F-8F86-78FCDDC2631F     2  0.0000      0.978 0.000 1.000
#> 4054255A-5B4E-42E9-934C-640DB7D8A8F0     1  0.8661      0.593 0.712 0.288
#> D149276E-A961-49D6-8BDA-004E8264A0A1     2  0.0000      0.978 0.000 1.000
#> D17803A2-4BF2-4382-A544-76E28695214F     2  0.0000      0.978 0.000 1.000
#> ECAB5A67-4E12-4EB0-9998-1618B26774F6     2  0.0000      0.978 0.000 1.000
#> 16F5BF94-5103-4973-9432-34FDCC82B6A2     1  0.0000      0.976 1.000 0.000
#> 293FB23D-72CB-4211-B4ED-9C57412CE9F0     2  0.0000      0.978 0.000 1.000
#> C99F0CD0-B9EB-45F3-885F-6D0519BF1BF7     2  0.0000      0.978 0.000 1.000
#> 5B8D1101-572C-4445-81C4-83A6D6115451     2  0.0000      0.978 0.000 1.000
#> CA86A053-8669-43F5-947A-9D6D368E7087     2  0.0000      0.978 0.000 1.000
#> FDDECB98-0151-4207-BC4E-040E121703DB     2  0.0000      0.978 0.000 1.000
#> 862D2F88-77A9-4363-A744-7738F49980E8     2  0.0000      0.978 0.000 1.000
#> E65849D9-E4E6-4706-8A7C-EBF07E80C0D9     2  0.0000      0.978 0.000 1.000
#> C8820FA6-3531-4515-A102-19100775E767     2  0.0000      0.978 0.000 1.000
#> 90496A82-EB8C-4B53-B38D-D24F69B009DD     1  0.0000      0.976 1.000 0.000
#> 3BB91D2A-CA9F-416A-9B7F-28D8CA6057F7     2  0.0000      0.978 0.000 1.000
#> D2140732-B8F2-4FDA-9AA4-8CC30E4DD6E0     2  0.0000      0.978 0.000 1.000
#> BD485B46-E873-4A39-A78C-213B91EE0175     1  0.0000      0.976 1.000 0.000
#> 4E8512F6-09C6-4C27-A3E4-10A5BE009FCA     2  0.0000      0.978 0.000 1.000
#> D932B095-762B-4DD1-947D-9397E13610DA     2  0.0000      0.978 0.000 1.000
#> 655EA93E-3BC3-4218-86F5-9CDAC536D424     2  0.0000      0.978 0.000 1.000
#> ADF84FA0-E948-490F-9025-574CC71A93E9     1  0.0000      0.976 1.000 0.000
#> 5C2BB8DE-5128-4B7C-A570-20875A84968C     2  0.0000      0.978 0.000 1.000
#> A4294F3A-A0EE-49FD-B264-F8B109689AB3     2  0.0000      0.978 0.000 1.000
#> 430DEA2F-5FBD-4064-BBBB-0E30DC4E16E9     2  0.0000      0.978 0.000 1.000
#> 440AD09A-D756-4197-9997-ED5418FE4D95     2  0.0000      0.978 0.000 1.000
#> BE1C6425-6206-4759-AED4-D57F0387E9B6     1  0.0000      0.976 1.000 0.000
#> FFFE900B-9DC2-4BD3-A095-07E6374A813C     2  0.0000      0.978 0.000 1.000
#> 63A2F13D-2D6E-4A0F-85A9-9B3392BF2DF9     2  0.0000      0.978 0.000 1.000
#> 720EFDAC-BC14-4EA9-92AA-37CAE4F1ADAB     2  0.7376      0.746 0.208 0.792
#> FEC10ACC-3704-417E-9B93-CD9765A429AF     2  0.1414      0.962 0.020 0.980
#> 3963279A-4960-49A2-936A-A13BB4A7DDE5     2  0.0000      0.978 0.000 1.000
#> FE0F9CB1-A552-4EE5-9B6A-B657B2836C6C     2  0.0000      0.978 0.000 1.000
#> B6605214-501A-40F9-8E76-0C87B9EC98CD     2  0.0000      0.978 0.000 1.000
#> C782D43F-6518-4FD6-BB15-C7E2BD0D28A8     2  0.9944      0.184 0.456 0.544
#> 765A7D13-ACE9-4CE7-86CD-3FDF585558BB     2  0.0000      0.978 0.000 1.000
#> AC3F84D2-D218-4363-82BA-F71591FD96EC     2  0.0000      0.978 0.000 1.000
#> CF361BFB-9B41-4F37-8D39-D5CE319159AD     2  0.7219      0.757 0.200 0.800
#> E92F7290-E334-4304-A356-C56B3EE15279     2  0.0000      0.978 0.000 1.000
#> 3D267629-CAB2-4A35-A47B-A3EF1B1352E1     2  0.0000      0.978 0.000 1.000
#> 99AADBA6-DEC2-4191-AA99-6F53F07E5FD6     2  0.0000      0.978 0.000 1.000
#> 354669B6-34E9-44AA-91B2-882423F50B0A     2  0.0000      0.978 0.000 1.000
#> 7EC3A540-C207-4C4D-BB25-2565E5DF81A9     2  0.0000      0.978 0.000 1.000
#> F51B1C91-C9FF-441C-ACB5-5653523DBBF8     2  0.0000      0.978 0.000 1.000
#> 4CA36C38-3166-40DF-91A9-6FFC43253D44     2  0.0000      0.978 0.000 1.000
#> 14BDD068-484C-4038-8BFD-722A7A9ECC3E     2  0.0000      0.978 0.000 1.000
#> 3DB4555C-E01E-4A1C-AF42-B7009FDFDD90     1  0.0000      0.976 1.000 0.000
#> 16843BD1-2DD3-42F0-A5E8-C3052478B394     2  0.0000      0.978 0.000 1.000
#> 44B73B4F-76C5-413F-9035-F55E1DD2A2AB     2  0.4815      0.878 0.104 0.896
#> D40A9C6C-525A-40AD-A7B8-105ACFD5C481     1  0.8713      0.604 0.708 0.292
#> DDD94B58-D3FF-4DA5-B3EA-1333FA4C611E     2  0.0000      0.978 0.000 1.000
#> 072ABE50-3E49-468E-9B02-08BFE7493C84     2  0.0000      0.978 0.000 1.000
#> D42CC2E5-3586-41CE-8C50-8D30C6A01448     1  0.0000      0.976 1.000 0.000
#> 38805416-7B6D-4EB7-9AD6-06B1FBEB3C52     2  0.0000      0.978 0.000 1.000
#> CF32DF31-1389-4ADD-8932-0DCCA689B43A     2  0.0000      0.978 0.000 1.000
#> CB020B0D-6C03-4B73-8A75-29556EAB9A0B     2  0.0000      0.978 0.000 1.000
#> 7C5BB06D-D68A-44C5-AA75-230DE9B833DA     2  0.0000      0.978 0.000 1.000
#> 2027734E-C7F7-4040-AE5F-B1C3E00782E8     2  0.0000      0.978 0.000 1.000
#> BFAF2CEE-9AA5-4A51-9942-BB99A1F6ADB8     1  0.0000      0.976 1.000 0.000
#> 5A624F3A-9BD1-4E61-A477-F0954DAA5757     2  0.0000      0.978 0.000 1.000
#> 8B3BDFDB-1998-47BE-A471-CC8882D3B273     2  0.0000      0.978 0.000 1.000
#> F49C9FEC-1350-42EB-A97A-816CA24D945F     1  0.0000      0.976 1.000 0.000
#> CDA810BA-AD85-4AC6-9211-3D2976E951AC     1  0.6048      0.824 0.852 0.148
#> 15D73BC1-C622-445F-ADB3-4BF34207C928     1  0.0938      0.966 0.988 0.012
#> 0E9D2AFD-1923-4656-BC89-5A6EB3604B35     2  0.0000      0.978 0.000 1.000
#> A592F24D-C071-4CE8-9870-8F0BF2D5ABAC     1  0.0000      0.976 1.000 0.000
#> 4FFC0C70-254B-42DF-87D1-A616F24A9D6C     2  0.7528      0.727 0.216 0.784
#> 69E61E9C-5386-495D-9718-CFEA8C25840C     2  0.0000      0.978 0.000 1.000
#> 6D65B790-819C-49FC-A473-4D05029ED8B0     1  0.0000      0.976 1.000 0.000
#> 293F530E-C875-4868-BEF0-474049A88644     2  0.0000      0.978 0.000 1.000
#> 47424C8B-86C6-48A6-826F-06E026845081     2  0.0000      0.978 0.000 1.000
#> 1EEEAAFD-6E5C-42A5-8889-1CEC2B8DBB11     2  0.0000      0.978 0.000 1.000
#> 22B681F7-049B-4B50-92CD-9785A1E6AD6D     2  0.6148      0.821 0.152 0.848
#> E208F6A1-FCA4-4895-887C-B042256A0B33     1  0.0000      0.976 1.000 0.000
#> 8C260BBA-B36C-4712-98EE-16C83496FAA4     1  0.0000      0.976 1.000 0.000
#> B3AE1B3A-0322-4093-A495-5C16F3F26109     2  0.0000      0.978 0.000 1.000
#> 48048BD5-AD09-481E-B1A6-7DDC316156D0     2  0.0000      0.978 0.000 1.000
#> 8AD5472B-A6BB-4B81-9C94-6DE2B2E2EFA2     2  0.0000      0.978 0.000 1.000
#> CB5BF694-0353-45D4-857B-0229792F9CF6     2  0.0000      0.978 0.000 1.000
#> FE1D94EA-68A4-4B0B-B0B9-F49DC8E9D42A     2  0.0000      0.978 0.000 1.000
#> CA2CBBF1-225A-43BB-A197-04F521329592     2  0.0000      0.978 0.000 1.000
#> 17CAB6C6-3A61-4FA4-873A-3F19340F3755     2  0.0000      0.978 0.000 1.000
#> 4B874B92-98D7-4247-BDA0-176462C97CEC     2  0.0000      0.978 0.000 1.000
#> D2E56596-4B4F-4A71-BF81-2D83CB356CCC     1  0.0000      0.976 1.000 0.000
#> B7326101-C09C-4DF1-A0BB-5A7787BD694C     2  0.0000      0.978 0.000 1.000
#> AF2B4710-923C-43C3-808E-BF5140A0B947     1  0.0376      0.973 0.996 0.004
#> EB3EE780-D430-4DCE-86B7-75FACB5C7F1A     2  0.0000      0.978 0.000 1.000
#> D1B3545A-2903-4BF2-968D-3C7CA7A0C85F     1  0.0938      0.966 0.988 0.012
#> 9FDE20D5-8388-4CAA-BC69-C74E5159E7A7     2  0.0000      0.978 0.000 1.000
#> 096C00CC-47AF-4E5C-AA13-7CD4E2BFBEE3     2  0.0000      0.978 0.000 1.000
#> 73776AD5-21C6-4235-80FE-C6CFFD777DEA     2  0.0000      0.978 0.000 1.000
#> 5853C692-FD95-4332-A2F8-03B79C8A7E46     2  0.0000      0.978 0.000 1.000
#> F4E1D12A-02AB-44A9-9960-88E11B7F7542     2  0.0000      0.978 0.000 1.000
#> C0E19D85-9727-415B-B432-573FE1E67F86     2  0.0000      0.978 0.000 1.000
#> 012DB96E-1CF8-46D4-8B60-A07A1219EF9A     1  0.0000      0.976 1.000 0.000
#> F4BF15F6-5C09-407F-B927-8F7EE16ACF09     1  0.0000      0.976 1.000 0.000
#> D7FEA8D0-9EC8-472C-840D-C4C52FA8DD14     2  0.0000      0.978 0.000 1.000
#> 945B6E64-04B1-4D45-A0FD-AD09967BB108     2  0.6531      0.801 0.168 0.832
#> 3AB58B87-7012-428A-8A83-6DD31D159150     2  0.0000      0.978 0.000 1.000
#> 113A40B9-46B0-4025-82FF-AA2D8DE2BFD6     2  0.7219      0.757 0.200 0.800
#> 69ED5E1E-84A8-4FA9-AB30-2B539D0E8029     2  0.9686      0.369 0.396 0.604
#> DC144A81-90F8-4984-96D4-6C4E7368C162     2  0.0000      0.978 0.000 1.000
#> BCE3A9E4-CCC4-457D-8ADB-58F63AC647A2     2  0.0000      0.978 0.000 1.000
#> F3C293B9-BF9A-42F0-B44C-97E686E6AC34     1  0.0000      0.976 1.000 0.000
#> A5B3738D-D197-4463-8FED-51F69AC17873     2  0.0000      0.978 0.000 1.000
#> 6C5EB795-413C-459D-89CD-B9CF340C0BD3     2  0.0000      0.978 0.000 1.000
#> 32A2E606-1DEF-439B-B2C1-A40F56085FD9     1  0.0000      0.976 1.000 0.000
#> F697CDE1-DE36-4849-BEB7-824884F4C3EF     2  0.0000      0.978 0.000 1.000
#> E36597D1-60C3-4EB8-867A-0E808599E300     2  0.0000      0.978 0.000 1.000
#> F0A7C257-B704-4969-93E0-C555C4904A43     2  0.0000      0.978 0.000 1.000
#> 836C94CC-2F01-4137-9CFA-8E1619C1969A     2  0.0000      0.978 0.000 1.000
#> EDAEA196-356F-424B-BA47-313364DF08C4     2  0.0000      0.978 0.000 1.000
#> 5B01DC83-0AB0-44E8-8608-B1AEA97F927C     1  0.0000      0.976 1.000 0.000
#> 10ECAEB7-C087-499B-8622-1388F6CBF5AA     2  0.0000      0.978 0.000 1.000
#> 747AEE5D-0DD6-4C93-81A3-5DA413E487CD     2  0.0000      0.978 0.000 1.000
#> 77FC6AFC-3176-429E-9306-8422B8C9722F     2  0.0000      0.978 0.000 1.000
#> 1367FCDA-3691-4B2E-B729-1E6ED8376DAD     2  0.1633      0.958 0.024 0.976
#> BFF9A919-CDAD-4A94-B683-CEB3B563E90E     2  0.0000      0.978 0.000 1.000
#> D249B589-22E5-4678-9757-FF6A7E4553E5     2  0.0000      0.978 0.000 1.000
#> 7CB11B1B-4F20-4EED-818A-0FA701809E55     1  0.0000      0.976 1.000 0.000
#> 065E1906-CBE9-4F9A-AC33-269852CE9ACA     1  0.0000      0.976 1.000 0.000
#> 82B4E26D-B3B5-4580-9EA7-462C427DA122     2  0.0000      0.978 0.000 1.000
#> D19F062F-26A0-4997-ABB8-D3D069278C2A     1  0.0000      0.976 1.000 0.000
#> 860AE844-BCAC-4141-863F-DCEF9F34026A     2  0.0000      0.978 0.000 1.000
#> 4AF21061-7756-454D-9DE4-03663E3F56E7     1  0.0000      0.976 1.000 0.000
#> F7E80956-DD3E-40A2-9D18-D65652162350     2  0.0000      0.978 0.000 1.000
#> 762B72F9-F2B3-47B1-9CB5-0685BFA50E40     2  0.0000      0.978 0.000 1.000
#> 9D250E1E-12D4-4219-964A-775DBA154C7F     2  0.0938      0.969 0.012 0.988
#> 3E964C67-708F-4405-BFE8-FB75E09854C2     2  0.0000      0.978 0.000 1.000
#> 526EA985-FC54-4FB9-AF68-64CD5294911E     2  0.0000      0.978 0.000 1.000
#> F5B46BED-B78C-43D5-A0FC-9877F8600BD4     2  0.0000      0.978 0.000 1.000
#> 88F1CE78-2464-4DB2-91AE-DC5F4717D1B9     2  0.0000      0.978 0.000 1.000
#> 302D0175-90A1-43C4-A0D6-D24F540E08BB     2  0.0000      0.978 0.000 1.000
#> 5362B754-44F6-450A-B5CD-9DF228DF30EB     2  0.6438      0.806 0.164 0.836
#> BD06B72B-E059-4F23-98AF-87132382FB63     2  0.0000      0.978 0.000 1.000
#> D4993C11-4C8C-43F9-B0EF-BDE282C79113     2  0.0000      0.978 0.000 1.000
#> 2B487E3A-0090-40F8-B212-850B5560533C     2  0.0376      0.975 0.004 0.996
#> 33FEDA26-EB6F-4197-9390-9FDA35999883     2  0.0000      0.978 0.000 1.000
#> F7A262B9-1CDB-4F05-9C49-E1BE28C3F095     2  0.0938      0.968 0.012 0.988
#> 8440684E-2ED5-493B-BED1-0E152E0A2A60     2  0.0000      0.978 0.000 1.000
#> 01094832-E561-4A90-AA32-9A548FE136B7     2  0.0000      0.978 0.000 1.000
#> BC4E01C4-ADEC-44D3-9784-E1BCB39D8C23     2  0.0000      0.978 0.000 1.000
#> A911D482-0470-4BDB-A0DC-1DDC409CD11A     2  0.0000      0.978 0.000 1.000
#> DFE32073-ECD2-4F98-B442-288938F69225     1  0.4022      0.901 0.920 0.080
#> 5DA6BF07-D05B-4380-81B9-F048B0DB6DC8     1  0.0000      0.976 1.000 0.000
#> D7265E72-DE3B-4AAD-BD50-6A883B6BA3E1     2  0.0000      0.978 0.000 1.000
#> 098432F3-B13E-48B7-8F90-E4FF186B947D     2  0.0000      0.978 0.000 1.000
#> 89AC9491-4FE3-401F-9A05-0F9B4434A663     2  0.0000      0.978 0.000 1.000
#> 0331645C-74A4-4E78-BDB8-4176735DE096     2  0.0000      0.978 0.000 1.000
#> E929B058-865B-4EFF-A701-1A8FE202B9FF     2  0.0000      0.978 0.000 1.000
#> 7D3E1463-C3EA-47E3-8D52-4390EEF1736A     2  0.0000      0.978 0.000 1.000
#> 77D801F5-8630-4B17-AFF4-8FC832A881E4     2  0.0000      0.978 0.000 1.000
#> E21ECF18-530F-4FF4-8C87-16A6DE1332FB     2  0.0000      0.978 0.000 1.000
#> 7053DEF6-F90B-49C8-8F1C-AE3E475357D9     2  0.0000      0.978 0.000 1.000
#> A04E027E-2514-4A25-9990-11A363C1B87B     2  0.0000      0.978 0.000 1.000
#> 4486A913-F13E-4F1B-8199-413D93E1D0E7     1  0.2236      0.946 0.964 0.036
#> 9E582EE9-49AE-4160-B967-709C2E73FEB5     2  0.0000      0.978 0.000 1.000
#> BD0AA815-5C98-418D-B7BE-3328340ACAC2     1  0.0000      0.976 1.000 0.000
#> D7B9614E-7C7E-4775-93B5-DA77E76E6A53     2  0.0000      0.978 0.000 1.000
#> CFEAB6F4-F1DC-4E57-BCAD-A062956ED4AF     2  0.0000      0.978 0.000 1.000
#> 0AFBD4B3-0326-4764-88C9-25CF5761DBBF     2  0.6712      0.790 0.176 0.824
#> B493754C-AE76-432E-87B9-8DA072E65533     1  0.0000      0.976 1.000 0.000
#> D0B93843-4208-4FE8-8AC9-F71CAA51708F     2  0.0000      0.978 0.000 1.000
#> 5DA6F086-6C3A-43D2-AEA5-E4F56D4761B0     2  0.0000      0.978 0.000 1.000
#> B0E30CEB-1D96-4028-884A-F6572D4AEB5A     2  0.0000      0.978 0.000 1.000
#> 7B1BB1C8-CCF1-4CFA-9842-86E692C6AD45     2  0.0000      0.978 0.000 1.000
#> E1833486-2998-4804-A535-EBF25A992392     2  0.0000      0.978 0.000 1.000
#> 1469D134-06E6-42EF-9C5A-C30DC2B34C01     2  0.0000      0.978 0.000 1.000
#> F3F32D39-7ACE-4462-8866-FDCD35DA4599     2  0.0000      0.978 0.000 1.000
#> E56486B8-FAAE-42BF-B67E-D253783B1043     1  0.0000      0.976 1.000 0.000
#> F8E9F501-DECA-4A6A-8CF1-1A54915E6FA6     1  0.0000      0.976 1.000 0.000
#> B3AFCDBB-95EF-4028-84F7-9DBC39B25E70     2  0.0000      0.978 0.000 1.000
#> 864ACE9F-29B4-4BB2-A966-E6F601637A79     2  0.0000      0.978 0.000 1.000
#> 932BAFF1-A2A8-404F-A9E9-44DCAA8CFF83     2  0.0000      0.978 0.000 1.000
#> 1C82688E-01A7-4723-8266-F614FB7EABE5     1  0.8016      0.683 0.756 0.244
#> 8FED16FD-AFBF-475D-A19F-1BC84D0AA571     2  0.0000      0.978 0.000 1.000
#> 9EF7685F-CA09-4869-94EA-12A1129093B1     2  0.0000      0.978 0.000 1.000
#> 18AB08E8-6C1A-49E4-9DF0-79D80D9BEC78     2  0.0000      0.978 0.000 1.000
#> 97FB3176-395F-475B-8EAE-332C5BEE8155     1  0.0000      0.976 1.000 0.000
#> E1876307-DFD9-4688-876F-D71B37466068     2  0.0000      0.978 0.000 1.000
#> 7E2C9DA9-BC94-48AE-A949-3EC3FA9BCF04     2  0.0000      0.978 0.000 1.000
#> 5447477A-39AC-4B54-98F9-8AE9926D6E00     2  0.0000      0.978 0.000 1.000
#> 80ECFC95-5D27-45CA-A2D2-74176E3FBD79     2  0.0000      0.978 0.000 1.000
#> 02BB39E5-7DB7-4A83-AB23-2F425CD4E00A     2  0.0000      0.978 0.000 1.000
#> 5A809CBF-4BB5-4E7F-AA55-E611D2C98D18     2  0.0000      0.978 0.000 1.000
#> B6B3D3E1-E2A8-4C01-974B-32A1C9CA930D     2  0.0000      0.978 0.000 1.000
#> A113FF0A-B623-49B2-A7DE-0439FBDBF854     2  0.0000      0.978 0.000 1.000
#> B3CCA12D-4569-4AB8-AC41-457448268D90     2  0.0000      0.978 0.000 1.000
#> 57F24B18-B295-4FAB-8C48-6DC4C6D8FB9C     1  0.0000      0.976 1.000 0.000
#> A9E61FEB-0C4C-436D-B39F-E70A2839E046     2  0.0000      0.978 0.000 1.000
#> 919AED7C-37E6-4F90-8BBC-C0975A291946     2  0.0000      0.978 0.000 1.000
#> 5BAD5DAA-9AD8-462B-B2DD-7DF7C37B5DA9     2  0.0000      0.978 0.000 1.000
#> 2C91951E-FDDE-4E23-9D7C-648C9BF40351     2  0.7376      0.746 0.208 0.792
#> 5E24404F-B1F2-43D8-A1BB-B94F799DBD63     2  0.0000      0.978 0.000 1.000
#> 5F71B888-30B5-46CF-9A49-85F8AB7A0AFE     2  0.9815      0.302 0.420 0.580
#> C77D7B0B-56B5-414A-BC5C-18E92E6BE886     2  0.9044      0.519 0.320 0.680
#> 4326E7CF-426E-4352-9903-27BF06E76626     2  0.0672      0.972 0.008 0.992
#> 3BB47EA2-169B-4109-973F-D7B3FA372F0D     2  0.0000      0.978 0.000 1.000
#> E8DDAFD3-0B70-4B87-A243-0141696EE8CF     2  0.0000      0.978 0.000 1.000
#> 985FEEC2-9737-4018-80DF-21A07AB47900     2  0.0000      0.978 0.000 1.000
#> 244D5DA9-677F-46F6-BAC4-67EE32AC3291     1  0.0000      0.976 1.000 0.000
#> F28A5BF1-DE90-468E-9192-AAA281AA618E     2  0.0000      0.978 0.000 1.000
#> AE86FD13-75D2-4259-A607-12A1BA0CC513     2  0.0000      0.978 0.000 1.000
#> E71AD72B-D55B-4654-89F7-C31CA32624F4     2  0.0000      0.978 0.000 1.000
#> 7B86D69D-7C51-499A-A603-12D5541EEE96     2  0.0000      0.978 0.000 1.000
#> 3E661E40-D5A5-49E0-9B16-0D6EB5AF65FB     1  0.0000      0.976 1.000 0.000
#> 3FB923D7-F9BB-47A2-ADF6-8C6A48C8E765     2  0.0000      0.978 0.000 1.000
#> 16E8C274-EA27-40FA-AEAE-C3EADD222400     2  0.0000      0.978 0.000 1.000
#> 0420E91B-6FF9-4D0F-AAE8-73F3F38D33C9     2  0.0000      0.978 0.000 1.000
#> 457090A2-AE7F-4E68-85EA-032DE8411110     2  0.0000      0.978 0.000 1.000
#> CFDDDD40-6A3F-4460-B34E-8BCBD5716A99     2  0.0000      0.978 0.000 1.000
#> 103E3A17-4FF4-4029-8723-DDEBFA6C2B5F     2  0.0000      0.978 0.000 1.000
#> 754EB254-EE63-493D-9518-6DE9EE1C3D5B     2  0.7453      0.740 0.212 0.788
#> A8CFE86F-B8B1-46EE-959D-391E3EEA1B4B     2  0.0000      0.978 0.000 1.000
#> 34ED910C-7470-4552-8561-D01D59190521     1  0.0000      0.976 1.000 0.000
#> 5AECB107-F9E9-413C-AD1B-A777FB2D6982     2  0.0000      0.978 0.000 1.000
#> 6A09CE3A-2558-4247-8D12-E4292C2BD18A     2  0.0000      0.978 0.000 1.000
#> 80C54D0F-1525-4699-9AD7-E7D77BB34195     1  0.0000      0.976 1.000 0.000
#> 36DC7E39-3EB0-46BA-9097-CE3275AB5F02     2  0.7299      0.751 0.204 0.796
#> 8EF053CE-EBB7-4D2B-A0FD-112F86116E69     2  0.0000      0.978 0.000 1.000
#> A9195281-8CAE-45A8-8493-744E577907FA     1  0.0000      0.976 1.000 0.000
#> 24DC719A-9C27-4CC8-90D3-F33E5E944818     2  0.0000      0.978 0.000 1.000
#> E789661A-C027-405D-9F76-E6D52CE3018B     2  0.0000      0.978 0.000 1.000
#> 451FFA1C-4AA9-4830-A8D4-D51E1A5133D3     2  0.0000      0.978 0.000 1.000
#> E466A9F5-E4CF-4A6F-9076-BF253B2C1E11     2  0.0000      0.978 0.000 1.000
#> E803BBDE-80EB-45B2-AAEF-3FEBCE142345     2  0.0000      0.978 0.000 1.000
#> CCABB592-8ED5-4879-9918-5C1CCF196A18     2  0.0000      0.978 0.000 1.000
#> EFA5F15F-1C72-4476-BFA6-528C6D237CC4     2  0.0000      0.978 0.000 1.000
#> A909220E-6FC9-49AC-9CFD-A76A4DF1C8B7     2  0.0000      0.978 0.000 1.000
#> B57C849C-28B1-4315-885C-330B9C9482B3     2  0.0000      0.978 0.000 1.000
#> 80105919-54FA-4BE7-8B88-D26AA563C6E7     2  0.0000      0.978 0.000 1.000
#> 246D48D0-C61D-4F34-82B8-4079EE14FD17     1  0.0000      0.976 1.000 0.000
#> 14B4BE11-4576-4511-946E-28EB079ABA3E     2  0.0000      0.978 0.000 1.000
#> 80936433-AA91-4219-98F1-706C36298060     2  0.0000      0.978 0.000 1.000
#> A71D55E1-7DE3-4195-B181-CC10D0CE09C9     2  0.0000      0.978 0.000 1.000
#> 241F589C-D559-43D7-8340-31EBCEB36E14     2  0.7219      0.757 0.200 0.800
#> D85CB054-7F54-4383-96C0-6C99761B84E7     2  0.0000      0.978 0.000 1.000
#> C2C08680-E96B-468D-BBFA-E7D7E0034249     1  0.0000      0.976 1.000 0.000
#> D56B45D0-D99C-4D53-B71E-B1E8AC4787FE     2  0.0000      0.978 0.000 1.000
#> 1D107D2C-0473-434D-AE4E-32F1FD4933C9     2  0.1184      0.965 0.016 0.984
#> 17CA5D73-4384-4645-83F8-587847043DD2     2  0.0000      0.978 0.000 1.000
#> 40467950-A95C-4731-AD93-0A128442C837     1  0.0000      0.976 1.000 0.000
#> FE7B013B-9204-40BC-B644-7B3A5F170A96     2  0.0000      0.978 0.000 1.000
#> 618FC260-3345-43CB-8CE0-93F55A01DBD1     2  0.0000      0.978 0.000 1.000
#> DDC03CC8-8B62-4A23-BF0F-41A3A7FD7F65     2  0.0000      0.978 0.000 1.000
#> F7C66216-32AD-49E8-AF01-C934896CCB5D     2  0.0000      0.978 0.000 1.000
#> 90F0996F-AE69-4578-9B98-6572B5E708D4     2  0.0000      0.978 0.000 1.000
#> 7AEAFD8C-31A0-4F4B-8381-23EDAAA3DC13     1  0.0000      0.976 1.000 0.000
#> 8E08BD68-8325-4802-869F-BD7708EE7BAA     1  0.0000      0.976 1.000 0.000
#> 8A5CD6F1-AC5D-4EAC-A005-FCD66F8E7141     1  0.2043      0.948 0.968 0.032
#> 65EFA716-D0C3-456C-AEFE-631B4130CD1B     2  0.0000      0.978 0.000 1.000
#> 4032D247-79A3-4AC6-A3B6-51149B75DF0F     2  0.0000      0.978 0.000 1.000
#> D957A2ED-97CD-4107-90A5-73C7691A5681     2  0.0000      0.978 0.000 1.000
#> A7ECBC06-1332-4278-8723-85DC8351188A     2  0.0000      0.978 0.000 1.000
#> 631F847D-1E4E-404F-A98D-F105DBD08CF6     2  0.0000      0.978 0.000 1.000
#> D9364524-CD1F-4C45-A2EF-8CB401487001     2  0.0000      0.978 0.000 1.000
#> 4BA56207-18D4-4C7A-A3E6-7834FA888DBA     2  0.0000      0.978 0.000 1.000
#> A7D0A83A-4A51-4D8D-A66C-1EDC4B9F2291     1  0.0000      0.976 1.000 0.000
#> 72DDC907-0901-4E61-83CF-38500D03FABC     2  0.2236      0.946 0.036 0.964
#> 1E9BD546-C4B9-46C1-8A93-A90F2C38BA1E     2  0.0000      0.978 0.000 1.000
#> 2D325CDD-7DE7-4058-B09E-632C14777E20     2  0.0000      0.978 0.000 1.000
#> E4F45B0B-91FA-49C0-9772-27321D23104B     2  0.0000      0.978 0.000 1.000
#> 7409A62F-0F0B-44AA-85BD-91B6C646E36F     2  0.0000      0.978 0.000 1.000
#> BEF38FBC-DDAA-4B8E-91F1-A150452BB15C     2  0.0000      0.978 0.000 1.000
#> 4287781B-8C52-4B61-9CF8-47A3FCC83201     2  0.0000      0.978 0.000 1.000
#> D47CA3EF-BC7C-43D7-A006-26383200E0D1     1  0.0000      0.976 1.000 0.000
#> 1375359F-E6CF-4C08-88A7-CEA1E0B1765E     2  0.0000      0.978 0.000 1.000
#> 8FE5A988-F803-436D-9A85-45E7DCEB8934     2  0.0000      0.978 0.000 1.000
#> AC7DD1B2-EF04-435B-BC5E-F25496DB73E9     2  0.0000      0.978 0.000 1.000
#> 3F2C5428-C65D-4F63-8BB3-AE3461403D1E     2  0.0000      0.978 0.000 1.000
#> 505FACCE-D2A3-4AFF-8525-BC579E317D9C     2  0.0000      0.978 0.000 1.000
#> 0C8730E9-90CC-4B76-9D20-60DA4881FA27     2  0.0000      0.978 0.000 1.000
#> C6D0E763-7E74-45E5-8DA8-DDE62C43F784     2  0.0000      0.978 0.000 1.000
#> 27CD53C1-E63D-4870-8B62-1235BF075A32     2  0.0000      0.978 0.000 1.000
#> 51E96A1D-F65E-421F-BFAB-7716E16E530A     1  0.0000      0.976 1.000 0.000
#> 887E7408-C7D7-420F-A763-0EE70A316D17     2  0.0000      0.978 0.000 1.000
#> 2AAAE1D7-309B-4F2D-A61C-C7C2FAB71AD7     2  0.0000      0.978 0.000 1.000
#> ED57D62C-0904-4BDF-879B-C388CA1E301D     2  0.0000      0.978 0.000 1.000
#> A2BB4331-B82A-4CFF-A490-5400A5085DFD     2  0.0000      0.978 0.000 1.000
#> A17B743B-080B-4D00-9124-5CAECE38ABA5     2  0.0000      0.978 0.000 1.000
#> 570F7FED-AD06-4274-97FA-BAFD9D5CB3F8     2  0.0000      0.978 0.000 1.000
#> EE40EE80-4520-4643-B906-48246BA616A7     1  0.0000      0.976 1.000 0.000
#> C075F09E-623C-46ED-B927-889B48F450B3     2  0.0000      0.978 0.000 1.000
#> 0BDBBD67-9117-4C7C-8B3B-9463652DEA59     1  0.0000      0.976 1.000 0.000
#> 580C059F-1B04-4229-8047-DCB3BC29FB01     2  0.0000      0.978 0.000 1.000
#> 89BB88D0-CB32-406D-9B8D-642895E4FE9A     2  0.0000      0.978 0.000 1.000
#> BBC99BA3-FD45-4D78-BFD9-0A452C99A364     2  0.0000      0.978 0.000 1.000
#> 23890A5E-F5DD-4F67-9A92-524CFD760E24     2  0.0000      0.978 0.000 1.000
#> 4872963F-DEE8-46A2-9173-90EF52BE061E     2  0.0000      0.978 0.000 1.000
#> C3AEC49D-E7A2-4CFE-8F56-10578FE55294     1  0.0000      0.976 1.000 0.000
#> 816CF68B-8476-4960-9F05-FB959A686323     2  0.0000      0.978 0.000 1.000
#> EBA9865F-E212-4BCD-9816-7C001E7DFF99     1  0.0000      0.976 1.000 0.000
#> 2B962C1A-B8DA-4A1E-ABD2-A4A9AC263740     2  0.8443      0.641 0.272 0.728
#> B23A1419-0406-48BF-813B-B6ED6FD98789     2  0.0000      0.978 0.000 1.000
#> 2F990386-E7DA-4D5A-BB71-4141905C4903     1  0.0000      0.976 1.000 0.000
#> 15B12D3E-8CDE-4012-92DD-59423C4C6E8C     2  0.0000      0.978 0.000 1.000
#> 7893DB86-CDA3-45DE-931F-CFBB52B64ACE     2  0.0000      0.978 0.000 1.000
#> E0B47DDB-27D5-4631-9D96-E7C25F42CA48     2  0.0000      0.978 0.000 1.000
#> 5E03E52F-957D-455B-A007-19714FAA818A     2  0.0000      0.978 0.000 1.000
#> 6006A79E-F6AD-43F6-BAC9-159254B86F7A     2  0.0000      0.978 0.000 1.000
#> 8A4B9352-D79A-46BB-8EE1-2BE5FBBB3EDF     2  0.0000      0.978 0.000 1.000
#> AF331A84-397D-4E85-81FA-D4DD2D40E949     1  0.0000      0.976 1.000 0.000
#> 1D87888D-7E1D-4327-8F57-BDBB95764E13     2  0.0000      0.978 0.000 1.000
#> 35CD1BE6-D38C-4302-B0D6-188207F295B5     2  0.0000      0.978 0.000 1.000
#> 89DACEFE-0514-4C0B-A40B-29FECBADA8C0     2  0.0000      0.978 0.000 1.000
#> A0E8698C-155F-46AA-A1D9-B9DC653CE61E     1  0.0000      0.976 1.000 0.000
#> 73CEF608-0FAD-4F1A-8A09-EA8883BEC344     2  0.0000      0.978 0.000 1.000
#> C33059A9-A313-4806-B43B-0031365F3BE4     2  0.0000      0.978 0.000 1.000
#> D9C02B51-F92B-4F5F-89AC-BD526832C915     2  0.0000      0.978 0.000 1.000
#> 1122039D-5785-4F70-9916-17C585453512     2  0.0000      0.978 0.000 1.000
#> F7849C4C-5733-40C6-A826-EF610E7CB14E     1  0.0000      0.976 1.000 0.000
#> E678189F-D5CF-4C45-8E53-58ECB8448058     1  0.5946      0.828 0.856 0.144
#> C56C7ED7-A684-40CC-B426-B108E2248467     2  0.0000      0.978 0.000 1.000
#> B6803321-BA08-464B-A8A1-A1A98A6C78DD     2  0.9775      0.316 0.412 0.588
#> 1A8716BA-1C57-4354-BB23-67916F8983ED     2  0.0000      0.978 0.000 1.000
#> AB4B5F5E-35AF-4609-A0D1-6E1771356D17     2  0.0000      0.978 0.000 1.000
#> 45D6B2A4-98E3-4EAD-A86A-7F5FEF10C4F0     2  0.0000      0.978 0.000 1.000
#> 08C438CB-FDBA-4F47-A3E5-87B949C129B4     2  0.0000      0.978 0.000 1.000
#> DB269B62-B5A6-405F-8D2E-0E2245D6EB5E     2  0.2603      0.938 0.044 0.956
#> A655DC17-020D-4E51-A5C7-55D8C134FFC0     2  0.0000      0.978 0.000 1.000
#> 79BA86D9-466F-48D7-B64B-F933B6995716     2  0.0000      0.978 0.000 1.000
#> 9B65E4D0-7015-4192-9AF9-1383BD6B0E12     2  0.9580      0.411 0.380 0.620
#> 1B73CE27-B464-41E6-BE27-90FA13683331     2  0.0000      0.978 0.000 1.000
#> B4CD2742-8985-436A-B185-76D37DC4EFF3     1  0.0000      0.976 1.000 0.000
#> F2A260A6-9EB6-4F54-83FD-F17F6F1F63E1     2  0.0000      0.978 0.000 1.000
#> CC6EA54F-CD5F-4F4D-BE2A-A2739C2E3435     2  0.0000      0.978 0.000 1.000
#> 55D67692-09C2-4EEB-8424-DE12B47FAF2C     1  0.0000      0.976 1.000 0.000
#> E4FE16AB-D7FC-4183-B6A6-2A9CF8CA1D4F     2  0.0000      0.978 0.000 1.000
#> 788B9881-8ED2-45AB-8F9E-227CB973F4DC     2  0.3114      0.928 0.056 0.944
#> EB5C6373-9C28-4A80-B2BB-2883F5BF5348     1  0.0000      0.976 1.000 0.000
#> F35D3CDD-78A2-4026-B275-8CCA93E32938     1  0.0000      0.976 1.000 0.000
#> EB7883EB-0079-4548-9132-169E94A698BA     2  0.0000      0.978 0.000 1.000
#> E6446572-BFA9-4018-89B3-7E4519EBE072     2  0.0000      0.978 0.000 1.000
#> 18C27423-8BAB-4427-BCBB-F554C7A03C43     2  0.0000      0.978 0.000 1.000
#> FC6B70B5-D69A-4039-9D3F-F7A25E980073     2  0.0000      0.978 0.000 1.000
#> 1B81980F-2EA6-4B2D-99B3-860BBACC3E8E     2  0.0000      0.978 0.000 1.000
#> 7018CAA2-8813-4AD8-9611-C8F0971C621F     2  0.0000      0.978 0.000 1.000
#> A0C429D9-0638-4873-BFB4-00056AB4719F     2  0.7219      0.757 0.200 0.800
#> 6F129BB5-D7FB-4799-82C1-5004C6337493     1  0.0000      0.976 1.000 0.000
#> A66F8DE1-22CF-4A91-9064-F3C31CE38AFC     2  0.0000      0.978 0.000 1.000
#> 682E834A-B44D-4B13-B26E-DAC1A9D8B83B     2  0.0000      0.978 0.000 1.000
#> 2785594A-571A-46B4-A901-CB9C62DC6174     2  0.0000      0.978 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0