cola Report for recount2:TCGA_thymus

Date: 2019-12-26 01:40:07 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 17548   122

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 2 1.000 0.992 0.996 **
SD:mclust 2 1.000 0.996 0.994 **
SD:NMF 2 1.000 0.973 0.988 **
MAD:skmeans 2 1.000 0.979 0.991 **
MAD:mclust 2 1.000 0.983 0.979 **
MAD:NMF 2 1.000 0.976 0.990 **
ATC:pam 2 1.000 0.978 0.990 **
ATC:NMF 3 1.000 0.962 0.985 ** 2
ATC:kmeans 3 1.000 0.933 0.975 ** 2
MAD:kmeans 2 0.949 0.963 0.983 *
ATC:skmeans 4 0.949 0.915 0.960 * 2,3
CV:skmeans 6 0.915 0.877 0.926 * 5
SD:kmeans 2 0.898 0.906 0.963
CV:mclust 6 0.885 0.850 0.922
CV:pam 4 0.878 0.897 0.953
MAD:pam 2 0.848 0.945 0.970
CV:NMF 2 0.753 0.882 0.948
SD:hclust 4 0.749 0.766 0.851
CV:hclust 2 0.722 0.854 0.926
ATC:hclust 4 0.672 0.812 0.892
MAD:hclust 2 0.592 0.818 0.899
ATC:mclust 2 0.538 0.919 0.946
CV:kmeans 2 0.510 0.739 0.861
SD:pam 2 0.387 0.843 0.901

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 1.000           0.973       0.988          0.497 0.505   0.505
#> CV:NMF      2 0.753           0.882       0.948          0.504 0.496   0.496
#> MAD:NMF     2 1.000           0.976       0.990          0.501 0.499   0.499
#> ATC:NMF     2 1.000           0.965       0.986          0.432 0.568   0.568
#> SD:skmeans  2 1.000           0.992       0.996          0.501 0.499   0.499
#> CV:skmeans  2 0.520           0.700       0.873          0.502 0.497   0.497
#> MAD:skmeans 2 1.000           0.979       0.991          0.502 0.499   0.499
#> ATC:skmeans 2 1.000           0.978       0.992          0.501 0.499   0.499
#> SD:mclust   2 1.000           0.996       0.994          0.500 0.497   0.497
#> CV:mclust   2 0.505           0.796       0.898          0.492 0.512   0.512
#> MAD:mclust  2 1.000           0.983       0.979          0.491 0.497   0.497
#> ATC:mclust  2 0.538           0.919       0.946          0.501 0.497   0.497
#> SD:kmeans   2 0.898           0.906       0.963          0.487 0.507   0.507
#> CV:kmeans   2 0.510           0.739       0.861          0.452 0.545   0.545
#> MAD:kmeans  2 0.949           0.963       0.983          0.498 0.501   0.501
#> ATC:kmeans  2 1.000           0.997       0.998          0.496 0.505   0.505
#> SD:pam      2 0.387           0.843       0.901          0.468 0.512   0.512
#> CV:pam      2 0.548           0.845       0.915          0.489 0.496   0.496
#> MAD:pam     2 0.848           0.945       0.970          0.473 0.519   0.519
#> ATC:pam     2 1.000           0.978       0.990          0.471 0.531   0.531
#> SD:hclust   2 0.606           0.763       0.895          0.431 0.561   0.561
#> CV:hclust   2 0.722           0.854       0.926          0.404 0.618   0.618
#> MAD:hclust  2 0.592           0.818       0.899          0.457 0.498   0.498
#> ATC:hclust  2 0.503           0.677       0.798          0.431 0.522   0.522
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.813           0.921       0.960          0.343 0.727   0.507
#> CV:NMF      3 0.637           0.701       0.842          0.281 0.761   0.554
#> MAD:NMF     3 0.682           0.751       0.878          0.324 0.765   0.562
#> ATC:NMF     3 1.000           0.962       0.985          0.497 0.702   0.510
#> SD:skmeans  3 0.673           0.816       0.867          0.309 0.795   0.610
#> CV:skmeans  3 0.622           0.769       0.872          0.311 0.733   0.518
#> MAD:skmeans 3 0.557           0.773       0.823          0.303 0.807   0.632
#> ATC:skmeans 3 0.935           0.928       0.969          0.289 0.838   0.684
#> SD:mclust   3 0.539           0.732       0.786          0.246 0.875   0.748
#> CV:mclust   3 0.661           0.769       0.804          0.237 0.908   0.823
#> MAD:mclust  3 0.797           0.816       0.889          0.284 0.863   0.725
#> ATC:mclust  3 0.667           0.848       0.890          0.308 0.684   0.450
#> SD:kmeans   3 0.539           0.718       0.824          0.320 0.832   0.680
#> CV:kmeans   3 0.501           0.543       0.745          0.377 0.834   0.705
#> MAD:kmeans  3 0.541           0.722       0.828          0.298 0.846   0.700
#> ATC:kmeans  3 1.000           0.933       0.975          0.305 0.670   0.443
#> SD:pam      3 0.587           0.650       0.798          0.390 0.751   0.551
#> CV:pam      3 0.808           0.891       0.933          0.321 0.835   0.674
#> MAD:pam     3 0.508           0.650       0.788          0.367 0.690   0.470
#> ATC:pam     3 0.816           0.891       0.954          0.357 0.777   0.601
#> SD:hclust   3 0.538           0.719       0.839          0.420 0.761   0.590
#> CV:hclust   3 0.600           0.765       0.890          0.319 0.863   0.778
#> MAD:hclust  3 0.641           0.716       0.852          0.385 0.741   0.525
#> ATC:hclust  3 0.600           0.571       0.778          0.430 0.671   0.462
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.761           0.740       0.864         0.0977 0.888   0.680
#> CV:NMF      4 0.726           0.775       0.857         0.1138 0.855   0.615
#> MAD:NMF     4 0.824           0.855       0.913         0.1072 0.849   0.592
#> ATC:NMF     4 0.816           0.868       0.927         0.1528 0.858   0.618
#> SD:skmeans  4 0.822           0.888       0.922         0.1339 0.853   0.611
#> CV:skmeans  4 0.871           0.870       0.944         0.1183 0.879   0.667
#> MAD:skmeans 4 0.801           0.781       0.871         0.1374 0.857   0.622
#> ATC:skmeans 4 0.949           0.915       0.960         0.0921 0.925   0.797
#> SD:mclust   4 0.785           0.838       0.898         0.1677 0.822   0.556
#> CV:mclust   4 0.746           0.820       0.887         0.1261 0.870   0.703
#> MAD:mclust  4 0.840           0.908       0.936         0.1737 0.837   0.579
#> ATC:mclust  4 0.498           0.452       0.654         0.1105 0.841   0.571
#> SD:kmeans   4 0.584           0.502       0.751         0.1248 0.878   0.686
#> CV:kmeans   4 0.659           0.757       0.820         0.1246 0.758   0.491
#> MAD:kmeans  4 0.613           0.366       0.615         0.1321 0.833   0.599
#> ATC:kmeans  4 0.703           0.732       0.871         0.1411 0.788   0.488
#> SD:pam      4 0.606           0.513       0.739         0.1197 0.774   0.461
#> CV:pam      4 0.878           0.897       0.953         0.0874 0.910   0.757
#> MAD:pam     4 0.651           0.643       0.817         0.1323 0.821   0.536
#> ATC:pam     4 0.810           0.856       0.928         0.1567 0.798   0.510
#> SD:hclust   4 0.749           0.766       0.851         0.1329 0.911   0.759
#> CV:hclust   4 0.629           0.702       0.853         0.1176 0.995   0.989
#> MAD:hclust  4 0.744           0.796       0.872         0.1186 0.911   0.747
#> ATC:hclust  4 0.672           0.812       0.892         0.1868 0.804   0.524
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.830           0.848       0.916         0.0602 0.910   0.683
#> CV:NMF      5 0.735           0.678       0.817         0.0954 0.893   0.637
#> MAD:NMF     5 0.854           0.824       0.920         0.0545 0.919   0.709
#> ATC:NMF     5 0.776           0.640       0.821         0.0518 0.943   0.784
#> SD:skmeans  5 0.896           0.820       0.871         0.0464 0.944   0.792
#> CV:skmeans  5 0.967           0.927       0.961         0.0785 0.908   0.671
#> MAD:skmeans 5 0.751           0.545       0.721         0.0435 0.878   0.636
#> ATC:skmeans 5 0.874           0.839       0.913         0.0677 0.909   0.713
#> SD:mclust   5 0.741           0.697       0.870         0.0557 0.955   0.835
#> CV:mclust   5 0.831           0.842       0.915         0.1347 0.843   0.540
#> MAD:mclust  5 0.777           0.802       0.892         0.0379 0.986   0.944
#> ATC:mclust  5 0.801           0.744       0.873         0.0841 0.859   0.521
#> SD:kmeans   5 0.673           0.639       0.735         0.0721 0.845   0.527
#> CV:kmeans   5 0.724           0.856       0.822         0.0833 0.919   0.727
#> MAD:kmeans  5 0.651           0.470       0.656         0.0654 0.770   0.397
#> ATC:kmeans  5 0.704           0.670       0.809         0.0749 0.869   0.559
#> SD:pam      5 0.750           0.758       0.871         0.0612 0.862   0.559
#> CV:pam      5 0.778           0.829       0.894         0.0502 0.936   0.799
#> MAD:pam     5 0.692           0.572       0.746         0.0673 0.873   0.583
#> ATC:pam     5 0.779           0.680       0.819         0.0641 0.971   0.886
#> SD:hclust   5 0.697           0.752       0.858         0.0471 0.976   0.914
#> CV:hclust   5 0.751           0.805       0.910         0.1134 0.866   0.717
#> MAD:hclust  5 0.757           0.780       0.865         0.0386 0.976   0.913
#> ATC:hclust  5 0.696           0.724       0.862         0.0377 0.991   0.964
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.788           0.787       0.863         0.0566 0.909   0.621
#> CV:NMF      6 0.860           0.771       0.890         0.0515 0.910   0.616
#> MAD:NMF     6 0.754           0.558       0.779         0.0454 0.956   0.816
#> ATC:NMF     6 0.844           0.793       0.892         0.0302 0.920   0.671
#> SD:skmeans  6 0.831           0.775       0.843         0.0476 0.953   0.790
#> CV:skmeans  6 0.915           0.877       0.926         0.0423 0.952   0.774
#> MAD:skmeans 6 0.823           0.694       0.800         0.0466 0.839   0.491
#> ATC:skmeans 6 0.842           0.748       0.875         0.0298 0.975   0.900
#> SD:mclust   6 0.842           0.706       0.834         0.0596 0.936   0.746
#> CV:mclust   6 0.885           0.850       0.922         0.0419 0.976   0.887
#> MAD:mclust  6 0.802           0.730       0.840         0.0557 0.945   0.781
#> ATC:mclust  6 0.849           0.775       0.869         0.0432 0.924   0.659
#> SD:kmeans   6 0.712           0.561       0.693         0.0459 0.878   0.537
#> CV:kmeans   6 0.826           0.845       0.855         0.0556 0.959   0.815
#> MAD:kmeans  6 0.718           0.664       0.732         0.0477 0.846   0.464
#> ATC:kmeans  6 0.763           0.681       0.802         0.0421 0.932   0.683
#> SD:pam      6 0.841           0.785       0.889         0.0550 0.949   0.777
#> CV:pam      6 0.866           0.830       0.932         0.0818 0.926   0.730
#> MAD:pam     6 0.846           0.719       0.831         0.0442 0.883   0.557
#> ATC:pam     6 0.782           0.679       0.756         0.0453 0.894   0.593
#> SD:hclust   6 0.719           0.741       0.845         0.0386 0.971   0.892
#> CV:hclust   6 0.716           0.720       0.838         0.0802 0.989   0.967
#> MAD:hclust  6 0.740           0.740       0.850         0.0355 0.989   0.958
#> ATC:hclust  6 0.735           0.691       0.823         0.0283 0.972   0.888

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.606           0.763       0.895         0.4312 0.561   0.561
#> 3 3 0.538           0.719       0.839         0.4204 0.761   0.590
#> 4 4 0.749           0.766       0.851         0.1329 0.911   0.759
#> 5 5 0.697           0.752       0.858         0.0471 0.976   0.914
#> 6 6 0.719           0.741       0.845         0.0386 0.971   0.892

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.2603      0.870 0.956 0.044
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.9815      0.272 0.420 0.580
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.8081      0.680 0.752 0.248
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2423      0.871 0.960 0.040
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.9522      0.472 0.628 0.372
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0938      0.862 0.012 0.988
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.9661      0.424 0.608 0.392
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.2603      0.870 0.956 0.044
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3431      0.859 0.936 0.064
#> 806616FE-1855-4284-9265-42842104CB21     1  0.9522      0.472 0.628 0.372
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.862 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1184      0.861 0.016 0.984
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.2603      0.870 0.956 0.044
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.9850      0.246 0.428 0.572
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.9209      0.541 0.664 0.336
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.9522      0.472 0.628 0.372
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.9209      0.541 0.664 0.336
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.873 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.862 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.862 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.873 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.862 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.9209      0.541 0.664 0.336
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.873 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0938      0.862 0.012 0.988
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.873 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.873 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.873 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.9209      0.541 0.664 0.336
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.9850      0.246 0.428 0.572
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.862 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.2603      0.870 0.956 0.044
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.873 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.873 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.873 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.9209      0.541 0.664 0.336
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.873 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.9661      0.424 0.608 0.392
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.862 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.2423      0.871 0.960 0.040
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0938      0.862 0.012 0.988
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.873 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.873 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.1184      0.870 0.984 0.016
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.9661      0.424 0.608 0.392
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.9209      0.541 0.664 0.336
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.9775      0.292 0.412 0.588
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.8555      0.587 0.280 0.720
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.2603      0.870 0.956 0.044
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.1184      0.870 0.984 0.016
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.6148      0.751 0.152 0.848
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.1184      0.870 0.984 0.016
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.9580      0.454 0.620 0.380
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2423      0.871 0.960 0.040
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.1184      0.870 0.984 0.016
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2423      0.871 0.960 0.040
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0938      0.862 0.012 0.988
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.873 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.873 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.8555      0.587 0.280 0.720
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.1184      0.870 0.984 0.016
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.862 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1184      0.861 0.016 0.984
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.8081      0.680 0.752 0.248
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.9661      0.424 0.608 0.392
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.1184      0.870 0.984 0.016
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.873 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.873 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.1184      0.870 0.984 0.016
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2423      0.871 0.960 0.040
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1184      0.861 0.016 0.984
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0938      0.862 0.012 0.988
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.6148      0.751 0.152 0.848
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.862 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.2778      0.868 0.952 0.048
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.862 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2423      0.871 0.960 0.040
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.873 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.873 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.9795      0.280 0.416 0.584
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.873 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.873 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2603      0.870 0.956 0.044
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.862 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1184      0.861 0.016 0.984
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.9775      0.292 0.412 0.588
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2423      0.871 0.960 0.040
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.873 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1184      0.861 0.016 0.984
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0938      0.860 0.012 0.988
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.873 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1414      0.874 0.980 0.020
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.862 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1414      0.874 0.980 0.020
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.9209      0.541 0.664 0.336
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.9754      0.354 0.592 0.408
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.873 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2423      0.871 0.960 0.040
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.862 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.862 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.8081      0.680 0.752 0.248
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2778      0.868 0.952 0.048
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2603      0.870 0.956 0.044
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.862 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.873 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.8327      0.614 0.264 0.736
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1414      0.874 0.980 0.020
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1414      0.874 0.980 0.020
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.873 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.9661      0.424 0.608 0.392
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.862 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.2603      0.870 0.956 0.044
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.873 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.873 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.9795      0.280 0.416 0.584
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.6712      0.757 0.824 0.176
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2423      0.871 0.960 0.040
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2778      0.868 0.952 0.048
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.873 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.862 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0376      0.872 0.996 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.9209      0.541 0.664 0.336

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.2229     0.8298 0.944 0.012 0.044
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.9371     0.3906 0.172 0.376 0.452
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4784     0.5387 0.200 0.004 0.796
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.6664     0.3341 0.528 0.008 0.464
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.5536     0.7548 0.236 0.012 0.752
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1832     0.8914 0.008 0.956 0.036
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.5020     0.7635 0.192 0.012 0.796
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1999     0.8286 0.952 0.012 0.036
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2689     0.8132 0.932 0.032 0.036
#> 806616FE-1855-4284-9265-42842104CB21     3  0.5536     0.7548 0.236 0.012 0.752
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2448     0.8588 0.000 0.924 0.076
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1999     0.8898 0.012 0.952 0.036
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.2229     0.8298 0.944 0.012 0.044
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.9490     0.4151 0.188 0.368 0.444
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.5285     0.7562 0.244 0.004 0.752
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.5406     0.7604 0.224 0.012 0.764
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.5285     0.7562 0.244 0.004 0.752
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.8366 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0424     0.9020 0.000 0.992 0.008
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0424     0.9020 0.000 0.992 0.008
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.8366 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0424     0.9020 0.000 0.992 0.008
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5325     0.7536 0.248 0.004 0.748
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.6260     0.3579 0.552 0.000 0.448
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1832     0.8914 0.008 0.956 0.036
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.8366 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.8366 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.8366 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.5285     0.7562 0.244 0.004 0.752
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.9490     0.4151 0.188 0.368 0.444
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0424     0.9020 0.000 0.992 0.008
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.2229     0.8298 0.944 0.012 0.044
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.5650     0.5518 0.688 0.000 0.312
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0424     0.8360 0.992 0.000 0.008
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.8366 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5285     0.7562 0.244 0.004 0.752
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0892     0.8339 0.980 0.000 0.020
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.5020     0.7635 0.192 0.012 0.796
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0424     0.9020 0.000 0.992 0.008
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.2063     0.8315 0.948 0.008 0.044
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1832     0.8914 0.008 0.956 0.036
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.6260     0.3579 0.552 0.000 0.448
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.6225    -0.0748 0.432 0.000 0.568
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.1964     0.8116 0.944 0.000 0.056
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5020     0.7635 0.192 0.012 0.796
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.5285     0.7562 0.244 0.004 0.752
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.9485     0.3793 0.184 0.388 0.428
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.8868     0.1879 0.172 0.568 0.260
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1999     0.8286 0.952 0.012 0.036
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.1964     0.8116 0.944 0.000 0.056
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.7039     0.5659 0.144 0.728 0.128
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.1964     0.8131 0.944 0.000 0.056
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.5406     0.7589 0.224 0.012 0.764
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2063     0.8315 0.948 0.008 0.044
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.1860     0.8145 0.948 0.000 0.052
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.6672     0.3175 0.520 0.008 0.472
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1832     0.8914 0.008 0.956 0.036
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.6260     0.3579 0.552 0.000 0.448
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0237     0.8360 0.996 0.000 0.004
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.8868     0.1879 0.172 0.568 0.260
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.1964     0.8116 0.944 0.000 0.056
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0424     0.9020 0.000 0.992 0.008
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1999     0.8898 0.012 0.952 0.036
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4784     0.5387 0.200 0.004 0.796
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.5020     0.7635 0.192 0.012 0.796
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.1753     0.8175 0.952 0.000 0.048
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000     0.8366 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.8366 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.2448     0.8037 0.924 0.000 0.076
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2063     0.8315 0.948 0.008 0.044
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1999     0.8898 0.012 0.952 0.036
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1832     0.8914 0.008 0.956 0.036
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.7039     0.5659 0.144 0.728 0.128
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0424     0.9020 0.000 0.992 0.008
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.2152     0.8266 0.948 0.016 0.036
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0592     0.9004 0.000 0.988 0.012
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2063     0.8315 0.948 0.008 0.044
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0237     0.8360 0.996 0.000 0.004
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.6260     0.3579 0.552 0.000 0.448
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.9481     0.3887 0.184 0.384 0.432
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.6260     0.3579 0.552 0.000 0.448
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.2625     0.7801 0.916 0.000 0.084
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2229     0.8298 0.944 0.012 0.044
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0424     0.9020 0.000 0.992 0.008
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1999     0.8898 0.012 0.952 0.036
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.9485     0.3793 0.184 0.388 0.428
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2063     0.8315 0.948 0.008 0.044
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.8366 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1999     0.8898 0.012 0.952 0.036
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0983     0.8982 0.004 0.980 0.016
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0892     0.8339 0.980 0.000 0.020
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.6307     0.2982 0.512 0.000 0.488
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0424     0.9020 0.000 0.992 0.008
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.6307     0.2982 0.512 0.000 0.488
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.5285     0.7562 0.244 0.004 0.752
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.9491     0.5847 0.292 0.220 0.488
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0237     0.8366 0.996 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2063     0.8315 0.948 0.008 0.044
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0424     0.9020 0.000 0.992 0.008
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0424     0.9020 0.000 0.992 0.008
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4784     0.5387 0.200 0.004 0.796
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2152     0.8266 0.948 0.016 0.036
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2229     0.8298 0.944 0.012 0.044
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0424     0.9020 0.000 0.992 0.008
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.6260     0.3579 0.552 0.000 0.448
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.8670     0.2663 0.168 0.592 0.240
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.6307     0.2982 0.512 0.000 0.488
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.6307     0.2982 0.512 0.000 0.488
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.8366 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5020     0.7635 0.192 0.012 0.796
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0424     0.9020 0.000 0.992 0.008
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1999     0.8286 0.952 0.012 0.036
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0237     0.8372 0.996 0.000 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0237     0.8372 0.996 0.000 0.004
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.9481     0.3887 0.184 0.384 0.432
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.4605     0.4851 0.204 0.000 0.796
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2063     0.8315 0.948 0.008 0.044
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2152     0.8266 0.948 0.016 0.036
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.8366 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0424     0.9020 0.000 0.992 0.008
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.1163     0.8320 0.972 0.000 0.028
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.5285     0.7562 0.244 0.004 0.752

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.1716      0.906 0.064 0.000 0.000 0.936
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.6079      0.337 0.052 0.380 0.568 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.6326      0.142 0.376 0.000 0.556 0.068
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4761      0.837 0.628 0.000 0.000 0.372
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.3074      0.585 0.000 0.000 0.848 0.152
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1557      0.888 0.056 0.944 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000      0.687 0.000 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.1557      0.908 0.056 0.000 0.000 0.944
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.2256      0.886 0.056 0.020 0.000 0.924
#> 806616FE-1855-4284-9265-42842104CB21     3  0.3074      0.585 0.000 0.000 0.848 0.152
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1792      0.852 0.000 0.932 0.068 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1661      0.888 0.052 0.944 0.000 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.1716      0.906 0.064 0.000 0.000 0.936
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.6216      0.354 0.044 0.372 0.576 0.008
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4836      0.669 0.320 0.000 0.672 0.008
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1022      0.677 0.000 0.000 0.968 0.032
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4836      0.669 0.320 0.000 0.672 0.008
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5271      0.663 0.320 0.000 0.656 0.024
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4877      0.875 0.592 0.000 0.000 0.408
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1557      0.888 0.056 0.944 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4836      0.669 0.320 0.000 0.672 0.008
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.6216      0.354 0.044 0.372 0.576 0.008
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.1716      0.906 0.064 0.000 0.000 0.936
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.5673     -0.620 0.448 0.000 0.024 0.528
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0336      0.914 0.000 0.000 0.008 0.992
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4836      0.669 0.320 0.000 0.672 0.008
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0707      0.909 0.000 0.000 0.020 0.980
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.687 0.000 0.000 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1474      0.889 0.052 0.948 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.4877      0.875 0.592 0.000 0.000 0.408
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.4353      0.717 0.756 0.000 0.012 0.232
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1557      0.878 0.000 0.000 0.056 0.944
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000      0.687 0.000 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.4836      0.669 0.320 0.000 0.672 0.008
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.6440      0.321 0.048 0.384 0.556 0.012
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6754      0.246 0.064 0.556 0.364 0.016
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.1557      0.908 0.056 0.000 0.000 0.944
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.1557      0.878 0.000 0.000 0.056 0.944
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4164      0.574 0.000 0.736 0.264 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.2198      0.851 0.008 0.000 0.072 0.920
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2921      0.597 0.000 0.000 0.860 0.140
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.1474      0.881 0.000 0.000 0.052 0.948
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4713      0.845 0.640 0.000 0.000 0.360
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1557      0.888 0.056 0.944 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4877      0.875 0.592 0.000 0.000 0.408
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188      0.915 0.004 0.000 0.000 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.6754      0.246 0.064 0.556 0.364 0.016
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.1557      0.878 0.000 0.000 0.056 0.944
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1743      0.885 0.056 0.940 0.000 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.6326      0.142 0.376 0.000 0.556 0.068
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000      0.687 0.000 0.000 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1792      0.864 0.000 0.000 0.068 0.932
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3471      0.776 0.072 0.000 0.060 0.868
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1661      0.888 0.052 0.944 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1557      0.888 0.056 0.944 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4164      0.574 0.000 0.736 0.264 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.1743      0.905 0.056 0.004 0.000 0.940
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0524      0.897 0.004 0.988 0.008 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188      0.915 0.004 0.000 0.000 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.4877      0.875 0.592 0.000 0.000 0.408
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.6429      0.330 0.048 0.380 0.560 0.012
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.4877      0.875 0.592 0.000 0.000 0.408
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3356      0.599 0.176 0.000 0.000 0.824
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.1716      0.906 0.064 0.000 0.000 0.936
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1743      0.885 0.056 0.940 0.000 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.6440      0.321 0.048 0.384 0.556 0.012
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1743      0.885 0.056 0.940 0.000 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0469      0.896 0.000 0.988 0.012 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.0707      0.909 0.000 0.000 0.020 0.980
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4661      0.879 0.652 0.000 0.000 0.348
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4661      0.879 0.652 0.000 0.000 0.348
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.4836      0.669 0.320 0.000 0.672 0.008
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.8487      0.475 0.152 0.216 0.536 0.096
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0188      0.915 0.000 0.000 0.004 0.996
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.6326      0.142 0.376 0.000 0.556 0.068
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.1743      0.905 0.056 0.004 0.000 0.940
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.1716      0.906 0.064 0.000 0.000 0.936
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4877      0.875 0.592 0.000 0.000 0.408
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6809      0.319 0.056 0.580 0.336 0.028
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4661      0.879 0.652 0.000 0.000 0.348
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4661      0.879 0.652 0.000 0.000 0.348
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000      0.687 0.000 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.1557      0.908 0.056 0.000 0.000 0.944
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0188      0.916 0.004 0.000 0.000 0.996
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188      0.916 0.004 0.000 0.000 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.6429      0.330 0.048 0.380 0.560 0.012
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.1661      0.247 0.944 0.000 0.052 0.004
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.1637      0.908 0.060 0.000 0.000 0.940
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.1743      0.905 0.056 0.004 0.000 0.940
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.916 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0921      0.905 0.000 0.000 0.028 0.972
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.4836      0.669 0.320 0.000 0.672 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2536     0.8603 0.128 0.000 0.004 0.868 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.5671     0.3737 0.096 0.336 0.568 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5553     0.1969 0.380 0.000 0.552 0.064 0.004
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3861     0.7598 0.712 0.000 0.004 0.284 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2921     0.5691 0.004 0.000 0.844 0.148 0.004
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.2020     0.8644 0.100 0.900 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0162     0.6226 0.000 0.000 0.996 0.000 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.2439     0.8632 0.120 0.000 0.004 0.876 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.3031     0.8452 0.120 0.020 0.004 0.856 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2921     0.5691 0.004 0.000 0.844 0.148 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1544     0.8428 0.000 0.932 0.068 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2124     0.8647 0.096 0.900 0.004 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.2536     0.8603 0.128 0.000 0.004 0.868 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.7968     0.0365 0.088 0.328 0.224 0.000 0.360
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1116     0.6231 0.004 0.000 0.964 0.028 0.004
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0613     0.8155 0.004 0.000 0.004 0.008 0.984
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.3999     0.8389 0.656 0.000 0.000 0.344 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.2020     0.8644 0.100 0.900 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.7968     0.0365 0.088 0.328 0.224 0.000 0.360
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.2536     0.8603 0.128 0.000 0.004 0.868 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4886    -0.4775 0.448 0.000 0.024 0.528 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0290     0.8841 0.000 0.000 0.008 0.992 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0609     0.8803 0.000 0.000 0.020 0.980 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0162     0.6226 0.000 0.000 0.996 0.000 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1965     0.8659 0.096 0.904 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.3999     0.8389 0.656 0.000 0.000 0.344 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.3241     0.6633 0.832 0.000 0.000 0.144 0.024
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1502     0.8583 0.004 0.000 0.056 0.940 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0162     0.6226 0.000 0.000 0.996 0.000 0.004
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.5900     0.3630 0.092 0.340 0.560 0.008 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6223     0.2818 0.100 0.512 0.004 0.008 0.376
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.2439     0.8632 0.120 0.000 0.004 0.876 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.1502     0.8583 0.004 0.000 0.056 0.940 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3586     0.5794 0.000 0.736 0.264 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.1894     0.8339 0.008 0.000 0.072 0.920 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2787     0.5754 0.004 0.000 0.856 0.136 0.004
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.1270     0.8578 0.000 0.000 0.052 0.948 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3636     0.7716 0.728 0.000 0.000 0.272 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.2020     0.8644 0.100 0.900 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.3999     0.8389 0.656 0.000 0.000 0.344 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0162     0.8853 0.004 0.000 0.000 0.996 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.6223     0.2818 0.100 0.512 0.004 0.008 0.376
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.1502     0.8583 0.004 0.000 0.056 0.940 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0290     0.8869 0.008 0.992 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.2179     0.8618 0.100 0.896 0.004 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5553     0.1969 0.380 0.000 0.552 0.064 0.004
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0162     0.6226 0.000 0.000 0.996 0.000 0.004
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1544     0.8446 0.000 0.000 0.068 0.932 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.2989     0.7706 0.072 0.000 0.060 0.868 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2124     0.8647 0.096 0.900 0.004 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2020     0.8644 0.100 0.900 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3586     0.5794 0.000 0.736 0.264 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.2488     0.8611 0.124 0.000 0.004 0.872 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0486     0.8833 0.004 0.988 0.004 0.000 0.004
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0162     0.8853 0.004 0.000 0.000 0.996 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.3999     0.8389 0.656 0.000 0.000 0.344 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.5888     0.3712 0.092 0.336 0.564 0.008 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.3999     0.8389 0.656 0.000 0.000 0.344 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.2891     0.6267 0.176 0.000 0.000 0.824 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2536     0.8603 0.128 0.000 0.004 0.868 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0290     0.8869 0.008 0.992 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2179     0.8618 0.100 0.896 0.004 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.5900     0.3630 0.092 0.340 0.560 0.008 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2179     0.8618 0.100 0.896 0.004 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0404     0.8829 0.000 0.988 0.012 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.0609     0.8803 0.000 0.000 0.020 0.980 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3109     0.8182 0.800 0.000 0.000 0.200 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3109     0.8182 0.800 0.000 0.000 0.200 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.6765     0.4489 0.264 0.172 0.536 0.028 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0162     0.8855 0.000 0.000 0.004 0.996 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.5553     0.1969 0.380 0.000 0.552 0.064 0.004
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.2488     0.8611 0.124 0.000 0.004 0.872 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.2536     0.8603 0.128 0.000 0.004 0.868 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.3999     0.8389 0.656 0.000 0.000 0.344 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6287     0.3501 0.104 0.536 0.004 0.012 0.344
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3109     0.8182 0.800 0.000 0.000 0.200 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3109     0.8182 0.800 0.000 0.000 0.200 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0162     0.6226 0.000 0.000 0.996 0.000 0.004
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.2439     0.8632 0.120 0.000 0.004 0.876 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0162     0.8856 0.004 0.000 0.000 0.996 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0162     0.8856 0.004 0.000 0.000 0.996 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.5888     0.3712 0.092 0.336 0.564 0.008 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.3508     0.3477 0.748 0.000 0.000 0.000 0.252
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.2488     0.8624 0.124 0.000 0.004 0.872 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.2488     0.8611 0.124 0.000 0.004 0.872 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.8864 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0794     0.8766 0.000 0.000 0.028 0.972 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0404     0.8283 0.000 0.000 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2887      0.847 0.036 0.000 0.000 0.844 0.000 0.120
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.4943      0.543 0.552 0.044 0.392 0.000 0.000 0.012
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4845      0.378 0.008 0.000 0.560 0.044 0.000 0.388
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     6  0.3911      0.693 0.032 0.000 0.000 0.256 0.000 0.712
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2615      0.664 0.004 0.000 0.852 0.136 0.000 0.008
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3342      0.702 0.228 0.760 0.000 0.000 0.000 0.012
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0260      0.716 0.008 0.000 0.992 0.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.2798      0.850 0.036 0.000 0.000 0.852 0.000 0.112
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.3204      0.836 0.052 0.004 0.000 0.832 0.000 0.112
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2615      0.664 0.004 0.000 0.852 0.136 0.000 0.008
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3468      0.648 0.128 0.804 0.068 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3201      0.731 0.208 0.780 0.000 0.000 0.000 0.012
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.2887      0.847 0.036 0.000 0.000 0.844 0.000 0.120
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     1  0.2662      0.536 0.888 0.044 0.048 0.000 0.016 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0806      0.715 0.000 0.000 0.972 0.020 0.000 0.008
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.3672      0.595 0.368 0.000 0.000 0.000 0.632 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.3707      0.803 0.008 0.000 0.000 0.312 0.000 0.680
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3342      0.702 0.228 0.760 0.000 0.000 0.000 0.012
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.2662      0.536 0.888 0.044 0.048 0.000 0.016 0.004
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.2887      0.847 0.036 0.000 0.000 0.844 0.000 0.120
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4524     -0.422 0.004 0.000 0.024 0.520 0.000 0.452
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0665      0.870 0.008 0.000 0.008 0.980 0.000 0.004
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1036      0.865 0.008 0.000 0.024 0.964 0.000 0.004
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0260      0.716 0.008 0.000 0.992 0.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.2815      0.849 0.032 0.000 0.000 0.848 0.000 0.120
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3171      0.734 0.204 0.784 0.000 0.000 0.000 0.012
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.3707      0.803 0.008 0.000 0.000 0.312 0.000 0.680
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.2762      0.605 0.048 0.000 0.000 0.092 0.000 0.860
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1882      0.844 0.008 0.000 0.060 0.920 0.000 0.012
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0260      0.716 0.008 0.000 0.992 0.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4703      0.568 0.568 0.052 0.380 0.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.4570      0.183 0.596 0.368 0.000 0.000 0.024 0.012
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.2798      0.850 0.036 0.000 0.000 0.852 0.000 0.112
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.1820      0.847 0.008 0.000 0.056 0.924 0.000 0.012
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.5336      0.177 0.168 0.588 0.244 0.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.2114      0.819 0.008 0.000 0.076 0.904 0.000 0.012
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2573      0.666 0.004 0.000 0.856 0.132 0.000 0.008
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.2815      0.849 0.032 0.000 0.000 0.848 0.000 0.120
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.1542      0.845 0.008 0.000 0.052 0.936 0.000 0.004
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.3770      0.704 0.028 0.000 0.000 0.244 0.000 0.728
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3342      0.702 0.228 0.760 0.000 0.000 0.000 0.012
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.3707      0.803 0.008 0.000 0.000 0.312 0.000 0.680
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0146      0.875 0.000 0.000 0.000 0.996 0.000 0.004
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.4570      0.183 0.596 0.368 0.000 0.000 0.024 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.1882      0.844 0.008 0.000 0.060 0.920 0.000 0.012
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1957      0.761 0.112 0.888 0.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3368      0.698 0.232 0.756 0.000 0.000 0.000 0.012
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4845      0.378 0.008 0.000 0.560 0.044 0.000 0.388
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0260      0.716 0.008 0.000 0.992 0.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1787      0.832 0.008 0.000 0.068 0.920 0.000 0.004
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.2882      0.765 0.004 0.000 0.060 0.860 0.000 0.076
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.2696      0.852 0.028 0.000 0.000 0.856 0.000 0.116
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3201      0.731 0.208 0.780 0.000 0.000 0.000 0.012
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3342      0.702 0.228 0.760 0.000 0.000 0.000 0.012
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.5336      0.177 0.168 0.588 0.244 0.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0547      0.823 0.020 0.980 0.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.2867      0.848 0.040 0.000 0.000 0.848 0.000 0.112
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0405      0.820 0.004 0.988 0.000 0.000 0.008 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2815      0.849 0.032 0.000 0.000 0.848 0.000 0.120
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0146      0.875 0.000 0.000 0.000 0.996 0.000 0.004
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.3707      0.803 0.008 0.000 0.000 0.312 0.000 0.680
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.4658      0.564 0.568 0.048 0.384 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.3707      0.803 0.008 0.000 0.000 0.312 0.000 0.680
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.2597      0.640 0.000 0.000 0.000 0.824 0.000 0.176
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2887      0.847 0.036 0.000 0.000 0.844 0.000 0.120
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1957      0.761 0.112 0.888 0.000 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3368      0.698 0.232 0.756 0.000 0.000 0.000 0.012
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.4703      0.568 0.568 0.052 0.380 0.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.2815      0.849 0.032 0.000 0.000 0.848 0.000 0.120
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.3368      0.698 0.232 0.756 0.000 0.000 0.000 0.012
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0405      0.820 0.004 0.988 0.008 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.1149      0.866 0.008 0.000 0.024 0.960 0.000 0.008
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.2489      0.769 0.012 0.000 0.000 0.128 0.000 0.860
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.2489      0.769 0.012 0.000 0.000 0.128 0.000 0.860
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.6224      0.317 0.412 0.012 0.364 0.000 0.000 0.212
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0436      0.873 0.004 0.000 0.004 0.988 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.2815      0.849 0.032 0.000 0.000 0.848 0.000 0.120
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4845      0.378 0.008 0.000 0.560 0.044 0.000 0.388
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.2867      0.848 0.040 0.000 0.000 0.848 0.000 0.112
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.2887      0.847 0.036 0.000 0.000 0.844 0.000 0.120
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0547      0.823 0.020 0.980 0.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.3707      0.803 0.008 0.000 0.000 0.312 0.000 0.680
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.4694      0.124 0.572 0.392 0.000 0.004 0.016 0.016
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.2489      0.769 0.012 0.000 0.000 0.128 0.000 0.860
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.2489      0.769 0.012 0.000 0.000 0.128 0.000 0.860
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0260      0.716 0.008 0.000 0.992 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.2798      0.850 0.036 0.000 0.000 0.852 0.000 0.112
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0146      0.876 0.000 0.000 0.000 0.996 0.000 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0146      0.876 0.000 0.000 0.000 0.996 0.000 0.004
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4658      0.564 0.568 0.048 0.384 0.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     6  0.4000      0.353 0.048 0.000 0.000 0.000 0.228 0.724
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.2815      0.849 0.032 0.000 0.000 0.848 0.000 0.120
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.2867      0.848 0.040 0.000 0.000 0.848 0.000 0.112
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.876 0.000 0.000 0.000 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.1307      0.863 0.008 0.000 0.032 0.952 0.000 0.008
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000      0.953 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.898           0.906       0.963         0.4871 0.507   0.507
#> 3 3 0.539           0.718       0.824         0.3198 0.832   0.680
#> 4 4 0.584           0.502       0.751         0.1248 0.878   0.686
#> 5 5 0.673           0.639       0.735         0.0721 0.845   0.527
#> 6 6 0.712           0.561       0.693         0.0459 0.878   0.537

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.976 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000      0.939 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.976 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.976 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.8207      0.624 0.744 0.256
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.939 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.939 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.976 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.976 1.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.976 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.939 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.939 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.976 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.939 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.9922      0.243 0.448 0.552
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.9833      0.198 0.576 0.424
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.9922      0.243 0.448 0.552
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.976 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.939 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.939 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.976 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.939 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.9922      0.243 0.448 0.552
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.976 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.939 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.976 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.976 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.976 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.8713      0.600 0.292 0.708
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.9460      0.458 0.364 0.636
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.939 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.976 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.976 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.976 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.976 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.9922      0.243 0.448 0.552
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.976 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.5408      0.828 0.124 0.876
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.939 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.976 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.939 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.976 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.976 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.976 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.939 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.939 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.939 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.939 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.976 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.976 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.939 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.976 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.9635      0.311 0.612 0.388
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.976 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.976 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.976 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.939 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.976 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.976 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.939 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.976 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.939 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.939 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.976 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.939 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.976 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.976 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.976 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.976 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.976 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.939 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.939 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.939 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.939 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.976 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.939 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.976 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.976 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.976 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4298      0.864 0.088 0.912
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.976 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.976 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.976 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.939 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0938      0.930 0.012 0.988
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.939 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.976 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.976 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.939 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.939 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.976 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.976 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.939 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.976 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.9209      0.451 0.664 0.336
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.8661      0.612 0.288 0.712
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.976 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.976 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.939 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.939 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.976 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.976 1.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.976 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.939 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.976 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.939 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.976 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.976 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.976 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.939 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.939 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.976 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.976 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.976 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.939 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.4815      0.860 0.896 0.104
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.976 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000      0.976 1.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.976 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.939 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.976 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.939 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.6880     0.7469 0.736 0.156 0.108
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.6260    -0.0925 0.000 0.448 0.552
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5733     0.5770 0.324 0.000 0.676
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.7558     0.7348 0.692 0.144 0.164
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.7276     0.5468 0.404 0.032 0.564
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0237     0.8082 0.000 0.996 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.5493     0.6151 0.012 0.232 0.756
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.6880     0.7469 0.736 0.156 0.108
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.6880     0.7469 0.736 0.156 0.108
#> 806616FE-1855-4284-9265-42842104CB21     3  0.6235     0.4657 0.436 0.000 0.564
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3941     0.8472 0.000 0.844 0.156
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0237     0.8082 0.000 0.996 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.6880     0.7469 0.736 0.156 0.108
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4399     0.8444 0.000 0.812 0.188
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.5467     0.7463 0.112 0.072 0.816
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.7706     0.7070 0.264 0.088 0.648
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.5467     0.7463 0.112 0.072 0.816
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.7894 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.4399     0.8444 0.000 0.812 0.188
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.4399     0.8444 0.000 0.812 0.188
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.7894 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.4399     0.8444 0.000 0.812 0.188
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5710     0.7454 0.116 0.080 0.804
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.3619     0.7262 0.864 0.000 0.136
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0237     0.8082 0.000 0.996 0.004
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.7894 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.7894 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.7894 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4660     0.7303 0.072 0.072 0.856
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.8701     0.3610 0.108 0.400 0.492
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.4399     0.8444 0.000 0.812 0.188
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.6880     0.7469 0.736 0.156 0.108
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.3619     0.7262 0.864 0.000 0.136
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.2200     0.7507 0.940 0.004 0.056
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.7894 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5467     0.7463 0.112 0.072 0.816
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000     0.7894 1.000 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.4790     0.7148 0.056 0.096 0.848
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.4399     0.8444 0.000 0.812 0.188
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.6705     0.7517 0.748 0.144 0.108
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2066     0.8312 0.000 0.940 0.060
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.3619     0.7262 0.864 0.000 0.136
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.4002     0.7174 0.840 0.000 0.160
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000     0.7894 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5493     0.6151 0.012 0.232 0.756
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.5772     0.6287 0.024 0.220 0.756
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0424     0.8091 0.000 0.992 0.008
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.4521     0.7630 0.004 0.816 0.180
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.6880     0.7469 0.736 0.156 0.108
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.5591     0.3257 0.696 0.000 0.304
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3941     0.8472 0.000 0.844 0.156
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.5591     0.3257 0.696 0.000 0.304
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.7065     0.6378 0.316 0.040 0.644
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.7091     0.7456 0.724 0.152 0.124
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.5815     0.3221 0.692 0.004 0.304
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.8408     0.6827 0.612 0.144 0.244
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0237     0.8082 0.000 0.996 0.004
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.3619     0.7262 0.864 0.000 0.136
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000     0.7894 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5285     0.5943 0.004 0.244 0.752
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.5591     0.3257 0.696 0.000 0.304
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.4399     0.8444 0.000 0.812 0.188
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1964     0.7617 0.000 0.944 0.056
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5733     0.5770 0.324 0.000 0.676
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.5493     0.6151 0.012 0.232 0.756
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.1964     0.7506 0.944 0.000 0.056
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000     0.7894 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.7894 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0237     0.7883 0.996 0.000 0.004
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5722     0.7689 0.804 0.084 0.112
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0892     0.8179 0.000 0.980 0.020
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0237     0.8082 0.000 0.996 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3941     0.8472 0.000 0.844 0.156
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.3941     0.8472 0.000 0.844 0.156
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.7248     0.7256 0.708 0.184 0.108
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4605     0.8310 0.000 0.796 0.204
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6644     0.7533 0.752 0.140 0.108
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000     0.7894 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.3619     0.7262 0.864 0.000 0.136
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.5334     0.6100 0.060 0.820 0.120
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.3619     0.7262 0.864 0.000 0.136
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0237     0.7887 0.996 0.000 0.004
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.6880     0.7469 0.736 0.156 0.108
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4399     0.8444 0.000 0.812 0.188
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2625     0.7313 0.000 0.916 0.084
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3192     0.8378 0.000 0.888 0.112
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.6705     0.7517 0.748 0.144 0.108
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.7894 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0237     0.8082 0.000 0.996 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.4399     0.8444 0.000 0.812 0.188
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.5623     0.3834 0.716 0.004 0.280
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.8007     0.6996 0.640 0.116 0.244
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.4399     0.8444 0.000 0.812 0.188
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.7458     0.7133 0.672 0.084 0.244
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.4446     0.7355 0.112 0.032 0.856
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.9106     0.1902 0.208 0.548 0.244
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000     0.7894 1.000 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.7091     0.7456 0.724 0.152 0.124
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.4399     0.8444 0.000 0.812 0.188
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.4399     0.8444 0.000 0.812 0.188
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.5733     0.5770 0.324 0.000 0.676
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.7297     0.7224 0.704 0.188 0.108
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.6823     0.7484 0.740 0.152 0.108
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.3941     0.8472 0.000 0.844 0.156
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.3619     0.7262 0.864 0.000 0.136
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.1411     0.7816 0.000 0.964 0.036
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.8129     0.6952 0.632 0.124 0.244
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.7533     0.7117 0.668 0.088 0.244
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.7894 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5493     0.6151 0.012 0.232 0.756
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.4399     0.8444 0.000 0.812 0.188
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.6880     0.7469 0.736 0.156 0.108
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.7894 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.7894 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.3116     0.7038 0.000 0.892 0.108
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.4555     0.6926 0.200 0.000 0.800
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.6975     0.7495 0.732 0.144 0.124
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.7297     0.7224 0.704 0.188 0.108
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.7894 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.4399     0.8444 0.000 0.812 0.188
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.5591     0.3257 0.696 0.000 0.304
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.5493     0.6151 0.012 0.232 0.756

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.4994     -0.366 0.480 0.000 0.000 0.520
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.6868      0.283 0.120 0.544 0.336 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.7146      0.500 0.228 0.000 0.560 0.212
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4889      0.491 0.636 0.000 0.004 0.360
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.3873      0.672 0.000 0.000 0.772 0.228
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4406      0.670 0.300 0.700 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.2011      0.787 0.000 0.080 0.920 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.4992     -0.360 0.476 0.000 0.000 0.524
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.4933      0.460 0.568 0.000 0.000 0.432
#> 806616FE-1855-4284-9265-42842104CB21     3  0.4008      0.650 0.000 0.000 0.756 0.244
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1004      0.833 0.004 0.972 0.024 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4406      0.670 0.300 0.700 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.4994     -0.366 0.480 0.000 0.000 0.520
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.3399      0.824 0.092 0.868 0.040 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4846      0.788 0.180 0.028 0.776 0.016
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.2805      0.772 0.000 0.012 0.888 0.100
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4846      0.788 0.180 0.028 0.776 0.016
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.4928      0.787 0.188 0.028 0.768 0.016
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.4468      0.475 0.232 0.000 0.016 0.752
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4406      0.670 0.300 0.700 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4281      0.782 0.180 0.028 0.792 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.7357      0.199 0.524 0.164 0.308 0.004
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.4994     -0.366 0.480 0.000 0.000 0.520
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4399      0.481 0.224 0.000 0.016 0.760
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.2714      0.564 0.004 0.000 0.112 0.884
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4846      0.788 0.180 0.028 0.776 0.016
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0469      0.801 0.000 0.012 0.988 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.4985     -0.349 0.468 0.000 0.000 0.532
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2760      0.800 0.128 0.872 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.4468      0.475 0.232 0.000 0.016 0.752
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.4711      0.465 0.236 0.000 0.024 0.740
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2408      0.571 0.000 0.000 0.104 0.896
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.2011      0.787 0.000 0.080 0.920 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.4511      0.779 0.176 0.040 0.784 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.5349      0.625 0.336 0.640 0.024 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6308      0.655 0.232 0.648 0.120 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.4992     -0.360 0.476 0.000 0.000 0.524
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4907      0.118 0.000 0.000 0.420 0.580
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0817      0.829 0.024 0.976 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4907      0.118 0.000 0.000 0.420 0.580
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.3908      0.685 0.000 0.004 0.784 0.212
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.4977      0.426 0.540 0.000 0.000 0.460
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.4907      0.118 0.000 0.000 0.420 0.580
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4857      0.502 0.700 0.000 0.016 0.284
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4585      0.626 0.332 0.668 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.4468      0.475 0.232 0.000 0.016 0.752
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.2473      0.783 0.012 0.080 0.908 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.4907      0.118 0.000 0.000 0.420 0.580
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4948      0.410 0.440 0.560 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5716      0.632 0.088 0.000 0.700 0.212
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.2011      0.787 0.000 0.080 0.920 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3942      0.476 0.000 0.000 0.236 0.764
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.2882      0.579 0.024 0.000 0.084 0.892
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.5137     -0.312 0.452 0.000 0.004 0.544
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2868      0.796 0.136 0.864 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4406      0.670 0.300 0.700 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2342      0.821 0.080 0.912 0.008 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0817      0.829 0.024 0.976 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.4925      0.464 0.572 0.000 0.000 0.428
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.1716      0.830 0.000 0.936 0.064 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.4941     -0.304 0.436 0.000 0.000 0.564
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.4468      0.475 0.232 0.000 0.016 0.752
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5286      0.020 0.604 0.384 0.008 0.004
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.4468      0.475 0.232 0.000 0.016 0.752
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0469      0.611 0.012 0.000 0.000 0.988
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.4994     -0.366 0.480 0.000 0.000 0.520
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.4985     -0.197 0.532 0.468 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3606      0.807 0.132 0.844 0.024 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.4985     -0.349 0.468 0.000 0.000 0.532
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4585      0.626 0.332 0.668 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.4877      0.147 0.000 0.000 0.408 0.592
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5186      0.441 0.640 0.000 0.016 0.344
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5253      0.410 0.624 0.000 0.016 0.360
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.4911      0.782 0.196 0.024 0.764 0.016
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5179      0.415 0.760 0.184 0.020 0.036
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.4977      0.426 0.540 0.000 0.000 0.460
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.6248      0.603 0.128 0.000 0.660 0.212
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4907      0.469 0.580 0.000 0.000 0.420
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.4992     -0.362 0.476 0.000 0.000 0.524
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0817      0.829 0.024 0.976 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.4468      0.475 0.232 0.000 0.016 0.752
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4941      0.418 0.436 0.564 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5110      0.462 0.656 0.000 0.016 0.328
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5220      0.427 0.632 0.000 0.016 0.352
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1940      0.787 0.000 0.076 0.924 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.4994     -0.366 0.480 0.000 0.000 0.520
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4955     -0.121 0.556 0.444 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.6136      0.618 0.412 0.016 0.548 0.024
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5151      0.418 0.532 0.000 0.004 0.464
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.5193      0.475 0.580 0.008 0.000 0.412
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.616 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1474      0.835 0.000 0.948 0.052 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4907      0.118 0.000 0.000 0.420 0.580
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.4511      0.779 0.176 0.040 0.784 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.3774     0.7201 0.704 0.000 0.000 0.296 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7146     0.5117 0.164 0.572 0.124 0.000 0.140
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.6749     0.3524 0.164 0.000 0.608 0.084 0.144
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3928     0.6749 0.788 0.000 0.008 0.176 0.028
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2074     0.5693 0.000 0.000 0.896 0.104 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.6744     0.5125 0.248 0.456 0.004 0.000 0.292
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1412     0.4615 0.004 0.036 0.952 0.000 0.008
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.3837     0.7132 0.692 0.000 0.000 0.308 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3579     0.7165 0.756 0.000 0.000 0.240 0.004
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2127     0.5705 0.000 0.000 0.892 0.108 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0609     0.7724 0.000 0.980 0.000 0.000 0.020
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6744     0.5125 0.248 0.456 0.004 0.000 0.292
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3774     0.7201 0.704 0.000 0.000 0.296 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4620     0.7304 0.060 0.732 0.004 0.000 0.204
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.4881     0.9374 0.000 0.016 0.460 0.004 0.520
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1699     0.4988 0.004 0.008 0.944 0.036 0.008
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.4881     0.9374 0.000 0.016 0.460 0.004 0.520
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.8277 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.4881     0.9374 0.000 0.016 0.460 0.004 0.520
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.6189     0.5831 0.216 0.000 0.020 0.612 0.152
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6744     0.5125 0.248 0.456 0.004 0.000 0.292
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.4818     0.9355 0.000 0.020 0.460 0.000 0.520
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.6724     0.2972 0.560 0.124 0.048 0.000 0.268
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.3774     0.7201 0.704 0.000 0.000 0.296 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.5035     0.6392 0.212 0.000 0.008 0.704 0.076
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1851     0.7371 0.000 0.000 0.088 0.912 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.4881     0.9374 0.000 0.016 0.460 0.004 0.520
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0290     0.8255 0.000 0.000 0.008 0.992 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1377     0.4424 0.004 0.020 0.956 0.000 0.020
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3837     0.7133 0.692 0.000 0.000 0.308 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.5238     0.6911 0.064 0.640 0.004 0.000 0.292
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.6189     0.5831 0.216 0.000 0.020 0.612 0.152
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.6407     0.5531 0.220 0.000 0.020 0.584 0.176
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1792     0.7533 0.000 0.000 0.084 0.916 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1412     0.4615 0.004 0.036 0.952 0.000 0.008
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.4818     0.9355 0.000 0.020 0.460 0.000 0.520
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.6890     0.3356 0.352 0.380 0.004 0.000 0.264
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.7688     0.4878 0.228 0.416 0.064 0.000 0.292
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.3857     0.7112 0.688 0.000 0.000 0.312 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4302     0.3703 0.000 0.000 0.520 0.480 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2825     0.7639 0.016 0.860 0.000 0.000 0.124
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.4302     0.3703 0.000 0.000 0.520 0.480 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2249     0.5668 0.000 0.008 0.896 0.096 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3676     0.7199 0.760 0.000 0.004 0.232 0.004
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.4302     0.3703 0.000 0.000 0.520 0.480 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3873     0.5971 0.820 0.000 0.008 0.084 0.088
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6865     0.4415 0.288 0.416 0.004 0.000 0.292
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.6189     0.5831 0.216 0.000 0.020 0.612 0.152
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0162     0.8268 0.000 0.000 0.004 0.996 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.2568     0.4479 0.004 0.016 0.888 0.000 0.092
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4302     0.3703 0.000 0.000 0.520 0.480 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0162     0.7723 0.000 0.996 0.000 0.000 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.6744    -0.0372 0.456 0.248 0.004 0.000 0.292
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4237     0.5412 0.040 0.000 0.812 0.084 0.064
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1412     0.4615 0.004 0.036 0.952 0.000 0.008
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.4030     0.1724 0.000 0.000 0.352 0.648 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3060     0.6952 0.024 0.000 0.128 0.848 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5156     0.6146 0.620 0.000 0.008 0.332 0.040
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.5238     0.6911 0.064 0.640 0.004 0.000 0.292
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6744     0.5125 0.248 0.456 0.004 0.000 0.292
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4488     0.7373 0.060 0.748 0.004 0.000 0.188
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.2513     0.7658 0.008 0.876 0.000 0.000 0.116
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3789     0.7153 0.768 0.000 0.000 0.212 0.020
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.4430     0.6546 0.628 0.000 0.000 0.360 0.012
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0162     0.8268 0.000 0.000 0.004 0.996 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.6352     0.5640 0.216 0.000 0.020 0.592 0.172
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5810     0.3677 0.632 0.136 0.008 0.000 0.224
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.6189     0.5831 0.216 0.000 0.020 0.612 0.152
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1571     0.7993 0.060 0.000 0.004 0.936 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.3774     0.7201 0.704 0.000 0.000 0.296 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0162     0.7723 0.000 0.996 0.000 0.000 0.004
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.6444     0.1536 0.516 0.188 0.004 0.000 0.292
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.5830     0.6680 0.140 0.616 0.004 0.000 0.240
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.3837     0.7133 0.692 0.000 0.000 0.308 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6865     0.4415 0.288 0.416 0.004 0.000 0.292
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4302     0.3703 0.000 0.000 0.520 0.480 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5772     0.4402 0.660 0.000 0.016 0.148 0.176
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5844     0.4291 0.652 0.000 0.016 0.156 0.176
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.5045     0.9255 0.008 0.012 0.456 0.004 0.520
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.4425     0.4826 0.740 0.036 0.008 0.000 0.216
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3676     0.7199 0.760 0.000 0.004 0.232 0.004
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4450     0.5329 0.052 0.000 0.800 0.084 0.064
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4333     0.7050 0.752 0.000 0.000 0.188 0.060
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.3774     0.7201 0.704 0.000 0.000 0.296 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.2513     0.7658 0.008 0.876 0.000 0.000 0.116
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.6189     0.5831 0.216 0.000 0.020 0.612 0.152
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.6904    -0.2140 0.396 0.308 0.004 0.000 0.292
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5734     0.4461 0.664 0.000 0.016 0.144 0.176
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5808     0.4335 0.656 0.000 0.016 0.152 0.176
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1412     0.4615 0.004 0.036 0.952 0.000 0.008
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.3796     0.7180 0.700 0.000 0.000 0.300 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0162     0.8268 0.000 0.000 0.004 0.996 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.6139     0.2577 0.560 0.148 0.004 0.000 0.288
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.6285     0.5623 0.140 0.012 0.256 0.004 0.588
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4125     0.7126 0.740 0.000 0.004 0.236 0.020
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4409     0.7020 0.752 0.000 0.000 0.176 0.072
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0162     0.8285 0.004 0.000 0.000 0.996 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.7725 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.4302     0.3703 0.000 0.000 0.520 0.480 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.4818     0.9355 0.000 0.020 0.460 0.000 0.520

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.6847      0.309 0.400 0.000 0.004 0.224 0.044 0.328
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7371      0.486 0.204 0.492 0.036 0.000 0.096 0.172
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4788      0.417 0.004 0.000 0.608 0.028 0.016 0.344
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     6  0.6136     -0.183 0.348 0.000 0.000 0.120 0.040 0.492
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1152      0.715 0.004 0.000 0.952 0.044 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     1  0.4428      0.205 0.708 0.228 0.016 0.000 0.048 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1514      0.686 0.016 0.016 0.948 0.000 0.004 0.016
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.6890      0.300 0.388 0.000 0.004 0.240 0.044 0.324
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.6775      0.320 0.416 0.000 0.004 0.188 0.048 0.344
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1429      0.715 0.000 0.000 0.940 0.052 0.004 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0858      0.879 0.004 0.968 0.000 0.000 0.028 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     1  0.4454      0.196 0.704 0.232 0.016 0.000 0.048 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.6847      0.309 0.400 0.000 0.004 0.224 0.044 0.328
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.6021      0.556 0.264 0.572 0.008 0.000 0.124 0.032
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1312      0.700 0.012 0.000 0.956 0.020 0.004 0.008
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0405      0.907 0.008 0.000 0.000 0.988 0.000 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.004 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.000 0.004
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.004 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.3163      0.938 0.000 0.004 0.232 0.000 0.764 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.4432      0.318 0.000 0.000 0.004 0.432 0.020 0.544
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     1  0.4428      0.205 0.708 0.228 0.016 0.000 0.048 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.3884      0.396 0.812 0.012 0.020 0.000 0.092 0.064
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.000 0.004
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.6847      0.309 0.400 0.000 0.004 0.224 0.044 0.328
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4291      0.214 0.000 0.000 0.008 0.620 0.016 0.356
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.2302      0.840 0.008 0.000 0.060 0.900 0.000 0.032
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1194      0.894 0.008 0.000 0.004 0.956 0.000 0.032
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1458      0.678 0.016 0.000 0.948 0.000 0.020 0.016
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.004 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.6883      0.300 0.388 0.000 0.004 0.236 0.044 0.328
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     1  0.5029     -0.161 0.568 0.368 0.016 0.000 0.048 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.4432      0.318 0.000 0.000 0.004 0.432 0.020 0.544
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.4700      0.382 0.004 0.000 0.004 0.364 0.036 0.592
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2420      0.832 0.008 0.000 0.068 0.892 0.000 0.032
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1514      0.686 0.016 0.016 0.948 0.000 0.004 0.016
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.5305      0.237 0.664 0.212 0.004 0.000 0.084 0.036
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.4467      0.221 0.712 0.216 0.016 0.000 0.056 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.6900      0.296 0.384 0.000 0.004 0.244 0.044 0.324
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4605      0.523 0.008 0.000 0.596 0.364 0.000 0.032
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4253      0.718 0.196 0.728 0.000 0.000 0.072 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.4626      0.508 0.008 0.000 0.588 0.372 0.000 0.032
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1007      0.715 0.000 0.000 0.956 0.044 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.6540      0.257 0.392 0.000 0.000 0.180 0.040 0.388
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.4605      0.523 0.008 0.000 0.596 0.364 0.000 0.032
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.4749      0.117 0.252 0.000 0.000 0.032 0.040 0.676
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     1  0.4377      0.218 0.716 0.220 0.016 0.000 0.048 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.4432      0.318 0.000 0.000 0.004 0.432 0.020 0.544
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0622      0.904 0.008 0.000 0.000 0.980 0.000 0.012
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.1553      0.688 0.032 0.004 0.944 0.000 0.012 0.008
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4616      0.517 0.008 0.000 0.592 0.368 0.000 0.032
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1155      0.876 0.004 0.956 0.000 0.000 0.036 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.2945      0.385 0.864 0.072 0.016 0.000 0.048 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.3050      0.682 0.004 0.000 0.856 0.028 0.016 0.096
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1514      0.686 0.016 0.016 0.948 0.000 0.004 0.016
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.4605      0.201 0.008 0.000 0.364 0.596 0.000 0.032
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4066      0.678 0.008 0.000 0.152 0.776 0.012 0.052
#> 352471DC-A881-4EA8-B646-EB1200291893     6  0.6603     -0.118 0.268 0.000 0.000 0.240 0.040 0.452
#> F779417A-9E29-4B27-BEA3-B23273A66021     1  0.5009     -0.139 0.576 0.360 0.016 0.000 0.048 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     1  0.4428      0.205 0.708 0.228 0.016 0.000 0.048 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.5727      0.578 0.260 0.596 0.004 0.000 0.112 0.028
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.4488      0.686 0.224 0.704 0.012 0.000 0.060 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6572      0.327 0.464 0.000 0.004 0.164 0.044 0.324
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.004 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6941      0.261 0.360 0.000 0.004 0.260 0.044 0.332
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0806      0.900 0.008 0.000 0.000 0.972 0.000 0.020
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.4658      0.374 0.000 0.000 0.004 0.376 0.040 0.580
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.4653      0.385 0.740 0.024 0.004 0.000 0.108 0.124
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.4528      0.316 0.000 0.000 0.008 0.428 0.020 0.544
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1462      0.849 0.000 0.000 0.000 0.936 0.008 0.056
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.6847      0.309 0.400 0.000 0.004 0.224 0.044 0.328
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1155      0.876 0.004 0.956 0.000 0.000 0.036 0.004
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.2430      0.416 0.900 0.036 0.012 0.000 0.048 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.6199     -0.308 0.436 0.420 0.004 0.000 0.096 0.044
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.6883      0.300 0.388 0.000 0.004 0.236 0.044 0.328
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     1  0.4350      0.224 0.720 0.216 0.016 0.000 0.048 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.004 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4616      0.517 0.008 0.000 0.592 0.368 0.000 0.032
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.2699      0.460 0.040 0.000 0.000 0.048 0.028 0.884
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.000 0.004
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.2985      0.464 0.044 0.000 0.004 0.048 0.032 0.872
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5380      0.258 0.600 0.008 0.004 0.000 0.108 0.280
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.1049      0.894 0.000 0.000 0.008 0.960 0.000 0.032
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.6540      0.257 0.392 0.000 0.000 0.180 0.040 0.388
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.000 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.000 0.004
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.3050      0.682 0.004 0.000 0.856 0.028 0.016 0.096
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6326      0.335 0.516 0.000 0.004 0.136 0.044 0.300
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.6872      0.304 0.392 0.000 0.004 0.232 0.044 0.328
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.4488      0.686 0.224 0.704 0.012 0.000 0.060 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.4432      0.318 0.000 0.000 0.004 0.432 0.020 0.544
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.3715      0.328 0.800 0.132 0.016 0.000 0.052 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.2701      0.455 0.044 0.000 0.000 0.044 0.028 0.884
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.2842      0.465 0.040 0.000 0.004 0.048 0.028 0.880
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1514      0.686 0.016 0.016 0.948 0.000 0.004 0.016
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.004 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.6872      0.304 0.392 0.000 0.004 0.232 0.044 0.328
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0363      0.906 0.000 0.000 0.000 0.988 0.000 0.012
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.3606      0.405 0.828 0.028 0.004 0.000 0.088 0.052
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.4929      0.511 0.004 0.000 0.072 0.000 0.600 0.324
#> 12F54761-4F68-4181-8421-88EA858902FC     6  0.6549     -0.289 0.364 0.000 0.000 0.184 0.040 0.412
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6153      0.337 0.540 0.000 0.004 0.116 0.044 0.296
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0146      0.886 0.000 0.996 0.000 0.000 0.000 0.004
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.4605      0.523 0.008 0.000 0.596 0.364 0.000 0.032
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.3215      0.944 0.000 0.004 0.240 0.000 0.756 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.5012 0.499   0.499
#> 3 3 0.673           0.816       0.867         0.3095 0.795   0.610
#> 4 4 0.822           0.888       0.922         0.1339 0.853   0.611
#> 5 5 0.896           0.820       0.871         0.0464 0.944   0.792
#> 6 6 0.831           0.775       0.843         0.0476 0.953   0.790

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.997 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000      0.996 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.997 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.997 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.7453      0.731 0.212 0.788
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.996 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.996 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.997 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.997 1.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.997 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.996 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.996 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.997 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.996 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.0000      0.996 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.0376      0.992 0.004 0.996
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.0000      0.996 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.997 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.996 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.996 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.997 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.996 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.0000      0.996 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.997 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.996 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.997 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.997 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.997 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.0000      0.996 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.996 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.996 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.997 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.997 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.997 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.997 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.0000      0.996 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.997 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.0000      0.996 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.996 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.997 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.996 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.997 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.997 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.997 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.996 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.996 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.996 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.996 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.997 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.997 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.996 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.997 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.1184      0.980 0.016 0.984
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.997 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.997 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.997 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.996 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.997 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.997 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.996 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.997 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.996 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.996 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.997 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.996 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.997 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.997 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.997 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.997 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.997 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.996 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.996 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.996 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.996 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.997 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.996 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.997 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.997 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.997 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0000      0.996 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.997 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.997 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.997 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.996 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.996 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.996 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.997 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.997 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.996 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.996 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.997 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.997 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.996 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.997 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2  0.0000      0.996 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0000      0.996 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.997 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.997 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.996 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.996 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0376      0.993 0.996 0.004
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.997 1.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.997 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.996 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.997 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.996 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.997 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.997 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.997 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.996 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.996 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.997 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.997 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.997 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.996 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.7376      0.737 0.792 0.208
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.997 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000      0.997 1.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.997 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.996 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.997 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.996 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.5397      0.813 0.720 0.000 0.280
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0892      0.889 0.000 0.980 0.020
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5397      0.780 0.280 0.000 0.720
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.5497      0.810 0.708 0.000 0.292
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.5953      0.784 0.280 0.012 0.708
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4555      0.806 0.000 0.800 0.200
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.5529      0.759 0.000 0.296 0.704
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.5397      0.813 0.720 0.000 0.280
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.5397      0.813 0.720 0.000 0.280
#> 806616FE-1855-4284-9265-42842104CB21     3  0.5397      0.780 0.280 0.000 0.720
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.903 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4555      0.806 0.000 0.800 0.200
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.5397      0.813 0.720 0.000 0.280
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.903 0.000 1.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.5431      0.765 0.000 0.284 0.716
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.5953      0.784 0.280 0.012 0.708
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.5397      0.766 0.000 0.280 0.720
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.828 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.903 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.903 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.828 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.903 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5560      0.756 0.000 0.300 0.700
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0892      0.823 0.980 0.000 0.020
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4555      0.806 0.000 0.800 0.200
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.828 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.828 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.828 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.5397      0.766 0.000 0.280 0.720
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.903 0.000 1.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.903 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.5397      0.813 0.720 0.000 0.280
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0892      0.823 0.980 0.000 0.020
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.5465      0.304 0.712 0.000 0.288
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.828 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5431      0.765 0.000 0.284 0.716
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0892      0.823 0.980 0.000 0.020
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.5588      0.768 0.004 0.276 0.720
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.903 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.5397      0.813 0.720 0.000 0.280
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0592      0.899 0.000 0.988 0.012
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0892      0.823 0.980 0.000 0.020
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0892      0.823 0.980 0.000 0.020
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.828 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5560      0.756 0.000 0.300 0.700
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.5560      0.756 0.000 0.300 0.700
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.1529      0.888 0.000 0.960 0.040
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.903 0.000 1.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.5397      0.813 0.720 0.000 0.280
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.5560      0.775 0.300 0.000 0.700
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.903 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.5497      0.778 0.292 0.000 0.708
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.5397      0.780 0.280 0.000 0.720
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.5497      0.810 0.708 0.000 0.292
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.5560      0.775 0.300 0.000 0.700
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.5560      0.807 0.700 0.000 0.300
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4555      0.806 0.000 0.800 0.200
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0892      0.823 0.980 0.000 0.020
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.828 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5560      0.756 0.000 0.300 0.700
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.5560      0.775 0.300 0.000 0.700
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.903 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4796      0.788 0.000 0.780 0.220
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5397      0.780 0.280 0.000 0.720
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.5560      0.756 0.000 0.300 0.700
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.6180      0.603 0.416 0.000 0.584
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.828 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.828 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.1860      0.794 0.948 0.000 0.052
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4931      0.819 0.768 0.000 0.232
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1529      0.888 0.000 0.960 0.040
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4555      0.806 0.000 0.800 0.200
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.903 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.903 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.5397      0.813 0.720 0.000 0.280
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.903 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.5397      0.813 0.720 0.000 0.280
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.828 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0892      0.823 0.980 0.000 0.020
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.5431      0.725 0.000 0.716 0.284
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0892      0.823 0.980 0.000 0.020
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.828 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.5397      0.813 0.720 0.000 0.280
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.903 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.5327      0.735 0.000 0.728 0.272
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.903 0.000 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.5397      0.813 0.720 0.000 0.280
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.828 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4555      0.806 0.000 0.800 0.200
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.903 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5560      0.775 0.300 0.000 0.700
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5560      0.807 0.700 0.000 0.300
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.903 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4796      0.820 0.780 0.000 0.220
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.5588      0.768 0.004 0.276 0.720
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5529      0.715 0.000 0.704 0.296
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.828 1.000 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.5497      0.810 0.708 0.000 0.292
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.903 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.903 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.5397      0.780 0.280 0.000 0.720
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.5397      0.813 0.720 0.000 0.280
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.5397      0.813 0.720 0.000 0.280
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.903 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0892      0.823 0.980 0.000 0.020
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4555      0.806 0.000 0.800 0.200
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5560      0.807 0.700 0.000 0.300
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5560      0.807 0.700 0.000 0.300
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.828 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5560      0.756 0.000 0.300 0.700
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.903 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.5397      0.813 0.720 0.000 0.280
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.828 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.828 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4796      0.788 0.000 0.780 0.220
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.6922      0.784 0.080 0.200 0.720
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5497      0.810 0.708 0.000 0.292
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.5397      0.813 0.720 0.000 0.280
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.828 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.903 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.5497      0.778 0.292 0.000 0.708
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.5560      0.756 0.000 0.300 0.700

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4638      0.739 0.180 0.776 0.044 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.3945      0.775 0.216 0.000 0.780 0.004
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0592      0.831 0.984 0.000 0.000 0.016
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0188      0.941 0.000 0.000 0.996 0.004
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0188      0.941 0.000 0.000 0.996 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0592      0.943 0.016 0.000 0.984 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0592      0.943 0.016 0.000 0.984 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0592      0.943 0.016 0.000 0.984 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0592      0.943 0.016 0.000 0.984 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0592      0.856 0.000 0.000 0.016 0.984
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0592      0.943 0.016 0.000 0.984 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.4609      0.793 0.224 0.000 0.024 0.752
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0592      0.856 0.000 0.000 0.016 0.984
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0657      0.942 0.012 0.004 0.984 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0592      0.831 0.984 0.000 0.000 0.016
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0469      0.828 0.988 0.000 0.000 0.012
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.1637      0.895 0.000 0.060 0.940 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2999      0.856 0.132 0.000 0.864 0.004
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4290      0.806 0.212 0.000 0.016 0.772
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0592      0.831 0.984 0.000 0.000 0.016
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0817      0.956 0.024 0.976 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3569      0.816 0.196 0.000 0.000 0.804
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3610      0.739 0.200 0.800 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0469      0.828 0.988 0.000 0.000 0.012
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0469      0.828 0.988 0.000 0.000 0.012
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3444      0.822 0.184 0.000 0.816 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4830      0.444 0.392 0.608 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0592      0.831 0.984 0.000 0.000 0.016
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.3494      0.821 0.172 0.000 0.824 0.004
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.3764      0.808 0.216 0.000 0.000 0.784
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0469      0.828 0.988 0.000 0.000 0.012
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0469      0.828 0.988 0.000 0.000 0.012
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000      0.943 0.000 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.976 0.000 1.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.3873      0.774 0.228 0.000 0.772 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0592      0.831 0.984 0.000 0.000 0.016
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3873      0.889 0.772 0.000 0.000 0.228
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0188      0.976 0.000 0.996 0.004 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.3873      0.766 0.000 0.000 0.228 0.772
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0657      0.942 0.012 0.004 0.984 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4003      0.625 0.000 0.704 0.008 0.000 0.288
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5133      0.471 0.056 0.000 0.664 0.008 0.272
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0162      0.880 0.996 0.000 0.000 0.000 0.004
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0290      0.660 0.000 0.000 0.992 0.008 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000      0.658 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0290      0.660 0.000 0.000 0.992 0.008 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0290      0.654 0.000 0.000 0.992 0.000 0.008
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.4983      0.656 0.064 0.000 0.000 0.664 0.272
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1121      0.929 0.000 0.956 0.000 0.000 0.044
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4960      0.659 0.064 0.000 0.000 0.668 0.268
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1478      0.849 0.064 0.000 0.000 0.936 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0290      0.654 0.000 0.000 0.992 0.000 0.008
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.4983      0.656 0.064 0.000 0.000 0.664 0.272
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.4332      0.384 0.064 0.000 0.004 0.164 0.768
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0510      0.873 0.000 0.000 0.016 0.984 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000      0.658 0.000 0.000 1.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.1671      0.926 0.000 0.924 0.000 0.000 0.076
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4227      0.487 0.000 0.000 0.580 0.420 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.954 0.000 1.000 0.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.4235      0.480 0.000 0.000 0.576 0.424 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.658 0.000 0.000 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.881 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.4210      0.498 0.000 0.000 0.588 0.412 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3561      0.681 0.740 0.000 0.000 0.000 0.260
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.4983      0.656 0.064 0.000 0.000 0.664 0.272
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0162      0.881 0.004 0.000 0.000 0.996 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0404      0.645 0.000 0.012 0.988 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4227      0.487 0.000 0.000 0.580 0.420 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.3861      0.535 0.000 0.000 0.728 0.008 0.264
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000      0.658 0.000 0.000 1.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1965      0.795 0.000 0.000 0.096 0.904 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.1628      0.849 0.056 0.000 0.008 0.936 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0404      0.876 0.988 0.000 0.000 0.000 0.012
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0794      0.951 0.000 0.972 0.000 0.000 0.028
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.1628      0.920 0.000 0.936 0.008 0.000 0.056
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0404      0.878 0.012 0.000 0.000 0.988 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.4983      0.656 0.064 0.000 0.000 0.664 0.272
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0566      0.953 0.004 0.984 0.000 0.000 0.012
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.4983      0.656 0.064 0.000 0.000 0.664 0.272
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1478      0.849 0.064 0.000 0.000 0.936 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4028      0.726 0.192 0.768 0.000 0.000 0.040
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4294      0.379 0.000 0.000 0.532 0.468 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3636      0.669 0.728 0.000 0.000 0.000 0.272
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3636      0.669 0.728 0.000 0.000 0.000 0.272
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5901      0.405 0.148 0.584 0.000 0.000 0.268
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.881 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4039      0.529 0.004 0.000 0.720 0.008 0.268
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0794      0.951 0.000 0.972 0.000 0.000 0.028
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.4983      0.656 0.064 0.000 0.000 0.664 0.272
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3636      0.669 0.728 0.000 0.000 0.000 0.272
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3636      0.669 0.728 0.000 0.000 0.000 0.272
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000      0.658 0.000 0.000 1.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1478      0.907 0.936 0.000 0.000 0.064 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.1043      0.948 0.000 0.960 0.000 0.000 0.040
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.1043      0.602 0.000 0.000 0.040 0.000 0.960
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0162      0.880 0.996 0.000 0.000 0.000 0.004
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1764      0.902 0.928 0.000 0.000 0.064 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.882 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0290      0.955 0.000 0.992 0.008 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.4242      0.472 0.000 0.000 0.572 0.428 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.3857      0.880 0.000 0.000 0.312 0.000 0.688

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3901     0.5342 0.000 0.768 0.000 0.000 0.096 0.136
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5188     0.4699 0.032 0.000 0.616 0.008 0.036 0.308
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2964     0.7416 0.792 0.000 0.000 0.004 0.000 0.204
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.8473 0.000 0.000 1.000 0.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     6  0.3804     0.8784 0.000 0.424 0.000 0.000 0.000 0.576
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0146     0.8464 0.000 0.000 0.996 0.000 0.004 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.8473 0.000 0.000 1.000 0.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     6  0.3810     0.8750 0.000 0.428 0.000 0.000 0.000 0.572
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0622     0.8779 0.000 0.980 0.000 0.000 0.008 0.012
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.8473 0.000 0.000 1.000 0.000 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.5129     0.5715 0.032 0.000 0.000 0.568 0.036 0.364
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     6  0.3804     0.8784 0.000 0.424 0.000 0.000 0.000 0.576
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.2618     0.7469 0.000 0.872 0.000 0.000 0.076 0.052
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4995     0.6066 0.032 0.000 0.000 0.612 0.036 0.320
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0551     0.8532 0.004 0.000 0.004 0.984 0.000 0.008
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0713     0.8424 0.028 0.000 0.000 0.972 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0146     0.8464 0.000 0.000 0.996 0.000 0.004 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0790     0.8399 0.968 0.000 0.000 0.032 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     6  0.3810     0.8750 0.000 0.428 0.000 0.000 0.000 0.572
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.5129     0.5715 0.032 0.000 0.000 0.568 0.036 0.364
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.6194     0.3288 0.032 0.000 0.000 0.136 0.440 0.392
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0520     0.8516 0.000 0.000 0.008 0.984 0.000 0.008
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0146     0.8464 0.000 0.000 0.996 0.000 0.004 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0146     0.8926 0.000 0.996 0.000 0.000 0.004 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.4123     0.8708 0.000 0.420 0.000 0.000 0.012 0.568
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3103     0.7613 0.000 0.000 0.784 0.208 0.000 0.008
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3103     0.7611 0.000 0.000 0.784 0.208 0.000 0.008
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.8473 0.000 0.000 1.000 0.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1152     0.8180 0.952 0.000 0.000 0.004 0.000 0.044
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2980     0.7714 0.000 0.000 0.800 0.192 0.000 0.008
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4467     0.5881 0.592 0.000 0.000 0.004 0.028 0.376
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     6  0.3930     0.8782 0.004 0.420 0.000 0.000 0.000 0.576
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.5129     0.5715 0.032 0.000 0.000 0.568 0.036 0.364
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000     0.8559 0.000 0.000 0.000 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0000     0.8473 0.000 0.000 1.000 0.000 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.3073     0.7643 0.000 0.000 0.788 0.204 0.000 0.008
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     6  0.3930     0.8782 0.004 0.420 0.000 0.000 0.000 0.576
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2848     0.7631 0.000 0.000 0.856 0.004 0.036 0.104
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0146     0.8464 0.000 0.000 0.996 0.000 0.004 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3373     0.5912 0.000 0.000 0.248 0.744 0.000 0.008
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3686     0.7134 0.032 0.000 0.000 0.748 0.000 0.220
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3925     0.6464 0.656 0.000 0.000 0.008 0.004 0.332
#> F779417A-9E29-4B27-BEA3-B23273A66021     6  0.3847     0.8345 0.000 0.456 0.000 0.000 0.000 0.544
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     6  0.3804     0.8784 0.000 0.424 0.000 0.000 0.000 0.576
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0508     0.8807 0.000 0.984 0.000 0.000 0.004 0.012
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.3706    -0.3993 0.000 0.620 0.000 0.000 0.000 0.380
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0405     0.8843 0.000 0.988 0.000 0.000 0.008 0.004
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0790     0.8399 0.968 0.000 0.000 0.032 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000     0.8559 0.000 0.000 0.000 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.5129     0.5715 0.032 0.000 0.000 0.568 0.036 0.364
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.3133     0.4976 0.000 0.780 0.000 0.000 0.008 0.212
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.5129     0.5715 0.032 0.000 0.000 0.568 0.036 0.364
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0790     0.8401 0.032 0.000 0.000 0.968 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     6  0.4982     0.7510 0.084 0.340 0.000 0.000 0.000 0.576
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0622     0.8779 0.000 0.980 0.000 0.000 0.008 0.012
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0790     0.8399 0.968 0.000 0.000 0.032 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     6  0.3930     0.8782 0.004 0.420 0.000 0.000 0.000 0.576
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.3615     0.6446 0.000 0.000 0.700 0.292 0.000 0.008
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4649     0.5592 0.560 0.000 0.000 0.004 0.036 0.400
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5001     0.5300 0.532 0.000 0.000 0.016 0.040 0.412
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     6  0.5406    -0.0358 0.048 0.384 0.000 0.000 0.036 0.532
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0520     0.8542 0.008 0.000 0.000 0.984 0.000 0.008
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1152     0.8180 0.952 0.000 0.000 0.004 0.000 0.044
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.3564     0.7047 0.004 0.000 0.796 0.004 0.036 0.160
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1863     0.7770 0.896 0.000 0.000 0.000 0.000 0.104
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0790     0.8399 0.968 0.000 0.000 0.032 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.3717    -0.4139 0.000 0.616 0.000 0.000 0.000 0.384
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.5129     0.5715 0.032 0.000 0.000 0.568 0.036 0.364
#> B3561356-5A80-4C79-B23A-D518425565FE     6  0.3930     0.8782 0.004 0.420 0.000 0.000 0.000 0.576
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4649     0.5592 0.560 0.000 0.000 0.004 0.036 0.400
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4758     0.5509 0.552 0.000 0.000 0.008 0.036 0.404
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.8473 0.000 0.000 1.000 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0935     0.8402 0.964 0.000 0.000 0.032 0.000 0.004
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     6  0.4093     0.7550 0.000 0.476 0.000 0.000 0.008 0.516
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.2884     0.7398 0.008 0.000 0.004 0.000 0.824 0.164
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2933     0.7440 0.796 0.000 0.000 0.004 0.000 0.200
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2135     0.7559 0.872 0.000 0.000 0.000 0.000 0.128
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0260     0.8578 0.008 0.000 0.000 0.992 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.8954 0.000 1.000 0.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3133     0.7574 0.000 0.000 0.780 0.212 0.000 0.008
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.1007     0.9088 0.000 0.000 0.044 0.000 0.956 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.387           0.843       0.901         0.4682 0.512   0.512
#> 3 3 0.587           0.650       0.798         0.3902 0.751   0.551
#> 4 4 0.606           0.513       0.739         0.1197 0.774   0.461
#> 5 5 0.750           0.758       0.871         0.0612 0.862   0.559
#> 6 6 0.841           0.785       0.889         0.0550 0.949   0.777

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.9209      0.698 0.664 0.336
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5408      0.811 0.124 0.876
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.851 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1184      0.851 0.984 0.016
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.9909      0.144 0.444 0.556
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.930 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.4690      0.848 0.100 0.900
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.8443      0.773 0.728 0.272
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.9209      0.698 0.664 0.336
#> 806616FE-1855-4284-9265-42842104CB21     1  0.5946      0.870 0.856 0.144
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.930 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.930 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.9209      0.698 0.664 0.336
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.930 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.6148      0.866 0.848 0.152
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.7219      0.734 0.200 0.800
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.5946      0.870 0.856 0.144
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.5946      0.870 0.856 0.144
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.930 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.930 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.5946      0.870 0.856 0.144
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.930 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.5946      0.870 0.856 0.144
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.851 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.930 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.4298      0.866 0.912 0.088
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.851 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.851 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.6343      0.863 0.840 0.160
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.8144      0.588 0.252 0.748
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.930 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.9209      0.698 0.664 0.336
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.851 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.5946      0.870 0.856 0.144
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.5946      0.870 0.856 0.144
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.5946      0.870 0.856 0.144
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.5946      0.870 0.856 0.144
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.8608      0.613 0.284 0.716
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.930 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.6801      0.851 0.820 0.180
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.930 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.851 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.851 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.5946      0.870 0.856 0.144
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.7056      0.743 0.192 0.808
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.8267      0.648 0.260 0.740
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.930 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0672      0.927 0.008 0.992
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.7883      0.807 0.764 0.236
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.5946      0.870 0.856 0.144
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.930 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.5946      0.870 0.856 0.144
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.8763      0.588 0.296 0.704
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.9209      0.698 0.664 0.336
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.5946      0.870 0.856 0.144
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.7056      0.733 0.808 0.192
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0672      0.927 0.008 0.992
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.851 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.851 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.930 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.5946      0.870 0.856 0.144
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.930 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0672      0.927 0.008 0.992
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.851 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.6801      0.758 0.180 0.820
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.5946      0.870 0.856 0.144
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.5946      0.870 0.856 0.144
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.5946      0.870 0.856 0.144
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.851 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.851 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.930 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.930 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.930 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.930 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.9209      0.698 0.664 0.336
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.930 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.5946      0.870 0.856 0.144
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.851 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.851 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4690      0.841 0.100 0.900
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.851 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.851 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.9209      0.698 0.664 0.336
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.930 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0938      0.924 0.012 0.988
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.930 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.6801      0.851 0.820 0.180
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.5946      0.870 0.856 0.144
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0672      0.927 0.008 0.992
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.930 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.5946      0.870 0.856 0.144
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.851 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.930 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1184      0.851 0.984 0.016
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0672      0.849 0.992 0.008
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5737      0.795 0.136 0.864
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.5946      0.870 0.856 0.144
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.9209      0.698 0.664 0.336
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.930 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.930 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.851 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.9209      0.698 0.664 0.336
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.9209      0.698 0.664 0.336
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.930 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.851 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0672      0.927 0.008 0.992
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1184      0.851 0.984 0.016
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1184      0.851 0.984 0.016
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.5946      0.870 0.856 0.144
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.7056      0.743 0.192 0.808
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.930 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.9209      0.698 0.664 0.336
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.851 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.851 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0672      0.927 0.008 0.992
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.851 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.8661      0.756 0.712 0.288
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.9209      0.698 0.664 0.336
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.5946      0.870 0.856 0.144
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.930 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.5946      0.870 0.856 0.144
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.930 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.6168     0.8721 0.588 0.000 0.412
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4235     0.5979 0.000 0.824 0.176
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.6168     0.6773 0.412 0.000 0.588
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.6168     0.8721 0.588 0.000 0.412
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.7158     0.6700 0.372 0.032 0.596
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.6154     0.5459 0.408 0.592 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.6008     0.4279 0.372 0.628 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.6168     0.8721 0.588 0.000 0.412
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.6168     0.8721 0.588 0.000 0.412
#> 806616FE-1855-4284-9265-42842104CB21     3  0.6168     0.6773 0.412 0.000 0.588
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.7607 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6154     0.5459 0.408 0.592 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.6168     0.8721 0.588 0.000 0.412
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000     0.7607 0.000 1.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.6008     0.6843 0.372 0.000 0.628
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.7363     0.6648 0.372 0.040 0.588
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.5465     0.6958 0.288 0.000 0.712
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.0000     0.6580 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.7607 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.7607 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.0000     0.6580 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.7607 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000     0.6580 0.000 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.1529     0.6646 0.040 0.000 0.960
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6154     0.5459 0.408 0.592 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.0000     0.6580 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.3816     0.4177 0.148 0.000 0.852
#> 4496EE84-2C36-413B-A328-A5B598A6C387     3  0.0000     0.6580 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.9494     0.5011 0.404 0.184 0.412
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.9277     0.2020 0.496 0.328 0.176
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.7607 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.6168     0.8721 0.588 0.000 0.412
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.5760     0.6955 0.328 0.000 0.672
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.5397     0.6962 0.280 0.000 0.720
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.3752     0.4267 0.144 0.000 0.856
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5465     0.6958 0.288 0.000 0.712
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.0892     0.6367 0.020 0.000 0.980
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.9687    -0.3349 0.412 0.372 0.216
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.7607 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.6168     0.8721 0.588 0.000 0.412
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.6140     0.5492 0.404 0.596 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.1529     0.6646 0.040 0.000 0.960
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.2356     0.6353 0.072 0.000 0.928
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.6008     0.6843 0.372 0.000 0.628
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.6548     0.4070 0.372 0.616 0.012
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.9638     0.4975 0.372 0.208 0.420
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.6154     0.5459 0.408 0.592 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6154     0.5459 0.408 0.592 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.6168     0.8721 0.588 0.000 0.412
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.6008     0.6843 0.372 0.000 0.628
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.7607 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.6008     0.6843 0.372 0.000 0.628
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.6168     0.6773 0.412 0.000 0.588
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.6168     0.8721 0.588 0.000 0.412
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.6008     0.6843 0.372 0.000 0.628
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.6168     0.8721 0.588 0.000 0.412
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6154     0.5459 0.408 0.592 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.1529     0.6646 0.040 0.000 0.960
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.0892     0.6628 0.020 0.000 0.980
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.7945     0.2121 0.064 0.548 0.388
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.6008     0.6843 0.372 0.000 0.628
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.7607 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.6154     0.5459 0.408 0.592 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.6168     0.6773 0.412 0.000 0.588
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.7263     0.3750 0.372 0.592 0.036
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.6008     0.6843 0.372 0.000 0.628
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.0000     0.6580 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.0000     0.6580 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.6168     0.6773 0.412 0.000 0.588
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.6225     0.8461 0.568 0.000 0.432
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.6140     0.5492 0.404 0.596 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6154     0.5459 0.408 0.592 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.7607 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.7607 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6168     0.8721 0.588 0.000 0.412
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.7607 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6168     0.8721 0.588 0.000 0.412
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.1529     0.6646 0.040 0.000 0.960
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.1753     0.6590 0.048 0.000 0.952
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.9434     0.0607 0.408 0.416 0.176
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.3038     0.6787 0.104 0.000 0.896
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.1529     0.6646 0.040 0.000 0.960
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.6168     0.8721 0.588 0.000 0.412
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.7607 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.6154     0.5459 0.408 0.592 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4750     0.6712 0.216 0.784 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.6168     0.8721 0.588 0.000 0.412
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.3816     0.4177 0.148 0.000 0.852
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6154     0.5459 0.408 0.592 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.7607 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.6302    -0.6039 0.520 0.000 0.480
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.6154     0.8622 0.592 0.000 0.408
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.7607 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     3  0.5254     0.2294 0.264 0.000 0.736
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3752     0.6801 0.144 0.000 0.856
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.9633     0.1797 0.444 0.340 0.216
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.6235     0.5923 0.436 0.000 0.564
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.6168     0.8721 0.588 0.000 0.412
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.7607 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.7607 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.6168     0.6773 0.412 0.000 0.588
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6168     0.8721 0.588 0.000 0.412
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.6168     0.8721 0.588 0.000 0.412
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.7607 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.1529     0.6646 0.040 0.000 0.960
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6154     0.5459 0.408 0.592 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.6026     0.8265 0.624 0.000 0.376
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.6305     0.6574 0.516 0.000 0.484
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.3619     0.4438 0.136 0.000 0.864
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.7551     0.6600 0.372 0.048 0.580
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.7607 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.6168     0.8721 0.588 0.000 0.412
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.0000     0.6580 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.0000     0.6580 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.6154     0.5459 0.408 0.592 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.2356     0.6353 0.072 0.000 0.928
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.6168     0.8721 0.588 0.000 0.412
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6168     0.8721 0.588 0.000 0.412
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.0000     0.6580 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.7607 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.6008     0.6843 0.372 0.000 0.628
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.4062     0.6510 0.164 0.836 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3837     0.5441 0.224 0.776 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4776    -0.0887 0.000 0.000 0.624 0.376
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.4543     0.4673 0.000 0.324 0.676 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.5548     0.6155 0.388 0.588 0.000 0.024
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0817     0.7744 0.000 0.976 0.000 0.024
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4722     0.5137 0.008 0.000 0.692 0.300
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.7911     0.2235 0.304 0.000 0.348 0.348
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.7730    -0.3313 0.264 0.000 0.444 0.292
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.7878    -0.2023 0.384 0.000 0.324 0.292
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.5649     0.3885 0.620 0.000 0.036 0.344
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.7878    -0.2023 0.384 0.000 0.324 0.292
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.7828    -0.1545 0.412 0.000 0.296 0.292
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.6867     0.6546 0.124 0.000 0.324 0.552
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.6578     0.4643 0.108 0.000 0.592 0.300
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.2944     0.5446 0.868 0.128 0.004 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.6400     0.1175 0.180 0.000 0.652 0.168
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.7845    -0.1672 0.404 0.000 0.304 0.292
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.7893    -0.1471 0.376 0.000 0.324 0.300
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.7045     0.0418 0.532 0.000 0.328 0.140
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.5867     0.5212 0.000 0.096 0.688 0.216
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.5420     0.6391 0.352 0.624 0.000 0.024
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.5668     0.7375 0.048 0.000 0.300 0.652
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.4193     0.1750 0.000 0.000 0.732 0.268
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.4454     0.4790 0.000 0.308 0.692 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.4957     0.5099 0.000 0.016 0.684 0.300
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0469     0.6857 0.988 0.000 0.000 0.012
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0817     0.7744 0.000 0.976 0.000 0.024
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.7142     0.6172 0.152 0.000 0.324 0.524
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5452     0.2680 0.000 0.360 0.616 0.024
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2704     0.5383 0.000 0.000 0.876 0.124
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.6080     0.5154 0.000 0.156 0.684 0.160
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.1302     0.6130 0.000 0.000 0.956 0.044
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.7830    -0.1707 0.404 0.000 0.324 0.272
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.7878    -0.2023 0.384 0.000 0.324 0.292
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4790    -0.1376 0.000 0.000 0.620 0.380
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3224     0.5831 0.864 0.000 0.016 0.120
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.5420     0.6391 0.352 0.624 0.000 0.024
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0817     0.7744 0.000 0.976 0.000 0.024
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0817     0.7744 0.000 0.976 0.000 0.024
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.5271     0.7517 0.024 0.000 0.320 0.656
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.4713    -0.0361 0.640 0.360 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.5668     0.5327 0.444 0.532 0.000 0.024
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3400     0.7283 0.180 0.820 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.7805    -0.1390 0.420 0.000 0.300 0.280
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2450     0.6022 0.072 0.000 0.912 0.016
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4907     0.2036 0.580 0.000 0.000 0.420
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.7301     0.5481 0.236 0.000 0.228 0.536
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     4  0.5560     0.1507 0.156 0.000 0.116 0.728
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.2342     0.6122 0.912 0.080 0.000 0.008
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.7203    -0.0762 0.312 0.000 0.524 0.164
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2868     0.5220 0.000 0.000 0.864 0.136
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0188     0.6894 0.996 0.000 0.000 0.004
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0817     0.7744 0.000 0.976 0.000 0.024
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.4543     0.7619 0.000 0.000 0.324 0.676
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4955     0.1436 0.556 0.000 0.000 0.444
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.6155     0.1494 0.412 0.000 0.052 0.536
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.7867    -0.1878 0.392 0.000 0.316 0.292
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.7878    -0.2023 0.384 0.000 0.324 0.292
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.7529     0.5527 0.204 0.000 0.324 0.472
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5560     0.6127 0.392 0.584 0.000 0.024
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     4  0.1722     0.4073 0.048 0.000 0.008 0.944
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.6910 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0592     0.6835 0.984 0.000 0.000 0.016
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.7878    -0.2023 0.384 0.000 0.324 0.292
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.7758 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000     0.6485 0.000 0.000 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.7870    -0.0587 0.000 0.392 0.308 0.300

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.2548    0.74457 0.036 0.912 0.008 0.024 0.020
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4343    0.71323 0.000 0.000 0.768 0.136 0.096
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0963    0.89563 0.000 0.000 0.964 0.036 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0794    0.87048 0.000 0.028 0.972 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0963    0.89563 0.000 0.000 0.964 0.036 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.1907    0.78844 0.000 0.928 0.028 0.000 0.044
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.2516    0.88666 0.000 0.000 0.140 0.000 0.860
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0963    0.89563 0.000 0.000 0.964 0.036 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.2761    0.89447 0.024 0.000 0.104 0.000 0.872
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.2514    0.84587 0.060 0.000 0.044 0.896 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.2074    0.85466 0.104 0.000 0.000 0.896 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.2653    0.84105 0.024 0.000 0.000 0.096 0.880
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.2124    0.83354 0.004 0.000 0.000 0.900 0.096
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.2074    0.85466 0.104 0.000 0.000 0.896 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.2230    0.84962 0.116 0.000 0.000 0.884 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.1121    0.85689 0.044 0.000 0.000 0.956 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.2516    0.88666 0.000 0.000 0.140 0.000 0.860
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.4464    0.00619 0.584 0.408 0.008 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.1965    0.83346 0.000 0.000 0.000 0.904 0.096
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.4735    0.61800 0.272 0.000 0.048 0.680 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.2179    0.85148 0.112 0.000 0.000 0.888 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.3012    0.89038 0.036 0.000 0.104 0.000 0.860
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4307   -0.25357 0.500 0.000 0.000 0.500 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1012    0.87129 0.000 0.012 0.968 0.000 0.020
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.5416    0.66271 0.276 0.652 0.028 0.000 0.044
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.2124    0.83354 0.004 0.000 0.000 0.900 0.096
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.2720    0.82527 0.020 0.000 0.004 0.880 0.096
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.3074    0.73034 0.000 0.000 0.196 0.804 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0794    0.87048 0.000 0.028 0.972 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.2516    0.88666 0.000 0.000 0.140 0.000 0.860
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.4998    0.56600 0.372 0.596 0.024 0.000 0.008
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0162    0.85274 0.996 0.000 0.000 0.004 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.1043    0.89487 0.000 0.000 0.960 0.040 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1907    0.78844 0.000 0.928 0.028 0.000 0.044
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.1043    0.89496 0.000 0.000 0.960 0.040 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0963    0.89563 0.000 0.000 0.964 0.036 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.1043    0.89496 0.000 0.000 0.960 0.040 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.2124    0.83354 0.004 0.000 0.000 0.900 0.096
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.1197    0.85757 0.048 0.000 0.000 0.952 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.3395    0.55010 0.000 0.236 0.764 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1043    0.89496 0.000 0.000 0.960 0.040 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000    0.79433 0.000 1.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2130    0.86180 0.000 0.000 0.908 0.080 0.012
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0671    0.87260 0.000 0.016 0.980 0.000 0.004
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4074    0.45423 0.000 0.000 0.636 0.364 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.2329    0.84487 0.124 0.000 0.000 0.876 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.2074    0.85466 0.104 0.000 0.000 0.896 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3203    0.76000 0.000 0.000 0.168 0.820 0.012
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3395    0.52698 0.764 0.000 0.000 0.236 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.5416    0.66271 0.276 0.652 0.028 0.000 0.044
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1907    0.78844 0.000 0.928 0.028 0.000 0.044
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1907    0.78844 0.000 0.928 0.028 0.000 0.044
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000    0.84548 0.000 0.000 0.000 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.2124    0.83354 0.004 0.000 0.000 0.900 0.096
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.3783    0.49873 0.740 0.252 0.008 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.2124    0.83354 0.004 0.000 0.000 0.900 0.096
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1792    0.83673 0.000 0.000 0.000 0.916 0.084
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.5890   -0.25462 0.496 0.432 0.028 0.000 0.044
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2563    0.77014 0.120 0.872 0.008 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.3074    0.78025 0.196 0.000 0.000 0.804 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5355    0.48033 0.292 0.000 0.624 0.084 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.5568    0.46227 0.308 0.000 0.000 0.596 0.096
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.4273    0.76101 0.116 0.000 0.004 0.784 0.096
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.1372    0.85994 0.024 0.000 0.016 0.004 0.956
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3364    0.70804 0.848 0.112 0.020 0.000 0.020
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.4552   -0.08720 0.524 0.000 0.008 0.468 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2130    0.86180 0.000 0.000 0.908 0.080 0.012
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0162    0.85261 0.996 0.004 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1725    0.78919 0.000 0.936 0.020 0.000 0.044
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.2124    0.83354 0.004 0.000 0.000 0.900 0.096
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5568    0.38452 0.596 0.000 0.000 0.308 0.096
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.4343    0.74545 0.136 0.000 0.000 0.768 0.096
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.2074    0.85466 0.104 0.000 0.000 0.896 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0963    0.89563 0.000 0.000 0.964 0.036 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.2074    0.85466 0.104 0.000 0.000 0.896 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.1851    0.85754 0.088 0.000 0.000 0.912 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5667    0.61401 0.332 0.596 0.028 0.000 0.044
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.2719    0.76472 0.004 0.000 0.000 0.144 0.852
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000    0.85557 1.000 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0451    0.84737 0.988 0.000 0.008 0.000 0.004
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.2074    0.85466 0.104 0.000 0.000 0.896 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0290    0.79451 0.000 0.992 0.008 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.1197    0.89008 0.000 0.000 0.952 0.048 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.2951    0.83007 0.000 0.112 0.028 0.000 0.860

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4  p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3956     0.5276 0.036 0.712 0.000 0.000 0.0 0.252
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.2948     0.7215 0.000 0.000 0.804 0.188 0.0 0.008
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0363     0.8909 0.988 0.000 0.000 0.012 0.0 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3789     0.1392 0.000 0.584 0.000 0.000 0.0 0.416
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0458     0.8353 0.000 0.984 0.000 0.000 0.0 0.016
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.3023     0.8325 0.004 0.000 0.008 0.808 0.0 0.180
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.1124     0.7782 0.036 0.000 0.000 0.956 0.0 0.008
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.2882     0.8350 0.008 0.000 0.000 0.812 0.0 0.180
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.3857     0.1488 0.468 0.532 0.000 0.000 0.0 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0622     0.7855 0.012 0.000 0.000 0.980 0.0 0.008
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.5255     0.6946 0.164 0.000 0.012 0.644 0.0 0.180
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.3244     0.5535 0.732 0.000 0.000 0.268 0.0 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0891     0.7824 0.024 0.000 0.000 0.968 0.0 0.008
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.1866     0.7431 0.084 0.000 0.000 0.908 0.0 0.008
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4044     0.7892 0.000 0.000 0.076 0.744 0.0 0.180
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.3266     0.5567 0.272 0.728 0.000 0.000 0.0 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0865     0.8706 0.964 0.000 0.000 0.036 0.0 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0260     0.8402 0.000 0.992 0.000 0.000 0.0 0.008
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0146     0.8968 0.996 0.000 0.000 0.004 0.0 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.1124     0.7782 0.036 0.000 0.000 0.956 0.0 0.008
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.2631     0.8329 0.000 0.000 0.000 0.820 0.0 0.180
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.2762     0.6617 0.000 0.196 0.804 0.000 0.0 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3706     0.2575 0.000 0.620 0.000 0.000 0.0 0.380
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0520     0.8957 0.000 0.000 0.984 0.008 0.0 0.008
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.5748    -0.0355 0.000 0.000 0.464 0.360 0.0 0.176
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.3312     0.8298 0.028 0.000 0.000 0.792 0.0 0.180
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3349     0.6634 0.000 0.000 0.244 0.748 0.0 0.008
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0146     0.8426 0.000 0.996 0.000 0.000 0.0 0.004
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.2631     0.8329 0.000 0.000 0.000 0.820 0.0 0.180
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.1196     0.7760 0.040 0.000 0.000 0.952 0.0 0.008
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.3789     0.2291 0.584 0.416 0.000 0.000 0.0 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.1124     0.7782 0.036 0.000 0.000 0.956 0.0 0.008
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000     0.7907 0.000 0.000 0.000 1.000 0.0 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3789     0.1392 0.000 0.584 0.000 0.000 0.0 0.416
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1556     0.7615 0.080 0.920 0.000 0.000 0.0 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4910     0.4388 0.116 0.640 0.000 0.000 0.0 0.244
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4094     0.7928 0.080 0.000 0.000 0.740 0.0 0.180
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.6091     0.1182 0.400 0.000 0.460 0.088 0.0 0.052
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.4095    -0.0320 0.480 0.000 0.000 0.512 0.0 0.008
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.4010     0.1910 0.408 0.000 0.000 0.584 0.0 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3843     0.1509 0.548 0.452 0.000 0.000 0.0 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.5726     0.0658 0.512 0.000 0.004 0.320 0.0 0.164
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0520     0.8957 0.000 0.000 0.984 0.008 0.0 0.008
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0865     0.8697 0.964 0.036 0.000 0.000 0.0 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1957     0.7385 0.000 0.888 0.000 0.000 0.0 0.112
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.1124     0.7782 0.036 0.000 0.000 0.956 0.0 0.008
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3874     0.4419 0.636 0.000 0.000 0.356 0.0 0.008
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.4062     0.0956 0.440 0.000 0.000 0.552 0.0 0.008
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.9053 0.000 0.000 1.000 0.000 0.0 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.2882     0.8350 0.008 0.000 0.000 0.812 0.0 0.180
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000     0.8445 0.000 1.000 0.000 0.000 0.0 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.2980     0.7907 0.000 0.000 0.000 0.192 0.8 0.008
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.8992 1.000 0.000 0.000 0.000 0.0 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0790     0.8766 0.968 0.032 0.000 0.000 0.0 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.2980     0.8353 0.012 0.000 0.000 0.808 0.0 0.180
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     6  0.2697     1.0000 0.000 0.188 0.000 0.000 0.0 0.812
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0363     0.8964 0.000 0.000 0.988 0.012 0.0 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000     0.9750 0.000 0.000 0.000 0.000 1.0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.994         0.5000 0.497   0.497
#> 3 3 0.539           0.732       0.786         0.2455 0.875   0.748
#> 4 4 0.785           0.838       0.898         0.1677 0.822   0.556
#> 5 5 0.741           0.697       0.870         0.0557 0.955   0.835
#> 6 6 0.842           0.706       0.834         0.0596 0.936   0.746

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.1184      0.996 0.016 0.984
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0938      0.994 0.012 0.988
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.999 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.1184      0.996 0.016 0.984
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000      0.999 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1184      0.996 0.016 0.984
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.0000      0.999 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.1184      0.996 0.016 0.984
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.1184      0.996 0.016 0.984
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.999 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.989 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1184      0.996 0.016 0.984
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.1184      0.996 0.016 0.984
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0938      0.994 0.012 0.988
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.0376      0.997 0.996 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.0000      0.999 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.0376      0.997 0.996 0.004
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.999 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.989 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.989 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.999 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.989 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.0376      0.997 0.996 0.004
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.999 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1184      0.996 0.016 0.984
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.999 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.999 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.999 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.0376      0.997 0.996 0.004
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1184      0.996 0.016 0.984
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.989 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.1184      0.996 0.016 0.984
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.999 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.999 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.999 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.0376      0.997 0.996 0.004
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.999 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000      0.999 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.989 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.1184      0.996 0.016 0.984
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1184      0.996 0.016 0.984
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.999 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0376      0.997 0.996 0.004
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.999 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.0000      0.999 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.0376      0.997 0.996 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.1184      0.996 0.016 0.984
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.1184      0.996 0.016 0.984
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.1184      0.996 0.016 0.984
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.999 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.989 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.999 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.999 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.1184      0.996 0.016 0.984
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.999 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.1184      0.996 0.016 0.984
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1184      0.996 0.016 0.984
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.999 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.999 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.0376      0.996 0.996 0.004
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.999 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.989 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1184      0.996 0.016 0.984
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.999 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.0000      0.999 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.999 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.999 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.999 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.999 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     2  0.1184      0.996 0.016 0.984
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1184      0.996 0.016 0.984
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1184      0.996 0.016 0.984
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0938      0.994 0.012 0.988
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.989 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.1184      0.996 0.016 0.984
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0938      0.994 0.012 0.988
#> A314C4E6-B245-4F10-A555-50B9B819040D     2  0.1184      0.996 0.016 0.984
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.999 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.999 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.1184      0.996 0.016 0.984
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.999 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.999 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.1184      0.996 0.016 0.984
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.989 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1184      0.996 0.016 0.984
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.1184      0.996 0.016 0.984
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.1184      0.996 0.016 0.984
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.999 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1184      0.996 0.016 0.984
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.989 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.999 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     2  0.1184      0.996 0.016 0.984
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.989 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     2  0.1184      0.996 0.016 0.984
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0376      0.997 0.996 0.004
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.1184      0.996 0.016 0.984
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.999 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.1184      0.996 0.016 0.984
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.989 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.989 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.999 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.1184      0.996 0.016 0.984
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.1184      0.996 0.016 0.984
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.989 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.999 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.1184      0.996 0.016 0.984
#> F900E9BE-2400-4451-9434-EE8BC513BA94     2  0.1184      0.996 0.016 0.984
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.1184      0.996 0.016 0.984
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.999 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.0000      0.999 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.989 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.1184      0.996 0.016 0.984
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.999 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.999 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.1184      0.996 0.016 0.984
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0376      0.997 0.996 0.004
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.1184      0.996 0.016 0.984
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.1184      0.996 0.016 0.984
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.999 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.989 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.999 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.0376      0.997 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.6302     1.0000 0.520 0.480 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5650    -0.2664 0.312 0.688 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.2261     0.8508 0.068 0.000 0.932
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.6302     1.0000 0.520 0.480 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.8441 0.000 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1753     0.6470 0.048 0.952 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1643     0.8318 0.044 0.000 0.956
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.6302     1.0000 0.520 0.480 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.6280    -0.8512 0.460 0.540 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.8441 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3752     0.6911 0.144 0.856 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1753     0.6470 0.048 0.952 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.6302     1.0000 0.520 0.480 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4974     0.6626 0.236 0.764 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1753     0.8303 0.048 0.000 0.952
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0592     0.8412 0.012 0.000 0.988
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1753     0.8303 0.048 0.000 0.952
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.5926     0.8274 0.356 0.000 0.644
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.4346     0.6813 0.184 0.816 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.4346     0.6813 0.184 0.816 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.5926     0.8274 0.356 0.000 0.644
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.4346     0.6813 0.184 0.816 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.1753     0.8303 0.048 0.000 0.952
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.4235     0.8570 0.176 0.000 0.824
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1753     0.6470 0.048 0.952 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.5926     0.8274 0.356 0.000 0.644
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.5926     0.8274 0.356 0.000 0.644
#> 4496EE84-2C36-413B-A328-A5B598A6C387     3  0.5926     0.8274 0.356 0.000 0.644
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1753     0.8303 0.048 0.000 0.952
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.5529    -0.1764 0.296 0.704 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.4346     0.6813 0.184 0.816 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.6302     1.0000 0.520 0.480 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.4235     0.8570 0.176 0.000 0.824
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.5678     0.8301 0.316 0.000 0.684
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.5926     0.8274 0.356 0.000 0.644
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1753     0.8303 0.048 0.000 0.952
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.4235     0.8570 0.176 0.000 0.824
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1643     0.8318 0.044 0.000 0.956
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.4346     0.6813 0.184 0.816 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.6302     1.0000 0.520 0.480 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1031     0.6640 0.024 0.976 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.4235     0.8570 0.176 0.000 0.824
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.3267     0.8433 0.116 0.000 0.884
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.5859     0.8290 0.344 0.000 0.656
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1643     0.8318 0.044 0.000 0.956
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.1753     0.8303 0.048 0.000 0.952
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.2356     0.6291 0.072 0.928 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.2356     0.6415 0.072 0.928 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.6302     1.0000 0.520 0.480 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3116     0.8533 0.108 0.000 0.892
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3551     0.6935 0.132 0.868 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3116     0.8533 0.108 0.000 0.892
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1289     0.8356 0.032 0.000 0.968
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.6302     1.0000 0.520 0.480 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.5363     0.8337 0.276 0.000 0.724
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.6302     1.0000 0.520 0.480 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1964     0.6383 0.056 0.944 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.4235     0.8570 0.176 0.000 0.824
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.5926     0.8274 0.356 0.000 0.644
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.1711     0.8347 0.032 0.008 0.960
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.3116     0.8533 0.108 0.000 0.892
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.4346     0.6813 0.184 0.816 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.2066     0.6335 0.060 0.940 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000     0.8441 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1643     0.8318 0.044 0.000 0.956
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.5835     0.8293 0.340 0.000 0.660
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.5926     0.8274 0.356 0.000 0.644
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.5926     0.8274 0.356 0.000 0.644
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4178     0.8571 0.172 0.000 0.828
#> 352471DC-A881-4EA8-B646-EB1200291893     2  0.6291    -0.8725 0.468 0.532 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1411     0.6565 0.036 0.964 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1753     0.6470 0.048 0.952 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1289     0.6683 0.032 0.968 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1860     0.6877 0.052 0.948 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6302     1.0000 0.520 0.480 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4974     0.6626 0.236 0.764 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6302     1.0000 0.520 0.480 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.5926     0.8274 0.356 0.000 0.644
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.4235     0.8570 0.176 0.000 0.824
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.5706    -0.2794 0.320 0.680 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.4235     0.8570 0.176 0.000 0.824
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.5926     0.8274 0.356 0.000 0.644
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.6302     1.0000 0.520 0.480 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4346     0.6813 0.184 0.816 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2066     0.6335 0.060 0.940 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4750     0.1870 0.216 0.784 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.6302     1.0000 0.520 0.480 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.5926     0.8274 0.356 0.000 0.644
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2066     0.6335 0.060 0.940 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1411     0.6697 0.036 0.964 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5882     0.8286 0.348 0.000 0.652
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.6302     1.0000 0.520 0.480 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.4346     0.6813 0.184 0.816 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     2  0.7752    -0.8572 0.456 0.496 0.048
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.1753     0.8303 0.048 0.000 0.952
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5397    -0.1062 0.280 0.720 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.5926     0.8274 0.356 0.000 0.644
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.6302     1.0000 0.520 0.480 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.4346     0.6813 0.184 0.816 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.3879     0.6895 0.152 0.848 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2796     0.8467 0.092 0.000 0.908
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6302     1.0000 0.520 0.480 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.6302     1.0000 0.520 0.480 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.3038     0.6935 0.104 0.896 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.4235     0.8570 0.176 0.000 0.824
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2448     0.6076 0.076 0.924 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.6302     1.0000 0.520 0.480 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.6302     1.0000 0.520 0.480 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.5926     0.8274 0.356 0.000 0.644
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1289     0.8356 0.032 0.000 0.968
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.4346     0.6813 0.184 0.816 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.6302     1.0000 0.520 0.480 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.5926     0.8274 0.356 0.000 0.644
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.5926     0.8274 0.356 0.000 0.644
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5098     0.0695 0.248 0.752 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.3267     0.8433 0.116 0.000 0.884
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.6302     1.0000 0.520 0.480 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6302     1.0000 0.520 0.480 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.5926     0.8274 0.356 0.000 0.644
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.4346     0.6813 0.184 0.816 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3116     0.8533 0.108 0.000 0.892
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1753     0.8303 0.048 0.000 0.952

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4996      0.706 0.192 0.752 0.056 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4985      0.575 0.000 0.000 0.532 0.468
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.4804     -0.103 0.000 0.000 0.384 0.616
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.4925      0.649 0.000 0.000 0.572 0.428
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2469      0.864 0.892 0.108 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     4  0.4356      0.319 0.000 0.000 0.292 0.708
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0376      0.876 0.004 0.992 0.004 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     1  0.5784      0.372 0.556 0.412 0.032 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1716      0.743 0.000 0.000 0.936 0.064
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.4955      0.624 0.000 0.000 0.556 0.444
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1637      0.742 0.000 0.000 0.940 0.060
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.1716      0.743 0.000 0.000 0.936 0.064
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1637      0.742 0.000 0.000 0.940 0.060
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.4507      0.790 0.788 0.168 0.044 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1637      0.742 0.000 0.000 0.940 0.060
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.3268      0.822 0.024 0.056 0.028 0.892
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.4898      0.657 0.000 0.000 0.584 0.416
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.1557      0.737 0.000 0.000 0.944 0.056
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.4925      0.649 0.000 0.000 0.572 0.428
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2469      0.739 0.000 0.000 0.892 0.108
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4289      0.793 0.796 0.172 0.032 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.4423      0.787 0.788 0.176 0.036 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0779      0.874 0.004 0.980 0.016 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.4948      0.630 0.000 0.000 0.560 0.440
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.0188      0.964 0.000 0.000 0.004 0.996
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5598      0.649 0.004 0.016 0.564 0.416
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.0188      0.964 0.000 0.000 0.004 0.996
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0657      0.872 0.012 0.984 0.004 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4994      0.546 0.000 0.000 0.520 0.480
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.4925      0.649 0.000 0.000 0.572 0.428
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0188      0.964 0.000 0.000 0.004 0.996
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1867      0.883 0.928 0.072 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1661      0.868 0.004 0.944 0.052 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0469      0.876 0.012 0.988 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     1  0.5530      0.555 0.632 0.336 0.032 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.6090      0.505 0.384 0.564 0.052 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0817      0.872 0.000 0.976 0.024 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.4728      0.656 0.752 0.216 0.032 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.5279      0.707 0.232 0.716 0.052 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4655      0.805 0.208 0.760 0.032 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0524      0.875 0.004 0.988 0.008 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4706      0.798 0.788 0.072 0.140 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.1557      0.740 0.000 0.000 0.944 0.056
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5072      0.796 0.208 0.740 0.052 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0376      0.876 0.004 0.992 0.004 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4925      0.649 0.000 0.000 0.572 0.428
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0336      0.921 0.992 0.008 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0376      0.876 0.004 0.992 0.004 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.3803      0.829 0.836 0.132 0.032 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1807      0.894 0.940 0.052 0.008 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.4925      0.649 0.000 0.000 0.572 0.428
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0336      0.962 0.000 0.000 0.008 0.992
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5144      0.790 0.216 0.732 0.052 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.1389      0.734 0.000 0.000 0.952 0.048
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000      0.925 1.000 0.000 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.965 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0188      0.875 0.000 0.996 0.004 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0188      0.964 0.000 0.000 0.004 0.996
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1716      0.743 0.000 0.000 0.936 0.064

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4970     0.6748 0.140 0.712 0.000 0.000 0.148
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.3847     0.3039 0.000 0.000 0.784 0.180 0.036
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2648     0.3896 0.000 0.000 0.848 0.152 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4163     0.7297 0.228 0.740 0.000 0.000 0.032
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.5828 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0404     0.9026 0.988 0.012 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.3999     0.1328 0.000 0.000 0.656 0.344 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0510     0.8173 0.000 0.984 0.000 0.000 0.016
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4163     0.7297 0.228 0.740 0.000 0.000 0.032
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4276     0.3525 0.380 0.616 0.000 0.000 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4182    -0.1344 0.000 0.000 0.600 0.000 0.400
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0510     0.5714 0.000 0.000 0.984 0.016 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4182    -0.1344 0.000 0.000 0.600 0.000 0.400
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.4182    -0.1344 0.000 0.000 0.600 0.000 0.400
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.1661     0.8749 0.000 0.000 0.024 0.940 0.036
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4163     0.7297 0.228 0.740 0.000 0.000 0.032
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4182    -0.1344 0.000 0.000 0.600 0.000 0.400
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.3460     0.8033 0.828 0.044 0.000 0.000 0.128
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8178 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.1493     0.8779 0.000 0.000 0.024 0.948 0.028
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0290     0.8904 0.000 0.000 0.008 0.992 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4182    -0.1344 0.000 0.000 0.600 0.000 0.400
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1605     0.8749 0.004 0.000 0.040 0.944 0.012
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.5828 0.000 0.000 1.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3977     0.7473 0.204 0.764 0.000 0.000 0.032
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.1661     0.8749 0.000 0.000 0.024 0.940 0.036
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.5996     0.7141 0.000 0.000 0.316 0.136 0.548
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.3242     0.7254 0.000 0.000 0.216 0.784 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.5828 0.000 0.000 1.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3857     0.0506 0.000 0.000 0.688 0.000 0.312
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.3543     0.7863 0.828 0.112 0.000 0.000 0.060
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.3727     0.6853 0.768 0.216 0.000 0.000 0.016
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4182     0.4917 0.000 0.000 0.400 0.600 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0609     0.8166 0.000 0.980 0.000 0.000 0.020
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4210     0.4739 0.000 0.000 0.412 0.588 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.5828 0.000 0.000 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.4161     0.5044 0.000 0.000 0.392 0.608 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4163     0.7297 0.228 0.740 0.000 0.000 0.032
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.1661     0.8749 0.000 0.000 0.024 0.940 0.036
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0162     0.5808 0.000 0.000 0.996 0.000 0.004
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.4201     0.4813 0.000 0.000 0.408 0.592 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0703     0.8153 0.024 0.976 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3890     0.7114 0.252 0.736 0.000 0.000 0.012
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1908     0.4932 0.000 0.000 0.908 0.092 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.5828 0.000 0.000 1.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.2813     0.7742 0.000 0.000 0.168 0.832 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3596     0.7329 0.000 0.000 0.212 0.776 0.012
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.4073     0.7391 0.216 0.752 0.000 0.000 0.032
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4163     0.7297 0.228 0.740 0.000 0.000 0.032
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2605     0.7431 0.000 0.852 0.000 0.000 0.148
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0510     0.8173 0.000 0.984 0.000 0.000 0.016
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4455     0.2807 0.404 0.588 0.000 0.000 0.008
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.1893     0.8686 0.000 0.000 0.024 0.928 0.048
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.6153    -0.0664 0.484 0.380 0.000 0.000 0.136
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.1661     0.8749 0.000 0.000 0.024 0.940 0.036
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0162     0.8182 0.000 0.996 0.000 0.000 0.004
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.2930     0.7538 0.832 0.164 0.000 0.000 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.5901     0.5943 0.268 0.584 0.000 0.000 0.148
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4141     0.7228 0.236 0.736 0.000 0.000 0.028
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0880     0.8124 0.000 0.968 0.000 0.000 0.032
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.1522     0.8755 0.000 0.000 0.044 0.944 0.012
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3684     0.7072 0.720 0.000 0.000 0.000 0.280
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4538     0.5847 0.620 0.000 0.000 0.016 0.364
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.4300    -0.4037 0.000 0.000 0.524 0.000 0.476
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.6080     0.4727 0.344 0.520 0.000 0.000 0.136
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0162     0.8917 0.000 0.000 0.004 0.996 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0404     0.8177 0.000 0.988 0.000 0.000 0.012
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.1582     0.5337 0.000 0.000 0.944 0.028 0.028
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0510     0.8173 0.000 0.984 0.000 0.000 0.016
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.1661     0.8749 0.000 0.000 0.024 0.940 0.036
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.3011     0.7763 0.844 0.140 0.000 0.000 0.016
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3684     0.7072 0.720 0.000 0.000 0.000 0.280
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3684     0.7072 0.720 0.000 0.000 0.000 0.280
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.5828 0.000 0.000 1.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0162     0.8178 0.000 0.996 0.000 0.000 0.004
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5921     0.5680 0.296 0.568 0.000 0.000 0.136
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.5352     0.6674 0.000 0.000 0.408 0.056 0.536
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000     0.9104 1.000 0.000 0.000 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.8927 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.8178 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4210     0.4739 0.000 0.000 0.412 0.588 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.4182    -0.1344 0.000 0.000 0.600 0.000 0.400

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0865    0.81051 0.964 0.000 0.000 0.000 0.000 0.036
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7378   -0.03185 0.012 0.356 0.080 0.000 0.220 0.332
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.1237    0.78843 0.000 0.000 0.956 0.020 0.004 0.020
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1141    0.80747 0.948 0.000 0.000 0.000 0.000 0.052
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1615    0.75979 0.000 0.000 0.928 0.064 0.004 0.004
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     5  0.0260    0.70201 0.000 0.008 0.000 0.000 0.992 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0405    0.80063 0.000 0.000 0.988 0.008 0.000 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0865    0.81319 0.964 0.000 0.000 0.000 0.000 0.036
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3268    0.68047 0.824 0.000 0.000 0.000 0.100 0.076
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1897    0.73652 0.000 0.000 0.908 0.084 0.004 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0547    0.84908 0.000 0.980 0.000 0.000 0.000 0.020
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     5  0.0260    0.70201 0.000 0.008 0.000 0.000 0.992 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0865    0.81051 0.964 0.000 0.000 0.000 0.000 0.036
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.7262    0.01569 0.008 0.384 0.080 0.000 0.212 0.316
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.3531    0.70752 0.000 0.000 0.672 0.000 0.000 0.328
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0777    0.79434 0.000 0.000 0.972 0.024 0.000 0.004
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.3531    0.70752 0.000 0.000 0.672 0.000 0.000 0.328
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0508    0.88925 0.000 0.000 0.012 0.984 0.000 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000    0.85042 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000    0.85042 0.000 1.000 0.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0146    0.88960 0.000 0.000 0.000 0.996 0.000 0.004
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000    0.85042 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3563    0.70435 0.000 0.000 0.664 0.000 0.000 0.336
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.1857    0.87843 0.000 0.000 0.028 0.924 0.004 0.044
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     5  0.0260    0.70201 0.000 0.008 0.000 0.000 0.992 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0405    0.88947 0.000 0.000 0.008 0.988 0.000 0.004
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0146    0.88960 0.000 0.000 0.000 0.996 0.000 0.004
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0717    0.88985 0.000 0.000 0.008 0.976 0.000 0.016
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.3531    0.70752 0.000 0.000 0.672 0.000 0.000 0.328
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     6  0.7192    0.42603 0.292 0.000 0.088 0.000 0.252 0.368
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1444    0.83792 0.000 0.928 0.000 0.000 0.072 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0865    0.81051 0.964 0.000 0.000 0.000 0.000 0.036
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.1794    0.88220 0.000 0.000 0.036 0.924 0.000 0.040
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1967    0.86399 0.000 0.000 0.012 0.904 0.000 0.084
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0146    0.88960 0.000 0.000 0.000 0.996 0.000 0.004
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.3531    0.70752 0.000 0.000 0.672 0.000 0.000 0.328
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.3275    0.79470 0.004 0.000 0.144 0.816 0.000 0.036
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0146    0.80172 0.000 0.000 0.996 0.004 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000    0.85042 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0865    0.81319 0.964 0.000 0.000 0.000 0.000 0.036
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     5  0.2300    0.59359 0.000 0.144 0.000 0.000 0.856 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.1857    0.87843 0.000 0.000 0.028 0.924 0.004 0.044
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.5119   -0.60414 0.000 0.000 0.452 0.068 0.004 0.476
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4349    0.73102 0.000 0.000 0.208 0.708 0.000 0.084
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0692    0.79651 0.000 0.000 0.976 0.020 0.000 0.004
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3634    0.71884 0.000 0.000 0.696 0.008 0.000 0.296
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     5  0.6077    0.20888 0.088 0.000 0.060 0.000 0.520 0.332
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.7194    0.41229 0.256 0.000 0.088 0.000 0.288 0.368
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0865    0.81319 0.964 0.000 0.000 0.000 0.000 0.036
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4659    0.68896 0.000 0.000 0.260 0.656 0.000 0.084
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0806    0.84927 0.000 0.972 0.000 0.000 0.008 0.020
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4816    0.68111 0.000 0.000 0.264 0.648 0.004 0.084
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0458    0.80268 0.000 0.000 0.984 0.000 0.000 0.016
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0790    0.81166 0.968 0.000 0.000 0.000 0.000 0.032
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.4816    0.68111 0.000 0.000 0.264 0.648 0.004 0.084
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4834    0.29156 0.596 0.000 0.060 0.000 0.004 0.340
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     5  0.0260    0.70201 0.000 0.008 0.000 0.000 0.992 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.1857    0.87843 0.000 0.000 0.028 0.924 0.004 0.044
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0806    0.88850 0.000 0.000 0.008 0.972 0.000 0.020
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0508    0.80248 0.000 0.004 0.984 0.000 0.000 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.4816    0.68111 0.000 0.000 0.264 0.648 0.004 0.084
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3663    0.72708 0.000 0.784 0.000 0.000 0.148 0.068
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     5  0.1065    0.69558 0.008 0.008 0.000 0.000 0.964 0.020
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1138    0.78898 0.000 0.000 0.960 0.024 0.004 0.012
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0260    0.80252 0.000 0.000 0.992 0.000 0.000 0.008
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.4321    0.73453 0.000 0.000 0.204 0.712 0.000 0.084
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0405    0.88963 0.000 0.000 0.004 0.988 0.000 0.008
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0405    0.88947 0.000 0.000 0.008 0.988 0.000 0.004
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.2667    0.84835 0.000 0.000 0.128 0.852 0.000 0.020
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3864    0.42848 0.648 0.000 0.004 0.004 0.000 0.344
#> F779417A-9E29-4B27-BEA3-B23273A66021     5  0.1910    0.62514 0.000 0.108 0.000 0.000 0.892 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     5  0.0260    0.70201 0.000 0.008 0.000 0.000 0.992 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1334    0.84865 0.000 0.948 0.000 0.000 0.032 0.020
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0547    0.84908 0.000 0.980 0.000 0.000 0.000 0.020
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0865    0.81051 0.964 0.000 0.000 0.000 0.000 0.036
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.7228    0.12658 0.016 0.424 0.080 0.000 0.168 0.312
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1007    0.81072 0.956 0.000 0.000 0.000 0.000 0.044
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0891    0.88797 0.000 0.000 0.008 0.968 0.000 0.024
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.3233    0.81723 0.000 0.000 0.104 0.832 0.004 0.060
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     5  0.5731    0.31938 0.044 0.000 0.076 0.000 0.552 0.328
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.1924    0.87712 0.000 0.000 0.028 0.920 0.004 0.048
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0713    0.88435 0.000 0.000 0.000 0.972 0.000 0.028
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0865    0.81051 0.964 0.000 0.000 0.000 0.000 0.036
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.2558    0.77928 0.000 0.840 0.000 0.000 0.156 0.004
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     5  0.5411    0.41429 0.036 0.004 0.060 0.000 0.612 0.288
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     5  0.6639    0.27726 0.020 0.076 0.080 0.000 0.496 0.328
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0865    0.81319 0.964 0.000 0.000 0.000 0.000 0.036
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0146    0.88960 0.000 0.000 0.000 0.996 0.000 0.004
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     5  0.0622    0.70089 0.000 0.008 0.000 0.000 0.980 0.012
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0806    0.84927 0.000 0.972 0.000 0.000 0.008 0.020
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.4972    0.67254 0.000 0.000 0.256 0.628 0.000 0.116
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5029    0.20685 0.544 0.000 0.080 0.000 0.000 0.376
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000    0.85042 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5378   -0.00455 0.460 0.000 0.084 0.008 0.000 0.448
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3714    0.69963 0.000 0.000 0.656 0.000 0.004 0.340
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     5  0.5663    0.34780 0.028 0.004 0.080 0.000 0.560 0.328
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0858    0.88827 0.000 0.000 0.004 0.968 0.000 0.028
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000    0.81430 1.000 0.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1444    0.83792 0.000 0.928 0.000 0.000 0.072 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2667    0.79961 0.000 0.852 0.000 0.000 0.128 0.020
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0547    0.80236 0.000 0.000 0.980 0.000 0.000 0.020
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0790    0.81169 0.968 0.000 0.000 0.000 0.000 0.032
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0790    0.81166 0.968 0.000 0.000 0.000 0.000 0.032
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1983    0.83509 0.000 0.908 0.000 0.000 0.072 0.020
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.1857    0.87843 0.000 0.000 0.028 0.924 0.004 0.044
#> B3561356-5A80-4C79-B23A-D518425565FE     6  0.7010    0.37660 0.256 0.000 0.064 0.000 0.312 0.368
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5029    0.20685 0.544 0.000 0.080 0.000 0.000 0.376
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5207    0.13693 0.512 0.000 0.080 0.004 0.000 0.404
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0405    0.88947 0.000 0.000 0.008 0.988 0.000 0.004
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0603    0.79821 0.000 0.000 0.980 0.016 0.000 0.004
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000    0.85042 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0865    0.81319 0.964 0.000 0.000 0.000 0.000 0.036
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1082    0.88269 0.000 0.000 0.004 0.956 0.000 0.040
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0547    0.88683 0.000 0.000 0.000 0.980 0.000 0.020
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     5  0.5428    0.38122 0.028 0.004 0.060 0.000 0.580 0.328
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.3971    0.58974 0.000 0.000 0.548 0.000 0.004 0.448
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1327    0.80082 0.936 0.000 0.000 0.000 0.000 0.064
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0865    0.81051 0.964 0.000 0.000 0.000 0.000 0.036
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0603    0.88854 0.000 0.000 0.004 0.980 0.000 0.016
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1444    0.83792 0.000 0.928 0.000 0.000 0.072 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4816    0.68111 0.000 0.000 0.264 0.648 0.004 0.084
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.3531    0.70752 0.000 0.000 0.672 0.000 0.000 0.328

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.988         0.4972 0.505   0.505
#> 3 3 0.813           0.921       0.960         0.3427 0.727   0.507
#> 4 4 0.761           0.740       0.864         0.0977 0.888   0.680
#> 5 5 0.830           0.848       0.916         0.0602 0.910   0.683
#> 6 6 0.788           0.787       0.863         0.0566 0.909   0.621

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.983 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000      0.993 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.983 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.983 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.3431      0.925 0.936 0.064
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.993 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.993 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.983 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.983 1.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.983 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.993 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.993 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.983 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.993 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.0000      0.993 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.9491      0.433 0.632 0.368
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.0000      0.993 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.983 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.993 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.993 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.983 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.993 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.1184      0.978 0.016 0.984
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.983 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.993 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.983 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.983 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.983 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.0000      0.993 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1843      0.967 0.028 0.972
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.993 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.983 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.983 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.983 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.983 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.0000      0.993 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.983 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.0000      0.993 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.993 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.983 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.993 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.983 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.983 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.983 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.993 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.993 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.993 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.993 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.983 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.983 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.993 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.983 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.4939      0.877 0.892 0.108
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.983 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.983 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2778      0.941 0.952 0.048
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.993 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.983 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.983 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.993 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.983 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.993 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.993 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.983 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.993 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.983 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.983 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.983 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.983 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.983 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.993 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.993 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.993 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.993 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1184      0.970 0.984 0.016
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.993 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.983 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.983 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.983 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0000      0.993 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.983 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.983 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0376      0.980 0.996 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.993 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.993 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.993 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.983 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.983 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.993 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.993 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.983 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.983 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.993 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.983 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2  0.8144      0.658 0.252 0.748
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0000      0.993 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.983 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0376      0.980 0.996 0.004
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.993 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.993 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.983 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.7376      0.746 0.792 0.208
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.983 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.993 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.983 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.993 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.983 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.983 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.983 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.3114      0.937 0.056 0.944
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.993 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.983 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.983 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.983 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.993 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.1633      0.963 0.976 0.024
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.983 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.8443      0.640 0.728 0.272
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.983 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.993 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.983 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0592      0.942 0.988 0.012 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4002      0.818 0.000 0.840 0.160
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000      0.937 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.947 1.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000      0.937 0.000 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0237      0.982 0.004 0.996 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0237      0.937 0.000 0.004 0.996
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.947 1.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2959      0.869 0.900 0.100 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.937 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.982 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0237      0.982 0.004 0.996 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.947 1.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0592      0.974 0.000 0.988 0.012
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0237      0.937 0.000 0.004 0.996
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000      0.937 0.000 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0237      0.937 0.000 0.004 0.996
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.4235      0.783 0.824 0.000 0.176
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.982 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.982 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0237      0.947 0.996 0.000 0.004
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.982 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.2959      0.882 0.000 0.100 0.900
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.3116      0.886 0.892 0.000 0.108
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0237      0.982 0.004 0.996 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0237      0.947 0.996 0.000 0.004
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0237      0.947 0.996 0.000 0.004
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0237      0.947 0.996 0.000 0.004
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0237      0.937 0.000 0.004 0.996
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0424      0.977 0.000 0.992 0.008
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.982 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.947 1.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.3686      0.815 0.140 0.000 0.860
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.3412      0.865 0.124 0.000 0.876
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0237      0.947 0.996 0.000 0.004
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0237      0.937 0.000 0.004 0.996
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.3551      0.853 0.868 0.000 0.132
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0237      0.937 0.000 0.004 0.996
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.982 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.947 1.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0237      0.982 0.004 0.996 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.3116      0.886 0.892 0.000 0.108
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.5859      0.444 0.344 0.000 0.656
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3192      0.875 0.112 0.000 0.888
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.3038      0.880 0.000 0.104 0.896
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3038      0.880 0.000 0.104 0.896
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0237      0.982 0.004 0.996 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.1163      0.959 0.000 0.972 0.028
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.947 1.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0237      0.936 0.004 0.000 0.996
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.982 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000      0.937 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.937 0.000 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0424      0.944 0.992 0.008 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3377      0.887 0.092 0.012 0.896
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4995      0.808 0.824 0.144 0.032
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0237      0.982 0.004 0.996 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.3412      0.872 0.876 0.000 0.124
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0747      0.942 0.984 0.000 0.016
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.3192      0.873 0.000 0.112 0.888
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1964      0.913 0.056 0.000 0.944
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.982 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0237      0.982 0.004 0.996 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000      0.937 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1643      0.921 0.000 0.044 0.956
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.2625      0.896 0.084 0.000 0.916
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0237      0.947 0.996 0.000 0.004
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0237      0.947 0.996 0.000 0.004
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000      0.937 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.947 1.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0237      0.982 0.004 0.996 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0237      0.982 0.004 0.996 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.982 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.982 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6192      0.275 0.580 0.420 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.982 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.947 1.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.4887      0.711 0.772 0.000 0.228
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.3192      0.882 0.888 0.000 0.112
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0237      0.982 0.004 0.996 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.5733      0.494 0.324 0.000 0.676
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0237      0.947 0.996 0.000 0.004
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1031      0.934 0.976 0.024 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.982 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0237      0.982 0.004 0.996 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.982 0.000 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.947 1.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0237      0.947 0.996 0.000 0.004
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0237      0.982 0.004 0.996 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.982 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.3038      0.880 0.104 0.000 0.896
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.947 1.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.982 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3192      0.880 0.888 0.000 0.112
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0237      0.937 0.000 0.004 0.996
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.1878      0.944 0.004 0.952 0.044
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0237      0.947 0.996 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1753      0.917 0.952 0.048 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.982 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.982 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.937 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.4399      0.776 0.188 0.812 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.947 1.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.982 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.3038      0.889 0.896 0.000 0.104
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0237      0.982 0.004 0.996 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.2448      0.906 0.924 0.000 0.076
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.2959      0.889 0.900 0.000 0.100
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0237      0.947 0.996 0.000 0.004
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0424      0.936 0.000 0.008 0.992
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.982 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.947 1.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0237      0.947 0.996 0.000 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0424      0.946 0.992 0.000 0.008
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0237      0.982 0.004 0.996 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.937 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.947 1.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.4178      0.798 0.172 0.828 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0237      0.947 0.996 0.000 0.004
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.982 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000      0.937 0.000 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.3116      0.877 0.000 0.108 0.892

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2053   0.818834 0.004 0.072 0.000 0.924
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.3764   0.483067 0.784 0.216 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.4994  -0.000817 0.520 0.000 0.480 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4996   0.450151 0.516 0.000 0.000 0.484
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000   0.823653 0.000 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0376   0.821795 0.004 0.004 0.992 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000   0.910798 0.000 0.000 0.000 1.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.2589   0.754925 0.000 0.116 0.000 0.884
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0592   0.823780 0.016 0.000 0.984 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0188   0.909261 0.004 0.000 0.000 0.996
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.5083   0.669865 0.248 0.716 0.036 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4941   0.576315 0.436 0.000 0.564 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0592   0.823780 0.016 0.000 0.984 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4967   0.559431 0.452 0.000 0.548 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0592   0.903482 0.000 0.000 0.016 0.984
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0188   0.932480 0.004 0.996 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.4916   0.584426 0.424 0.000 0.576 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.5372   0.539653 0.544 0.000 0.012 0.444
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4955   0.568901 0.444 0.000 0.556 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.4857   0.639986 0.284 0.700 0.016 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1151   0.919577 0.008 0.968 0.024 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0188   0.909261 0.004 0.000 0.000 0.996
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.6688  -0.038757 0.420 0.000 0.492 0.088
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.4624   0.421472 0.000 0.000 0.660 0.340
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4961   0.566895 0.448 0.000 0.552 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.3497   0.746023 0.036 0.000 0.104 0.860
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0707   0.822491 0.020 0.000 0.980 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0469   0.904171 0.012 0.000 0.000 0.988
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.5564   0.549938 0.544 0.000 0.020 0.436
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0779   0.456094 0.980 0.000 0.016 0.004
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3074   0.697507 0.000 0.000 0.848 0.152
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0524   0.820383 0.008 0.004 0.988 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.4843   0.602252 0.396 0.000 0.604 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6194   0.572542 0.260 0.644 0.096 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0000   0.910798 0.000 0.000 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0469   0.824238 0.012 0.000 0.988 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0592   0.823780 0.016 0.000 0.984 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0592   0.823780 0.016 0.000 0.984 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.6360   0.530571 0.516 0.064 0.000 0.420
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0524   0.821488 0.008 0.000 0.988 0.004
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.6973   0.566929 0.584 0.220 0.000 0.196
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.5775   0.576309 0.560 0.000 0.032 0.408
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0817   0.895487 0.000 0.000 0.024 0.976
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0469   0.821679 0.012 0.000 0.988 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0376   0.823966 0.004 0.000 0.992 0.004
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1151   0.919577 0.008 0.968 0.024 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0188   0.931998 0.000 0.996 0.000 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1389   0.809109 0.048 0.000 0.952 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0188   0.822901 0.000 0.004 0.996 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0817   0.816921 0.000 0.000 0.976 0.024
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.1722   0.806034 0.048 0.000 0.944 0.008
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.4998  -0.426624 0.488 0.000 0.000 0.512
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0188   0.932203 0.004 0.996 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.4964   0.397792 0.004 0.616 0.000 0.380
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.2919   0.866347 0.060 0.896 0.044 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0592   0.900764 0.016 0.000 0.000 0.984
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.2662   0.807513 0.016 0.000 0.084 0.900
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.5339   0.599994 0.600 0.000 0.016 0.384
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.2654   0.839066 0.108 0.888 0.000 0.004
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.6950   0.530050 0.584 0.000 0.236 0.180
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.3257   0.681090 0.004 0.152 0.000 0.844
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0188   0.931998 0.000 0.996 0.000 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0921   0.917911 0.028 0.972 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0188   0.909261 0.004 0.000 0.000 0.996
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0376   0.931757 0.004 0.992 0.000 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.1302   0.803853 0.000 0.000 0.956 0.044
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4907   0.566328 0.580 0.000 0.000 0.420
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4868   0.619997 0.684 0.000 0.012 0.304
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.4713  -0.293453 0.640 0.000 0.360 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5126   0.165687 0.552 0.444 0.000 0.004
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.1867   0.836317 0.000 0.000 0.072 0.928
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.7778   0.435718 0.416 0.332 0.000 0.252
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0927   0.923890 0.008 0.976 0.016 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1042   0.921806 0.008 0.972 0.020 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4985   0.079067 0.468 0.000 0.532 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.4916   0.318982 0.000 0.576 0.000 0.424
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.0469   0.904939 0.012 0.000 0.000 0.988
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.5353   0.557119 0.556 0.000 0.012 0.432
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0992   0.925656 0.008 0.976 0.012 0.004
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5004   0.595090 0.604 0.004 0.000 0.392
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4776   0.605153 0.624 0.000 0.000 0.376
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0188   0.824136 0.004 0.000 0.996 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000   0.933642 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0188   0.909261 0.004 0.000 0.000 0.996
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.1109   0.915780 0.028 0.968 0.000 0.004
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0469   0.445427 0.988 0.000 0.012 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.4998  -0.430755 0.488 0.000 0.000 0.512
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.3266   0.759048 0.000 0.832 0.000 0.168
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0188   0.912310 0.000 0.000 0.004 0.996
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1042   0.921806 0.008 0.972 0.020 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0524   0.824238 0.008 0.000 0.988 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.4843   0.599035 0.396 0.000 0.604 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.3561     0.6260 0.000 0.260 0.000 0.740 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.2928     0.7572 0.872 0.064 0.000 0.000 0.064
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.3586     0.6327 0.264 0.000 0.736 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3333     0.7842 0.788 0.004 0.000 0.208 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0324     0.9101 0.004 0.992 0.000 0.000 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.2997     0.7707 0.012 0.148 0.000 0.840 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0794     0.9085 0.028 0.972 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0451     0.9100 0.008 0.988 0.000 0.000 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0404     0.9318 0.000 0.012 0.000 0.988 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.4171     0.7463 0.112 0.104 0.000 0.000 0.784
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0451     0.8894 0.008 0.000 0.004 0.000 0.988
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0451     0.8894 0.008 0.000 0.004 0.000 0.988
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0880     0.9084 0.032 0.968 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0992     0.9087 0.024 0.968 0.008 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1205     0.9071 0.040 0.956 0.004 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0290     0.8861 0.008 0.000 0.000 0.000 0.992
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.3395     0.7622 0.764 0.000 0.000 0.236 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1205     0.9018 0.040 0.956 0.000 0.000 0.004
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0451     0.8894 0.008 0.000 0.004 0.000 0.988
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.5305     0.6362 0.172 0.152 0.000 0.000 0.676
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.2625     0.8604 0.108 0.876 0.000 0.000 0.016
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0162     0.9370 0.000 0.004 0.000 0.996 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.3728     0.6529 0.244 0.000 0.748 0.008 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1502     0.8930 0.004 0.000 0.056 0.940 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0451     0.8894 0.008 0.000 0.004 0.000 0.988
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.3048     0.7680 0.004 0.000 0.000 0.820 0.176
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0162     0.9627 0.000 0.000 0.996 0.000 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0510     0.9101 0.016 0.984 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0703     0.9251 0.024 0.000 0.000 0.976 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0451     0.9100 0.008 0.988 0.000 0.000 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.3675     0.7905 0.788 0.000 0.024 0.188 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.2605     0.7294 0.852 0.000 0.000 0.000 0.148
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0404     0.9579 0.000 0.000 0.988 0.012 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0162     0.8881 0.000 0.000 0.004 0.000 0.996
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.1082     0.9078 0.028 0.964 0.008 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.3493     0.7949 0.108 0.060 0.000 0.000 0.832
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0162     0.9633 0.000 0.000 0.996 0.004 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0566     0.9095 0.012 0.984 0.000 0.000 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0162     0.9633 0.000 0.000 0.996 0.004 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3922     0.7309 0.780 0.180 0.000 0.040 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0162     0.9633 0.000 0.000 0.996 0.004 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2929     0.7496 0.840 0.152 0.000 0.008 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0566     0.9092 0.012 0.984 0.000 0.000 0.004
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4083     0.7526 0.788 0.000 0.132 0.080 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0794     0.9197 0.000 0.000 0.028 0.972 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0807     0.9516 0.012 0.000 0.976 0.000 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0162     0.9633 0.000 0.000 0.996 0.004 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0955     0.9083 0.028 0.968 0.004 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0324     0.9101 0.004 0.992 0.000 0.000 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0290     0.9609 0.008 0.000 0.992 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0290     0.9609 0.000 0.000 0.992 0.008 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0290     0.9609 0.008 0.000 0.992 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3003     0.7972 0.812 0.000 0.000 0.188 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0451     0.9100 0.008 0.988 0.000 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0771     0.9090 0.020 0.976 0.000 0.000 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1041     0.9047 0.032 0.964 0.000 0.000 0.004
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0324     0.9101 0.004 0.992 0.000 0.000 0.004
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.3579     0.6657 0.000 0.756 0.000 0.240 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.5403     0.5259 0.108 0.644 0.000 0.000 0.248
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0703     0.9251 0.024 0.000 0.000 0.976 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3177     0.7118 0.000 0.000 0.208 0.792 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.3370     0.8055 0.824 0.000 0.000 0.148 0.028
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.2929     0.7771 0.180 0.820 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.3530     0.6795 0.784 0.000 0.204 0.012 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0510     0.9295 0.016 0.000 0.000 0.984 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.4546     0.1073 0.008 0.532 0.000 0.460 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0794     0.9085 0.028 0.972 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0955     0.9004 0.000 0.968 0.000 0.028 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.1965     0.8675 0.096 0.904 0.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0162     0.9371 0.004 0.000 0.000 0.996 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2179     0.8687 0.100 0.896 0.000 0.000 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0703     0.9092 0.024 0.976 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.1478     0.9032 0.000 0.000 0.936 0.064 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.2561     0.8107 0.856 0.000 0.000 0.144 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0771     0.9100 0.020 0.976 0.004 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.2392     0.7541 0.888 0.004 0.000 0.004 0.104
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0566     0.8878 0.012 0.000 0.004 0.000 0.984
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.2966     0.7096 0.816 0.184 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0162     0.9372 0.000 0.000 0.004 0.996 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.4457     0.4627 0.620 0.368 0.000 0.012 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1831     0.8933 0.076 0.920 0.004 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2621     0.8654 0.112 0.876 0.004 0.000 0.008
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.1043     0.9355 0.040 0.000 0.960 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.4310     0.3487 0.000 0.392 0.000 0.604 0.004
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.2209     0.8732 0.032 0.056 0.000 0.912 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1502     0.8954 0.056 0.940 0.000 0.000 0.004
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.3177     0.7837 0.792 0.000 0.000 0.208 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6092     0.0908 0.108 0.480 0.000 0.004 0.408
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.2653     0.8132 0.880 0.024 0.000 0.096 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.2871     0.7755 0.876 0.004 0.000 0.032 0.088
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.9636 0.000 0.000 1.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1043     0.9066 0.040 0.960 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.2068     0.8701 0.092 0.904 0.000 0.000 0.004
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.4182     0.2352 0.400 0.000 0.000 0.000 0.600
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4364     0.7583 0.736 0.048 0.000 0.216 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.2930     0.7668 0.000 0.832 0.000 0.164 0.004
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9390 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1956     0.8915 0.076 0.916 0.008 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0162     0.9633 0.000 0.000 0.996 0.004 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0771     0.8808 0.020 0.000 0.004 0.000 0.976

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.5579     0.3215 0.500 0.084 0.000 0.396 0.000 0.020
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     6  0.4815     0.6684 0.096 0.140 0.000 0.000 0.040 0.724
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.1765     0.8829 0.000 0.000 0.904 0.000 0.000 0.096
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     6  0.3893     0.7519 0.140 0.000 0.000 0.092 0.000 0.768
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.9510 0.000 0.000 1.000 0.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     1  0.2883     0.8120 0.788 0.212 0.000 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0146     0.9498 0.000 0.004 0.996 0.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0603     0.8999 0.016 0.000 0.000 0.980 0.000 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.3851     0.1077 0.000 0.540 0.000 0.460 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.9510 0.000 0.000 1.000 0.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2586     0.8032 0.100 0.868 0.000 0.000 0.000 0.032
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     1  0.4127     0.7733 0.680 0.284 0.000 0.000 0.000 0.036
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3979     0.3921 0.628 0.000 0.000 0.360 0.000 0.012
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.5635     0.7291 0.164 0.060 0.000 0.000 0.648 0.128
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0260     0.8789 0.000 0.000 0.000 0.000 0.992 0.008
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.9510 0.000 0.000 1.000 0.000 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0260     0.8789 0.000 0.000 0.000 0.000 0.992 0.008
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0146     0.9061 0.000 0.000 0.000 0.996 0.000 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0692     0.8965 0.020 0.976 0.000 0.000 0.000 0.004
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1088     0.8903 0.016 0.960 0.000 0.000 0.000 0.024
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.9063 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0260     0.8975 0.008 0.992 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.3245     0.8151 0.172 0.000 0.000 0.000 0.800 0.028
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.3018     0.7318 0.004 0.000 0.012 0.168 0.000 0.816
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     1  0.3245     0.8050 0.764 0.228 0.000 0.000 0.000 0.008
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0260     0.9049 0.000 0.000 0.000 0.992 0.000 0.008
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9063 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0363     0.9038 0.000 0.000 0.000 0.988 0.000 0.012
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0291     0.8783 0.000 0.004 0.000 0.000 0.992 0.004
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.5918     0.6662 0.148 0.052 0.000 0.000 0.604 0.196
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0547     0.8915 0.020 0.980 0.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.3819     0.3816 0.372 0.000 0.000 0.624 0.000 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.2748     0.8287 0.000 0.000 0.848 0.024 0.000 0.128
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.5661     0.4686 0.144 0.000 0.232 0.604 0.008 0.012
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9063 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0260     0.8789 0.000 0.000 0.000 0.000 0.992 0.008
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.3706     0.3748 0.000 0.000 0.000 0.620 0.380 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0146     0.9504 0.004 0.000 0.996 0.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0622     0.8975 0.012 0.980 0.000 0.000 0.000 0.008
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.1500     0.8753 0.052 0.000 0.000 0.936 0.000 0.012
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     1  0.3534     0.8033 0.740 0.244 0.000 0.000 0.000 0.016
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.2669     0.7434 0.000 0.000 0.008 0.156 0.000 0.836
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.1858     0.7292 0.004 0.000 0.000 0.000 0.092 0.904
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0547     0.9421 0.000 0.000 0.980 0.020 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0713     0.8727 0.000 0.028 0.000 0.000 0.972 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0914     0.8941 0.016 0.968 0.000 0.000 0.000 0.016
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.4897     0.1202 0.624 0.036 0.000 0.000 0.312 0.028
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0405     0.9029 0.008 0.000 0.000 0.988 0.000 0.004
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     1  0.3770     0.7976 0.728 0.244 0.000 0.000 0.000 0.028
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.9510 0.000 0.000 1.000 0.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     6  0.4878     0.1406 0.472 0.040 0.000 0.008 0.000 0.480
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.3269     0.7323 0.184 0.024 0.000 0.000 0.000 0.792
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     1  0.3023     0.8074 0.768 0.232 0.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.3186     0.7221 0.004 0.000 0.100 0.060 0.000 0.836
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.1950     0.8481 0.000 0.000 0.064 0.912 0.000 0.024
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.3300     0.7963 0.152 0.004 0.816 0.000 0.008 0.020
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1257     0.8882 0.020 0.952 0.000 0.000 0.000 0.028
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.3431     0.8090 0.756 0.228 0.000 0.000 0.000 0.016
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000     0.9510 0.000 0.000 1.000 0.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0603     0.9436 0.000 0.000 0.980 0.016 0.000 0.004
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0632     0.8970 0.024 0.000 0.000 0.976 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0146     0.9061 0.000 0.000 0.000 0.996 0.000 0.004
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.1088     0.9296 0.000 0.000 0.960 0.016 0.000 0.024
#> 352471DC-A881-4EA8-B646-EB1200291893     6  0.3481     0.7447 0.048 0.000 0.000 0.160 0.000 0.792
#> F779417A-9E29-4B27-BEA3-B23273A66021     1  0.4110     0.7851 0.692 0.268 0.000 0.000 0.000 0.040
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     1  0.3011     0.8014 0.800 0.192 0.000 0.000 0.004 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     1  0.4095     0.7774 0.724 0.216 0.000 0.000 0.000 0.060
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     1  0.3126     0.8017 0.752 0.248 0.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.4396     0.7543 0.752 0.116 0.000 0.112 0.000 0.020
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4408     0.4988 0.056 0.664 0.000 0.000 0.280 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.1225     0.8855 0.036 0.000 0.000 0.952 0.000 0.012
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.4868     0.1766 0.000 0.000 0.524 0.416 0.000 0.060
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.2454     0.7596 0.008 0.000 0.000 0.088 0.020 0.884
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     6  0.5145     0.5308 0.176 0.200 0.000 0.000 0.000 0.624
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.3000     0.6820 0.004 0.000 0.156 0.016 0.000 0.824
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1910     0.8245 0.000 0.000 0.000 0.892 0.000 0.108
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4426     0.7428 0.752 0.100 0.000 0.124 0.000 0.024
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1261     0.8875 0.024 0.952 0.000 0.000 0.000 0.024
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.3614     0.8112 0.752 0.220 0.000 0.028 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2554     0.8237 0.076 0.876 0.000 0.000 0.000 0.048
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.1196     0.8859 0.040 0.000 0.000 0.952 0.000 0.008
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.9063 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     1  0.4033     0.7595 0.692 0.284 0.000 0.004 0.004 0.016
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2726     0.7915 0.112 0.856 0.000 0.000 0.000 0.032
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0748     0.9413 0.004 0.000 0.976 0.016 0.000 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.2554     0.7756 0.048 0.000 0.000 0.076 0.000 0.876
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0405     0.8980 0.008 0.988 0.000 0.000 0.000 0.004
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.1845     0.7545 0.028 0.000 0.000 0.000 0.052 0.920
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0260     0.8789 0.000 0.000 0.000 0.000 0.992 0.008
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     6  0.3453     0.7300 0.164 0.044 0.000 0.000 0.000 0.792
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0146     0.9059 0.000 0.000 0.004 0.996 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     6  0.5814     0.3482 0.320 0.128 0.000 0.020 0.000 0.532
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0405     0.8926 0.004 0.988 0.000 0.000 0.008 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0291     0.8947 0.004 0.992 0.000 0.000 0.004 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0547     0.9433 0.000 0.000 0.980 0.000 0.000 0.020
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4856     0.6110 0.640 0.072 0.000 0.280 0.000 0.008
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.4638     0.0943 0.448 0.012 0.000 0.520 0.000 0.020
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     1  0.3023     0.7758 0.808 0.180 0.000 0.000 0.004 0.008
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.2520     0.7430 0.004 0.000 0.000 0.152 0.000 0.844
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.6031     0.6351 0.144 0.160 0.000 0.040 0.632 0.024
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.2308     0.7724 0.076 0.012 0.000 0.016 0.000 0.896
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.2144     0.7576 0.040 0.000 0.000 0.004 0.048 0.908
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9063 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0260     0.8975 0.008 0.992 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0692     0.8983 0.020 0.000 0.000 0.976 0.000 0.004
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0146     0.9061 0.000 0.000 0.000 0.996 0.000 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0458     0.9020 0.000 0.000 0.000 0.984 0.000 0.016
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4575     0.7146 0.696 0.180 0.000 0.000 0.000 0.124
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.2664     0.7440 0.000 0.000 0.000 0.000 0.816 0.184
#> 12F54761-4F68-4181-8421-88EA858902FC     6  0.6098     0.6172 0.052 0.180 0.000 0.188 0.000 0.580
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4103     0.7843 0.764 0.136 0.000 0.092 0.000 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0260     0.9049 0.000 0.000 0.000 0.992 0.000 0.008
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0146     0.8967 0.004 0.996 0.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0146     0.9512 0.004 0.000 0.996 0.000 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0937     0.8683 0.000 0.040 0.000 0.000 0.960 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.722           0.854       0.926         0.4042 0.618   0.618
#> 3 3 0.600           0.765       0.890         0.3192 0.863   0.778
#> 4 4 0.629           0.702       0.853         0.1176 0.995   0.989
#> 5 5 0.751           0.805       0.910         0.1134 0.866   0.717
#> 6 6 0.716           0.720       0.838         0.0802 0.989   0.967

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.4022     0.8958 0.920 0.080
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.9922     0.0934 0.448 0.552
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.3274     0.9026 0.940 0.060
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4022     0.8958 0.920 0.080
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.3274     0.9026 0.940 0.060
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.9261 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.3274     0.9026 0.940 0.060
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.4022     0.8958 0.920 0.080
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.4431     0.8904 0.908 0.092
#> 806616FE-1855-4284-9265-42842104CB21     1  0.3274     0.9026 0.940 0.060
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2603     0.8992 0.044 0.956
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9261 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4298     0.8917 0.912 0.088
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.9963     0.0174 0.464 0.536
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.3431     0.9007 0.936 0.064
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.3274     0.9026 0.940 0.060
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.3431     0.9007 0.936 0.064
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0376     0.9160 0.996 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0938     0.9202 0.012 0.988
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.4431     0.8595 0.092 0.908
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0376     0.9160 0.996 0.004
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9261 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.8016     0.7405 0.756 0.244
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0376     0.9160 0.996 0.004
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.9261 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0376     0.9160 0.996 0.004
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0376     0.9160 0.996 0.004
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0376     0.9160 0.996 0.004
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.3431     0.9007 0.936 0.064
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.9963     0.0174 0.464 0.536
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9261 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.4022     0.8958 0.920 0.080
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0376     0.9160 0.996 0.004
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0376     0.9155 0.996 0.004
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0376     0.9160 0.996 0.004
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.3431     0.9007 0.936 0.064
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0376     0.9160 0.996 0.004
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.3274     0.9026 0.940 0.060
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9261 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.4022     0.8958 0.920 0.080
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9261 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0376     0.9160 0.996 0.004
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0376     0.9160 0.996 0.004
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.1184     0.9142 0.984 0.016
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.3274     0.9026 0.940 0.060
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.3431     0.9007 0.936 0.064
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.9000     0.6026 0.684 0.316
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.8443     0.7006 0.728 0.272
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4022     0.8958 0.920 0.080
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.2778     0.9069 0.952 0.048
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0376     0.9245 0.004 0.996
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0376     0.9160 0.996 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.3274     0.9026 0.940 0.060
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.4022     0.8958 0.920 0.080
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0672     0.9150 0.992 0.008
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4022     0.8958 0.920 0.080
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9261 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0376     0.9160 0.996 0.004
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0376     0.9160 0.996 0.004
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.8386     0.7070 0.732 0.268
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.2778     0.9069 0.952 0.048
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.4562     0.8553 0.096 0.904
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.9261 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.3274     0.9026 0.940 0.060
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.3274     0.9026 0.940 0.060
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000     0.9146 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0672     0.9161 0.992 0.008
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0376     0.9160 0.996 0.004
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0376     0.9160 0.996 0.004
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3114     0.9059 0.944 0.056
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9261 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9261 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0376     0.9245 0.004 0.996
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9261 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.9323     0.5072 0.652 0.348
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     1  0.9209     0.5810 0.664 0.336
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.4022     0.8958 0.920 0.080
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0376     0.9160 0.996 0.004
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0376     0.9160 0.996 0.004
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.8267     0.7161 0.740 0.260
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0376     0.9160 0.996 0.004
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0376     0.9160 0.996 0.004
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4022     0.8958 0.920 0.080
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4562     0.8553 0.096 0.904
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4562     0.8552 0.096 0.904
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.9000     0.6026 0.684 0.316
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4022     0.8958 0.920 0.080
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0376     0.9160 0.996 0.004
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9261 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.9261 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0376     0.9160 0.996 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3274     0.9045 0.940 0.060
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9261 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3114     0.9059 0.944 0.056
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.3431     0.9007 0.936 0.064
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.8267     0.7161 0.740 0.260
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000     0.9146 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.4022     0.8958 0.920 0.080
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9261 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9261 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.3274     0.9026 0.940 0.060
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.9323     0.5072 0.652 0.348
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.4022     0.8958 0.920 0.080
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9261 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0376     0.9160 0.996 0.004
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.9323     0.5680 0.652 0.348
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3274     0.9045 0.940 0.060
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3114     0.9059 0.944 0.056
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0376     0.9160 0.996 0.004
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.3274     0.9026 0.940 0.060
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9261 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4022     0.8958 0.920 0.080
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0376     0.9160 0.996 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0376     0.9160 0.996 0.004
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.8267     0.7161 0.740 0.260
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     0.9146 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3879     0.8977 0.924 0.076
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.9996     0.0762 0.512 0.488
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0376     0.9160 0.996 0.004
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.4431     0.8595 0.092 0.908
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0376     0.9160 0.996 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.3431     0.9007 0.936 0.064

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.2845     0.8296 0.920 0.068 0.012
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.8487     0.1253 0.364 0.536 0.100
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.5363     0.5733 0.724 0.000 0.276
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2845     0.8296 0.920 0.068 0.012
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.5363     0.5733 0.724 0.000 0.276
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.8954 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.5363     0.5733 0.724 0.000 0.276
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.2845     0.8296 0.920 0.068 0.012
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3120     0.8200 0.908 0.080 0.012
#> 806616FE-1855-4284-9265-42842104CB21     1  0.5363     0.5733 0.724 0.000 0.276
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1753     0.8565 0.048 0.952 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0237     0.8943 0.000 0.996 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3031     0.8245 0.912 0.076 0.012
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.9389    -0.0191 0.352 0.468 0.180
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.2959     0.8215 0.100 0.000 0.900
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.5363     0.5733 0.724 0.000 0.276
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.2959     0.8215 0.100 0.000 0.900
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.8502 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0592     0.8891 0.012 0.988 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.2878     0.8005 0.096 0.904 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.8502 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8954 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.7014     0.7350 0.208 0.080 0.712
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.8502 1.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.8954 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.8502 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.8502 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.8502 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.2959     0.8215 0.100 0.000 0.900
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.9389    -0.0191 0.352 0.468 0.180
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8954 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.2845     0.8296 0.920 0.068 0.012
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0237     0.8494 0.996 0.000 0.004
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.1529     0.8352 0.960 0.000 0.040
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.8502 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.2959     0.8215 0.100 0.000 0.900
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000     0.8502 1.000 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.5363     0.5733 0.724 0.000 0.276
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8954 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.2845     0.8296 0.920 0.068 0.012
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0475     0.8938 0.004 0.992 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.8502 1.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.8502 1.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.4121     0.7203 0.832 0.000 0.168
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.5363     0.5733 0.724 0.000 0.276
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2959     0.8215 0.100 0.000 0.900
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.6143     0.5281 0.684 0.304 0.012
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.7651     0.7121 0.220 0.108 0.672
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.2845     0.8296 0.920 0.068 0.012
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.5178     0.6046 0.744 0.000 0.256
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0592     0.8905 0.000 0.988 0.012
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0237     0.8494 0.996 0.000 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.5363     0.5733 0.724 0.000 0.276
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2845     0.8296 0.920 0.068 0.012
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.2537     0.8037 0.920 0.000 0.080
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2845     0.8296 0.920 0.068 0.012
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.8954 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.8502 1.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0237     0.8494 0.996 0.000 0.004
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.7624     0.7119 0.224 0.104 0.672
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.5178     0.6046 0.744 0.000 0.256
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.2959     0.7947 0.100 0.900 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0475     0.8938 0.004 0.992 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.5363     0.5733 0.724 0.000 0.276
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.5363     0.5733 0.724 0.000 0.276
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0892     0.8426 0.980 0.000 0.020
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0892     0.8441 0.980 0.000 0.020
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.8502 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0237     0.8494 0.996 0.000 0.004
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1860     0.8396 0.948 0.052 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0475     0.8938 0.004 0.992 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.8954 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0829     0.8895 0.004 0.984 0.012
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8954 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6357     0.4257 0.652 0.336 0.012
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     3  0.8216     0.6712 0.188 0.172 0.640
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2845     0.8296 0.920 0.068 0.012
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0237     0.8494 0.996 0.000 0.004
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.8502 1.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5659     0.6269 0.740 0.248 0.012
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     0.8502 1.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000     0.8502 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2845     0.8296 0.920 0.068 0.012
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.2959     0.7947 0.100 0.900 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3112     0.7940 0.096 0.900 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.6143     0.5281 0.684 0.304 0.012
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2845     0.8296 0.920 0.068 0.012
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.8502 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.8954 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.8954 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000     0.8502 1.000 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1964     0.8382 0.944 0.056 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8954 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1860     0.8396 0.948 0.052 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.2959     0.8215 0.100 0.000 0.900
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5659     0.6269 0.740 0.248 0.012
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0747     0.8445 0.984 0.000 0.016
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2845     0.8296 0.920 0.068 0.012
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8954 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8954 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.5363     0.5733 0.724 0.000 0.276
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6357     0.4257 0.652 0.336 0.012
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2845     0.8296 0.920 0.068 0.012
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8954 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.8502 1.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     3  0.9278     0.5439 0.288 0.196 0.516
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1964     0.8382 0.944 0.056 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1860     0.8396 0.948 0.052 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.8502 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.5363     0.5733 0.724 0.000 0.276
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8954 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.2845     0.8296 0.920 0.068 0.012
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.8502 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.8502 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.5659     0.6269 0.740 0.248 0.012
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.5706     0.6361 0.320 0.000 0.680
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2749     0.8315 0.924 0.064 0.012
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6822     0.0800 0.508 0.480 0.012
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.8502 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.2878     0.8005 0.096 0.904 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000     0.8502 1.000 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.2959     0.8215 0.100 0.000 0.900

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.8441     0.0884 0.140 0.488 0.068 0.304
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.6666     0.2690 0.088 0.000 0.404 0.508
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.6666     0.2690 0.088 0.000 0.404 0.508
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.6764     0.2513 0.096 0.000 0.404 0.500
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.2722     0.7734 0.032 0.064 0.000 0.904
#> 806616FE-1855-4284-9265-42842104CB21     4  0.6666     0.2690 0.088 0.000 0.404 0.508
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2500     0.8148 0.040 0.916 0.000 0.044
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0188     0.8782 0.004 0.996 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.2845     0.7744 0.076 0.028 0.000 0.896
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.8943    -0.0551 0.220 0.420 0.068 0.292
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1211     0.9122 0.040 0.000 0.960 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.6666     0.2658 0.088 0.000 0.404 0.508
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1211     0.9122 0.040 0.000 0.960 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0188     0.8018 0.004 0.000 0.000 0.996
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1767     0.8413 0.044 0.944 0.000 0.012
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3611     0.7514 0.060 0.860 0.000 0.080
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.2310     0.7845 0.928 0.004 0.040 0.028
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1211     0.9122 0.040 0.000 0.960 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.8943    -0.0551 0.220 0.420 0.068 0.292
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0524     0.8004 0.008 0.000 0.004 0.988
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.3149     0.7471 0.088 0.000 0.032 0.880
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1211     0.9122 0.040 0.000 0.960 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0524     0.8006 0.008 0.000 0.004 0.988
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.6764     0.2513 0.096 0.000 0.404 0.500
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0376     0.8777 0.004 0.992 0.000 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0336     0.8010 0.008 0.000 0.000 0.992
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.5677     0.5495 0.064 0.000 0.256 0.680
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.6716     0.2607 0.092 0.000 0.404 0.504
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.1211     0.9122 0.040 0.000 0.960 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     4  0.5837     0.5111 0.072 0.260 0.000 0.668
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.1610     0.8132 0.952 0.016 0.000 0.032
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.6264     0.3593 0.064 0.000 0.376 0.560
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0469     0.8742 0.012 0.988 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.1174     0.7937 0.020 0.000 0.012 0.968
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.6716     0.2607 0.092 0.000 0.404 0.504
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.4655     0.6717 0.088 0.000 0.116 0.796
#> B5474EEB-D585-4668-959C-38F240F55BC2     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0336     0.8010 0.008 0.000 0.000 0.992
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0376     0.8016 0.004 0.000 0.004 0.992
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.1488     0.8116 0.956 0.012 0.000 0.032
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.6617     0.3153 0.088 0.000 0.380 0.532
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3679     0.7456 0.060 0.856 0.000 0.084
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0376     0.8777 0.004 0.992 0.000 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.6666     0.2690 0.088 0.000 0.404 0.508
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.6716     0.2607 0.092 0.000 0.404 0.504
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.2399     0.7680 0.048 0.000 0.032 0.920
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.1211     0.7905 0.040 0.000 0.000 0.960
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.1059     0.7955 0.016 0.000 0.012 0.972
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.1902     0.7867 0.064 0.004 0.000 0.932
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0376     0.8777 0.004 0.992 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0657     0.8732 0.012 0.984 0.000 0.004
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.6075     0.4069 0.076 0.288 0.000 0.636
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     1  0.3013     0.7702 0.888 0.080 0.000 0.032
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0524     0.8004 0.008 0.000 0.004 0.988
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     4  0.5421     0.6107 0.076 0.200 0.000 0.724
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0336     0.8010 0.008 0.000 0.000 0.992
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0188     0.8016 0.004 0.000 0.000 0.996
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3679     0.7456 0.060 0.856 0.000 0.084
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2466     0.7671 0.004 0.900 0.000 0.096
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     4  0.5837     0.5111 0.072 0.260 0.000 0.668
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.0672     0.7997 0.008 0.000 0.008 0.984
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.2048     0.7856 0.064 0.008 0.000 0.928
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.1902     0.7867 0.064 0.004 0.000 0.932
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.1211     0.9122 0.040 0.000 0.960 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     4  0.5421     0.6107 0.076 0.200 0.000 0.724
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3051     0.7428 0.088 0.000 0.028 0.884
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.6666     0.2690 0.088 0.000 0.404 0.508
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.6075     0.4069 0.076 0.288 0.000 0.636
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.6678     0.4694 0.612 0.148 0.000 0.240
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.2048     0.7856 0.064 0.008 0.000 0.928
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.1902     0.7867 0.064 0.004 0.000 0.932
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.6666     0.2690 0.088 0.000 0.404 0.508
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8795 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.2635     0.7777 0.076 0.020 0.000 0.904
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188     0.8016 0.004 0.000 0.000 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     4  0.5421     0.6107 0.076 0.200 0.000 0.724
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.4748     0.3216 0.016 0.000 0.716 0.268
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.2522     0.7793 0.076 0.016 0.000 0.908
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.5406     0.0715 0.012 0.480 0.000 0.508
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.8019 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.3611     0.7514 0.060 0.860 0.000 0.080
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0672     0.7997 0.008 0.000 0.008 0.984
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1211     0.9122 0.040 0.000 0.960 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7031      0.169 0.348 0.484 0.000 0.100 0.068
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0794      0.884 0.028 0.000 0.972 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0794      0.884 0.028 0.000 0.972 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0404      0.834 0.000 0.000 0.988 0.012 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2476      0.865 0.904 0.064 0.020 0.012 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0794      0.884 0.028 0.000 0.972 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2046      0.823 0.068 0.916 0.000 0.016 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0162      0.882 0.000 0.996 0.000 0.004 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1661      0.873 0.940 0.024 0.000 0.036 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.7598      0.036 0.336 0.416 0.000 0.180 0.068
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0703      0.878 0.024 0.000 0.976 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.1197      0.886 0.952 0.000 0.048 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1557      0.845 0.052 0.940 0.000 0.008 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.2964      0.760 0.120 0.856 0.000 0.024 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     4  0.1444      0.766 0.012 0.000 0.000 0.948 0.040
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.1197      0.886 0.952 0.000 0.048 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.7598      0.036 0.336 0.416 0.000 0.180 0.068
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.1341      0.884 0.944 0.000 0.056 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.4342      0.665 0.728 0.000 0.232 0.040 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.1671      0.875 0.924 0.000 0.076 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0404      0.834 0.000 0.000 0.988 0.012 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0324      0.881 0.004 0.992 0.000 0.004 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.1544      0.879 0.932 0.000 0.068 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3837      0.484 0.308 0.000 0.692 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0703      0.882 0.024 0.000 0.976 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4430      0.598 0.708 0.256 0.000 0.036 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     4  0.0404      0.784 0.012 0.000 0.000 0.988 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.2852      0.697 0.172 0.000 0.828 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0404      0.878 0.000 0.988 0.000 0.012 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.3003      0.771 0.812 0.000 0.188 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0703      0.882 0.024 0.000 0.976 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.4171      0.321 0.396 0.000 0.604 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.1544      0.879 0.932 0.000 0.068 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.1270      0.886 0.948 0.000 0.052 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     4  0.0693      0.784 0.012 0.000 0.008 0.980 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1410      0.850 0.060 0.000 0.940 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3012      0.755 0.124 0.852 0.000 0.024 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0324      0.881 0.004 0.992 0.000 0.004 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0794      0.884 0.028 0.000 0.972 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0703      0.882 0.024 0.000 0.976 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.3395      0.708 0.764 0.000 0.236 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.2153      0.873 0.916 0.000 0.044 0.040 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.2516      0.827 0.860 0.000 0.140 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0703      0.881 0.976 0.000 0.000 0.024 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0324      0.881 0.004 0.992 0.000 0.004 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0566      0.877 0.004 0.984 0.000 0.012 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.4594      0.536 0.680 0.284 0.000 0.036 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     4  0.1877      0.743 0.012 0.064 0.000 0.924 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.1671      0.875 0.924 0.000 0.076 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.1197      0.886 0.952 0.000 0.048 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.3988      0.682 0.768 0.196 0.000 0.036 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.1544      0.879 0.932 0.000 0.068 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.1341      0.884 0.944 0.000 0.056 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3012      0.755 0.124 0.852 0.000 0.024 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2124      0.778 0.096 0.900 0.000 0.004 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.4430      0.598 0.708 0.256 0.000 0.036 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.1851      0.868 0.912 0.000 0.088 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0865      0.880 0.972 0.004 0.000 0.024 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0703      0.881 0.976 0.000 0.000 0.024 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3988      0.682 0.768 0.196 0.000 0.036 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.4138      0.416 0.616 0.000 0.384 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0794      0.884 0.028 0.000 0.972 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4594      0.536 0.680 0.284 0.000 0.036 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     4  0.5940      0.384 0.284 0.144 0.000 0.572 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0865      0.880 0.972 0.004 0.000 0.024 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0703      0.881 0.976 0.000 0.000 0.024 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0794      0.884 0.028 0.000 0.972 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1469      0.875 0.948 0.016 0.000 0.036 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.1410      0.883 0.940 0.000 0.060 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.3988      0.682 0.768 0.196 0.000 0.036 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.3612      0.357 0.268 0.000 0.000 0.000 0.732
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1364      0.876 0.952 0.012 0.000 0.036 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4656      0.141 0.508 0.480 0.000 0.012 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.1121      0.887 0.956 0.000 0.044 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.2964      0.760 0.120 0.856 0.000 0.024 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.1851      0.868 0.912 0.000 0.088 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     6  0.5765      0.878 0.064 0.156 0.000 0.068 0.036 0.676
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.1007      0.887 0.000 0.000 0.956 0.044 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1007      0.887 0.000 0.000 0.956 0.044 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0363      0.831 0.000 0.000 0.988 0.000 0.000 0.012
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.3345      0.710 0.000 0.020 0.000 0.776 0.000 0.204
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1007      0.887 0.000 0.000 0.956 0.044 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3221      0.706 0.000 0.736 0.000 0.000 0.000 0.264
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2697      0.750 0.000 0.812 0.000 0.000 0.000 0.188
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.3653      0.679 0.000 0.008 0.000 0.692 0.000 0.300
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     6  0.6118      0.934 0.144 0.108 0.000 0.064 0.036 0.648
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1007      0.881 0.000 0.000 0.956 0.044 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0291      0.756 0.000 0.000 0.004 0.992 0.000 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.2340      0.796 0.000 0.852 0.000 0.000 0.000 0.148
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3371      0.615 0.000 0.708 0.000 0.000 0.000 0.292
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.756 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.0937      0.793 0.960 0.000 0.000 0.000 0.040 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0405      0.755 0.000 0.000 0.008 0.988 0.000 0.004
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0146      0.755 0.000 0.000 0.000 0.996 0.000 0.004
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.756 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0146      0.755 0.000 0.000 0.000 0.996 0.000 0.004
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     6  0.6118      0.934 0.144 0.108 0.000 0.064 0.036 0.648
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0363      0.756 0.000 0.000 0.012 0.988 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.3848      0.580 0.040 0.000 0.204 0.752 0.000 0.004
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.756 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1151      0.747 0.000 0.000 0.032 0.956 0.000 0.012
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0363      0.831 0.000 0.000 0.988 0.000 0.000 0.012
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2730      0.753 0.000 0.808 0.000 0.000 0.000 0.192
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0777      0.751 0.000 0.000 0.024 0.972 0.000 0.004
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.3198      0.491 0.000 0.000 0.000 0.740 0.000 0.260
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3563      0.501 0.000 0.000 0.664 0.336 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0937      0.885 0.000 0.000 0.960 0.040 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     4  0.5564      0.251 0.000 0.140 0.000 0.472 0.000 0.388
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.0000      0.810 1.000 0.000 0.000 0.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.2793      0.711 0.000 0.000 0.800 0.200 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3151      0.696 0.000 0.748 0.000 0.000 0.000 0.252
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.2378      0.679 0.000 0.000 0.152 0.848 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0937      0.885 0.000 0.000 0.960 0.040 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.3446      0.678 0.000 0.000 0.000 0.692 0.000 0.308
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3907      0.283 0.000 0.000 0.588 0.408 0.000 0.004
#> B5474EEB-D585-4668-959C-38F240F55BC2     4  0.3446      0.678 0.000 0.000 0.000 0.692 0.000 0.308
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0777      0.751 0.000 0.000 0.024 0.972 0.000 0.004
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0260      0.756 0.000 0.000 0.008 0.992 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.0260      0.809 0.992 0.000 0.008 0.000 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1501      0.854 0.000 0.000 0.924 0.076 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3428      0.596 0.000 0.696 0.000 0.000 0.000 0.304
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.2730      0.753 0.000 0.808 0.000 0.000 0.000 0.192
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1007      0.887 0.000 0.000 0.956 0.044 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0937      0.885 0.000 0.000 0.960 0.040 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.2994      0.621 0.000 0.000 0.208 0.788 0.000 0.004
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.1082      0.738 0.040 0.000 0.000 0.956 0.000 0.004
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0146      0.755 0.000 0.000 0.000 0.996 0.000 0.004
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.1814      0.718 0.000 0.000 0.100 0.900 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.3175      0.705 0.000 0.000 0.000 0.744 0.000 0.256
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2854      0.739 0.000 0.792 0.000 0.000 0.000 0.208
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3175      0.692 0.000 0.744 0.000 0.000 0.000 0.256
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.5368      0.280 0.000 0.116 0.000 0.508 0.000 0.376
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     1  0.1633      0.783 0.932 0.024 0.000 0.000 0.000 0.044
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0790      0.749 0.000 0.000 0.032 0.968 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0405      0.755 0.000 0.000 0.008 0.988 0.000 0.004
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     4  0.5254      0.358 0.000 0.100 0.000 0.508 0.000 0.392
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0777      0.751 0.000 0.000 0.024 0.972 0.000 0.004
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0508      0.754 0.000 0.000 0.012 0.984 0.000 0.004
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3428      0.594 0.000 0.696 0.000 0.000 0.000 0.304
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4186      0.595 0.000 0.728 0.000 0.080 0.000 0.192
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     4  0.5564      0.251 0.000 0.140 0.000 0.472 0.000 0.388
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.756 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.1152      0.736 0.000 0.000 0.044 0.952 0.000 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.3351      0.692 0.000 0.000 0.000 0.712 0.000 0.288
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.3309      0.695 0.000 0.000 0.000 0.720 0.000 0.280
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     4  0.5254      0.358 0.000 0.100 0.000 0.508 0.000 0.392
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3795      0.439 0.000 0.000 0.364 0.632 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.3446      0.678 0.000 0.000 0.000 0.692 0.000 0.308
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.1007      0.887 0.000 0.000 0.956 0.044 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.5368      0.280 0.000 0.116 0.000 0.508 0.000 0.376
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0146      0.846 0.000 0.996 0.000 0.000 0.000 0.004
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0146      0.755 0.000 0.000 0.000 0.996 0.000 0.004
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.5502     -0.278 0.548 0.036 0.000 0.060 0.000 0.356
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.3351      0.692 0.000 0.000 0.000 0.712 0.000 0.288
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.3309      0.695 0.000 0.000 0.000 0.720 0.000 0.280
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.756 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1007      0.887 0.000 0.000 0.956 0.044 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1075      0.846 0.000 0.952 0.000 0.000 0.000 0.048
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.3428      0.681 0.000 0.000 0.000 0.696 0.000 0.304
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0547      0.757 0.000 0.000 0.000 0.980 0.000 0.020
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0603      0.753 0.000 0.000 0.016 0.980 0.000 0.004
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     4  0.5254      0.358 0.000 0.100 0.000 0.508 0.000 0.392
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.4039      0.695 0.000 0.000 0.000 0.060 0.732 0.208
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.3390      0.686 0.000 0.000 0.000 0.704 0.000 0.296
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.5887     -0.034 0.000 0.312 0.000 0.464 0.000 0.224
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0146      0.755 0.000 0.000 0.000 0.996 0.000 0.004
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.3050      0.668 0.000 0.764 0.000 0.000 0.000 0.236
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.1219      0.735 0.000 0.000 0.048 0.948 0.000 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000      0.962 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.510           0.739       0.861         0.4515 0.545   0.545
#> 3 3 0.501           0.543       0.745         0.3773 0.834   0.705
#> 4 4 0.659           0.757       0.820         0.1246 0.758   0.491
#> 5 5 0.724           0.856       0.822         0.0833 0.919   0.727
#> 6 6 0.826           0.845       0.855         0.0556 0.959   0.815

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1   0.895    0.56981 0.688 0.312
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2   0.839    0.63208 0.268 0.732
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1   0.000    0.83523 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1   0.881    0.58705 0.700 0.300
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1   0.000    0.83523 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2   0.373    0.90407 0.072 0.928
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1   0.730    0.65313 0.796 0.204
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1   0.881    0.58705 0.700 0.300
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1   0.895    0.56981 0.688 0.312
#> 806616FE-1855-4284-9265-42842104CB21     1   0.000    0.83523 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2   0.373    0.90407 0.072 0.928
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2   0.373    0.90407 0.072 0.928
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1   0.895    0.56981 0.688 0.312
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2   0.373    0.90407 0.072 0.928
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1   0.921    0.47178 0.664 0.336
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1   0.000    0.83523 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1   0.921    0.47178 0.664 0.336
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1   0.000    0.83523 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2   0.373    0.90407 0.072 0.928
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2   0.373    0.90407 0.072 0.928
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1   0.000    0.83523 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2   0.373    0.90407 0.072 0.928
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1   0.925    0.46389 0.660 0.340
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1   0.000    0.83523 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2   0.373    0.90407 0.072 0.928
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1   0.000    0.83523 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1   0.000    0.83523 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1   0.000    0.83523 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1   0.925    0.46389 0.660 0.340
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2   0.975    0.31450 0.408 0.592
#> F798E986-79BB-48FD-8514-95571EDB594B     2   0.373    0.90407 0.072 0.928
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1   0.895    0.56981 0.688 0.312
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1   0.000    0.83523 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1   0.000    0.83523 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1   0.000    0.83523 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1   0.925    0.46389 0.660 0.340
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1   0.000    0.83523 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1   0.204    0.81030 0.968 0.032
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2   0.373    0.90407 0.072 0.928
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1   0.881    0.58705 0.700 0.300
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2   0.373    0.90407 0.072 0.928
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1   0.000    0.83523 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1   0.000    0.83523 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1   0.000    0.83523 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1   0.402    0.77634 0.920 0.080
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2   1.000   -0.01178 0.492 0.508
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2   0.373    0.90407 0.072 0.928
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2   0.827    0.63013 0.260 0.740
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1   0.895    0.56981 0.688 0.312
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1   0.000    0.83523 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2   0.373    0.90407 0.072 0.928
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1   0.000    0.83523 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1   0.000    0.83523 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1   0.895    0.56981 0.688 0.312
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1   0.000    0.83523 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1   0.895    0.56981 0.688 0.312
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2   0.373    0.90407 0.072 0.928
#> A533C39D-CE42-42AD-92AD-549157A43139     1   0.000    0.83523 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1   0.000    0.83523 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2   0.978    0.33545 0.412 0.588
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1   0.000    0.83523 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2   0.373    0.90407 0.072 0.928
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2   0.373    0.90407 0.072 0.928
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1   0.000    0.83523 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1   0.662    0.67261 0.828 0.172
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1   0.000    0.83523 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1   0.000    0.83523 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1   0.000    0.83523 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1   0.000    0.83523 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1   0.204    0.81994 0.968 0.032
#> F779417A-9E29-4B27-BEA3-B23273A66021     2   0.373    0.90407 0.072 0.928
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2   0.373    0.90407 0.072 0.928
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2   0.373    0.90407 0.072 0.928
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2   0.373    0.90407 0.072 0.928
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1   0.952    0.45118 0.628 0.372
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2   0.482    0.83595 0.104 0.896
#> A314C4E6-B245-4F10-A555-50B9B819040D     1   0.855    0.61085 0.720 0.280
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1   0.000    0.83523 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1   0.000    0.83523 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1   0.999    0.12421 0.520 0.480
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1   0.000    0.83523 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1   0.000    0.83523 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1   0.917    0.53183 0.668 0.332
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2   0.373    0.90407 0.072 0.928
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2   0.373    0.90407 0.072 0.928
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2   0.697    0.76560 0.188 0.812
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1   0.881    0.58705 0.700 0.300
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1   0.000    0.83523 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2   0.373    0.90407 0.072 0.928
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2   0.373    0.90407 0.072 0.928
#> F25A7521-2596-4D60-BABE-862023C40D40     1   0.000    0.83523 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1   0.881    0.58705 0.700 0.300
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2   0.373    0.90407 0.072 0.928
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1   0.311    0.80643 0.944 0.056
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1   0.925    0.46389 0.660 0.340
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2   0.913    0.51238 0.328 0.672
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1   0.000    0.83523 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1   0.895    0.56981 0.688 0.312
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2   0.373    0.90407 0.072 0.928
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2   0.373    0.90407 0.072 0.928
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1   0.000    0.83523 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1   0.999    0.12516 0.520 0.480
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1   0.895    0.56981 0.688 0.312
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2   0.373    0.90407 0.072 0.928
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1   0.000    0.83523 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2   0.373    0.90407 0.072 0.928
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1   0.881    0.58705 0.700 0.300
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1   0.662    0.71999 0.828 0.172
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1   0.000    0.83523 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1   0.373    0.78276 0.928 0.072
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2   0.373    0.90407 0.072 0.928
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1   0.895    0.56981 0.688 0.312
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1   0.000    0.83523 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1   0.000    0.83523 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2   0.373    0.90407 0.072 0.928
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1   0.373    0.77541 0.928 0.072
#> 12F54761-4F68-4181-8421-88EA858902FC     1   0.895    0.56981 0.688 0.312
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2   0.999    0.01004 0.480 0.520
#> FA716037-886B-4DD0-8016-686C2D24550A     1   0.000    0.83523 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2   0.373    0.90407 0.072 0.928
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1   0.000    0.83523 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2   1.000    0.00263 0.488 0.512

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.8841      0.516 0.580 0.216 0.204
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7742      0.534 0.060 0.584 0.356
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.6168     -0.356 0.588 0.000 0.412
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.8804      0.518 0.584 0.212 0.204
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.6168     -0.356 0.588 0.000 0.412
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0237      0.926 0.000 0.996 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.6291      0.600 0.468 0.000 0.532
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.8804      0.518 0.584 0.212 0.204
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.8689      0.519 0.596 0.200 0.204
#> 806616FE-1855-4284-9265-42842104CB21     1  0.6168     -0.356 0.588 0.000 0.412
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0424      0.927 0.000 0.992 0.008
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0424      0.926 0.000 0.992 0.008
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.8841      0.516 0.580 0.216 0.204
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2955      0.903 0.008 0.912 0.080
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.5036      0.757 0.172 0.020 0.808
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.6309      0.553 0.500 0.000 0.500
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.5036      0.757 0.172 0.020 0.808
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.2878      0.435 0.904 0.000 0.096
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1643      0.923 0.000 0.956 0.044
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1643      0.923 0.000 0.956 0.044
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.560 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1643      0.923 0.000 0.956 0.044
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5036      0.757 0.172 0.020 0.808
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.560 1.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1031      0.924 0.000 0.976 0.024
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.560 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0237      0.561 0.996 0.000 0.004
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.560 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.5036      0.757 0.172 0.020 0.808
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.9087      0.230 0.188 0.268 0.544
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1643      0.923 0.000 0.956 0.044
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.8841      0.516 0.580 0.216 0.204
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.560 1.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.6168     -0.356 0.588 0.000 0.412
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0237      0.561 0.996 0.000 0.004
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5036      0.757 0.172 0.020 0.808
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.3192      0.408 0.888 0.000 0.112
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.6295      0.595 0.472 0.000 0.528
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1643      0.923 0.000 0.956 0.044
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.8804      0.518 0.584 0.212 0.204
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0237      0.926 0.000 0.996 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.560 1.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0747      0.557 0.984 0.000 0.016
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.1860      0.510 0.948 0.000 0.052
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.6308      0.569 0.492 0.000 0.508
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.5292      0.755 0.172 0.028 0.800
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.5643      0.742 0.020 0.760 0.220
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.9283      0.490 0.180 0.320 0.500
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.8804      0.518 0.584 0.212 0.204
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.6140     -0.341 0.596 0.000 0.404
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0237      0.926 0.000 0.996 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.6168     -0.356 0.588 0.000 0.412
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.6168     -0.356 0.588 0.000 0.412
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.8841      0.516 0.580 0.216 0.204
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.6168     -0.356 0.588 0.000 0.412
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.8841      0.516 0.580 0.216 0.204
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0237      0.926 0.000 0.996 0.004
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.560 1.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.560 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.8288      0.673 0.332 0.096 0.572
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.6168     -0.356 0.588 0.000 0.412
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.2261      0.913 0.000 0.932 0.068
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0237      0.926 0.000 0.996 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.6168     -0.356 0.588 0.000 0.412
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.6308      0.569 0.492 0.000 0.508
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.6168     -0.356 0.588 0.000 0.412
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.560 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.560 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.1411      0.529 0.964 0.000 0.036
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5708      0.534 0.768 0.028 0.204
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0237      0.926 0.000 0.996 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0237      0.926 0.000 0.996 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1411      0.909 0.000 0.964 0.036
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0424      0.926 0.000 0.992 0.008
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.9156      0.462 0.540 0.256 0.204
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4682      0.786 0.004 0.804 0.192
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.8290      0.525 0.632 0.164 0.204
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.560 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.560 1.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.9601      0.233 0.432 0.364 0.204
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0424      0.556 0.992 0.000 0.008
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.560 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.8841      0.516 0.580 0.216 0.204
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.2448      0.909 0.000 0.924 0.076
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0237      0.926 0.000 0.996 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.6124      0.724 0.036 0.744 0.220
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.8804      0.518 0.584 0.212 0.204
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.560 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1031      0.924 0.000 0.976 0.024
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1643      0.923 0.000 0.956 0.044
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.6168     -0.356 0.588 0.000 0.412
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.8689      0.521 0.596 0.200 0.204
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1643      0.923 0.000 0.956 0.044
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.6542      0.533 0.736 0.060 0.204
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.5036      0.757 0.172 0.020 0.808
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.8608      0.438 0.192 0.604 0.204
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0592      0.554 0.988 0.000 0.012
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.8841      0.516 0.580 0.216 0.204
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1643      0.923 0.000 0.956 0.044
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1643      0.923 0.000 0.956 0.044
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.6168     -0.356 0.588 0.000 0.412
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.9527      0.317 0.464 0.332 0.204
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.8841      0.516 0.580 0.216 0.204
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1031      0.924 0.000 0.976 0.024
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.560 1.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2356      0.911 0.000 0.928 0.072
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.8689      0.521 0.596 0.200 0.204
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.8085      0.527 0.648 0.148 0.204
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0237      0.561 0.996 0.000 0.004
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.6309      0.562 0.496 0.000 0.504
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1643      0.923 0.000 0.956 0.044
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.8841      0.516 0.580 0.216 0.204
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0237      0.561 0.996 0.000 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.560 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4834      0.759 0.004 0.792 0.204
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.4750      0.738 0.216 0.000 0.784
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.8841      0.516 0.580 0.216 0.204
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.9579      0.235 0.432 0.368 0.200
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.560 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1643      0.923 0.000 0.956 0.044
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.6168     -0.356 0.588 0.000 0.412
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.5292      0.755 0.172 0.028 0.800

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.5552      0.551 0.708 0.236 0.008 0.048
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.6469      0.625 0.248 0.000 0.124 0.628
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.5812      0.900 0.624 0.048 0.000 0.328
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.7622      0.413 0.248 0.000 0.280 0.472
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.5812      0.900 0.624 0.048 0.000 0.328
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.5736      0.898 0.628 0.044 0.000 0.328
#> 806616FE-1855-4284-9265-42842104CB21     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.4337      0.863 0.140 0.808 0.052 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.6551      0.714 0.240 0.624 0.136 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.2748      0.920 0.020 0.004 0.904 0.072
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.7369      0.506 0.248 0.000 0.228 0.524
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.2635      0.921 0.016 0.004 0.908 0.072
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.3672      0.698 0.164 0.000 0.012 0.824
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.4581      0.856 0.120 0.800 0.080 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.2856      0.918 0.024 0.004 0.900 0.072
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0336      0.735 0.008 0.000 0.000 0.992
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0188      0.858 0.004 0.996 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.2635      0.921 0.016 0.004 0.908 0.072
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.8735      0.440 0.500 0.216 0.196 0.088
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0336      0.735 0.008 0.000 0.000 0.992
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.2635      0.921 0.016 0.004 0.908 0.072
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1488      0.732 0.012 0.000 0.032 0.956
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.7606      0.421 0.248 0.000 0.276 0.476
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0336      0.735 0.008 0.000 0.000 0.992
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0817      0.723 0.024 0.000 0.000 0.976
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4872      0.672 0.244 0.000 0.028 0.728
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.7459      0.480 0.248 0.000 0.244 0.508
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2365      0.910 0.012 0.004 0.920 0.064
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4331      0.426 0.712 0.288 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.8133      0.212 0.052 0.532 0.264 0.152
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.6442      0.627 0.244 0.000 0.124 0.632
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.6469      0.625 0.248 0.000 0.124 0.628
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0336      0.735 0.008 0.000 0.000 0.992
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000      0.738 0.000 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.9254     -0.135 0.256 0.080 0.340 0.324
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.6469      0.625 0.248 0.000 0.124 0.628
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.5864      0.774 0.264 0.664 0.072 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.7556      0.444 0.248 0.000 0.264 0.488
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.6469      0.625 0.248 0.000 0.124 0.628
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0592      0.731 0.016 0.000 0.000 0.984
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4050      0.697 0.168 0.000 0.024 0.808
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4790      0.839 0.620 0.000 0.000 0.380
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3311      0.783 0.172 0.828 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.5966      0.897 0.624 0.060 0.000 0.316
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.5496      0.771 0.088 0.724 0.188 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.5511      0.877 0.620 0.028 0.000 0.352
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188      0.738 0.004 0.000 0.000 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5953      0.867 0.656 0.076 0.000 0.268
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0376      0.738 0.004 0.000 0.004 0.992
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.5864      0.774 0.264 0.664 0.072 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0921      0.862 0.028 0.972 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.5025      0.520 0.716 0.252 0.000 0.032
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.5812      0.900 0.624 0.048 0.000 0.328
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0188      0.858 0.004 0.996 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.6566      0.622 0.236 0.000 0.140 0.624
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5773      0.894 0.620 0.044 0.000 0.336
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4790      0.839 0.620 0.000 0.000 0.380
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.2635      0.921 0.016 0.004 0.908 0.072
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.6308      0.722 0.656 0.208 0.000 0.136
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.1724      0.732 0.032 0.000 0.020 0.948
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.6731      0.610 0.248 0.000 0.148 0.604
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6515      0.848 0.624 0.128 0.000 0.248
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0188      0.858 0.004 0.996 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4756      0.790 0.176 0.772 0.052 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5773      0.894 0.620 0.044 0.000 0.336
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5649      0.886 0.620 0.036 0.000 0.344
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.7369      0.506 0.248 0.000 0.228 0.524
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.4477      0.858 0.108 0.808 0.084 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0336      0.735 0.008 0.000 0.000 0.992
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4837      0.438 0.648 0.348 0.000 0.004
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.2821      0.916 0.020 0.004 0.900 0.076
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5866      0.902 0.624 0.052 0.000 0.324
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6823      0.790 0.604 0.196 0.000 0.200
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0707      0.728 0.020 0.000 0.000 0.980
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.4581      0.856 0.120 0.800 0.080 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.6265      0.634 0.220 0.000 0.124 0.656
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1909      0.890 0.008 0.004 0.940 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.4160      0.798 0.804 0.048 0.000 0.124 0.024
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0162      0.907 0.000 0.000 0.996 0.004 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1788      0.872 0.000 0.008 0.932 0.004 0.056
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1059      0.929 0.968 0.004 0.000 0.020 0.008
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.5569      0.760 0.068 0.616 0.000 0.304 0.012
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.7274      0.635 0.152 0.492 0.000 0.292 0.064
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.1220      0.989 0.004 0.004 0.020 0.008 0.964
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1041      0.894 0.000 0.000 0.964 0.004 0.032
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0932      0.990 0.004 0.000 0.020 0.004 0.972
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.5755      0.771 0.052 0.000 0.416 0.516 0.016
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.5389      0.739 0.036 0.552 0.000 0.400 0.012
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.2589      0.941 0.004 0.004 0.020 0.076 0.896
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.6573      0.960 0.152 0.000 0.316 0.516 0.016
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0703      0.754 0.024 0.976 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.6784      0.965 0.168 0.004 0.300 0.512 0.016
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0932      0.990 0.004 0.000 0.020 0.004 0.972
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.5676      0.718 0.720 0.088 0.008 0.128 0.056
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.6573      0.960 0.152 0.000 0.316 0.516 0.016
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0290      0.905 0.000 0.000 0.992 0.008 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.6784      0.965 0.168 0.004 0.300 0.512 0.016
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0932      0.990 0.004 0.000 0.020 0.004 0.972
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.6753      0.964 0.160 0.004 0.308 0.512 0.016
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1788      0.872 0.000 0.008 0.932 0.004 0.056
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.6573      0.960 0.152 0.000 0.316 0.516 0.016
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.6722      0.964 0.168 0.000 0.300 0.512 0.020
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.4551     -0.204 0.016 0.000 0.616 0.368 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1443      0.885 0.000 0.004 0.948 0.004 0.044
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.1093      0.987 0.004 0.004 0.020 0.004 0.968
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4034      0.792 0.812 0.060 0.000 0.112 0.016
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6627      0.448 0.000 0.608 0.208 0.080 0.104
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.1410      0.849 0.000 0.000 0.940 0.060 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1717      0.755 0.052 0.936 0.000 0.008 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0162      0.907 0.000 0.000 0.996 0.004 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.6573      0.960 0.152 0.000 0.316 0.516 0.016
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.6555      0.956 0.148 0.000 0.320 0.516 0.016
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4723      0.635 0.000 0.032 0.772 0.076 0.120
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0162      0.907 0.000 0.000 0.996 0.004 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.6792      0.687 0.160 0.472 0.000 0.348 0.020
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1443      0.885 0.000 0.004 0.948 0.004 0.044
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0404      0.902 0.000 0.000 0.988 0.012 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.5389      0.738 0.056 0.000 0.436 0.508 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1410      0.880 0.940 0.000 0.000 0.060 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4368      0.677 0.184 0.764 0.000 0.036 0.016
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0566      0.933 0.984 0.012 0.000 0.000 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.6653      0.656 0.012 0.540 0.024 0.324 0.100
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0290      0.935 0.992 0.000 0.000 0.008 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.6555      0.956 0.148 0.000 0.320 0.516 0.016
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.2244      0.894 0.920 0.040 0.000 0.024 0.016
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.6390      0.948 0.148 0.000 0.328 0.516 0.008
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.6799      0.684 0.160 0.468 0.000 0.352 0.020
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1270      0.757 0.052 0.948 0.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.3919      0.803 0.820 0.056 0.000 0.108 0.016
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.6784      0.965 0.168 0.004 0.300 0.512 0.016
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0703      0.754 0.024 0.976 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.5333      0.747 0.036 0.576 0.000 0.376 0.012
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2170      0.801 0.000 0.004 0.904 0.088 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0324      0.937 0.992 0.000 0.000 0.004 0.004
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1357      0.892 0.948 0.000 0.000 0.048 0.004
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0932      0.990 0.004 0.000 0.020 0.004 0.972
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.2605      0.877 0.900 0.060 0.000 0.024 0.016
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.6219      0.873 0.144 0.000 0.384 0.472 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1571      0.900 0.936 0.060 0.000 0.000 0.004
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0703      0.754 0.024 0.976 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5934      0.674 0.156 0.648 0.000 0.176 0.020
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0324      0.937 0.992 0.000 0.000 0.004 0.004
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0451      0.934 0.988 0.000 0.000 0.008 0.004
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1041      0.894 0.000 0.000 0.964 0.004 0.032
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.5311      0.750 0.036 0.584 0.000 0.368 0.012
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.6591      0.963 0.156 0.000 0.312 0.516 0.016
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.3446      0.819 0.844 0.112 0.000 0.028 0.016
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0994      0.987 0.004 0.004 0.016 0.004 0.972
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0162      0.939 0.996 0.004 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3109      0.772 0.800 0.200 0.000 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.6639      0.967 0.168 0.000 0.300 0.516 0.016
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.5372      0.742 0.036 0.560 0.000 0.392 0.012
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3123      0.619 0.000 0.004 0.812 0.184 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0932      0.987 0.004 0.000 0.020 0.004 0.972

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.3700      0.809 0.820 0.092 0.064 0.000 0.008 0.016
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.2488      0.922 0.000 0.008 0.864 0.124 0.004 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1219      0.935 0.948 0.004 0.000 0.048 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.3554      0.899 0.004 0.052 0.820 0.112 0.012 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2228      0.922 0.908 0.004 0.024 0.056 0.008 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     6  0.4400      0.640 0.044 0.124 0.052 0.000 0.008 0.772
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.7199     -0.181 0.132 0.400 0.104 0.000 0.012 0.352
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0696      0.966 0.004 0.000 0.004 0.008 0.980 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0405      0.967 0.000 0.000 0.004 0.008 0.988 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.1124      0.920 0.000 0.008 0.036 0.956 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     6  0.0551      0.847 0.004 0.000 0.008 0.000 0.004 0.984
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     6  0.2442      0.798 0.008 0.048 0.036 0.000 0.008 0.900
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0458      0.947 0.000 0.016 0.000 0.984 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     6  0.0405      0.846 0.004 0.000 0.008 0.000 0.000 0.988
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.4698      0.736 0.016 0.232 0.048 0.008 0.696 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.1370      0.941 0.012 0.036 0.000 0.948 0.004 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4056      0.766 0.004 0.576 0.004 0.000 0.000 0.416
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0260      0.948 0.000 0.008 0.000 0.992 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0820      0.942 0.012 0.016 0.000 0.972 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0547      0.948 0.000 0.020 0.000 0.980 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0520      0.967 0.000 0.000 0.008 0.008 0.984 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.5734      0.339 0.508 0.368 0.108 0.000 0.012 0.004
#> F798E986-79BB-48FD-8514-95571EDB594B     6  0.0405      0.846 0.004 0.008 0.000 0.000 0.000 0.988
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.1586      0.939 0.012 0.040 0.004 0.940 0.004 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.3551      0.886 0.000 0.048 0.784 0.168 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0820      0.942 0.012 0.016 0.000 0.972 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0405      0.967 0.000 0.000 0.004 0.008 0.988 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0777      0.945 0.000 0.024 0.004 0.972 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.3554      0.899 0.004 0.052 0.820 0.112 0.012 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     6  0.0405      0.846 0.004 0.000 0.008 0.000 0.000 0.988
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.1586      0.939 0.012 0.040 0.004 0.940 0.004 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.1644      0.936 0.012 0.052 0.000 0.932 0.004 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4018      0.389 0.000 0.020 0.324 0.656 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.2636      0.920 0.000 0.016 0.860 0.120 0.004 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0810      0.966 0.004 0.000 0.008 0.008 0.976 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.3648      0.820 0.832 0.064 0.064 0.000 0.008 0.032
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6761      0.234 0.016 0.568 0.208 0.024 0.040 0.144
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3073      0.867 0.000 0.008 0.788 0.204 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4292      0.785 0.024 0.588 0.000 0.000 0.000 0.388
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.2389      0.923 0.000 0.008 0.864 0.128 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1333      0.934 0.944 0.008 0.000 0.048 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2346      0.924 0.000 0.008 0.868 0.124 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1528      0.933 0.936 0.016 0.000 0.048 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.1586      0.939 0.012 0.040 0.004 0.940 0.004 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0603      0.948 0.000 0.016 0.004 0.980 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5320      0.562 0.016 0.256 0.648 0.044 0.036 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.2346      0.924 0.000 0.008 0.868 0.124 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     6  0.4753      0.608 0.136 0.048 0.064 0.000 0.008 0.744
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.2926      0.912 0.000 0.024 0.852 0.112 0.012 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.2841      0.903 0.000 0.012 0.824 0.164 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0458      0.947 0.000 0.016 0.000 0.984 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0363      0.948 0.000 0.012 0.000 0.988 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.2476      0.864 0.000 0.024 0.092 0.880 0.004 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1983      0.917 0.908 0.020 0.000 0.072 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.6584      0.447 0.184 0.468 0.040 0.000 0.004 0.304
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.4310      0.792 0.024 0.580 0.000 0.000 0.000 0.396
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     6  0.5842      0.308 0.016 0.328 0.056 0.000 0.040 0.560
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1327      0.935 0.936 0.000 0.000 0.064 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0806      0.946 0.000 0.020 0.008 0.972 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.1442      0.941 0.012 0.040 0.000 0.944 0.004 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.2112      0.898 0.916 0.036 0.028 0.020 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.1699      0.938 0.012 0.040 0.008 0.936 0.004 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0713      0.947 0.000 0.028 0.000 0.972 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     6  0.4909      0.596 0.140 0.056 0.064 0.000 0.008 0.732
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4371      0.789 0.028 0.580 0.000 0.000 0.000 0.392
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.3472      0.825 0.840 0.068 0.064 0.000 0.008 0.020
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0458      0.947 0.000 0.016 0.000 0.984 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4056      0.766 0.004 0.576 0.004 0.000 0.000 0.416
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     6  0.0551      0.847 0.004 0.004 0.008 0.000 0.000 0.984
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4312      0.612 0.000 0.028 0.604 0.368 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1995      0.926 0.912 0.036 0.000 0.052 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     6  0.0146      0.847 0.004 0.000 0.000 0.000 0.000 0.996
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.2507      0.906 0.884 0.040 0.000 0.072 0.004 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0405      0.967 0.000 0.000 0.004 0.008 0.988 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.1655      0.906 0.936 0.044 0.004 0.012 0.000 0.004
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.1918      0.872 0.000 0.008 0.088 0.904 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1333      0.934 0.944 0.008 0.000 0.048 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     6  0.0146      0.847 0.004 0.000 0.000 0.000 0.000 0.996
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     6  0.0146      0.847 0.004 0.000 0.000 0.000 0.000 0.996
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1434      0.932 0.940 0.012 0.000 0.048 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.4056      0.766 0.004 0.576 0.004 0.000 0.000 0.416
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.1370      0.941 0.012 0.036 0.000 0.948 0.004 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6762      0.162 0.112 0.520 0.108 0.000 0.008 0.252
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1995      0.926 0.912 0.036 0.000 0.052 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.2209      0.922 0.904 0.040 0.000 0.052 0.004 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0820      0.942 0.012 0.016 0.000 0.972 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.2234      0.924 0.000 0.004 0.872 0.124 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     6  0.0405      0.846 0.004 0.000 0.008 0.000 0.000 0.988
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1267      0.937 0.940 0.000 0.000 0.060 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0820      0.942 0.012 0.016 0.000 0.972 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0692      0.947 0.000 0.020 0.004 0.976 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.2617      0.860 0.880 0.080 0.032 0.000 0.004 0.004
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0405      0.964 0.000 0.000 0.000 0.008 0.988 0.004
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1434      0.934 0.940 0.012 0.000 0.048 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3315      0.747 0.780 0.200 0.000 0.020 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0363      0.948 0.000 0.012 0.000 0.988 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     6  0.2307      0.804 0.008 0.040 0.036 0.000 0.008 0.908
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.4229      0.459 0.000 0.016 0.548 0.436 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0665      0.966 0.004 0.000 0.008 0.008 0.980 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.520           0.700       0.873         0.5019 0.497   0.497
#> 3 3 0.622           0.769       0.872         0.3111 0.733   0.518
#> 4 4 0.871           0.870       0.944         0.1183 0.879   0.667
#> 5 5 0.967           0.927       0.961         0.0785 0.908   0.671
#> 6 6 0.915           0.877       0.926         0.0423 0.952   0.774

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5

There is also optional best \(k\) = 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.9754     0.4800 0.408 0.592
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000     0.8205 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000     0.8390 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.9754     0.4800 0.408 0.592
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000     0.8390 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.8205 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.9754     0.4310 0.592 0.408
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.9754     0.4800 0.408 0.592
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.9754     0.4800 0.408 0.592
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000     0.8390 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.8205 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.8205 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.9754     0.4800 0.408 0.592
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000     0.8205 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.9754     0.4310 0.592 0.408
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.7219     0.6762 0.800 0.200
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.9754     0.4310 0.592 0.408
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.8390 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.8205 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.8205 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.8390 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8205 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.9754     0.4310 0.592 0.408
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.8390 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.8205 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.8390 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.8390 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.8390 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.9754     0.4310 0.592 0.408
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0376     0.8172 0.004 0.996
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8205 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.9754     0.4800 0.408 0.592
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000     0.8390 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000     0.8390 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.8390 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.9754     0.4310 0.592 0.408
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000     0.8390 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.7219     0.6762 0.800 0.200
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8205 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.9754     0.4800 0.408 0.592
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.8205 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.8390 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.8390 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000     0.8390 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.9710     0.4418 0.600 0.400
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.9754     0.4310 0.592 0.408
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000     0.8205 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.9552     0.1488 0.376 0.624
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.9754     0.4800 0.408 0.592
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000     0.8390 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8205 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000     0.8390 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.5946     0.7290 0.856 0.144
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.9754     0.4800 0.408 0.592
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000     0.8390 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.9754     0.4800 0.408 0.592
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.8205 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.8390 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000     0.8390 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.9754     0.4310 0.592 0.408
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000     0.8390 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.8205 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.8205 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000     0.8390 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.9754     0.4310 0.592 0.408
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000     0.8390 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000     0.8390 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.8390 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000     0.8390 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5059     0.7242 0.888 0.112
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.8205 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.8205 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.8205 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8205 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.9710     0.4887 0.400 0.600
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.5178     0.6972 0.116 0.884
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.9710     0.0802 0.600 0.400
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000     0.8390 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.8390 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0000     0.8205 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     0.8390 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000     0.8390 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.9754     0.4800 0.408 0.592
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.8205 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000     0.8205 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000     0.8205 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.9754     0.4800 0.408 0.592
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.8390 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.8205 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.8205 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000     0.8390 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.9710     0.0802 0.600 0.400
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8205 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.6048     0.6756 0.852 0.148
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.9754     0.4310 0.592 0.408
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0000     0.8205 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000     0.8390 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.9754     0.4800 0.408 0.592
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8205 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8205 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000     0.8390 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.7219     0.6831 0.200 0.800
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.9754     0.4800 0.408 0.592
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8205 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.8390 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000     0.8205 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.9850    -0.0284 0.572 0.428
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.9427     0.2134 0.640 0.360
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.8390 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.9710     0.4418 0.600 0.400
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8205 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.9754     0.4800 0.408 0.592
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.8390 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.8390 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000     0.8205 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     0.8390 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.9754     0.4800 0.408 0.592
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.7219     0.6831 0.200 0.800
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.8390 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.8205 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000     0.8390 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.9754     0.4310 0.592 0.408

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.9230 1.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0592     0.8370 0.012 0.988 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000     0.7953 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9230 1.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.7953 0.000 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3879     0.7722 0.152 0.848 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.7953 0.000 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9230 1.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000     0.9230 1.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.7953 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3879     0.7722 0.152 0.848 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3879     0.7722 0.152 0.848 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.9230 1.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000     0.8394 0.000 1.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.6286     0.3628 0.000 0.536 0.464
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.7953 0.000 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.6280     0.3720 0.000 0.540 0.460
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.0000     0.7953 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0424     0.8402 0.008 0.992 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0424     0.8402 0.008 0.992 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.5678     0.7540 0.316 0.000 0.684
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0237     0.8403 0.004 0.996 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.6280     0.3720 0.000 0.540 0.460
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.5678     0.7540 0.316 0.000 0.684
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0424     0.8402 0.008 0.992 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.5678     0.7540 0.316 0.000 0.684
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.5678     0.7540 0.316 0.000 0.684
#> 4496EE84-2C36-413B-A328-A5B598A6C387     3  0.5678     0.7540 0.316 0.000 0.684
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.6280     0.3720 0.000 0.540 0.460
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0592     0.8370 0.012 0.988 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8394 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.9230 1.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.5678     0.7540 0.316 0.000 0.684
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0000     0.7953 0.000 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.5678     0.7540 0.316 0.000 0.684
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.6280     0.3720 0.000 0.540 0.460
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.0000     0.7953 0.000 0.000 1.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.7953 0.000 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0237     0.8403 0.004 0.996 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9230 1.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3879     0.7722 0.152 0.848 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.5678     0.7540 0.316 0.000 0.684
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.5678     0.7540 0.316 0.000 0.684
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0000     0.7953 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.7953 0.000 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.6274     0.3799 0.000 0.544 0.456
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.5058     0.6566 0.244 0.756 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0424     0.8367 0.000 0.992 0.008
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000     0.9230 1.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000     0.7953 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3879     0.7722 0.152 0.848 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.7953 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.7953 0.000 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9230 1.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.7953 0.000 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9230 1.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3879     0.7722 0.152 0.848 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.5678     0.7540 0.316 0.000 0.684
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.5678     0.7540 0.316 0.000 0.684
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5988     0.0672 0.000 0.368 0.632
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.7953 0.000 0.000 1.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0424     0.8402 0.008 0.992 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3879     0.7722 0.152 0.848 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000     0.7953 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.7953 0.000 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0000     0.7953 0.000 0.000 1.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.5678     0.7540 0.316 0.000 0.684
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.5678     0.7540 0.316 0.000 0.684
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4605     0.7707 0.204 0.000 0.796
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0424     0.9134 0.992 0.000 0.008
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3879     0.7722 0.152 0.848 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3879     0.7722 0.152 0.848 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4346     0.7368 0.184 0.816 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.3879     0.7722 0.152 0.848 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.9230 1.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.8394 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9230 1.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.5678     0.7540 0.316 0.000 0.684
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.5678     0.7540 0.316 0.000 0.684
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5678     0.4735 0.684 0.316 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.5678     0.7540 0.316 0.000 0.684
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.5678     0.7540 0.316 0.000 0.684
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.9230 1.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0424     0.8402 0.008 0.992 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3879     0.7722 0.152 0.848 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.6252     0.1710 0.556 0.444 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9230 1.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.5678     0.7540 0.316 0.000 0.684
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0237     0.8403 0.004 0.996 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0424     0.8402 0.008 0.992 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0000     0.7953 0.000 0.000 1.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.9230 1.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8394 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0424     0.9134 0.992 0.000 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2  0.6280     0.3720 0.000 0.540 0.460
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5678     0.4735 0.684 0.316 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.5678     0.7540 0.316 0.000 0.684
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9230 1.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8394 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8394 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000     0.7953 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2448     0.8562 0.924 0.076 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.9230 1.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0424     0.8402 0.008 0.992 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.5678     0.7540 0.316 0.000 0.684
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000     0.8394 0.000 1.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.9230 1.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.9230 1.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.5678     0.7540 0.316 0.000 0.684
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.7953 0.000 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0237     0.8403 0.004 0.996 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.9230 1.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.5678     0.7540 0.316 0.000 0.684
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.5678     0.7540 0.316 0.000 0.684
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.5926     0.3950 0.644 0.356 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.3941     0.6320 0.000 0.156 0.844
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9230 1.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2711     0.8478 0.912 0.088 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.5678     0.7540 0.316 0.000 0.684
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0237     0.8403 0.004 0.996 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000     0.7953 0.000 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.5706     0.5940 0.000 0.680 0.320

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4008      0.701 0.000 0.756 0.244 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.3311      0.767 0.000 0.000 0.172 0.828
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.4585      0.526 0.000 0.000 0.332 0.668
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.3610      0.682 0.000 0.000 0.800 0.200
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     4  0.4477      0.565 0.000 0.000 0.312 0.688
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4679      0.509 0.000 0.648 0.352 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.4955      0.177 0.000 0.000 0.556 0.444
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.4585      0.368 0.000 0.332 0.668 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.3688      0.722 0.000 0.000 0.208 0.792
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0336      0.919 0.000 0.000 0.008 0.992
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.3726      0.669 0.000 0.000 0.788 0.212
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0524      0.919 0.004 0.000 0.008 0.988
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.4697      0.421 0.000 0.000 0.644 0.356
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.2081      0.883 0.084 0.916 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.3444      0.639 0.000 0.184 0.816 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.4605      0.518 0.000 0.000 0.336 0.664
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.4522      0.550 0.000 0.000 0.320 0.680
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.1557      0.883 0.000 0.000 0.056 0.944
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.4454      0.572 0.000 0.000 0.308 0.692
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3907      0.644 0.000 0.000 0.768 0.232
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.0336      0.919 0.000 0.000 0.008 0.992
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     3  0.4543      0.388 0.000 0.324 0.676 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0188      0.987 0.996 0.004 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2589      0.850 0.116 0.884 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.3024      0.794 0.000 0.000 0.148 0.852
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0188      0.987 0.996 0.004 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.4605      0.518 0.000 0.000 0.336 0.664
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.3486      0.776 0.000 0.812 0.188 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.4967      0.149 0.000 0.000 0.548 0.452
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4008      0.691 0.244 0.756 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.819 0.000 0.000 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.992 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3266      0.787 0.832 0.168 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0188      0.925 0.004 0.000 0.000 0.996
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0000      0.819 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     5  0.2144     0.8832 0.000 0.068 0.020 0.000 0.912
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0963     0.9274 0.000 0.000 0.964 0.036 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0703     0.9282 0.000 0.000 0.976 0.024 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0807     0.9209 0.000 0.000 0.976 0.012 0.012
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0510     0.9763 0.984 0.000 0.016 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0794     0.9287 0.000 0.000 0.972 0.028 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0671     0.9531 0.000 0.980 0.004 0.000 0.016
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.0992     0.9317 0.000 0.024 0.008 0.000 0.968
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0771     0.9265 0.000 0.000 0.976 0.020 0.004
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0510     0.9594 0.000 0.000 0.016 0.984 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.0693     0.9371 0.000 0.012 0.008 0.000 0.980
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.1043     0.9260 0.000 0.000 0.960 0.040 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0671     0.9574 0.000 0.000 0.016 0.980 0.004
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0807     0.9209 0.000 0.000 0.976 0.012 0.012
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.4192     0.3404 0.000 0.000 0.596 0.404 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0807     0.9209 0.000 0.000 0.976 0.012 0.012
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.2986     0.8805 0.084 0.876 0.020 0.000 0.020
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.0992     0.9395 0.000 0.024 0.008 0.000 0.968
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.1197     0.9224 0.000 0.000 0.952 0.048 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.1197     0.9224 0.000 0.000 0.952 0.048 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0703     0.9282 0.000 0.000 0.976 0.024 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0880     0.9283 0.000 0.000 0.968 0.032 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4306    -0.0172 0.000 0.000 0.508 0.000 0.492
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1197     0.9224 0.000 0.000 0.952 0.048 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0794     0.9287 0.000 0.000 0.972 0.028 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0807     0.9209 0.000 0.000 0.976 0.012 0.012
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.1197     0.9224 0.000 0.000 0.952 0.048 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3857     0.5254 0.000 0.000 0.312 0.688 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0162     0.9529 0.000 0.996 0.004 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     5  0.3934     0.5898 0.000 0.276 0.008 0.000 0.716
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3511     0.8349 0.124 0.836 0.020 0.000 0.020
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2074     0.8750 0.000 0.000 0.896 0.104 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3774     0.5606 0.000 0.000 0.296 0.704 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0703     0.9282 0.000 0.000 0.976 0.024 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0404     0.9801 0.988 0.012 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0451     0.9527 0.000 0.988 0.004 0.000 0.008
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.3210     0.7396 0.000 0.788 0.000 0.000 0.212
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0771     0.9265 0.000 0.000 0.976 0.020 0.004
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.9903 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.3992     0.6249 0.280 0.712 0.004 0.000 0.004
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0162     0.9870 0.996 0.000 0.004 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3196     0.7537 0.804 0.192 0.004 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9731 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1216     0.9525 0.000 0.960 0.020 0.000 0.020
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.2891     0.7992 0.000 0.000 0.824 0.176 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0703     0.9550 0.000 0.000 0.024 0.000 0.976

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0551      0.772 0.000 0.984 0.004 0.000 0.008 0.004
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0260      0.938 0.000 0.000 0.992 0.008 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0146      0.939 0.996 0.004 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3314      0.693 0.740 0.256 0.004 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3672      0.664 0.000 0.632 0.000 0.000 0.000 0.368
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4234      0.202 0.000 0.608 0.004 0.000 0.372 0.016
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0972      0.945 0.000 0.008 0.028 0.964 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.2340      0.893 0.000 0.852 0.000 0.000 0.000 0.148
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0363      0.921 0.000 0.012 0.000 0.000 0.988 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0260      0.967 0.000 0.008 0.000 0.992 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.3023      0.769 0.000 0.212 0.004 0.000 0.784 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.2730      0.903 0.000 0.808 0.000 0.000 0.000 0.192
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0436      0.936 0.000 0.004 0.988 0.004 0.004 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0862      0.951 0.000 0.008 0.016 0.972 0.004 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0146      0.965 0.000 0.000 0.004 0.996 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3961      0.165 0.000 0.004 0.556 0.440 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.1714      0.855 0.000 0.908 0.000 0.000 0.000 0.092
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.3743      0.651 0.000 0.024 0.000 0.000 0.724 0.252
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0405      0.936 0.000 0.004 0.988 0.008 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0260      0.938 0.000 0.000 0.992 0.008 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1327      0.931 0.936 0.064 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1141      0.933 0.948 0.052 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4273      0.306 0.000 0.024 0.596 0.000 0.380 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0260      0.938 0.000 0.000 0.992 0.008 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.2416      0.896 0.000 0.844 0.000 0.000 0.000 0.156
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0405      0.937 0.000 0.004 0.988 0.008 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3619      0.534 0.000 0.004 0.316 0.680 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1267      0.932 0.940 0.060 0.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     6  0.3052      0.687 0.004 0.216 0.000 0.000 0.000 0.780
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     5  0.4752      0.596 0.000 0.184 0.000 0.000 0.676 0.140
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000      0.967 0.000 0.000 0.000 1.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.2300      0.882 0.856 0.144 0.000 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.2260      0.889 0.000 0.860 0.000 0.000 0.000 0.140
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0790      0.802 0.000 0.968 0.000 0.000 0.000 0.032
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.1615      0.882 0.000 0.004 0.928 0.064 0.004 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1387      0.929 0.932 0.068 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1701      0.925 0.920 0.072 0.000 0.008 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.2260      0.885 0.860 0.140 0.000 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3619      0.534 0.000 0.004 0.316 0.680 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1327      0.931 0.936 0.064 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.3797      0.211 0.580 0.000 0.000 0.000 0.000 0.420
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     6  0.0000      0.912 0.000 0.000 0.000 0.000 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000      0.967 0.000 0.000 0.000 1.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     6  0.5177      0.443 0.000 0.152 0.000 0.000 0.236 0.612
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1387      0.929 0.932 0.068 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1444      0.928 0.928 0.072 0.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0146      0.940 0.000 0.000 0.996 0.004 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.2823      0.904 0.000 0.796 0.000 0.000 0.000 0.204
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     6  0.4815      0.583 0.188 0.144 0.000 0.000 0.000 0.668
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1910      0.909 0.892 0.108 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     6  0.3126      0.638 0.248 0.000 0.000 0.000 0.000 0.752
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0146      0.967 0.000 0.004 0.000 0.996 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.2562      0.900 0.000 0.828 0.000 0.000 0.000 0.172
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.2482      0.789 0.000 0.004 0.848 0.148 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0146      0.928 0.000 0.000 0.004 0.000 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.548           0.845       0.915         0.4892 0.496   0.496
#> 3 3 0.808           0.891       0.933         0.3205 0.835   0.674
#> 4 4 0.878           0.897       0.953         0.0874 0.910   0.757
#> 5 5 0.778           0.829       0.894         0.0502 0.936   0.799
#> 6 6 0.866           0.830       0.932         0.0818 0.926   0.730

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.7453    0.82983 0.212 0.788
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7453    0.82983 0.212 0.788
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000    0.92953 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.7453    0.82983 0.212 0.788
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000    0.92953 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000    0.86811 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.7453    0.71882 0.788 0.212
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.7453    0.82983 0.212 0.788
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.7453    0.82983 0.212 0.788
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000    0.92953 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000    0.86811 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000    0.86811 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.7453    0.82983 0.212 0.788
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.1414    0.85791 0.020 0.980
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.1414    0.91702 0.980 0.020
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.0000    0.92953 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.2778    0.89663 0.952 0.048
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000    0.92953 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000    0.86811 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000    0.86811 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000    0.92953 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000    0.86811 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.6712    0.74638 0.824 0.176
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000    0.92953 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000    0.86811 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000    0.92953 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.6148    0.77123 0.848 0.152
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000    0.92953 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.7602    0.67298 0.780 0.220
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.9922    0.00958 0.552 0.448
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000    0.86811 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.7453    0.82983 0.212 0.788
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000    0.92953 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000    0.92953 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.3431    0.87910 0.936 0.064
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.5946    0.79275 0.856 0.144
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000    0.92953 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000    0.92953 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000    0.86811 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.7453    0.82983 0.212 0.788
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000    0.86811 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000    0.92953 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000    0.92953 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000    0.92953 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.5629    0.81172 0.868 0.132
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.8955    0.61020 0.688 0.312
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.1184    0.86616 0.016 0.984
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.8207    0.57066 0.256 0.744
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.7453    0.82983 0.212 0.788
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000    0.92953 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000    0.86811 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000    0.92953 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000    0.92953 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.7453    0.82983 0.212 0.788
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000    0.92953 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.7453    0.82983 0.212 0.788
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000    0.86811 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000    0.92953 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000    0.92953 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.8081    0.68839 0.752 0.248
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000    0.92953 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000    0.86811 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000    0.86811 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000    0.92953 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.7815    0.70820 0.768 0.232
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000    0.92953 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000    0.92953 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000    0.92953 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000    0.92953 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     2  0.9963    0.35394 0.464 0.536
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000    0.86811 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000    0.86811 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000    0.86811 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000    0.86811 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.7453    0.82983 0.212 0.788
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000    0.86811 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     2  0.8016    0.79678 0.244 0.756
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000    0.92953 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000    0.92953 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.7453    0.82983 0.212 0.788
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000    0.92953 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000    0.92953 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.7453    0.82983 0.212 0.788
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000    0.86811 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000    0.86811 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.7453    0.82983 0.212 0.788
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.7453    0.82983 0.212 0.788
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.2043    0.90758 0.968 0.032
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000    0.86811 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000    0.86811 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.1414    0.91702 0.980 0.020
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     2  0.8081    0.79209 0.248 0.752
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000    0.86811 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.8861    0.47658 0.696 0.304
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.4161    0.85988 0.916 0.084
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.7453    0.82983 0.212 0.788
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.2423    0.90114 0.960 0.040
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.7453    0.82983 0.212 0.788
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000    0.86811 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000    0.86811 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000    0.92953 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.7453    0.82983 0.212 0.788
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.7453    0.82983 0.212 0.788
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000    0.86811 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000    0.92953 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000    0.86811 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     2  0.8016    0.79678 0.244 0.756
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.8861    0.71196 0.304 0.696
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000    0.92953 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.7056    0.74329 0.808 0.192
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000    0.86811 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.7453    0.82983 0.212 0.788
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000    0.92953 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000    0.92953 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.6531    0.83987 0.168 0.832
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0376    0.92723 0.996 0.004
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.7453    0.82983 0.212 0.788
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.7453    0.82983 0.212 0.788
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000    0.92953 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000    0.86811 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000    0.92953 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.9998    0.14845 0.508 0.492

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1860     0.9682 0.948 0.052 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.1860     0.9682 0.948 0.052 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000     0.9338 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1860     0.9682 0.948 0.052 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.9338 0.000 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.9308 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.9338 0.000 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1860     0.9682 0.948 0.052 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1860     0.9682 0.948 0.052 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.9338 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9308 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9308 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1860     0.9682 0.948 0.052 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.5958     0.6271 0.300 0.692 0.008
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1860     0.9087 0.052 0.000 0.948
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.9338 0.000 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.2356     0.8993 0.072 0.000 0.928
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.0000     0.9338 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.3816     0.8497 0.148 0.852 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3816     0.8497 0.148 0.852 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.1031     0.9231 0.024 0.000 0.976
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9308 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3752     0.8391 0.144 0.000 0.856
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.0000     0.9338 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.9308 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.0000     0.9338 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.4605     0.7212 0.796 0.000 0.204
#> 4496EE84-2C36-413B-A328-A5B598A6C387     3  0.1031     0.9231 0.024 0.000 0.976
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4702     0.7661 0.212 0.000 0.788
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.7517     0.3491 0.364 0.048 0.588
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9308 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1860     0.9682 0.948 0.052 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.0000     0.9338 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0000     0.9338 0.000 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.4796     0.6960 0.780 0.000 0.220
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.3482     0.8549 0.128 0.000 0.872
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.1031     0.9231 0.024 0.000 0.976
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.9338 0.000 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0237     0.9297 0.004 0.996 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1860     0.9682 0.948 0.052 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9308 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.0000     0.9338 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.5138     0.6797 0.252 0.000 0.748
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0000     0.9338 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.9338 0.000 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3116     0.8723 0.108 0.000 0.892
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.3551     0.8750 0.868 0.132 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6981     0.7319 0.132 0.732 0.136
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1860     0.9682 0.948 0.052 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000     0.9338 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.9308 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.9338 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.9338 0.000 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1860     0.9682 0.948 0.052 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.9338 0.000 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1860     0.9682 0.948 0.052 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9308 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.0000     0.9338 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.0000     0.9338 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.1031     0.9207 0.000 0.024 0.976
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.9338 0.000 0.000 1.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3816     0.8497 0.148 0.852 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.9308 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000     0.9338 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.9338 0.000 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0000     0.9338 0.000 0.000 1.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.1031     0.9231 0.024 0.000 0.976
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.0892     0.9251 0.020 0.000 0.980
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000     0.9338 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1989     0.9134 0.948 0.004 0.048
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9308 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9308 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1964     0.9076 0.056 0.944 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9308 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1860     0.9682 0.948 0.052 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.3752     0.8538 0.144 0.856 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1860     0.9682 0.948 0.052 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.0000     0.9338 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.5058     0.6880 0.244 0.000 0.756
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.1860     0.9682 0.948 0.052 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.0000     0.9338 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.0000     0.9338 0.000 0.000 1.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1860     0.9682 0.948 0.052 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4235     0.8212 0.176 0.824 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0892     0.9207 0.020 0.980 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.1860     0.9682 0.948 0.052 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1860     0.9682 0.948 0.052 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.5706     0.5530 0.320 0.000 0.680
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9308 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0892     0.9241 0.020 0.980 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0000     0.9338 0.000 0.000 1.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1860     0.9682 0.948 0.052 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9308 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.2063     0.9183 0.948 0.008 0.044
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.2066     0.9051 0.060 0.000 0.940
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.1860     0.9682 0.948 0.052 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.5733     0.5504 0.324 0.000 0.676
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1860     0.9682 0.948 0.052 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9308 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.3412     0.8674 0.124 0.876 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000     0.9338 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1860     0.9682 0.948 0.052 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1860     0.9682 0.948 0.052 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9308 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.0000     0.9338 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5529     0.6419 0.296 0.704 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1860     0.9682 0.948 0.052 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1860     0.9682 0.948 0.052 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.3752     0.8205 0.144 0.000 0.856
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.9338 0.000 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9308 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1860     0.9682 0.948 0.052 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.4121     0.7962 0.168 0.000 0.832
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.0000     0.9338 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.1860     0.9682 0.948 0.052 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.5650     0.6222 0.312 0.000 0.688
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1860     0.9682 0.948 0.052 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4796     0.7763 0.780 0.220 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.0747     0.9270 0.016 0.000 0.984
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.3879     0.8461 0.152 0.848 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000     0.9338 0.000 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.9884     0.0178 0.364 0.260 0.376

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.0000      0.938 0.000 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.0895      0.926 0.000 0.020 0.004 0.976
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4897      0.616 0.332 0.660 0.000 0.008
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000      0.995 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0188      0.998 0.004 0.000 0.996 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.938 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.3610      0.794 0.200 0.800 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3610      0.794 0.200 0.800 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0817      0.929 0.024 0.000 0.000 0.976
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0188      0.998 0.004 0.000 0.996 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.4992      0.172 0.476 0.000 0.000 0.524
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0817      0.929 0.024 0.000 0.000 0.976
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0188      0.998 0.004 0.000 0.996 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.5028      0.299 0.596 0.004 0.000 0.400
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4985      0.198 0.468 0.000 0.000 0.532
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0188      0.998 0.004 0.000 0.996 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2921      0.820 0.140 0.000 0.000 0.860
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0188      0.900 0.004 0.996 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.4331      0.629 0.288 0.000 0.000 0.712
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0000      0.995 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.1557      0.905 0.944 0.056 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.5212      0.745 0.192 0.740 0.000 0.068
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     4  0.2530      0.845 0.000 0.100 0.004 0.896
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3610      0.794 0.200 0.800 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.1082      0.924 0.004 0.020 0.004 0.972
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0817      0.929 0.024 0.000 0.000 0.976
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0707      0.931 0.020 0.000 0.000 0.980
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0000      0.938 0.000 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2011      0.867 0.080 0.920 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.3528      0.801 0.192 0.808 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.3311      0.779 0.172 0.000 0.000 0.828
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3975      0.754 0.240 0.760 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1022      0.883 0.032 0.968 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.3801      0.722 0.220 0.000 0.000 0.780
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0707      0.895 0.020 0.980 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.1004      0.928 0.024 0.000 0.004 0.972
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1118      0.929 0.964 0.000 0.000 0.036
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0188      0.998 0.004 0.000 0.996 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3873      0.715 0.228 0.000 0.000 0.772
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.3219      0.819 0.164 0.836 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4585      0.623 0.332 0.668 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0817      0.943 0.976 0.000 0.000 0.024
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.2011      0.883 0.080 0.000 0.000 0.920
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.901 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1940      0.888 0.076 0.000 0.000 0.924
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188      0.939 0.004 0.000 0.000 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0188      0.998 0.004 0.000 0.996 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.969 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3764      0.694 0.784 0.216 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0707      0.931 0.020 0.000 0.000 0.980
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.3610      0.794 0.200 0.800 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0188      0.939 0.000 0.000 0.004 0.996
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0188      0.994 0.000 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4 p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.0290     0.8690 0.000 0.000 0.008 0.992  0
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 806616FE-1855-4284-9265-42842104CB21     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3109     0.6365 0.200 0.800 0.000 0.000  0
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     1  0.4297     0.0582 0.528 0.472 0.000 0.000  0
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     3  0.5941     0.7059 0.180 0.228 0.592 0.000  0
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     3  0.6080     0.6778 0.200 0.228 0.572 0.000  0
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0510     0.8638 0.016 0.000 0.000 0.984  0
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.3612     0.5963 0.268 0.000 0.000 0.732  0
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0510     0.8638 0.016 0.000 0.000 0.984  0
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.2891     0.6906 0.824 0.000 0.000 0.176  0
#> F798E986-79BB-48FD-8514-95571EDB594B     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.3305     0.8461 0.000 0.000 0.224 0.776  0
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.3480     0.6268 0.248 0.000 0.000 0.752  0
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2377     0.8104 0.128 0.000 0.000 0.872  0
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.2690     0.7519 0.156 0.000 0.000 0.844  0
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2329     0.8633 0.000 0.000 0.124 0.876  0
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3266     0.6341 0.200 0.796 0.000 0.004  0
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3274     0.8469 0.000 0.000 0.220 0.780  0
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.3305     0.8461 0.000 0.000 0.224 0.776  0
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> 84E18629-1B13-4696-8E54-121ABE469CD2     4  0.4302     0.8223 0.000 0.048 0.208 0.744  0
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     1  0.4297     0.0582 0.528 0.472 0.000 0.000  0
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.3491     0.8430 0.004 0.000 0.228 0.768  0
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3274     0.8469 0.000 0.000 0.220 0.780  0
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0510     0.8638 0.016 0.000 0.000 0.984  0
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0404     0.8653 0.012 0.000 0.000 0.988  0
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3177     0.6254 0.208 0.792 0.000 0.000  0
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.3961     0.5393 0.248 0.736 0.016 0.000  0
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.2179     0.7920 0.112 0.000 0.000 0.888  0
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 969A8063-FE1C-426C-821D-BDC714F1E385     1  0.5770     0.1571 0.532 0.372 0.096 0.000  0
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0609     0.8416 0.020 0.980 0.000 0.000  0
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.1851     0.8175 0.088 0.000 0.000 0.912  0
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.3274     0.8469 0.000 0.000 0.220 0.780  0
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3336     0.6536 0.772 0.000 0.000 0.228  0
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3661     0.6811 0.276 0.000 0.000 0.724  0
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8626 0.000 1.000 0.000 0.000  0
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.4294     0.0720 0.532 0.468 0.000 0.000  0
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3039     0.7010 0.808 0.000 0.000 0.192  0
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.1341     0.8422 0.056 0.000 0.000 0.944  0
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.3336     0.8451 0.000 0.000 0.228 0.772  0
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     3  0.3336     0.8919 0.000 0.228 0.772 0.000  0
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1270     0.8455 0.052 0.000 0.000 0.948  0
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.8689 0.000 0.000 0.000 1.000  0
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9112 1.000 0.000 0.000 0.000  0
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.3983     0.4034 0.340 0.660 0.000 0.000  0
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0290     0.8667 0.008 0.000 0.000 0.992  0
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     3  0.6236     0.6434 0.208 0.248 0.544 0.000  0
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.2561     0.8607 0.000 0.000 0.144 0.856  0
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4 p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0363      0.906 0.988 0.000 0.012 0.000  0 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.3659      0.372 0.000 0.000 0.364 0.636  0 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0363      0.882 0.000 0.000 0.988 0.012  0 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0363      0.882 0.000 0.000 0.988 0.012  0 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0790      0.884 0.000 0.000 0.968 0.032  0 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3171      0.702 0.204 0.784 0.012 0.000  0 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     1  0.4165      0.125 0.536 0.452 0.012 0.000  0 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0363      0.882 0.000 0.000 0.988 0.012  0 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     6  0.2631      0.754 0.180 0.000 0.000 0.000  0 0.820
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     6  0.3043      0.730 0.200 0.000 0.008 0.000  0 0.792
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0146      0.918 0.004 0.000 0.000 0.996  0 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.919 0.000 0.000 0.000 1.000  0 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0363      0.913 0.012 0.000 0.000 0.988  0 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0146      0.918 0.004 0.000 0.000 0.996  0 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.0146      0.911 0.996 0.000 0.004 0.000  0 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.3659      0.469 0.000 0.000 0.636 0.364  0 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0363      0.913 0.012 0.000 0.000 0.988  0 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2191      0.806 0.120 0.000 0.004 0.876  0 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0713      0.884 0.000 0.000 0.972 0.028  0 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0777      0.903 0.024 0.000 0.004 0.972  0 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2416      0.768 0.000 0.000 0.156 0.844  0 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0363      0.882 0.000 0.000 0.988 0.012  0 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.0146      0.911 0.996 0.000 0.004 0.000  0 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3354      0.731 0.168 0.796 0.036 0.000  0 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3817      0.132 0.000 0.000 0.432 0.568  0 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.2697      0.783 0.000 0.000 0.812 0.188  0 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0363      0.882 0.000 0.000 0.988 0.012  0 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.1075      0.878 0.000 0.000 0.952 0.048  0 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0363      0.882 0.000 0.000 0.988 0.012  0 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0865      0.883 0.000 0.000 0.964 0.036  0 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     1  0.4165      0.125 0.536 0.452 0.012 0.000  0 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2219      0.818 0.000 0.000 0.864 0.136  0 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0790      0.884 0.000 0.000 0.968 0.032  0 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.3774      0.375 0.000 0.000 0.592 0.408  0 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0146      0.918 0.004 0.000 0.000 0.996  0 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.919 0.000 0.000 0.000 1.000  0 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0547      0.910 0.000 0.000 0.020 0.980  0 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2994      0.702 0.208 0.788 0.004 0.000  0 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.5036      0.539 0.228 0.632 0.000 0.000  0 0.140
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000      0.919 0.000 0.000 0.000 1.000  0 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0146      0.911 0.996 0.000 0.004 0.000  0 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     1  0.5821      0.306 0.544 0.268 0.012 0.000  0 0.176
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0146      0.911 0.996 0.000 0.004 0.000  0 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0363      0.913 0.012 0.000 0.000 0.988  0 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.3944      0.120 0.004 0.000 0.428 0.568  0 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3774      0.341 0.592 0.000 0.000 0.408  0 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0146      0.911 0.996 0.000 0.004 0.000  0 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3360      0.603 0.264 0.000 0.004 0.732  0 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2941      0.745 0.000 0.000 0.780 0.220  0 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.889 0.000 1.000 0.000 0.000  0 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.3971      0.153 0.548 0.448 0.004 0.000  0 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3151      0.613 0.748 0.000 0.000 0.252  0 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0260      0.916 0.008 0.000 0.000 0.992  0 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0790      0.884 0.000 0.000 0.968 0.032  0 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     6  0.0000      0.903 0.000 0.000 0.000 0.000  0 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0146      0.918 0.004 0.000 0.000 0.996  0 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0146      0.911 0.996 0.000 0.004 0.000  0 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.913 1.000 0.000 0.000 0.000  0 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.3810      0.247 0.428 0.572 0.000 0.000  0 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0146      0.920 0.000 0.000 0.004 0.996  0 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     6  0.3623      0.707 0.208 0.020 0.008 0.000  0 0.764
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.2491      0.751 0.000 0.000 0.164 0.836  0 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000      1.000 0.000 0.000 0.000 0.000  1 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.505           0.796       0.898         0.4916 0.512   0.512
#> 3 3 0.661           0.769       0.804         0.2372 0.908   0.823
#> 4 4 0.746           0.820       0.887         0.1261 0.870   0.703
#> 5 5 0.831           0.842       0.915         0.1347 0.843   0.540
#> 6 6 0.885           0.850       0.922         0.0419 0.976   0.887

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.7950      0.752 0.240 0.760
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000      0.812 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.972 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.7950      0.752 0.240 0.760
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000      0.972 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.812 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.0000      0.972 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.7950      0.752 0.240 0.760
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.7950      0.752 0.240 0.760
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.972 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.812 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.812 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.7950      0.752 0.240 0.760
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.812 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.9881      0.230 0.436 0.564
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.0000      0.972 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.9881      0.230 0.436 0.564
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.972 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.812 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.812 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0672      0.971 0.992 0.008
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.812 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.9881      0.230 0.436 0.564
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0672      0.971 0.992 0.008
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.812 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0672      0.971 0.992 0.008
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0672      0.971 0.992 0.008
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0672      0.971 0.992 0.008
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.9881      0.230 0.436 0.564
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0672      0.810 0.008 0.992
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.812 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.7950      0.752 0.240 0.760
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0672      0.971 0.992 0.008
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.972 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0672      0.971 0.992 0.008
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.9881      0.230 0.436 0.564
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0672      0.971 0.992 0.008
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0938      0.960 0.988 0.012
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.812 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.7950      0.752 0.240 0.760
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.812 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0672      0.971 0.992 0.008
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.9922      0.142 0.552 0.448
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.972 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.0000      0.972 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.9881      0.230 0.436 0.564
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.6801      0.773 0.180 0.820
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.9896      0.274 0.440 0.560
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.7950      0.752 0.240 0.760
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.972 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.812 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.972 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.972 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.7950      0.752 0.240 0.760
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.972 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.7950      0.752 0.240 0.760
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.812 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0672      0.971 0.992 0.008
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0672      0.971 0.992 0.008
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.0000      0.972 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.972 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.812 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.812 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.972 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.0000      0.972 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.972 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0672      0.971 0.992 0.008
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0672      0.971 0.992 0.008
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.972 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.9944     -0.138 0.544 0.456
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.812 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.812 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.812 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.812 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.7950      0.752 0.240 0.760
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.9129      0.462 0.328 0.672
#> A314C4E6-B245-4F10-A555-50B9B819040D     2  0.7950      0.752 0.240 0.760
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0672      0.971 0.992 0.008
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0672      0.971 0.992 0.008
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.7950      0.752 0.240 0.760
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0672      0.971 0.992 0.008
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0672      0.971 0.992 0.008
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.7950      0.752 0.240 0.760
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.812 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.812 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.5519      0.788 0.128 0.872
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.7950      0.752 0.240 0.760
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0672      0.971 0.992 0.008
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.812 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.812 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.972 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     2  0.7950      0.752 0.240 0.760
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.812 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     2  0.9522      0.561 0.372 0.628
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2  0.9881      0.230 0.436 0.564
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.7299      0.765 0.204 0.796
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.972 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.7950      0.752 0.240 0.760
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.812 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.812 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.972 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.7950      0.752 0.240 0.760
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.7950      0.752 0.240 0.760
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.812 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0672      0.971 0.992 0.008
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.812 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     2  0.7950      0.752 0.240 0.760
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.7950      0.752 0.240 0.760
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0672      0.971 0.992 0.008
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.0000      0.972 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.812 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.7950      0.752 0.240 0.760
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0672      0.971 0.992 0.008
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0672      0.971 0.992 0.008
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.2603      0.806 0.044 0.956
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     2  0.9881      0.230 0.436 0.564
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.7950      0.752 0.240 0.760
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.7950      0.752 0.240 0.760
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0672      0.971 0.992 0.008
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.812 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.972 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.9881      0.230 0.436 0.564

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.6192     0.6797 0.000 0.580 0.420
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.1411     0.8176 0.000 0.964 0.036
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000     0.7896 1.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.6192     0.6797 0.000 0.580 0.420
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000     0.7896 1.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.8196 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.0237     0.7861 0.996 0.000 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.6192     0.6797 0.000 0.580 0.420
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.2066     0.8127 0.000 0.940 0.060
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000     0.7896 1.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.8196 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.8196 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.6192     0.6797 0.000 0.580 0.420
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.1964     0.7946 0.000 0.944 0.056
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.7309     1.0000 0.416 0.032 0.552
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.0237     0.7861 0.996 0.000 0.004
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.7309     1.0000 0.416 0.032 0.552
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.7896 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1163     0.8119 0.000 0.972 0.028
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1031     0.8133 0.000 0.976 0.024
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.4654     0.7813 0.792 0.000 0.208
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1163     0.8119 0.000 0.972 0.028
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.7309     1.0000 0.416 0.032 0.552
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4654     0.7813 0.792 0.000 0.208
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.8196 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.4654     0.7813 0.792 0.000 0.208
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.4654     0.7813 0.792 0.000 0.208
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.4654     0.7813 0.792 0.000 0.208
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.7309     1.0000 0.416 0.032 0.552
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1753     0.8118 0.000 0.952 0.048
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1163     0.8119 0.000 0.972 0.028
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.6192     0.6797 0.000 0.580 0.420
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4654     0.7813 0.792 0.000 0.208
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000     0.7896 1.000 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.4654     0.7813 0.792 0.000 0.208
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.7309     1.0000 0.416 0.032 0.552
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.1753     0.7945 0.952 0.000 0.048
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.2165     0.7019 0.936 0.000 0.064
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1163     0.8119 0.000 0.972 0.028
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.6192     0.6797 0.000 0.580 0.420
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.8196 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.4654     0.7813 0.792 0.000 0.208
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.8665    -0.7326 0.508 0.108 0.384
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000     0.7896 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.1163     0.7663 0.972 0.000 0.028
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.7309     1.0000 0.416 0.032 0.552
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0424     0.8199 0.000 0.992 0.008
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.9251     0.0785 0.260 0.528 0.212
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.6192     0.6797 0.000 0.580 0.420
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000     0.7896 1.000 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0237     0.8198 0.000 0.996 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000     0.7896 1.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000     0.7896 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.6192     0.6797 0.000 0.580 0.420
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000     0.7896 1.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.6192     0.6797 0.000 0.580 0.420
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.8196 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4654     0.7813 0.792 0.000 0.208
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.4654     0.7813 0.792 0.000 0.208
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.1964     0.7327 0.944 0.000 0.056
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000     0.7896 1.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1163     0.8119 0.000 0.972 0.028
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.8196 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000     0.7896 1.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.0237     0.7872 0.996 0.000 0.004
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000     0.7896 1.000 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.1753     0.7976 0.952 0.000 0.048
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.4654     0.7813 0.792 0.000 0.208
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.2448     0.7978 0.924 0.000 0.076
#> 352471DC-A881-4EA8-B646-EB1200291893     2  0.8202     0.6066 0.080 0.544 0.376
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.8196 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.8196 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0592     0.8200 0.000 0.988 0.012
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8196 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.5465     0.7415 0.000 0.712 0.288
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.8282     0.3533 0.160 0.632 0.208
#> A314C4E6-B245-4F10-A555-50B9B819040D     2  0.6192     0.6797 0.000 0.580 0.420
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.2261     0.7983 0.932 0.000 0.068
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.4654     0.7813 0.792 0.000 0.208
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.2711     0.8071 0.000 0.912 0.088
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.4654     0.7813 0.792 0.000 0.208
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.4654     0.7813 0.792 0.000 0.208
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.6192     0.6797 0.000 0.580 0.420
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1163     0.8119 0.000 0.972 0.028
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000     0.8196 0.000 1.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.1163     0.8184 0.000 0.972 0.028
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.6192     0.6797 0.000 0.580 0.420
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.4654     0.7813 0.792 0.000 0.208
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.8196 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0424     0.8199 0.000 0.992 0.008
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000     0.7896 1.000 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     2  0.6215     0.6731 0.000 0.572 0.428
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1163     0.8119 0.000 0.972 0.028
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     2  0.6881     0.6764 0.020 0.592 0.388
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.7309     1.0000 0.416 0.032 0.552
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.2796     0.8061 0.000 0.908 0.092
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.4654     0.7813 0.792 0.000 0.208
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.6192     0.6797 0.000 0.580 0.420
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1163     0.8119 0.000 0.972 0.028
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1163     0.8119 0.000 0.972 0.028
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000     0.7896 1.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.3816     0.7912 0.000 0.852 0.148
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.6192     0.6797 0.000 0.580 0.420
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8196 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4654     0.7813 0.792 0.000 0.208
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.1411     0.8077 0.000 0.964 0.036
#> F900E9BE-2400-4451-9434-EE8BC513BA94     2  0.6215     0.6731 0.000 0.572 0.428
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.5948     0.7072 0.000 0.640 0.360
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.4654     0.7813 0.792 0.000 0.208
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.1031     0.7704 0.976 0.000 0.024
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1163     0.8119 0.000 0.972 0.028
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.6192     0.6797 0.000 0.580 0.420
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.4702     0.7761 0.788 0.000 0.212
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.4654     0.7813 0.792 0.000 0.208
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.1411     0.8177 0.000 0.964 0.036
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.7309     1.0000 0.416 0.032 0.552
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.5706     0.7251 0.000 0.680 0.320
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.4974     0.7604 0.000 0.764 0.236
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.3879     0.7888 0.848 0.000 0.152
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1163     0.8119 0.000 0.972 0.028
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000     0.7896 1.000 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.7309     1.0000 0.416 0.032 0.552

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4175    0.70787 0.200 0.784 0.016 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.0188    0.94481 0.000 0.000 0.004 0.996
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.2216    0.92199 0.000 0.000 0.092 0.908
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.5121    0.80345 0.120 0.000 0.116 0.764
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.4608    0.55924 0.304 0.692 0.004 0.000
#> 806616FE-1855-4284-9265-42842104CB21     4  0.2334    0.92278 0.004 0.000 0.088 0.908
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1940    0.81279 0.076 0.924 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3266    0.90794 0.832 0.168 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2987    0.76310 0.104 0.880 0.016 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.2408    0.91526 0.000 0.000 0.104 0.896
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.1637    0.93396 0.000 0.000 0.060 0.940
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000    0.80227 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0469    0.80647 0.012 0.988 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000    0.80227 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0817    0.94926 0.000 0.024 0.976 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1940    0.81268 0.076 0.924 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.3853    0.70444 0.160 0.820 0.020 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.2345    0.72509 0.100 0.900 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.3266    0.90794 0.832 0.168 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0000    0.94447 0.000 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.2149    0.92354 0.000 0.000 0.088 0.912
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.5181    0.82012 0.060 0.080 0.060 0.800
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.3962    0.87306 0.044 0.000 0.124 0.832
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000    0.80227 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.5533    0.75455 0.032 0.064 0.764 0.140
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2149    0.92354 0.000 0.000 0.088 0.912
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.2799    0.90930 0.008 0.000 0.108 0.884
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.4722    0.56964 0.300 0.692 0.008 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6570    0.54512 0.248 0.656 0.036 0.060
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.3356    0.89794 0.824 0.176 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0188    0.94481 0.000 0.000 0.004 0.996
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2081    0.81058 0.084 0.916 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0188    0.94481 0.000 0.000 0.004 0.996
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.2675    0.91470 0.008 0.000 0.100 0.892
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3219    0.90942 0.836 0.164 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.2412    0.92361 0.008 0.000 0.084 0.908
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000    0.94447 0.000 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     4  0.6383    0.72980 0.136 0.032 0.124 0.708
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.2081    0.92507 0.000 0.000 0.084 0.916
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0524    0.80396 0.008 0.988 0.004 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.2216    0.80635 0.092 0.908 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.0188    0.94481 0.000 0.000 0.004 0.996
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.4211    0.87236 0.016 0.032 0.120 0.832
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1118    0.94001 0.000 0.000 0.036 0.964
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.2685    0.91707 0.004 0.044 0.040 0.912
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0188    0.94481 0.000 0.000 0.004 0.996
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5798    0.46635 0.584 0.384 0.004 0.028
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2345    0.80181 0.100 0.900 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.2011    0.81202 0.080 0.920 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3837    0.84364 0.776 0.224 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.5984    0.58054 0.248 0.684 0.020 0.048
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.3266    0.90794 0.832 0.168 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000    0.94447 0.000 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4961    0.12226 0.448 0.552 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0000    0.94447 0.000 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0469    0.80584 0.012 0.988 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2530    0.79414 0.112 0.888 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4584    0.55764 0.300 0.696 0.004 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1867    0.81291 0.072 0.928 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1022    0.81115 0.032 0.968 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.2345    0.91761 0.000 0.000 0.100 0.900
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4164    0.78533 0.736 0.264 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.2345    0.72511 0.100 0.900 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     2  0.5229    0.17665 0.428 0.564 0.000 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4989    0.00868 0.472 0.528 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0657    0.94439 0.012 0.000 0.004 0.984
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.2345    0.72509 0.100 0.900 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1118    0.77999 0.036 0.964 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.2408    0.91526 0.000 0.000 0.104 0.896
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4996    0.14589 0.516 0.484 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0188    0.80415 0.004 0.996 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2861    0.76545 0.096 0.888 0.016 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.5161   -0.04010 0.476 0.520 0.000 0.004
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0336    0.94405 0.008 0.000 0.000 0.992
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.2737    0.91184 0.008 0.000 0.104 0.888
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0188    0.80067 0.004 0.996 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.3123    0.91280 0.844 0.156 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.2780    0.91646 0.016 0.048 0.024 0.912
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188    0.94443 0.004 0.000 0.000 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4431    0.55345 0.304 0.696 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000    0.97145 0.000 0.000 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.4866    0.28787 0.404 0.596 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4972    0.28944 0.544 0.456 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.2494    0.91666 0.000 0.048 0.036 0.916
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0707    0.79937 0.020 0.980 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0188    0.94481 0.000 0.000 0.004 0.996
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0000    0.97145 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.5865      0.533 0.568 0.344 0.016 0.000 0.072
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.2648      0.852 0.000 0.000 0.848 0.152 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0963      0.963 0.000 0.000 0.964 0.036 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0794      0.958 0.000 0.000 0.972 0.028 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.5072      0.643 0.652 0.300 0.016 0.000 0.032
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0963      0.963 0.000 0.000 0.964 0.036 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0579      0.927 0.008 0.984 0.008 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.5875      0.464 0.228 0.636 0.016 0.000 0.120
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1043      0.961 0.000 0.000 0.960 0.040 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.4300      0.138 0.000 0.000 0.476 0.524 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0162      0.928 0.004 0.996 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0451      0.928 0.008 0.988 0.004 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.1732      0.872 0.000 0.000 0.080 0.920 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.2338      0.838 0.000 0.112 0.004 0.000 0.884
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.6386      0.471 0.520 0.344 0.016 0.000 0.120
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0290      0.924 0.000 0.992 0.008 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0290      0.907 0.000 0.000 0.008 0.992 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.1341      0.953 0.000 0.000 0.944 0.056 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.5144      0.545 0.000 0.000 0.304 0.632 0.064
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1357      0.951 0.000 0.004 0.948 0.048 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.6339      0.587 0.008 0.188 0.016 0.172 0.616
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.1043      0.963 0.000 0.000 0.960 0.040 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0963      0.963 0.000 0.000 0.964 0.036 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.5360      0.451 0.552 0.396 0.004 0.000 0.048
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.8302      0.153 0.192 0.400 0.276 0.008 0.124
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.1043      0.963 0.000 0.000 0.960 0.040 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.1341      0.955 0.000 0.000 0.944 0.056 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0963      0.963 0.000 0.000 0.964 0.036 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0963      0.963 0.000 0.000 0.964 0.036 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0794      0.958 0.000 0.000 0.972 0.028 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1043      0.963 0.000 0.000 0.960 0.040 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1644      0.886 0.048 0.940 0.004 0.000 0.008
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1043      0.963 0.000 0.000 0.960 0.040 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0880      0.961 0.000 0.000 0.968 0.032 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.1043      0.963 0.000 0.000 0.960 0.040 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.2773      0.808 0.000 0.000 0.164 0.836 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4101      0.407 0.000 0.000 0.628 0.372 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5858      0.692 0.668 0.220 0.016 0.076 0.020
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0451      0.929 0.008 0.988 0.004 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.7785      0.332 0.192 0.500 0.180 0.004 0.124
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0703      0.903 0.000 0.000 0.024 0.976 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0510      0.905 0.000 0.000 0.016 0.984 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.1732      0.822 0.920 0.080 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0865      0.917 0.024 0.972 0.004 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1282      0.900 0.044 0.952 0.004 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.4333      0.587 0.640 0.352 0.004 0.000 0.004
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.1410      0.887 0.000 0.000 0.060 0.940 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0162      0.928 0.004 0.996 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0162      0.928 0.004 0.996 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2280      0.883 0.000 0.000 0.880 0.120 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.2753      0.807 0.876 0.104 0.012 0.008 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0162      0.926 0.000 0.996 0.004 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5135      0.723 0.704 0.228 0.016 0.044 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.2230      0.811 0.884 0.116 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.4171      0.400 0.000 0.000 0.396 0.604 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0290      0.924 0.000 0.992 0.008 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.1043      0.963 0.000 0.000 0.960 0.040 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2377      0.805 0.872 0.128 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0324      0.928 0.004 0.992 0.004 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0794      0.902 0.000 0.000 0.028 0.972 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5833      0.469 0.228 0.640 0.016 0.000 0.116
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3962      0.772 0.788 0.180 0.016 0.012 0.004
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0963      0.963 0.000 0.000 0.964 0.036 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.838 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1965      0.863 0.000 0.000 0.096 0.904 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.1341      0.889 0.000 0.000 0.056 0.944 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4182      0.590 0.644 0.352 0.004 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4194      0.710 0.720 0.260 0.016 0.000 0.004
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3398      0.758 0.780 0.216 0.004 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.2690      0.816 0.000 0.000 0.156 0.844 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0798      0.920 0.016 0.976 0.008 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.1671      0.938 0.000 0.000 0.924 0.076 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     6  0.4317      0.556 0.252 0.060 0.000 0.000 0.000 0.688
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.1007      0.937 0.000 0.000 0.956 0.044 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0632      0.851 0.976 0.000 0.000 0.000 0.000 0.024
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0146      0.961 0.000 0.000 0.996 0.004 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0146      0.961 0.000 0.000 0.996 0.004 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.857 1.000 0.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.4251      0.512 0.624 0.028 0.000 0.000 0.000 0.348
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0458      0.951 0.000 0.984 0.000 0.000 0.000 0.016
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     6  0.2358      0.788 0.016 0.108 0.000 0.000 0.000 0.876
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0146      0.918 0.000 0.000 0.000 0.000 0.996 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0146      0.961 0.000 0.000 0.996 0.004 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.3789      0.335 0.000 0.000 0.416 0.584 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1007      0.947 0.000 0.956 0.000 0.000 0.000 0.044
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0937      0.947 0.000 0.960 0.000 0.000 0.000 0.040
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.1327      0.870 0.000 0.000 0.064 0.936 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1524      0.948 0.000 0.932 0.000 0.008 0.000 0.060
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.2805      0.749 0.000 0.012 0.000 0.000 0.828 0.160
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1462      0.949 0.000 0.936 0.000 0.008 0.000 0.056
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.1333      0.885 0.000 0.000 0.008 0.944 0.000 0.048
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     6  0.2934      0.768 0.112 0.044 0.000 0.000 0.000 0.844
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1584      0.947 0.000 0.928 0.000 0.008 0.000 0.064
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0363      0.904 0.000 0.000 0.012 0.988 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0713      0.951 0.000 0.000 0.972 0.028 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.1196      0.889 0.000 0.000 0.008 0.952 0.000 0.040
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.4845      0.544 0.000 0.000 0.092 0.628 0.000 0.280
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0937      0.935 0.000 0.000 0.960 0.040 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1524      0.948 0.000 0.932 0.000 0.008 0.000 0.060
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.6448      0.193 0.020 0.020 0.004 0.136 0.512 0.308
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0458      0.960 0.000 0.000 0.984 0.016 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0146      0.918 0.000 0.000 0.000 0.000 0.996 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4751      0.501 0.616 0.072 0.000 0.000 0.000 0.312
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.2039      0.752 0.004 0.016 0.072 0.000 0.000 0.908
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.857 1.000 0.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0363      0.961 0.000 0.000 0.988 0.012 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0458      0.960 0.000 0.000 0.984 0.016 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0260      0.856 0.992 0.000 0.000 0.000 0.000 0.008
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0260      0.962 0.000 0.000 0.992 0.008 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3003      0.788 0.016 0.812 0.000 0.000 0.000 0.172
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0363      0.961 0.000 0.000 0.988 0.012 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0363      0.961 0.000 0.000 0.988 0.012 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.3841      0.742 0.000 0.000 0.068 0.764 0.000 0.168
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.3428      0.535 0.000 0.000 0.696 0.304 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4418      0.488 0.604 0.012 0.000 0.016 0.000 0.368
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0891      0.935 0.024 0.968 0.000 0.000 0.000 0.008
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.950 0.000 1.000 0.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     6  0.2078      0.776 0.004 0.040 0.044 0.000 0.000 0.912
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2092      0.788 0.876 0.000 0.000 0.000 0.000 0.124
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0458      0.903 0.000 0.000 0.016 0.984 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000      0.857 1.000 0.000 0.000 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.2510      0.859 0.028 0.872 0.000 0.000 0.000 0.100
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0790      0.928 0.032 0.968 0.000 0.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.4220      0.621 0.732 0.172 0.000 0.000 0.000 0.096
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0260      0.856 0.992 0.000 0.000 0.000 0.000 0.008
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0508      0.904 0.000 0.000 0.012 0.984 0.000 0.004
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1462      0.949 0.000 0.936 0.000 0.008 0.000 0.056
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1333      0.950 0.000 0.944 0.000 0.008 0.000 0.048
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2416      0.794 0.000 0.000 0.844 0.156 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3136      0.708 0.768 0.000 0.000 0.004 0.000 0.228
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1524      0.948 0.000 0.932 0.000 0.008 0.000 0.060
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3911      0.525 0.624 0.000 0.000 0.008 0.000 0.368
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0692      0.849 0.976 0.020 0.000 0.000 0.000 0.004
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3907      0.364 0.000 0.000 0.408 0.588 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1584      0.947 0.000 0.928 0.000 0.008 0.000 0.064
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1866      0.936 0.000 0.908 0.000 0.008 0.000 0.084
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0363      0.961 0.000 0.000 0.988 0.012 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1082      0.836 0.956 0.040 0.000 0.000 0.000 0.004
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0146      0.857 0.996 0.000 0.000 0.000 0.000 0.004
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1524      0.948 0.000 0.932 0.000 0.008 0.000 0.060
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0260      0.905 0.000 0.000 0.008 0.992 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     6  0.3364      0.713 0.024 0.196 0.000 0.000 0.000 0.780
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.2454      0.765 0.840 0.000 0.000 0.000 0.000 0.160
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3850      0.571 0.652 0.004 0.000 0.004 0.000 0.340
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.1265      0.887 0.000 0.000 0.008 0.948 0.000 0.044
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1524      0.948 0.000 0.932 0.000 0.008 0.000 0.060
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.857 1.000 0.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.3645      0.762 0.000 0.000 0.064 0.784 0.000 0.152
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0363      0.904 0.000 0.000 0.012 0.988 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4061      0.641 0.748 0.164 0.000 0.000 0.000 0.088
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0146      0.918 0.000 0.000 0.000 0.000 0.996 0.004
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4251      0.648 0.716 0.076 0.000 0.000 0.000 0.208
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2805      0.715 0.828 0.160 0.000 0.000 0.000 0.012
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.3700      0.760 0.000 0.000 0.068 0.780 0.000 0.152
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.2092      0.869 0.000 0.876 0.000 0.000 0.000 0.124
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0790      0.949 0.000 0.000 0.968 0.032 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0146      0.918 0.000 0.000 0.000 0.000 0.996 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.753           0.882       0.948         0.5039 0.496   0.496
#> 3 3 0.637           0.701       0.842         0.2812 0.761   0.554
#> 4 4 0.726           0.775       0.857         0.1138 0.855   0.615
#> 5 5 0.735           0.678       0.817         0.0954 0.893   0.637
#> 6 6 0.860           0.771       0.890         0.0515 0.910   0.616

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.0000      0.939 0.000 1.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000      0.939 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.946 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.7950      0.714 0.240 0.760
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000      0.946 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.939 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.0000      0.946 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.7376      0.754 0.208 0.792
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.6623      0.795 0.172 0.828
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.946 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.939 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.939 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.0672      0.934 0.008 0.992
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.939 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.1414      0.931 0.980 0.020
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.0000      0.946 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.7376      0.745 0.792 0.208
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.946 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.939 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.939 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.946 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.939 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.7299      0.750 0.796 0.204
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.946 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.939 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.946 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.946 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.946 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.7528      0.735 0.784 0.216
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1184      0.927 0.016 0.984
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.939 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.3114      0.900 0.056 0.944
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.946 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.946 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.946 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.7745      0.719 0.772 0.228
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.946 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000      0.946 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.939 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.8144      0.697 0.252 0.748
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.939 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.946 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.946 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.946 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.0376      0.943 0.996 0.004
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.7219      0.755 0.800 0.200
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.939 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.9896      0.283 0.560 0.440
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.7376      0.754 0.208 0.792
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.946 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.939 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.946 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.946 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.0376      0.937 0.004 0.996
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.946 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.0000      0.939 0.000 1.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.939 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.946 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.946 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.6048      0.815 0.852 0.148
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.946 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.939 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.939 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.946 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.3733      0.889 0.928 0.072
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.946 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.946 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.946 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.946 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.9635      0.291 0.612 0.388
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.939 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.939 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.939 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.939 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.0000      0.939 0.000 1.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4562      0.853 0.096 0.904
#> A314C4E6-B245-4F10-A555-50B9B819040D     2  0.9710      0.415 0.400 0.600
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.946 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.946 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0000      0.939 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.946 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.946 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.0000      0.939 0.000 1.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.939 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.939 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.939 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.9000      0.594 0.316 0.684
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.946 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.939 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.939 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.946 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     2  0.9710      0.415 0.400 0.600
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.939 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.9129      0.457 0.672 0.328
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.5294      0.844 0.880 0.120
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0000      0.939 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.946 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.0000      0.939 0.000 1.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.939 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.939 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.946 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.0000      0.939 0.000 1.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.5737      0.831 0.136 0.864
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.939 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.946 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.939 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     2  0.8909      0.608 0.308 0.692
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.9795      0.373 0.416 0.584
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.946 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.0000      0.946 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.939 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.6343      0.807 0.160 0.840
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.946 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.946 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.939 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.946 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.0376      0.937 0.004 0.996
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.0000      0.939 0.000 1.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.946 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.939 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.946 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.9710      0.391 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.4121     0.7474 0.168 0.832 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5560     0.6227 0.000 0.700 0.300
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.6111     0.7674 0.396 0.000 0.604
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.6126     0.3422 0.600 0.400 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.6111     0.7674 0.396 0.000 0.604
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.9082 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.5397     0.7424 0.280 0.000 0.720
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.6168     0.3137 0.588 0.412 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.3412     0.8004 0.124 0.876 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.6111     0.7674 0.396 0.000 0.604
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9082 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9082 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.5465     0.5523 0.288 0.712 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.6168     0.4690 0.000 0.588 0.412
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000     0.6542 0.000 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.6111     0.7674 0.396 0.000 0.604
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000     0.6542 0.000 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.6111     0.7674 0.396 0.000 0.604
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9082 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9082 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.7077 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9082 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000     0.6542 0.000 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.7077 1.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.9082 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.7077 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.7077 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.7077 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000     0.6542 0.000 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.4504     0.4462 0.000 0.196 0.804
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.4654     0.7273 0.000 0.792 0.208
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.5968     0.3790 0.364 0.636 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.5621    -0.0313 0.692 0.000 0.308
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.6111     0.7674 0.396 0.000 0.604
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.7077 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000     0.6542 0.000 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.6111     0.7674 0.396 0.000 0.604
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.4702     0.7248 0.212 0.000 0.788
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9082 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.6126     0.3422 0.600 0.400 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9082 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.7077 1.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.4062     0.7047 0.164 0.000 0.836
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.6126     0.7635 0.400 0.000 0.600
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.6095     0.7672 0.392 0.000 0.608
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0000     0.6542 0.000 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000     0.9082 0.000 1.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.0000     0.6542 0.000 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.6295     0.1397 0.528 0.472 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.6126     0.7635 0.400 0.000 0.600
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.9082 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.6111     0.7674 0.396 0.000 0.604
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.6111     0.7674 0.396 0.000 0.604
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.4605     0.6972 0.204 0.796 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.6111     0.7674 0.396 0.000 0.604
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.5098     0.6267 0.248 0.752 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9082 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.7077 1.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000     0.7077 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4555     0.7210 0.200 0.000 0.800
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.6111     0.7674 0.396 0.000 0.604
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9082 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.9082 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.6111     0.7674 0.396 0.000 0.604
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.6079     0.7666 0.388 0.000 0.612
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.6111     0.7674 0.396 0.000 0.604
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.4235     0.4269 0.824 0.000 0.176
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.7077 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.6126     0.7635 0.400 0.000 0.600
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4702     0.6264 0.788 0.212 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9082 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9082 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.9082 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9082 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.0237     0.9058 0.004 0.996 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     3  0.5465     0.3024 0.000 0.288 0.712
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6111     0.3501 0.604 0.396 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.6291    -0.5379 0.532 0.000 0.468
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.7077 1.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0000     0.9082 0.000 1.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.5098     0.1912 0.752 0.000 0.248
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000     0.7077 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.1860     0.8709 0.052 0.948 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9082 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000     0.9082 0.000 1.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000     0.9082 0.000 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.6126     0.3422 0.600 0.400 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.7077 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9082 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.9082 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.6126     0.7635 0.400 0.000 0.600
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.6126     0.3422 0.600 0.400 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0592     0.9007 0.000 0.988 0.012
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4605     0.6295 0.796 0.204 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000     0.6542 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0000     0.9082 0.000 1.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.4002     0.4632 0.840 0.000 0.160
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.1031     0.8924 0.024 0.976 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.5363     0.6513 0.000 0.724 0.276
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2878     0.8351 0.000 0.904 0.096
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.6111     0.7674 0.396 0.000 0.604
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.0000     0.9082 0.000 1.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.6140     0.2658 0.404 0.596 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9082 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.7077 1.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4062     0.7721 0.000 0.836 0.164
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.6111     0.3501 0.604 0.396 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.6111     0.3501 0.604 0.396 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.7077 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.6111     0.7674 0.396 0.000 0.604
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9082 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.6026     0.3466 0.376 0.624 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.7077 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.7077 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000     0.9082 0.000 1.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000     0.6542 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.2165     0.8607 0.064 0.936 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.0000     0.9082 0.000 1.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.7077 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9082 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.6126     0.7635 0.400 0.000 0.600
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0000     0.6542 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.4535      0.757 0.292 0.704 0.004 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4343      0.568 0.004 0.732 0.264 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2593      0.661 0.904 0.080 0.016 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3311      0.849 0.172 0.828 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.3791      0.501 0.796 0.200 0.000 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.4137      0.682 0.208 0.780 0.012 0.000
#> 806616FE-1855-4284-9265-42842104CB21     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0804      0.834 0.008 0.980 0.012 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3266      0.850 0.168 0.832 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.5119      0.495 0.440 0.556 0.004 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.1004      0.903 0.000 0.024 0.972 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1557      0.928 0.000 0.000 0.944 0.056
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1474      0.929 0.000 0.000 0.948 0.052
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.1302      0.924 0.044 0.000 0.000 0.956
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1022      0.827 0.000 0.968 0.032 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0469      0.831 0.000 0.988 0.012 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.4008      0.671 0.756 0.000 0.000 0.244
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1022      0.827 0.000 0.968 0.032 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.1118      0.927 0.000 0.000 0.964 0.036
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4761      0.478 0.628 0.000 0.000 0.372
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4244      0.848 0.168 0.800 0.032 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.4072      0.664 0.748 0.000 0.000 0.252
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.3649      0.693 0.796 0.000 0.000 0.204
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.3975      0.673 0.760 0.000 0.000 0.240
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1557      0.928 0.000 0.000 0.944 0.056
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.1209      0.925 0.000 0.004 0.964 0.032
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1557      0.815 0.000 0.944 0.056 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.5147      0.452 0.460 0.536 0.004 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0469      0.945 0.012 0.000 0.000 0.988
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.3688      0.692 0.792 0.000 0.000 0.208
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1389      0.929 0.000 0.000 0.952 0.048
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.5056      0.669 0.044 0.000 0.732 0.224
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0921      0.829 0.000 0.972 0.028 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3105      0.593 0.856 0.140 0.004 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3266      0.850 0.168 0.832 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.4454      0.489 0.308 0.000 0.000 0.692
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.2408      0.901 0.036 0.000 0.920 0.044
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0707      0.939 0.020 0.000 0.000 0.980
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.1389      0.929 0.000 0.000 0.952 0.048
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0469      0.831 0.000 0.988 0.012 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.1284      0.917 0.000 0.012 0.964 0.024
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4483      0.318 0.712 0.284 0.000 0.004
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0000      0.951 0.000 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3266      0.850 0.168 0.832 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.5326      0.606 0.380 0.604 0.016 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.5511     -0.344 0.500 0.484 0.016 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4050      0.849 0.168 0.808 0.024 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.4679      0.375 0.352 0.000 0.000 0.648
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.2868      0.824 0.136 0.000 0.000 0.864
#> 84E18629-1B13-4696-8E54-121ABE469CD2     4  0.0707      0.942 0.000 0.000 0.020 0.980
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1022      0.827 0.000 0.968 0.032 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3266      0.850 0.168 0.832 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.5067      0.669 0.736 0.000 0.048 0.216
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.4072      0.664 0.748 0.000 0.000 0.252
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0188      0.949 0.004 0.000 0.000 0.996
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0592      0.684 0.984 0.000 0.016 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3266      0.850 0.168 0.832 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4050      0.849 0.168 0.808 0.024 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3311      0.849 0.172 0.828 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.3946      0.850 0.168 0.812 0.020 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.3764      0.831 0.216 0.784 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     3  0.1584      0.901 0.000 0.036 0.952 0.012
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1151      0.685 0.968 0.024 0.008 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.1389      0.918 0.048 0.000 0.000 0.952
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.4576      0.657 0.728 0.000 0.012 0.260
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4599      0.831 0.212 0.760 0.028 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0657      0.946 0.012 0.000 0.004 0.984
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.4040      0.668 0.752 0.000 0.000 0.248
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.4399      0.817 0.224 0.760 0.016 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0469      0.831 0.000 0.988 0.012 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3636      0.850 0.172 0.820 0.008 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.1109      0.829 0.004 0.968 0.028 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1824      0.676 0.936 0.060 0.004 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.4008      0.671 0.756 0.000 0.000 0.244
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2565      0.842 0.056 0.912 0.032 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0469      0.831 0.000 0.988 0.012 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.0921      0.934 0.028 0.000 0.000 0.972
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1975      0.680 0.936 0.048 0.016 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0921      0.829 0.000 0.972 0.028 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1610      0.681 0.952 0.032 0.016 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.1557      0.928 0.000 0.000 0.944 0.056
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4253      0.828 0.208 0.776 0.016 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.1389      0.916 0.048 0.000 0.000 0.952
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.4535      0.804 0.240 0.744 0.016 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1389      0.819 0.000 0.952 0.048 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1474      0.818 0.000 0.948 0.052 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.3764      0.835 0.216 0.784 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.5503     -0.290 0.516 0.468 0.016 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.4105      0.850 0.156 0.812 0.032 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4134      0.657 0.740 0.000 0.000 0.260
#> B3561356-5A80-4C79-B23A-D518425565FE     3  0.4920      0.301 0.004 0.368 0.628 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.2300      0.675 0.920 0.064 0.016 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.2335      0.675 0.920 0.060 0.020 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.3688      0.692 0.792 0.000 0.000 0.208
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.0188      0.952 0.000 0.000 0.004 0.996
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1022      0.827 0.000 0.968 0.032 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4999     -0.373 0.508 0.492 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.3400      0.699 0.820 0.000 0.000 0.180
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.3444      0.739 0.184 0.000 0.000 0.816
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4253      0.828 0.208 0.776 0.016 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.1637      0.925 0.000 0.000 0.940 0.060
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.4057      0.727 0.160 0.812 0.028 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.3649      0.837 0.204 0.796 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.3801      0.686 0.780 0.000 0.000 0.220
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1022      0.827 0.000 0.968 0.032 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0000      0.951 0.000 0.000 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1118      0.927 0.000 0.000 0.964 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.3918     0.6132 0.804 0.096 0.000 0.100 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5644     0.3797 0.440 0.484 0.000 0.076 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3612     0.4480 0.732 0.000 0.000 0.268 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     1  0.3969     0.5768 0.692 0.304 0.000 0.000 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.4201     0.0414 0.408 0.000 0.000 0.592 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.5778     0.4882 0.132 0.596 0.000 0.272 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3876     0.6308 0.316 0.684 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     1  0.3766     0.5881 0.728 0.268 0.000 0.000 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3355     0.5890 0.804 0.012 0.000 0.184 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.3949     0.5164 0.000 0.300 0.004 0.000 0.696
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.3039     0.7837 0.000 0.000 0.808 0.192 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0510     0.7450 0.016 0.984 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3452     0.6932 0.244 0.756 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0510     0.7540 0.016 0.984 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.3921     0.7286 0.072 0.000 0.128 0.800 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     1  0.4403     0.4860 0.560 0.436 0.000 0.000 0.004
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.1792     0.7806 0.000 0.000 0.084 0.916 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.0451     0.8633 0.000 0.008 0.004 0.000 0.988
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0510     0.7313 0.016 0.984 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.3452     0.5581 0.756 0.000 0.000 0.244 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.0162     0.9388 0.000 0.000 0.996 0.004 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     5  0.3798     0.6947 0.000 0.000 0.064 0.128 0.808
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1043     0.7578 0.040 0.960 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.4297    -0.0456 0.472 0.000 0.000 0.528 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     1  0.3928     0.5775 0.700 0.296 0.000 0.000 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.4777     0.5837 0.052 0.000 0.680 0.268 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.4449     0.6584 0.080 0.000 0.000 0.168 0.752
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0162     0.9388 0.000 0.000 0.996 0.004 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.3534     0.6864 0.256 0.744 0.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.4730     0.6202 0.052 0.260 0.000 0.000 0.688
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4297     0.1210 0.528 0.000 0.000 0.472 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0162     0.9388 0.000 0.000 0.996 0.004 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     1  0.2536     0.6208 0.868 0.128 0.000 0.000 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2761     0.5929 0.872 0.024 0.000 0.104 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2448     0.6006 0.892 0.020 0.000 0.088 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     1  0.4403     0.4860 0.560 0.436 0.000 0.000 0.004
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.5160     0.4235 0.056 0.000 0.608 0.336 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.3242     0.7526 0.000 0.000 0.784 0.216 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0955     0.9184 0.000 0.028 0.968 0.000 0.004
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0880     0.7579 0.032 0.968 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.3861     0.5818 0.712 0.284 0.000 0.000 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.3051     0.7422 0.000 0.000 0.076 0.864 0.060
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.1732     0.7828 0.000 0.000 0.080 0.920 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0162     0.9388 0.000 0.000 0.996 0.004 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.3003     0.6358 0.188 0.000 0.000 0.812 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     1  0.3196     0.6049 0.804 0.192 0.000 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     1  0.4397     0.4878 0.564 0.432 0.000 0.000 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     1  0.3814     0.6145 0.816 0.116 0.000 0.064 0.004
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     1  0.4397     0.4878 0.564 0.432 0.000 0.000 0.004
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3063     0.6298 0.864 0.096 0.000 0.036 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     5  0.4555     0.5258 0.020 0.344 0.000 0.000 0.636
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2966     0.5793 0.184 0.000 0.000 0.816 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.2230     0.8565 0.000 0.000 0.884 0.116 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.3303     0.7557 0.076 0.000 0.076 0.848 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5520    -0.1226 0.560 0.364 0.000 0.076 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.2344     0.8791 0.032 0.000 0.904 0.064 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1732     0.7828 0.000 0.000 0.080 0.920 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.3226     0.6218 0.852 0.088 0.000 0.060 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3636     0.6744 0.272 0.728 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.4390     0.4914 0.568 0.428 0.000 0.000 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4088     0.5728 0.368 0.632 0.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.4297    -0.0717 0.472 0.000 0.000 0.528 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.1732     0.7826 0.000 0.000 0.080 0.920 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     1  0.4403     0.4860 0.560 0.436 0.000 0.000 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3452     0.6932 0.244 0.756 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2377     0.8449 0.000 0.000 0.872 0.128 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.4528     0.2439 0.444 0.008 0.000 0.548 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1341     0.7557 0.056 0.944 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.4878     0.2407 0.440 0.024 0.000 0.536 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3980     0.5037 0.796 0.128 0.000 0.076 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.0290     0.9372 0.000 0.000 0.992 0.008 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3033     0.5839 0.864 0.052 0.000 0.084 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0162     0.7482 0.004 0.996 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0404     0.7356 0.012 0.988 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.5240     0.5917 0.664 0.252 0.000 0.080 0.004
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2813     0.5909 0.868 0.024 0.000 0.108 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     1  0.4403     0.4860 0.560 0.436 0.000 0.000 0.004
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.3242     0.7566 0.072 0.000 0.076 0.852 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.4150     0.4630 0.000 0.388 0.000 0.000 0.612
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4726     0.0644 0.580 0.020 0.000 0.400 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.5761     0.1146 0.464 0.064 0.000 0.464 0.008
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.9401 0.000 0.000 1.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0510     0.7540 0.016 0.984 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4510     0.2762 0.560 0.008 0.000 0.432 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.3177     0.7247 0.000 0.000 0.792 0.208 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.3051     0.5807 0.864 0.060 0.000 0.076 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.4262     0.5006 0.440 0.560 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4067     0.6120 0.748 0.228 0.000 0.020 0.004
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.1671     0.7839 0.000 0.000 0.076 0.924 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0162     0.7487 0.004 0.996 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0404     0.9353 0.000 0.000 0.988 0.012 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0162     0.8673 0.000 0.000 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.3552     0.7430 0.804 0.020 0.000 0.028 0.000 0.148
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.3941     0.6328 0.748 0.216 0.000 0.016 0.012 0.008
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1167     0.8258 0.960 0.008 0.000 0.012 0.000 0.020
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     6  0.1333     0.8764 0.048 0.008 0.000 0.000 0.000 0.944
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0146     0.8772 0.004 0.000 0.996 0.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.4109    -0.0690 0.412 0.000 0.000 0.576 0.000 0.012
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.1245     0.9409 0.016 0.952 0.000 0.032 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3081     0.7173 0.220 0.776 0.000 0.000 0.000 0.004
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     6  0.1970     0.8677 0.060 0.028 0.000 0.000 0.000 0.912
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     6  0.4367     0.3777 0.364 0.000 0.000 0.032 0.000 0.604
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.2351     0.8881 0.008 0.028 0.000 0.016 0.908 0.040
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.3797     0.1300 0.000 0.000 0.420 0.580 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0260     0.9622 0.000 0.992 0.000 0.000 0.000 0.008
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0260     0.9625 0.008 0.992 0.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0405     0.8561 0.004 0.000 0.008 0.988 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0146     0.9641 0.000 0.996 0.000 0.000 0.000 0.004
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.1036     0.9073 0.004 0.000 0.000 0.008 0.964 0.024
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.3915     0.7349 0.128 0.004 0.092 0.776 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     6  0.0909     0.8692 0.020 0.012 0.000 0.000 0.000 0.968
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0458     0.8594 0.000 0.000 0.016 0.984 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0458     0.8594 0.000 0.000 0.016 0.984 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0458     0.8594 0.000 0.000 0.016 0.984 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.1879     0.8993 0.016 0.008 0.000 0.016 0.932 0.028
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0547     0.9516 0.000 0.980 0.000 0.000 0.000 0.020
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.4617     0.5224 0.644 0.004 0.000 0.056 0.000 0.296
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.0717     0.8669 0.008 0.000 0.976 0.016 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0951     0.8637 0.004 0.000 0.968 0.008 0.000 0.020
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0458     0.8594 0.000 0.000 0.016 0.984 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     5  0.3536     0.6195 0.004 0.000 0.008 0.252 0.736 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0146     0.8772 0.004 0.000 0.996 0.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0146     0.9641 0.000 0.996 0.000 0.000 0.000 0.004
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3791     0.6954 0.732 0.000 0.000 0.236 0.000 0.032
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     6  0.1434     0.8762 0.048 0.012 0.000 0.000 0.000 0.940
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.5516     0.1751 0.116 0.004 0.492 0.388 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.5226     0.5587 0.172 0.004 0.000 0.196 0.628 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0260     0.9625 0.008 0.992 0.000 0.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.3697     0.5097 0.004 0.000 0.000 0.016 0.248 0.732
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     6  0.5408     0.2449 0.116 0.000 0.000 0.408 0.000 0.476
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     6  0.2445     0.8300 0.108 0.020 0.000 0.000 0.000 0.872
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1168     0.8237 0.956 0.016 0.000 0.000 0.000 0.028
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0909     0.8251 0.968 0.012 0.000 0.000 0.000 0.020
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     6  0.0972     0.8759 0.028 0.008 0.000 0.000 0.000 0.964
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.5578     0.0365 0.120 0.004 0.448 0.428 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.3868    -0.1330 0.000 0.000 0.496 0.504 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.2058     0.8245 0.004 0.000 0.916 0.016 0.008 0.056
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0146     0.9641 0.000 0.996 0.000 0.000 0.000 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     6  0.1500     0.8752 0.052 0.012 0.000 0.000 0.000 0.936
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0146     0.8772 0.004 0.000 0.996 0.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0146     0.8772 0.004 0.000 0.996 0.000 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0551     0.8499 0.008 0.004 0.000 0.984 0.000 0.004
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0363     0.8582 0.000 0.000 0.012 0.988 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2003     0.7743 0.884 0.000 0.000 0.116 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     6  0.2122     0.8567 0.076 0.024 0.000 0.000 0.000 0.900
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     6  0.0858     0.8748 0.028 0.004 0.000 0.000 0.000 0.968
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     1  0.3641     0.6294 0.732 0.020 0.000 0.000 0.000 0.248
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     6  0.1074     0.8750 0.028 0.012 0.000 0.000 0.000 0.960
#> D891BCA1-0323-4277-BAF7-6F505377EA45     6  0.4427     0.2569 0.412 0.016 0.000 0.008 0.000 0.564
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     5  0.4812     0.6185 0.008 0.080 0.000 0.000 0.660 0.252
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.3930     0.4069 0.576 0.000 0.000 0.420 0.000 0.004
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.4076     0.4546 0.012 0.004 0.636 0.348 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.2925     0.7652 0.148 0.004 0.016 0.832 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0993     0.8241 0.964 0.024 0.000 0.000 0.000 0.012
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.5121     0.4231 0.096 0.004 0.596 0.304 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1168     0.8528 0.028 0.000 0.016 0.956 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.3688     0.6208 0.724 0.020 0.000 0.000 0.000 0.256
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0458     0.9586 0.016 0.984 0.000 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     6  0.0972     0.8759 0.028 0.008 0.000 0.000 0.000 0.964
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2597     0.7916 0.176 0.824 0.000 0.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4199     0.5040 0.600 0.000 0.000 0.380 0.000 0.020
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0458     0.8594 0.000 0.000 0.016 0.984 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     6  0.1257     0.8652 0.020 0.028 0.000 0.000 0.000 0.952
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0547     0.9568 0.020 0.980 0.000 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4394     0.4173 0.008 0.000 0.608 0.364 0.000 0.020
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0653     0.8216 0.980 0.004 0.000 0.012 0.000 0.004
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0146     0.9631 0.004 0.996 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1074     0.8094 0.960 0.012 0.000 0.028 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.1003     0.8249 0.964 0.016 0.000 0.000 0.000 0.020
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.0937     0.8514 0.000 0.000 0.960 0.040 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1003     0.8249 0.964 0.016 0.000 0.000 0.000 0.020
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0146     0.9641 0.000 0.996 0.000 0.000 0.000 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0260     0.9622 0.000 0.992 0.000 0.000 0.000 0.008
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     6  0.1850     0.8708 0.052 0.008 0.000 0.016 0.000 0.924
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1926     0.8059 0.912 0.020 0.000 0.000 0.000 0.068
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     6  0.0725     0.8641 0.012 0.012 0.000 0.000 0.000 0.976
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.2544     0.7687 0.140 0.004 0.004 0.852 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.2748     0.8650 0.004 0.020 0.000 0.012 0.872 0.092
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0291     0.8218 0.992 0.000 0.000 0.004 0.000 0.004
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1078     0.8126 0.964 0.008 0.000 0.012 0.016 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0458     0.8594 0.000 0.000 0.016 0.984 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.8784 0.000 0.000 1.000 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0146     0.9641 0.000 0.996 0.000 0.000 0.000 0.004
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4131     0.4989 0.600 0.000 0.000 0.384 0.000 0.016
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0692     0.8500 0.020 0.004 0.000 0.976 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.3869     0.0393 0.000 0.000 0.500 0.500 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.1657     0.8134 0.928 0.016 0.000 0.000 0.000 0.056
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3351     0.5361 0.712 0.288 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     6  0.1625     0.8724 0.060 0.012 0.000 0.000 0.000 0.928
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0603     0.8505 0.016 0.004 0.000 0.980 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0260     0.9622 0.000 0.992 0.000 0.000 0.000 0.008
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3489     0.5737 0.004 0.000 0.708 0.288 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000     0.9158 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.592           0.818       0.899         0.4570 0.498   0.498
#> 3 3 0.641           0.716       0.852         0.3847 0.741   0.525
#> 4 4 0.744           0.796       0.872         0.1186 0.911   0.747
#> 5 5 0.757           0.780       0.865         0.0386 0.976   0.913
#> 6 6 0.740           0.740       0.850         0.0355 0.989   0.958

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1184      0.964 0.984 0.016
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.9896      0.483 0.440 0.560
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.8207      0.549 0.744 0.256
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.1184      0.964 0.984 0.016
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.9881      0.522 0.436 0.564
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0376      0.788 0.004 0.996
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.9881      0.522 0.436 0.564
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1184      0.964 0.984 0.016
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3733      0.909 0.928 0.072
#> 806616FE-1855-4284-9265-42842104CB21     2  0.9881      0.522 0.436 0.564
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.787 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0376      0.788 0.004 0.996
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1184      0.964 0.984 0.016
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.7950      0.705 0.240 0.760
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.9909      0.507 0.444 0.556
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.9881      0.522 0.436 0.564
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.9909      0.507 0.444 0.556
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.966 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.787 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.787 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.966 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.787 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.9909      0.507 0.444 0.556
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.966 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0376      0.788 0.004 0.996
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.966 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.966 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.966 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.9909      0.507 0.444 0.556
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.7950      0.705 0.240 0.760
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.787 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1184      0.964 0.984 0.016
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.966 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.1414      0.957 0.980 0.020
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.966 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.9909      0.507 0.444 0.556
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.1633      0.954 0.976 0.024
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.9881      0.522 0.436 0.564
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.787 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1184      0.964 0.984 0.016
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0376      0.788 0.004 0.996
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.966 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.966 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.1843      0.951 0.972 0.028
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.9881      0.522 0.436 0.564
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.9909      0.507 0.444 0.556
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.8955      0.654 0.312 0.688
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.5519      0.757 0.128 0.872
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1184      0.964 0.984 0.016
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.1843      0.951 0.972 0.028
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3274      0.778 0.060 0.940
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.1843      0.951 0.972 0.028
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.9881      0.522 0.436 0.564
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1184      0.964 0.984 0.016
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.1843      0.951 0.972 0.028
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3879      0.902 0.924 0.076
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0376      0.788 0.004 0.996
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.966 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.966 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.5519      0.757 0.128 0.872
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.1843      0.951 0.972 0.028
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.787 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0376      0.788 0.004 0.996
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.8207      0.549 0.744 0.256
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.9881      0.522 0.436 0.564
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.1843      0.951 0.972 0.028
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.966 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.966 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0672      0.964 0.992 0.008
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1184      0.964 0.984 0.016
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0376      0.788 0.004 0.996
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0376      0.788 0.004 0.996
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3274      0.778 0.060 0.940
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.787 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1184      0.964 0.984 0.016
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.787 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1184      0.964 0.984 0.016
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.966 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.966 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.9000      0.650 0.316 0.684
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.966 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.966 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1184      0.964 0.984 0.016
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.787 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0376      0.788 0.004 0.996
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.8955      0.654 0.312 0.688
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1184      0.964 0.984 0.016
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.966 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0376      0.788 0.004 0.996
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3274      0.778 0.060 0.940
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.1633      0.954 0.976 0.024
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.966 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.787 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.966 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2  0.9909      0.507 0.444 0.556
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.9983      0.383 0.476 0.524
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.966 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1184      0.964 0.984 0.016
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.787 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.787 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.8207      0.549 0.744 0.256
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1184      0.964 0.984 0.016
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1184      0.964 0.984 0.016
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.787 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.966 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0938      0.786 0.012 0.988
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.966 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.966 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.966 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.9881      0.522 0.436 0.564
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.787 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1184      0.964 0.984 0.016
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.966 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.966 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.9000      0.650 0.316 0.684
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.6438      0.746 0.836 0.164
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1184      0.964 0.984 0.016
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1184      0.964 0.984 0.016
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.966 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.787 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.1633      0.954 0.976 0.024
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.9909      0.507 0.444 0.556

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1182     0.9398 0.976 0.012 0.012
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.6274     0.0811 0.000 0.456 0.544
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.2318     0.5362 0.028 0.028 0.944
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     3  0.6688     0.2451 0.408 0.012 0.580
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.6603     0.4395 0.020 0.332 0.648
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0475     0.8943 0.004 0.992 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.6603     0.4395 0.020 0.332 0.648
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1015     0.9398 0.980 0.012 0.008
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2680     0.8918 0.924 0.068 0.008
#> 806616FE-1855-4284-9265-42842104CB21     3  0.6603     0.4395 0.020 0.332 0.648
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0424     0.8971 0.000 0.992 0.008
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0475     0.8943 0.004 0.992 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1182     0.9398 0.976 0.012 0.012
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.6357     0.5074 0.020 0.684 0.296
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.6702     0.4453 0.024 0.328 0.648
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.6603     0.4395 0.020 0.332 0.648
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.6702     0.4453 0.024 0.328 0.648
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.9417 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0424     0.8971 0.000 0.992 0.008
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0424     0.8971 0.000 0.992 0.008
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.9417 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0424     0.8971 0.000 0.992 0.008
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.6702     0.4453 0.024 0.328 0.648
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.6168     0.2773 0.412 0.000 0.588
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0475     0.8943 0.004 0.992 0.004
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.9417 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.9417 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.9417 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.6702     0.4453 0.024 0.328 0.648
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.6357     0.5074 0.020 0.684 0.296
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0424     0.8971 0.000 0.992 0.008
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1182     0.9398 0.976 0.012 0.012
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.6244     0.2048 0.440 0.000 0.560
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.2356     0.9071 0.928 0.000 0.072
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.9417 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.6702     0.4453 0.024 0.328 0.648
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.2860     0.8945 0.912 0.004 0.084
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.6603     0.4395 0.020 0.332 0.648
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0424     0.8971 0.000 0.992 0.008
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.2651     0.9156 0.928 0.012 0.060
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0475     0.8943 0.004 0.992 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.6168     0.2773 0.412 0.000 0.588
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.4931     0.4669 0.232 0.000 0.768
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.2774     0.9020 0.920 0.008 0.072
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.6603     0.4395 0.020 0.332 0.648
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.6702     0.4453 0.024 0.328 0.648
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.6467     0.2756 0.008 0.604 0.388
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.4342     0.7703 0.024 0.856 0.120
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1015     0.9398 0.980 0.012 0.008
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.2774     0.9020 0.920 0.008 0.072
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2448     0.8488 0.000 0.924 0.076
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.2774     0.9020 0.920 0.008 0.072
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.6603     0.4395 0.020 0.332 0.648
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3989     0.8554 0.864 0.012 0.124
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.2774     0.9020 0.920 0.008 0.072
#> B5474EEB-D585-4668-959C-38F240F55BC2     3  0.7600     0.3427 0.344 0.056 0.600
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0475     0.8943 0.004 0.992 0.004
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.6154     0.2840 0.408 0.000 0.592
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0237     0.9418 0.996 0.000 0.004
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.4342     0.7703 0.024 0.856 0.120
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.2774     0.9020 0.920 0.008 0.072
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0424     0.8971 0.000 0.992 0.008
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0475     0.8943 0.004 0.992 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2318     0.5362 0.028 0.028 0.944
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.6603     0.4395 0.020 0.332 0.648
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.2774     0.9020 0.920 0.008 0.072
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000     0.9417 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.9417 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.4235     0.7955 0.824 0.000 0.176
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3120     0.9006 0.908 0.012 0.080
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0475     0.8943 0.004 0.992 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0475     0.8943 0.004 0.992 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2448     0.8488 0.000 0.924 0.076
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0424     0.8971 0.000 0.992 0.008
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1015     0.9398 0.980 0.012 0.008
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0424     0.8971 0.000 0.992 0.008
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2651     0.9156 0.928 0.012 0.060
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0237     0.9418 0.996 0.000 0.004
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.6154     0.2840 0.408 0.000 0.592
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.6483     0.2627 0.008 0.600 0.392
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.6154     0.2840 0.408 0.000 0.592
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.5397     0.5568 0.720 0.000 0.280
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1182     0.9398 0.976 0.012 0.012
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0424     0.8971 0.000 0.992 0.008
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0475     0.8943 0.004 0.992 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.6467     0.2756 0.008 0.604 0.388
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2651     0.9156 0.928 0.012 0.060
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.9417 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0475     0.8943 0.004 0.992 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2356     0.8516 0.000 0.928 0.072
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.2860     0.8945 0.912 0.004 0.084
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     3  0.6154     0.2787 0.408 0.000 0.592
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0424     0.8971 0.000 0.992 0.008
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     3  0.6095     0.3048 0.392 0.000 0.608
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.6702     0.4453 0.024 0.328 0.648
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.7979     0.1473 0.060 0.440 0.500
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0424     0.9404 0.992 0.000 0.008
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3989     0.8554 0.864 0.012 0.124
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0424     0.8971 0.000 0.992 0.008
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0424     0.8971 0.000 0.992 0.008
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2318     0.5362 0.028 0.028 0.944
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1015     0.9398 0.980 0.012 0.008
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1182     0.9398 0.976 0.012 0.012
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0424     0.8971 0.000 0.992 0.008
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.6168     0.2773 0.412 0.000 0.588
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.1015     0.8891 0.008 0.980 0.012
#> F900E9BE-2400-4451-9434-EE8BC513BA94     3  0.6095     0.3048 0.392 0.000 0.608
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     3  0.6095     0.3048 0.392 0.000 0.608
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.9417 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.6603     0.4395 0.020 0.332 0.648
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0424     0.8971 0.000 0.992 0.008
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1182     0.9398 0.976 0.012 0.012
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0424     0.9413 0.992 0.000 0.008
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.9417 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.6483     0.2627 0.008 0.600 0.392
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.2261     0.5383 0.068 0.000 0.932
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2939     0.9065 0.916 0.012 0.072
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1015     0.9398 0.980 0.012 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.9417 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0424     0.8971 0.000 0.992 0.008
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.2860     0.8945 0.912 0.004 0.084
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.6702     0.4453 0.024 0.328 0.648

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2197      0.876 0.080 0.000 0.004 0.916
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.6534      0.626 0.148 0.220 0.632 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5536      0.259 0.384 0.000 0.592 0.024
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4608      0.830 0.692 0.000 0.004 0.304
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.2011      0.877 0.080 0.000 0.000 0.920
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.3239      0.836 0.068 0.052 0.000 0.880
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.2197      0.876 0.080 0.000 0.004 0.916
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.4746      0.421 0.000 0.368 0.632 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4697      0.879 0.644 0.000 0.000 0.356
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.5024      0.424 0.008 0.360 0.632 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.2197      0.876 0.080 0.000 0.004 0.916
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4830      0.835 0.608 0.000 0.000 0.392
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1867      0.852 0.000 0.000 0.072 0.928
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2149      0.838 0.000 0.000 0.088 0.912
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.2944      0.842 0.128 0.000 0.004 0.868
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.4697      0.879 0.644 0.000 0.000 0.356
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.4004      0.725 0.812 0.000 0.024 0.164
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2011      0.846 0.000 0.000 0.080 0.920
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.5256      0.607 0.040 0.260 0.700 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.5821      0.165 0.032 0.536 0.432 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.2011      0.877 0.080 0.000 0.000 0.920
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.2011      0.846 0.000 0.000 0.080 0.920
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4643      0.430 0.000 0.656 0.344 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.2011      0.846 0.000 0.000 0.080 0.920
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.3710      0.756 0.192 0.000 0.004 0.804
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.2011      0.846 0.000 0.000 0.080 0.920
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.5562      0.819 0.712 0.032 0.020 0.236
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4679      0.881 0.648 0.000 0.000 0.352
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188      0.890 0.004 0.000 0.000 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.5821      0.165 0.032 0.536 0.432 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.2011      0.846 0.000 0.000 0.080 0.920
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5536      0.259 0.384 0.000 0.592 0.024
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.2011      0.846 0.000 0.000 0.080 0.920
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4370      0.667 0.156 0.000 0.044 0.800
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.3208      0.822 0.148 0.000 0.004 0.848
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4643      0.430 0.000 0.656 0.344 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.2011      0.877 0.080 0.000 0.000 0.920
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2944      0.842 0.128 0.000 0.004 0.868
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188      0.890 0.004 0.000 0.000 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.4679      0.881 0.648 0.000 0.000 0.352
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.5227      0.612 0.040 0.256 0.704 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.4679      0.881 0.648 0.000 0.000 0.352
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.4477      0.163 0.312 0.000 0.000 0.688
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2197      0.876 0.080 0.000 0.004 0.916
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.5256      0.607 0.040 0.260 0.700 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.2944      0.842 0.128 0.000 0.004 0.868
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1022      0.905 0.032 0.968 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.4624      0.439 0.000 0.660 0.340 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.2149      0.838 0.000 0.000 0.088 0.912
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4382      0.871 0.704 0.000 0.000 0.296
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4277      0.875 0.720 0.000 0.000 0.280
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3172      0.790 0.160 0.000 0.840 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.7010      0.596 0.240 0.184 0.576 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0336      0.889 0.000 0.000 0.008 0.992
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.3710      0.756 0.192 0.000 0.004 0.804
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.5536      0.259 0.384 0.000 0.592 0.024
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.2011      0.877 0.080 0.000 0.000 0.920
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.2197      0.876 0.080 0.000 0.004 0.916
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4697      0.879 0.644 0.000 0.000 0.356
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2499      0.873 0.032 0.920 0.044 0.004
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4277      0.875 0.720 0.000 0.000 0.280
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4277      0.875 0.720 0.000 0.000 0.280
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000      0.801 0.000 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.2197      0.876 0.080 0.000 0.004 0.916
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0336      0.889 0.008 0.000 0.000 0.992
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.5227      0.612 0.040 0.256 0.704 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.2149      0.430 0.912 0.000 0.088 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.3105      0.829 0.140 0.000 0.004 0.856
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.2011      0.877 0.080 0.000 0.000 0.920
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.891 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.2149      0.838 0.000 0.000 0.088 0.912
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.3172      0.790 0.160 0.000 0.840 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.1892      0.886 0.080 0.000 0.000 0.916 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.6018      0.534 0.172 0.208 0.612 0.000 0.008
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5920      0.271 0.384 0.000 0.536 0.024 0.056
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3928      0.772 0.700 0.000 0.000 0.296 0.004
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1270      0.672 0.000 0.000 0.948 0.000 0.052
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0162      0.689 0.000 0.000 0.996 0.000 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.1732      0.887 0.080 0.000 0.000 0.920 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.2949      0.854 0.076 0.028 0.000 0.880 0.016
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1270      0.672 0.000 0.000 0.948 0.000 0.052
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1740      0.884 0.056 0.932 0.000 0.000 0.012
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.1892      0.886 0.080 0.000 0.000 0.916 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.7046      0.184 0.024 0.356 0.188 0.000 0.432
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1270      0.672 0.000 0.000 0.948 0.000 0.052
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0703      0.717 0.000 0.000 0.024 0.000 0.976
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.3707      0.878 0.716 0.000 0.000 0.284 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.7172      0.187 0.032 0.348 0.188 0.000 0.432
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.1892      0.886 0.080 0.000 0.000 0.916 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4161      0.746 0.608 0.000 0.000 0.392 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1845      0.869 0.000 0.000 0.016 0.928 0.056
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2193      0.857 0.000 0.000 0.028 0.912 0.060
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0162      0.689 0.000 0.000 0.996 0.000 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.2536      0.855 0.128 0.000 0.000 0.868 0.004
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1740      0.884 0.056 0.932 0.000 0.000 0.012
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.3707      0.878 0.716 0.000 0.000 0.284 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.2927      0.665 0.868 0.000 0.000 0.092 0.040
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.2012      0.864 0.000 0.000 0.020 0.920 0.060
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0162      0.689 0.000 0.000 0.996 0.000 0.004
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.5441      0.534 0.080 0.220 0.680 0.000 0.020
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.5541      0.211 0.056 0.496 0.004 0.000 0.444
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.1732      0.887 0.080 0.000 0.000 0.920 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.2012      0.864 0.000 0.000 0.020 0.920 0.060
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3999      0.439 0.000 0.656 0.344 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.2012      0.864 0.000 0.000 0.020 0.920 0.060
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1270      0.672 0.000 0.000 0.948 0.000 0.052
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.3196      0.777 0.192 0.000 0.000 0.804 0.004
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.2012      0.864 0.000 0.000 0.020 0.920 0.060
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3912      0.790 0.752 0.000 0.000 0.228 0.020
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.3684      0.878 0.720 0.000 0.000 0.280 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0162      0.901 0.004 0.000 0.000 0.996 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.5541      0.211 0.056 0.496 0.004 0.000 0.444
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.2012      0.864 0.000 0.000 0.020 0.920 0.060
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0162      0.897 0.004 0.996 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5920      0.271 0.384 0.000 0.536 0.024 0.056
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0162      0.689 0.000 0.000 0.996 0.000 0.004
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.2012      0.864 0.000 0.000 0.020 0.920 0.060
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3847      0.698 0.156 0.000 0.004 0.800 0.040
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.2763      0.836 0.148 0.000 0.000 0.848 0.004
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1740      0.884 0.056 0.932 0.000 0.000 0.012
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3999      0.439 0.000 0.656 0.344 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.1732      0.887 0.080 0.000 0.000 0.920 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2536      0.855 0.128 0.000 0.000 0.868 0.004
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0162      0.901 0.004 0.000 0.000 0.996 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.3684      0.878 0.720 0.000 0.000 0.280 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.5412      0.538 0.080 0.216 0.684 0.000 0.020
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.3684      0.878 0.720 0.000 0.000 0.280 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3857      0.266 0.312 0.000 0.000 0.688 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.1892      0.886 0.080 0.000 0.000 0.916 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0162      0.897 0.004 0.996 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.5441      0.534 0.080 0.220 0.680 0.000 0.020
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.2536      0.855 0.128 0.000 0.000 0.868 0.004
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1845      0.883 0.056 0.928 0.000 0.000 0.016
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3983      0.447 0.000 0.660 0.340 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.2193      0.857 0.000 0.000 0.028 0.912 0.060
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3305      0.865 0.776 0.000 0.000 0.224 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3177      0.864 0.792 0.000 0.000 0.208 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.6463      0.509 0.280 0.144 0.556 0.000 0.020
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0290      0.900 0.000 0.000 0.000 0.992 0.008
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.3196      0.777 0.192 0.000 0.000 0.804 0.004
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.5920      0.271 0.384 0.000 0.536 0.024 0.056
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.1732      0.887 0.080 0.000 0.000 0.920 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.1892      0.886 0.080 0.000 0.000 0.916 0.004
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.3707      0.878 0.716 0.000 0.000 0.284 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2888      0.853 0.056 0.880 0.000 0.004 0.060
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3177      0.864 0.792 0.000 0.000 0.208 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3177      0.864 0.792 0.000 0.000 0.208 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0162      0.689 0.000 0.000 0.996 0.000 0.004
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.1892      0.886 0.080 0.000 0.000 0.916 0.004
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0290      0.900 0.008 0.000 0.000 0.992 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.5412      0.538 0.080 0.216 0.684 0.000 0.020
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.3143      0.437 0.796 0.000 0.000 0.000 0.204
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.2674      0.844 0.140 0.000 0.000 0.856 0.004
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.1732      0.887 0.080 0.000 0.000 0.920 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.902 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.897 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.2193      0.857 0.000 0.000 0.028 0.912 0.060
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.2561      0.806 0.000 0.000 0.144 0.000 0.856

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.2231      0.884 0.900 0.000 0.004 0.068 0.000 0.028
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.6451      0.381 0.000 0.056 0.496 0.152 0.000 0.296
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4101      0.237 0.000 0.000 0.580 0.408 0.000 0.012
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     4  0.4023      0.726 0.264 0.000 0.004 0.704 0.000 0.028
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0520      0.676 0.000 0.000 0.984 0.000 0.008 0.008
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1779      0.681 0.000 0.000 0.920 0.000 0.016 0.064
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1845      0.889 0.920 0.000 0.000 0.052 0.000 0.028
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2457      0.864 0.880 0.000 0.000 0.036 0.000 0.084
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0520      0.676 0.000 0.000 0.984 0.000 0.008 0.008
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3464      0.559 0.000 0.688 0.000 0.000 0.000 0.312
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.2231      0.884 0.900 0.000 0.004 0.068 0.000 0.028
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     6  0.4004      0.733 0.000 0.092 0.096 0.004 0.016 0.792
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0520      0.676 0.000 0.000 0.984 0.000 0.008 0.008
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.751 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.751 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.3789      0.457 0.000 0.000 0.000 0.000 0.584 0.416
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.2762      0.868 0.196 0.000 0.000 0.804 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     6  0.3906      0.733 0.000 0.084 0.096 0.004 0.016 0.800
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.2231      0.884 0.900 0.000 0.004 0.068 0.000 0.028
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.3620      0.710 0.352 0.000 0.000 0.648 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.1882      0.872 0.920 0.000 0.060 0.008 0.000 0.012
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.2252      0.862 0.900 0.000 0.072 0.012 0.000 0.016
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1779      0.681 0.000 0.000 0.920 0.000 0.016 0.064
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.751 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.2838      0.851 0.852 0.000 0.004 0.116 0.000 0.028
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3464      0.559 0.000 0.688 0.000 0.000 0.000 0.312
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.2762      0.868 0.196 0.000 0.000 0.804 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.2322      0.655 0.036 0.000 0.000 0.896 0.004 0.064
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.2119      0.868 0.912 0.000 0.060 0.008 0.004 0.016
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1779      0.681 0.000 0.000 0.920 0.000 0.016 0.064
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.5014      0.378 0.000 0.060 0.564 0.008 0.000 0.368
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.3582      0.732 0.000 0.252 0.000 0.000 0.016 0.732
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1845      0.889 0.920 0.000 0.000 0.052 0.000 0.028
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.2119      0.868 0.912 0.000 0.060 0.008 0.004 0.016
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4210      0.218 0.000 0.636 0.336 0.000 0.000 0.028
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.2220      0.867 0.908 0.000 0.060 0.012 0.004 0.016
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0520      0.676 0.000 0.000 0.984 0.000 0.008 0.008
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3453      0.778 0.788 0.000 0.004 0.180 0.000 0.028
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.2119      0.868 0.912 0.000 0.060 0.008 0.004 0.016
#> B5474EEB-D585-4668-959C-38F240F55BC2     4  0.4449      0.764 0.196 0.000 0.004 0.712 0.000 0.088
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.2730      0.868 0.192 0.000 0.000 0.808 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0146      0.902 0.996 0.000 0.000 0.004 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     6  0.3582      0.732 0.000 0.252 0.000 0.000 0.016 0.732
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.2119      0.868 0.912 0.000 0.060 0.008 0.004 0.016
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0777      0.745 0.000 0.972 0.000 0.004 0.000 0.024
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4101      0.237 0.000 0.000 0.580 0.408 0.000 0.012
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1779      0.681 0.000 0.000 0.920 0.000 0.016 0.064
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.2220      0.867 0.908 0.000 0.060 0.012 0.004 0.016
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.3562      0.716 0.788 0.000 0.040 0.168 0.000 0.004
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3206      0.824 0.816 0.000 0.004 0.152 0.000 0.028
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3464      0.559 0.000 0.688 0.000 0.000 0.000 0.312
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4210      0.218 0.000 0.636 0.336 0.000 0.000 0.028
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1845      0.889 0.920 0.000 0.000 0.052 0.000 0.028
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.751 0.000 1.000 0.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2838      0.851 0.852 0.000 0.004 0.116 0.000 0.028
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0146      0.902 0.996 0.000 0.000 0.004 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.2730      0.868 0.192 0.000 0.000 0.808 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.4963      0.383 0.000 0.056 0.568 0.008 0.000 0.368
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.2730      0.868 0.192 0.000 0.000 0.808 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.3531      0.329 0.672 0.000 0.000 0.328 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2231      0.884 0.900 0.000 0.004 0.068 0.000 0.028
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0777      0.745 0.000 0.972 0.000 0.004 0.000 0.024
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.5014      0.378 0.000 0.060 0.564 0.008 0.000 0.368
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2838      0.851 0.852 0.000 0.004 0.116 0.000 0.028
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.3482      0.551 0.000 0.684 0.000 0.000 0.000 0.316
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3883      0.246 0.000 0.656 0.332 0.000 0.000 0.012
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.2252      0.862 0.900 0.000 0.072 0.012 0.000 0.016
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.2553      0.854 0.144 0.000 0.000 0.848 0.000 0.008
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.2389      0.853 0.128 0.000 0.000 0.864 0.000 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.6231      0.328 0.000 0.016 0.440 0.200 0.000 0.344
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0520      0.899 0.984 0.000 0.000 0.008 0.000 0.008
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3453      0.778 0.788 0.000 0.004 0.180 0.000 0.028
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4101      0.237 0.000 0.000 0.580 0.408 0.000 0.012
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1845      0.889 0.920 0.000 0.000 0.052 0.000 0.028
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2231      0.884 0.900 0.000 0.004 0.068 0.000 0.028
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.2762      0.868 0.196 0.000 0.000 0.804 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.3892      0.469 0.004 0.640 0.000 0.000 0.004 0.352
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.2389      0.853 0.128 0.000 0.000 0.864 0.000 0.008
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.2389      0.853 0.128 0.000 0.000 0.864 0.000 0.008
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1779      0.681 0.000 0.000 0.920 0.000 0.016 0.064
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.751 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.2231      0.884 0.900 0.000 0.004 0.068 0.000 0.028
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0632      0.898 0.976 0.000 0.000 0.024 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.4963      0.383 0.000 0.056 0.568 0.008 0.000 0.368
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     4  0.3786      0.492 0.000 0.000 0.000 0.768 0.168 0.064
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2968      0.840 0.840 0.000 0.004 0.128 0.000 0.028
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1845      0.889 0.920 0.000 0.000 0.052 0.000 0.028
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.903 1.000 0.000 0.000 0.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0146      0.751 0.000 0.996 0.000 0.000 0.000 0.004
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.2252      0.862 0.900 0.000 0.072 0.012 0.000 0.016
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.949           0.963       0.983         0.4975 0.501   0.501
#> 3 3 0.541           0.722       0.828         0.2981 0.846   0.700
#> 4 4 0.613           0.366       0.615         0.1321 0.833   0.599
#> 5 5 0.651           0.470       0.656         0.0654 0.770   0.397
#> 6 6 0.718           0.664       0.732         0.0477 0.846   0.464

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1   0.000      0.989 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2   0.000      0.974 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1   0.000      0.989 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1   0.000      0.989 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2   0.760      0.746 0.220 0.780
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2   0.000      0.974 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2   0.000      0.974 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1   0.000      0.989 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1   0.000      0.989 1.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1   0.000      0.989 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2   0.000      0.974 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2   0.000      0.974 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1   0.000      0.989 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2   0.000      0.974 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2   0.605      0.843 0.148 0.852
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2   0.529      0.873 0.120 0.880
#> 853120F0-857B-4108-9EC8-727189630C5F     2   0.615      0.838 0.152 0.848
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1   0.000      0.989 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2   0.000      0.974 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2   0.000      0.974 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1   0.000      0.989 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2   0.000      0.974 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2   0.634      0.829 0.160 0.840
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1   0.000      0.989 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2   0.000      0.974 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1   0.000      0.989 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1   0.000      0.989 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1   0.000      0.989 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2   0.552      0.865 0.128 0.872
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2   0.000      0.974 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2   0.000      0.974 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1   0.000      0.989 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1   0.000      0.989 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1   0.000      0.989 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1   0.000      0.989 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2   0.615      0.838 0.152 0.848
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1   0.000      0.989 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2   0.000      0.974 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2   0.000      0.974 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1   0.000      0.989 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2   0.000      0.974 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1   0.000      0.989 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1   0.000      0.989 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1   0.000      0.989 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2   0.000      0.974 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2   0.000      0.974 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2   0.000      0.974 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2   0.000      0.974 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1   0.000      0.989 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1   0.000      0.989 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2   0.000      0.974 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1   0.000      0.989 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2   0.430      0.903 0.088 0.912
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1   0.000      0.989 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1   0.697      0.755 0.812 0.188
#> B5474EEB-D585-4668-959C-38F240F55BC2     1   0.000      0.989 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2   0.000      0.974 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1   0.000      0.989 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1   0.000      0.989 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2   0.000      0.974 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1   0.000      0.989 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2   0.000      0.974 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2   0.000      0.974 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1   0.000      0.989 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2   0.000      0.974 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1   0.000      0.989 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1   0.000      0.989 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1   0.000      0.989 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1   0.000      0.989 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1   0.000      0.989 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2   0.000      0.974 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2   0.000      0.974 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2   0.000      0.974 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2   0.000      0.974 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1   0.000      0.989 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2   0.000      0.974 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1   0.000      0.989 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1   0.000      0.989 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1   0.000      0.989 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2   0.000      0.974 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1   0.000      0.989 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1   0.000      0.989 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1   0.000      0.989 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2   0.000      0.974 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2   0.000      0.974 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2   0.000      0.974 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1   0.000      0.989 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1   0.000      0.989 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2   0.000      0.974 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2   0.000      0.974 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1   0.000      0.989 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1   0.000      0.989 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2   0.000      0.974 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1   0.000      0.989 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1   0.991      0.149 0.556 0.444
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2   0.730      0.752 0.204 0.796
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1   0.000      0.989 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1   0.000      0.989 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2   0.000      0.974 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2   0.000      0.974 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1   0.000      0.989 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1   0.000      0.989 1.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1   0.000      0.989 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2   0.000      0.974 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1   0.000      0.989 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2   0.000      0.974 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1   0.000      0.989 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1   0.000      0.989 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1   0.000      0.989 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2   0.000      0.974 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2   0.000      0.974 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1   0.000      0.989 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1   0.000      0.989 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1   0.000      0.989 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2   0.000      0.974 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1   0.278      0.939 0.952 0.048
#> 12F54761-4F68-4181-8421-88EA858902FC     1   0.000      0.989 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1   0.000      0.989 1.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1   0.000      0.989 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2   0.000      0.974 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1   0.000      0.989 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2   0.000      0.974 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.4452     0.7760 0.808 0.000 0.192
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5988     0.1969 0.000 0.632 0.368
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5016     0.5899 0.240 0.000 0.760
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.5529     0.7461 0.704 0.000 0.296
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.8753     0.6889 0.188 0.224 0.588
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3482     0.8264 0.000 0.872 0.128
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.6204     0.5677 0.000 0.424 0.576
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.4452     0.7760 0.808 0.000 0.192
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.4605     0.7701 0.796 0.000 0.204
#> 806616FE-1855-4284-9265-42842104CB21     3  0.5678     0.5324 0.316 0.000 0.684
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.8764 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3482     0.8264 0.000 0.872 0.128
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4452     0.7760 0.808 0.000 0.192
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0892     0.8764 0.000 0.980 0.020
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.6546     0.7391 0.096 0.148 0.756
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.8464     0.6869 0.132 0.272 0.596
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.6546     0.7391 0.096 0.148 0.756
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.8093 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0892     0.8764 0.000 0.980 0.020
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0892     0.8764 0.000 0.980 0.020
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.8093 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0892     0.8764 0.000 0.980 0.020
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.7664     0.7178 0.104 0.228 0.668
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4750     0.7062 0.784 0.000 0.216
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3482     0.8264 0.000 0.872 0.128
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.8093 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.8093 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.8093 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.6546     0.7391 0.096 0.148 0.756
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.6260     0.0714 0.000 0.448 0.552
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0892     0.8764 0.000 0.980 0.020
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.4452     0.7760 0.808 0.000 0.192
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4750     0.7062 0.784 0.000 0.216
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0892     0.8065 0.980 0.000 0.020
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.8093 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.6546     0.7391 0.096 0.148 0.756
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0592     0.8079 0.988 0.000 0.012
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.5803     0.6976 0.016 0.248 0.736
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0892     0.8764 0.000 0.980 0.020
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.4452     0.7760 0.808 0.000 0.192
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1529     0.8670 0.000 0.960 0.040
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.4750     0.7062 0.784 0.000 0.216
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.5678     0.5802 0.684 0.000 0.316
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000     0.8093 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.6204     0.5677 0.000 0.424 0.576
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.7222     0.6078 0.032 0.388 0.580
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.3879     0.8075 0.000 0.848 0.152
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.2959     0.8423 0.000 0.900 0.100
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4504     0.7741 0.804 0.000 0.196
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.5926     0.2902 0.644 0.000 0.356
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8764 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.5882     0.2951 0.652 0.000 0.348
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.7508     0.7308 0.148 0.156 0.696
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.5431     0.7534 0.716 0.000 0.284
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.5948     0.2888 0.640 0.000 0.360
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.6140     0.6710 0.596 0.000 0.404
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3941     0.8040 0.000 0.844 0.156
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4750     0.7062 0.784 0.000 0.216
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000     0.8093 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.6291     0.4828 0.000 0.468 0.532
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.5905     0.2977 0.648 0.000 0.352
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0892     0.8764 0.000 0.980 0.020
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4346     0.7737 0.000 0.816 0.184
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.5016     0.5899 0.240 0.000 0.760
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.6204     0.5677 0.000 0.424 0.576
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0424     0.8083 0.992 0.000 0.008
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000     0.8093 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.8093 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.3941     0.7477 0.844 0.000 0.156
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3619     0.8012 0.864 0.000 0.136
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1529     0.8670 0.000 0.960 0.040
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3482     0.8264 0.000 0.872 0.128
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.8764 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8764 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.4605     0.7701 0.796 0.000 0.204
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0892     0.8764 0.000 0.980 0.020
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.3879     0.7885 0.848 0.000 0.152
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000     0.8093 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.4750     0.7062 0.784 0.000 0.216
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.6309     0.2136 0.000 0.504 0.496
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.4750     0.7062 0.784 0.000 0.216
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.1163     0.8047 0.972 0.000 0.028
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4452     0.7760 0.808 0.000 0.192
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0892     0.8764 0.000 0.980 0.020
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4555     0.7539 0.000 0.800 0.200
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2625     0.8181 0.000 0.916 0.084
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4452     0.7760 0.808 0.000 0.192
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.8093 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.3941     0.8040 0.000 0.844 0.156
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0892     0.8764 0.000 0.980 0.020
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.5905     0.3065 0.648 0.000 0.352
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5785     0.7076 0.668 0.000 0.332
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0892     0.8764 0.000 0.980 0.020
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5621     0.6983 0.692 0.000 0.308
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.5492     0.7137 0.104 0.080 0.816
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.6359    -0.0260 0.004 0.404 0.592
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0237     0.8089 0.996 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.5431     0.7534 0.716 0.000 0.284
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0892     0.8764 0.000 0.980 0.020
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0892     0.8764 0.000 0.980 0.020
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4931     0.5963 0.232 0.000 0.768
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.5455     0.7561 0.776 0.020 0.204
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.4452     0.7760 0.808 0.000 0.192
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8764 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4750     0.7062 0.784 0.000 0.216
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4235     0.7830 0.000 0.824 0.176
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5948     0.6927 0.640 0.000 0.360
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5529     0.7089 0.704 0.000 0.296
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.8093 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.6204     0.5677 0.000 0.424 0.576
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0892     0.8764 0.000 0.980 0.020
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4452     0.7760 0.808 0.000 0.192
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.8093 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.8093 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5327     0.6873 0.000 0.728 0.272
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.5526     0.6525 0.172 0.036 0.792
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5397     0.7553 0.720 0.000 0.280
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.5455     0.7561 0.776 0.020 0.204
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.8093 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0892     0.8764 0.000 0.980 0.020
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.6008     0.2491 0.628 0.000 0.372
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.6192     0.5713 0.000 0.420 0.580

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0657     0.5932 0.984 0.000 0.012 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7398     0.0185 0.000 0.492 0.184 0.324
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4543     0.2016 0.000 0.000 0.676 0.324
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.5036     0.4426 0.696 0.000 0.280 0.024
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.4837    -0.2629 0.000 0.004 0.348 0.648
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.5751     0.7348 0.124 0.712 0.164 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.6179    -0.3202 0.000 0.056 0.392 0.552
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0657     0.5941 0.984 0.000 0.012 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3217     0.5071 0.860 0.000 0.128 0.012
#> 806616FE-1855-4284-9265-42842104CB21     4  0.5057    -0.2490 0.012 0.000 0.340 0.648
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.8229 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.5647     0.7389 0.116 0.720 0.164 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0524     0.5943 0.988 0.000 0.008 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2053     0.8137 0.000 0.924 0.072 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     4  0.5336    -0.4180 0.004 0.004 0.496 0.496
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.5112    -0.2998 0.000 0.008 0.384 0.608
#> 853120F0-857B-4108-9EC8-727189630C5F     4  0.5336    -0.4180 0.004 0.004 0.496 0.496
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.4916     0.5313 0.576 0.000 0.000 0.424
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.4916     0.5313 0.576 0.000 0.000 0.424
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     4  0.5464    -0.4122 0.004 0.008 0.492 0.496
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.7754    -0.1751 0.244 0.000 0.336 0.420
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.5751     0.7348 0.124 0.712 0.164 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.5097     0.5282 0.568 0.000 0.004 0.428
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.5336     0.3241 0.004 0.004 0.496 0.496
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     4  0.9222    -0.1738 0.300 0.080 0.252 0.368
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0657     0.5932 0.984 0.000 0.012 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.7704    -0.1665 0.232 0.000 0.336 0.432
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.5657     0.5045 0.540 0.000 0.024 0.436
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5336     0.3241 0.004 0.004 0.496 0.496
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4925     0.5303 0.572 0.000 0.000 0.428
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.5999    -0.3307 0.000 0.044 0.404 0.552
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.5961 1.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2814     0.7947 0.000 0.868 0.132 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.7754    -0.1751 0.244 0.000 0.336 0.420
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.7602    -0.3277 0.200 0.000 0.420 0.380
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.4933     0.5235 0.568 0.000 0.000 0.432
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.6179    -0.3202 0.000 0.056 0.392 0.552
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.6147     0.3249 0.000 0.048 0.488 0.464
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.7092     0.6591 0.216 0.608 0.164 0.012
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6850     0.6786 0.132 0.628 0.228 0.012
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0895     0.5907 0.976 0.000 0.020 0.004
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4589     0.1918 0.168 0.000 0.048 0.784
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8229 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4544     0.1896 0.164 0.000 0.048 0.788
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.4855    -0.2662 0.000 0.004 0.352 0.644
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3448     0.5265 0.828 0.000 0.168 0.004
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.5572     0.1977 0.196 0.000 0.088 0.716
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4819     0.3849 0.652 0.000 0.344 0.004
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6537     0.6797 0.200 0.636 0.164 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.7754    -0.1751 0.244 0.000 0.336 0.420
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.5097     0.5282 0.568 0.000 0.004 0.428
#> 84E18629-1B13-4696-8E54-121ABE469CD2     4  0.5957    -0.3157 0.000 0.040 0.420 0.540
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.5035     0.2026 0.196 0.000 0.056 0.748
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.7586     0.5673 0.304 0.520 0.164 0.012
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.4761    -0.2752 0.000 0.000 0.372 0.628
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.6179    -0.3202 0.000 0.056 0.392 0.552
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.5000    -0.4640 0.500 0.000 0.000 0.500
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.4916     0.5313 0.576 0.000 0.000 0.424
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.7582    -0.3110 0.336 0.000 0.208 0.456
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5902     0.5252 0.700 0.000 0.160 0.140
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2814     0.7947 0.000 0.868 0.132 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.5751     0.7348 0.124 0.712 0.164 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0188     0.8227 0.000 0.996 0.004 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0188     0.8226 0.000 0.996 0.004 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3142     0.5053 0.860 0.000 0.132 0.008
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2149     0.5933 0.912 0.000 0.000 0.088
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.5097     0.5282 0.568 0.000 0.004 0.428
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.7754    -0.1751 0.244 0.000 0.336 0.420
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.9417    -0.3300 0.384 0.304 0.180 0.132
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.7722    -0.1663 0.236 0.000 0.336 0.428
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.7541    -0.3727 0.388 0.000 0.188 0.424
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0657     0.5932 0.984 0.000 0.012 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.7745     0.4982 0.360 0.464 0.164 0.012
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.5007     0.7640 0.008 0.776 0.156 0.060
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.5961 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.4916     0.5313 0.576 0.000 0.000 0.424
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6869     0.6608 0.220 0.612 0.164 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.5620     0.1997 0.208 0.000 0.084 0.708
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.6868     0.3788 0.544 0.000 0.336 0.120
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.7006     0.3702 0.528 0.000 0.340 0.132
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.5137     0.3328 0.004 0.000 0.544 0.452
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.8159    -0.1339 0.388 0.156 0.424 0.032
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.4916     0.5313 0.576 0.000 0.000 0.424
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3448     0.5265 0.828 0.000 0.168 0.004
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.4907    -0.2964 0.000 0.000 0.420 0.580
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.3271     0.5055 0.856 0.000 0.132 0.012
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0524     0.5943 0.988 0.000 0.008 0.004
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0188     0.8226 0.000 0.996 0.004 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.7754    -0.1751 0.244 0.000 0.336 0.420
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.7586     0.5673 0.304 0.520 0.164 0.012
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.6478     0.3856 0.576 0.000 0.336 0.088
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.6993     0.3739 0.532 0.000 0.336 0.132
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.6158    -0.3154 0.000 0.056 0.384 0.560
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0804     0.5934 0.980 0.000 0.012 0.008
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.5097     0.5282 0.568 0.000 0.004 0.428
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.8567     0.4195 0.380 0.400 0.168 0.052
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.3583     0.2583 0.004 0.000 0.816 0.180
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3545     0.5272 0.828 0.000 0.164 0.008
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3142     0.5053 0.860 0.000 0.132 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.4925     0.5307 0.572 0.000 0.000 0.428
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0804     0.8230 0.000 0.980 0.012 0.008
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4130     0.1349 0.108 0.000 0.064 0.828
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.6209     0.3255 0.000 0.052 0.492 0.456

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.4470     0.5481 0.616 0.000 0.012 0.372 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.7512     0.2166 0.100 0.472 0.128 0.000 0.300
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5775     0.1143 0.104 0.000 0.672 0.032 0.192
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.5659     0.4647 0.632 0.000 0.204 0.164 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     5  0.5614     0.3654 0.004 0.008 0.432 0.044 0.512
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.6650     0.4107 0.348 0.476 0.164 0.000 0.012
#> 9264567D-4524-46AF-A851-C091C3CD76CF     5  0.5199     0.4430 0.004 0.036 0.412 0.000 0.548
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.4161     0.5338 0.608 0.000 0.000 0.392 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.3707     0.5682 0.716 0.000 0.000 0.284 0.000
#> 806616FE-1855-4284-9265-42842104CB21     5  0.5531     0.3480 0.004 0.000 0.432 0.056 0.508
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0162     0.8351 0.000 0.996 0.000 0.000 0.004
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6436     0.4259 0.344 0.488 0.164 0.000 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4482     0.5463 0.612 0.000 0.012 0.376 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.5126     0.6862 0.172 0.720 0.092 0.000 0.016
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0290     0.5378 0.000 0.008 0.000 0.000 0.992
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     5  0.5387     0.4280 0.008 0.016 0.416 0.016 0.544
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0162     0.5369 0.000 0.004 0.000 0.000 0.996
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.7096 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.7096 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0290     0.5325 0.000 0.000 0.008 0.000 0.992
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.6286     0.2326 0.120 0.000 0.388 0.484 0.008
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6650     0.4107 0.348 0.476 0.164 0.000 0.012
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.7096 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0162     0.7073 0.004 0.000 0.000 0.996 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0290     0.7101 0.008 0.000 0.000 0.992 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0162     0.5369 0.000 0.004 0.000 0.000 0.996
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.6269     0.2949 0.588 0.036 0.284 0.000 0.092
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.4482     0.5463 0.612 0.000 0.012 0.376 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.6138     0.3141 0.120 0.000 0.324 0.548 0.008
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0992     0.7013 0.008 0.000 0.024 0.968 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0162     0.7073 0.004 0.000 0.000 0.996 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0162     0.5369 0.000 0.004 0.000 0.000 0.996
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0798     0.7053 0.008 0.000 0.016 0.976 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     5  0.4735     0.4442 0.008 0.008 0.412 0.000 0.572
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.4494     0.5429 0.608 0.000 0.012 0.380 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.5966     0.5843 0.228 0.604 0.164 0.000 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.6286     0.2326 0.120 0.000 0.388 0.484 0.008
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.7727    -0.2356 0.120 0.000 0.396 0.364 0.120
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0510     0.7089 0.000 0.000 0.016 0.984 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     5  0.5199     0.4430 0.004 0.036 0.412 0.000 0.548
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0404     0.5372 0.000 0.012 0.000 0.000 0.988
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.6718    -0.0534 0.500 0.308 0.176 0.000 0.016
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.7251    -0.2926 0.388 0.380 0.200 0.000 0.032
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4256     0.4842 0.564 0.000 0.000 0.436 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.6225     0.0604 0.004 0.000 0.400 0.472 0.124
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0451     0.8334 0.008 0.988 0.000 0.000 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.6257     0.0511 0.004 0.000 0.400 0.468 0.128
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     5  0.5323     0.3772 0.008 0.008 0.448 0.020 0.516
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.4904     0.5564 0.688 0.000 0.072 0.240 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.6261     0.0434 0.004 0.000 0.404 0.464 0.128
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.5919     0.3658 0.592 0.000 0.288 0.112 0.008
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     1  0.6703    -0.2432 0.436 0.388 0.164 0.000 0.012
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.6286     0.2326 0.120 0.000 0.388 0.484 0.008
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0451     0.7103 0.008 0.000 0.004 0.988 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5633    -0.3879 0.056 0.008 0.512 0.000 0.424
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.6225     0.0604 0.004 0.000 0.400 0.472 0.124
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.5913     0.2331 0.636 0.188 0.164 0.000 0.012
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     5  0.5190     0.3122 0.004 0.000 0.468 0.032 0.496
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     5  0.5199     0.4430 0.004 0.036 0.412 0.000 0.548
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3231     0.5608 0.004 0.000 0.196 0.800 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0162     0.7073 0.004 0.000 0.000 0.996 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.7096 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4351     0.5661 0.100 0.000 0.132 0.768 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.6080     0.3960 0.520 0.000 0.136 0.344 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.5990     0.5803 0.232 0.600 0.164 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6650     0.4107 0.348 0.476 0.164 0.000 0.012
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2299     0.8022 0.052 0.912 0.032 0.000 0.004
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0579     0.8288 0.008 0.984 0.008 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3586     0.5701 0.736 0.000 0.000 0.264 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.4659     0.3873 0.500 0.000 0.012 0.488 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0451     0.7103 0.008 0.000 0.004 0.988 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.6296     0.2188 0.120 0.000 0.396 0.476 0.008
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5087     0.3838 0.700 0.068 0.220 0.000 0.012
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.6291     0.2279 0.120 0.000 0.392 0.480 0.008
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3749     0.6022 0.080 0.000 0.104 0.816 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4470     0.5481 0.616 0.000 0.012 0.372 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.5843     0.3059 0.668 0.148 0.164 0.008 0.012
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.6815     0.4639 0.300 0.488 0.196 0.000 0.016
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4494     0.5429 0.608 0.000 0.012 0.380 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0162     0.7073 0.004 0.000 0.000 0.996 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     1  0.6683    -0.1946 0.456 0.368 0.164 0.000 0.012
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.6257     0.0525 0.004 0.000 0.400 0.468 0.128
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.6701     0.1581 0.424 0.000 0.388 0.180 0.008
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.6703     0.1468 0.420 0.000 0.392 0.180 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.1205     0.4909 0.004 0.000 0.040 0.000 0.956
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5152     0.4048 0.672 0.036 0.272 0.004 0.016
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000     0.7096 0.000 0.000 0.000 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.4904     0.5564 0.688 0.000 0.072 0.240 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.5642    -0.4198 0.024 0.000 0.484 0.032 0.460
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.3491     0.5732 0.768 0.000 0.004 0.228 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.4482     0.5463 0.612 0.000 0.012 0.376 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0579     0.8288 0.008 0.984 0.008 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.6286     0.2326 0.120 0.000 0.388 0.484 0.008
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.6461     0.0241 0.540 0.284 0.164 0.000 0.012
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.6476     0.2046 0.460 0.000 0.388 0.144 0.008
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.6701     0.1581 0.424 0.000 0.388 0.180 0.008
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0162     0.7073 0.004 0.000 0.000 0.996 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     5  0.5318     0.4362 0.008 0.036 0.416 0.000 0.540
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4150     0.5379 0.612 0.000 0.000 0.388 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0162     0.7073 0.004 0.000 0.000 0.996 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0290     0.7101 0.008 0.000 0.000 0.992 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.5453     0.3382 0.680 0.108 0.200 0.000 0.012
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.5622    -0.0709 0.076 0.000 0.348 0.004 0.572
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5039     0.5508 0.676 0.000 0.080 0.244 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.3336     0.5740 0.772 0.000 0.000 0.228 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.7096 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0290     0.8362 0.000 0.992 0.000 0.000 0.008
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.6350     0.0208 0.004 0.000 0.400 0.456 0.140
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0404     0.5372 0.000 0.012 0.000 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0146     0.8748 0.996 0.000 0.000 0.004 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.8101     0.1419 0.012 0.436 0.060 0.100 0.180 0.212
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4522     0.2824 0.000 0.000 0.548 0.424 0.020 0.008
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3342     0.7025 0.760 0.000 0.000 0.228 0.000 0.012
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2884     0.6636 0.000 0.000 0.824 0.004 0.164 0.008
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     6  0.4812     0.7411 0.096 0.264 0.000 0.000 0.000 0.640
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.3695     0.6454 0.000 0.004 0.772 0.000 0.184 0.040
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1088     0.8569 0.960 0.000 0.000 0.016 0.000 0.024
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1007     0.8478 0.956 0.000 0.000 0.000 0.000 0.044
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2848     0.6641 0.000 0.000 0.828 0.004 0.160 0.008
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0260     0.9157 0.000 0.992 0.000 0.000 0.008 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     6  0.4789     0.7374 0.092 0.268 0.000 0.000 0.000 0.640
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0146     0.8748 0.996 0.000 0.000 0.004 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.5076    -0.0415 0.000 0.528 0.000 0.020 0.040 0.412
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.1610     0.9281 0.000 0.000 0.084 0.000 0.916 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.3460     0.6598 0.000 0.000 0.796 0.004 0.164 0.036
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.1610     0.9281 0.000 0.000 0.084 0.000 0.916 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.8029     0.6529 0.212 0.000 0.168 0.352 0.028 0.240
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9172 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0146     0.9176 0.000 0.996 0.000 0.000 0.000 0.004
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9172 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.1700     0.9234 0.000 0.000 0.080 0.000 0.916 0.004
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0865     0.3943 0.036 0.000 0.000 0.964 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     6  0.4812     0.7411 0.096 0.264 0.000 0.000 0.000 0.640
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.1610     0.9281 0.000 0.000 0.084 0.000 0.916 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     6  0.5664     0.6613 0.288 0.008 0.040 0.020 0.032 0.612
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0146     0.9176 0.000 0.996 0.000 0.000 0.000 0.004
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0146     0.8748 0.996 0.000 0.000 0.004 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.3159     0.4407 0.032 0.000 0.056 0.856 0.000 0.056
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.8198     0.5935 0.216 0.000 0.224 0.288 0.028 0.244
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.1610     0.9281 0.000 0.000 0.084 0.000 0.916 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.7731     0.6049 0.268 0.000 0.180 0.368 0.012 0.172
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.3691     0.6442 0.000 0.000 0.768 0.004 0.192 0.036
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9172 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0520     0.8725 0.984 0.000 0.000 0.008 0.000 0.008
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     6  0.3659     0.5725 0.000 0.364 0.000 0.000 0.000 0.636
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0865     0.3943 0.036 0.000 0.000 0.964 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.3246     0.2316 0.036 0.000 0.004 0.840 0.108 0.012
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.8182     0.6028 0.208 0.000 0.220 0.296 0.028 0.248
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.3695     0.6454 0.000 0.004 0.772 0.000 0.184 0.040
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.1753     0.9272 0.000 0.000 0.084 0.000 0.912 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     6  0.6136     0.7714 0.180 0.156 0.004 0.020 0.028 0.612
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.5212     0.7720 0.140 0.212 0.004 0.000 0.004 0.640
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.2529     0.7917 0.900 0.000 0.024 0.012 0.020 0.044
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3897     0.5579 0.020 0.000 0.796 0.100 0.000 0.084
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1405     0.8886 0.000 0.948 0.000 0.004 0.024 0.024
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.4127     0.5575 0.020 0.000 0.784 0.108 0.004 0.084
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2982     0.6643 0.000 0.000 0.820 0.004 0.164 0.012
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2312     0.8119 0.876 0.000 0.000 0.112 0.000 0.012
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3946     0.5623 0.020 0.000 0.792 0.100 0.000 0.088
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4141     0.5106 0.596 0.000 0.000 0.388 0.000 0.016
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     6  0.5008     0.7729 0.148 0.212 0.000 0.000 0.000 0.640
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0865     0.3943 0.036 0.000 0.000 0.964 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.8029     0.6547 0.212 0.000 0.168 0.352 0.028 0.240
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4403     0.5448 0.000 0.000 0.708 0.000 0.096 0.196
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4037     0.5521 0.020 0.000 0.792 0.100 0.004 0.084
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0405     0.9158 0.000 0.988 0.000 0.000 0.008 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     6  0.4435     0.6952 0.308 0.040 0.004 0.000 0.000 0.648
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.3453     0.6553 0.000 0.000 0.808 0.040 0.144 0.008
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3695     0.6454 0.000 0.004 0.772 0.000 0.184 0.040
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.7508    -0.3341 0.092 0.000 0.432 0.264 0.028 0.184
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.8052     0.6541 0.224 0.000 0.168 0.344 0.028 0.236
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.6705     0.4792 0.048 0.000 0.236 0.520 0.016 0.180
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3468     0.6759 0.728 0.000 0.000 0.264 0.000 0.008
#> F779417A-9E29-4B27-BEA3-B23273A66021     6  0.3659     0.5725 0.000 0.364 0.000 0.000 0.000 0.636
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     6  0.4812     0.7411 0.096 0.264 0.000 0.000 0.000 0.640
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4007     0.6383 0.000 0.760 0.000 0.020 0.036 0.184
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1124     0.8920 0.000 0.956 0.000 0.000 0.008 0.036
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1204     0.8365 0.944 0.000 0.000 0.000 0.000 0.056
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0146     0.9156 0.000 0.996 0.000 0.000 0.000 0.004
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1572     0.8393 0.936 0.000 0.000 0.028 0.000 0.036
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.8011     0.6534 0.212 0.000 0.168 0.360 0.028 0.232
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.1382     0.3804 0.036 0.000 0.000 0.948 0.008 0.008
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     6  0.5697     0.5559 0.380 0.016 0.012 0.024 0.032 0.536
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.1155     0.3912 0.036 0.000 0.004 0.956 0.000 0.004
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.7090     0.5881 0.076 0.000 0.160 0.508 0.028 0.228
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0146     0.8748 0.996 0.000 0.000 0.004 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0405     0.9158 0.000 0.988 0.000 0.000 0.008 0.004
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     6  0.4317     0.6725 0.328 0.028 0.004 0.000 0.000 0.640
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     6  0.6375     0.5425 0.068 0.324 0.012 0.020 0.040 0.536
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0520     0.8725 0.984 0.000 0.000 0.008 0.000 0.008
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.8042     0.6523 0.220 0.000 0.168 0.348 0.028 0.236
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     6  0.5147     0.7790 0.180 0.176 0.004 0.000 0.000 0.640
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0146     0.9161 0.000 0.996 0.000 0.000 0.000 0.004
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.3946     0.5623 0.020 0.000 0.792 0.100 0.000 0.088
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.4266    -0.1363 0.348 0.000 0.000 0.628 0.008 0.016
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0146     0.9176 0.000 0.996 0.000 0.000 0.000 0.004
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.4303    -0.1121 0.332 0.000 0.000 0.640 0.012 0.016
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.1863     0.9042 0.000 0.000 0.060 0.016 0.920 0.004
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     6  0.6469     0.3656 0.384 0.008 0.000 0.136 0.036 0.436
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.8171     0.6120 0.212 0.000 0.208 0.300 0.028 0.252
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2312     0.8119 0.876 0.000 0.000 0.112 0.000 0.012
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0146     0.9176 0.000 0.996 0.000 0.000 0.000 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0146     0.9176 0.000 0.996 0.000 0.000 0.000 0.004
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.3875     0.6375 0.000 0.000 0.780 0.068 0.144 0.008
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2191     0.7615 0.876 0.000 0.004 0.000 0.000 0.120
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0260     0.8745 0.992 0.000 0.000 0.008 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1411     0.8704 0.000 0.936 0.000 0.000 0.004 0.060
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0865     0.3943 0.036 0.000 0.000 0.964 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     6  0.4905     0.7566 0.240 0.104 0.004 0.000 0.000 0.652
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.4303    -0.1650 0.360 0.000 0.000 0.616 0.008 0.016
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.4210    -0.1117 0.332 0.000 0.000 0.644 0.008 0.016
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3562     0.6559 0.000 0.004 0.788 0.000 0.168 0.040
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9172 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0363     0.8714 0.988 0.000 0.000 0.012 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.8033     0.6558 0.220 0.000 0.168 0.352 0.028 0.232
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     6  0.5187     0.6338 0.336 0.016 0.000 0.020 0.032 0.596
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.4589     0.5032 0.000 0.000 0.028 0.384 0.580 0.008
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2389     0.8057 0.864 0.000 0.000 0.128 0.000 0.008
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1957     0.7742 0.888 0.000 0.000 0.000 0.000 0.112
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.8042     0.6563 0.220 0.000 0.168 0.348 0.028 0.236
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0146     0.9176 0.000 0.996 0.000 0.000 0.000 0.004
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3560     0.5759 0.004 0.000 0.808 0.104 0.000 0.084
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.1753     0.9272 0.000 0.000 0.084 0.000 0.912 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.979       0.991         0.5019 0.499   0.499
#> 3 3 0.557           0.773       0.823         0.3032 0.807   0.632
#> 4 4 0.801           0.781       0.871         0.1374 0.857   0.622
#> 5 5 0.751           0.545       0.721         0.0435 0.878   0.636
#> 6 6 0.823           0.694       0.800         0.0466 0.839   0.491

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1   0.000      0.987 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2   0.000      0.996 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1   0.000      0.987 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1   0.000      0.987 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2   0.224      0.959 0.036 0.964
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2   0.000      0.996 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2   0.000      0.996 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1   0.000      0.987 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1   0.000      0.987 1.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1   0.000      0.987 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2   0.000      0.996 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2   0.000      0.996 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1   0.000      0.987 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2   0.000      0.996 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2   0.000      0.996 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2   0.000      0.996 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     2   0.000      0.996 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1   0.000      0.987 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2   0.000      0.996 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2   0.000      0.996 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1   0.000      0.987 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2   0.000      0.996 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2   0.000      0.996 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1   0.000      0.987 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2   0.000      0.996 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1   0.000      0.987 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1   0.000      0.987 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1   0.000      0.987 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2   0.000      0.996 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2   0.000      0.996 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2   0.000      0.996 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1   0.000      0.987 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1   0.000      0.987 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1   0.000      0.987 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1   0.000      0.987 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2   0.000      0.996 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1   0.000      0.987 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2   0.000      0.996 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2   0.000      0.996 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1   0.000      0.987 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2   0.000      0.996 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1   0.000      0.987 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1   0.000      0.987 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1   0.000      0.987 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2   0.000      0.996 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2   0.000      0.996 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2   0.000      0.996 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2   0.000      0.996 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1   0.000      0.987 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1   0.000      0.987 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2   0.000      0.996 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1   0.000      0.987 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2   0.000      0.996 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1   0.000      0.987 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1   0.730      0.742 0.796 0.204
#> B5474EEB-D585-4668-959C-38F240F55BC2     1   0.000      0.987 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2   0.000      0.996 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1   0.000      0.987 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1   0.000      0.987 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2   0.000      0.996 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1   0.000      0.987 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2   0.000      0.996 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2   0.000      0.996 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1   0.000      0.987 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2   0.000      0.996 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1   0.000      0.987 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1   0.000      0.987 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1   0.000      0.987 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1   0.000      0.987 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1   0.000      0.987 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2   0.000      0.996 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2   0.000      0.996 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2   0.000      0.996 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2   0.000      0.996 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1   0.000      0.987 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2   0.000      0.996 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1   0.000      0.987 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1   0.000      0.987 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1   0.000      0.987 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2   0.000      0.996 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1   0.000      0.987 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1   0.000      0.987 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1   0.000      0.987 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2   0.000      0.996 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2   0.000      0.996 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2   0.000      0.996 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1   0.000      0.987 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1   0.000      0.987 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2   0.000      0.996 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2   0.000      0.996 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1   0.000      0.987 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1   0.000      0.987 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2   0.000      0.996 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1   0.000      0.987 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2   0.722      0.745 0.200 0.800
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2   0.000      0.996 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1   0.000      0.987 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1   0.000      0.987 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2   0.000      0.996 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2   0.000      0.996 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1   0.981      0.279 0.580 0.420
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1   0.000      0.987 1.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1   0.000      0.987 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2   0.000      0.996 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1   0.000      0.987 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2   0.000      0.996 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1   0.000      0.987 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1   0.000      0.987 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1   0.000      0.987 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2   0.000      0.996 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2   0.000      0.996 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1   0.000      0.987 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1   0.000      0.987 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1   0.000      0.987 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2   0.000      0.996 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1   0.706      0.761 0.808 0.192
#> 12F54761-4F68-4181-8421-88EA858902FC     1   0.000      0.987 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1   0.000      0.987 1.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1   0.000      0.987 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2   0.000      0.996 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1   0.000      0.987 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2   0.000      0.996 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.5634      0.787 0.800 0.144 0.056
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5835      0.663 0.000 0.660 0.340
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4555      0.663 0.200 0.000 0.800
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.8505      0.715 0.600 0.144 0.256
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.8802      0.684 0.200 0.216 0.584
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.825 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.5327      0.573 0.000 0.272 0.728
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.5634      0.787 0.800 0.144 0.056
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.5634      0.787 0.800 0.144 0.056
#> 806616FE-1855-4284-9265-42842104CB21     3  0.4555      0.663 0.200 0.000 0.800
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3752      0.908 0.000 0.856 0.144
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.825 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.5634      0.787 0.800 0.144 0.056
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.3752      0.908 0.000 0.856 0.144
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.5743      0.677 0.044 0.172 0.784
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.6678      0.642 0.060 0.216 0.724
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.2229      0.735 0.044 0.012 0.944
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.814 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.3752      0.908 0.000 0.856 0.144
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3752      0.908 0.000 0.856 0.144
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.814 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.3752      0.908 0.000 0.856 0.144
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.6423      0.628 0.044 0.228 0.728
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4750      0.735 0.784 0.000 0.216
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.825 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.814 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.814 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.814 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.2229      0.735 0.044 0.012 0.944
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.3752      0.908 0.000 0.856 0.144
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.3752      0.908 0.000 0.856 0.144
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.5634      0.787 0.800 0.144 0.056
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4750      0.735 0.784 0.000 0.216
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.814 1.000 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.814 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.2918      0.735 0.044 0.032 0.924
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4702      0.738 0.788 0.000 0.212
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1964      0.710 0.000 0.056 0.944
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.3752      0.908 0.000 0.856 0.144
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.5634      0.787 0.800 0.144 0.056
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3752      0.908 0.000 0.856 0.144
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.4750      0.735 0.784 0.000 0.216
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.4750      0.735 0.784 0.000 0.216
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.814 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5327      0.573 0.000 0.272 0.728
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.5327      0.573 0.000 0.272 0.728
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.3752      0.908 0.000 0.856 0.144
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3752      0.908 0.000 0.856 0.144
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.5634      0.787 0.800 0.144 0.056
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.6168      0.583 0.412 0.000 0.588
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3752      0.908 0.000 0.856 0.144
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.6126      0.593 0.400 0.000 0.600
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2550      0.717 0.012 0.056 0.932
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.8505      0.715 0.600 0.144 0.256
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.6180      0.579 0.416 0.000 0.584
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.8623      0.704 0.584 0.144 0.272
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0592      0.815 0.000 0.988 0.012
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4750      0.735 0.784 0.000 0.216
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.814 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.5431      0.722 0.000 0.716 0.284
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.6180      0.579 0.416 0.000 0.584
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3752      0.908 0.000 0.856 0.144
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0592      0.815 0.000 0.988 0.012
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4555      0.663 0.200 0.000 0.800
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.5327      0.573 0.000 0.272 0.728
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.814 1.000 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.814 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.814 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.4750      0.735 0.784 0.000 0.216
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5138      0.757 0.748 0.000 0.252
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3752      0.908 0.000 0.856 0.144
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.825 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3752      0.908 0.000 0.856 0.144
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.3752      0.908 0.000 0.856 0.144
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.5634      0.787 0.800 0.144 0.056
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.3752      0.908 0.000 0.856 0.144
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.5634      0.787 0.800 0.144 0.056
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.814 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.4750      0.735 0.784 0.000 0.216
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4605      0.577 0.000 0.796 0.204
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.4750      0.735 0.784 0.000 0.216
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.814 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.5634      0.787 0.800 0.144 0.056
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3752      0.908 0.000 0.856 0.144
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1964      0.768 0.000 0.944 0.056
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3752      0.908 0.000 0.856 0.144
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.5634      0.787 0.800 0.144 0.056
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.814 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0592      0.815 0.000 0.988 0.012
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3752      0.908 0.000 0.856 0.144
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.6192      0.573 0.420 0.000 0.580
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.8571      0.706 0.588 0.140 0.272
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.3752      0.908 0.000 0.856 0.144
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5216      0.743 0.740 0.000 0.260
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.2229      0.735 0.044 0.012 0.944
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4750      0.551 0.000 0.784 0.216
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.814 1.000 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.8505      0.715 0.600 0.144 0.256
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.3752      0.908 0.000 0.856 0.144
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.3752      0.908 0.000 0.856 0.144
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4555      0.663 0.200 0.000 0.800
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.5634      0.787 0.800 0.144 0.056
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.5634      0.787 0.800 0.144 0.056
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.3752      0.908 0.000 0.856 0.144
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4750      0.735 0.784 0.000 0.216
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0592      0.815 0.000 0.988 0.012
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.8623      0.704 0.584 0.144 0.272
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5327      0.743 0.728 0.000 0.272
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.814 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5327      0.573 0.000 0.272 0.728
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.3752      0.908 0.000 0.856 0.144
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.5634      0.787 0.800 0.144 0.056
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.814 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.814 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0592      0.815 0.000 0.988 0.012
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.2229      0.735 0.044 0.012 0.944
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.8505      0.715 0.600 0.144 0.256
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.5634      0.787 0.800 0.144 0.056
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.814 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.3752      0.908 0.000 0.856 0.144
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.6126      0.593 0.400 0.000 0.600
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.5327      0.573 0.000 0.272 0.728

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0188      0.755 0.996 0.000 0.000 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4801      0.720 0.000 0.764 0.048 0.188
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4817      0.540 0.000 0.000 0.612 0.388
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4804      0.659 0.616 0.000 0.000 0.384
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0336      0.909 0.000 0.000 0.992 0.008
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0188      0.913 0.000 0.004 0.996 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0336      0.748 0.992 0.000 0.000 0.008
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0336      0.748 0.992 0.000 0.000 0.008
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0336      0.909 0.000 0.000 0.992 0.008
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0188      0.755 0.996 0.000 0.000 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0188      0.914 0.000 0.000 0.996 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0188      0.913 0.000 0.004 0.996 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0188      0.914 0.000 0.000 0.996 0.004
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0376      0.913 0.000 0.004 0.992 0.004
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0188      0.914 0.000 0.000 0.996 0.004
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.754 1.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0188      0.914 0.000 0.000 0.996 0.004
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0188      0.590 0.004 0.000 0.000 0.996
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.913 0.000 0.000 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0188      0.755 0.996 0.000 0.000 0.004
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.2611      0.500 0.008 0.000 0.096 0.896
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0188      0.913 0.000 0.004 0.996 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0376      0.913 0.000 0.004 0.992 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0336      0.748 0.992 0.000 0.000 0.008
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4978      0.472 0.004 0.000 0.384 0.612
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4978      0.472 0.004 0.000 0.384 0.612
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.913 0.000 0.000 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.4804      0.659 0.616 0.000 0.000 0.384
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.4978      0.472 0.004 0.000 0.384 0.612
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4978      0.657 0.612 0.000 0.004 0.384
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.4961      0.211 0.000 0.552 0.448 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.4978      0.472 0.004 0.000 0.384 0.612
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.3356      0.786 0.000 0.000 0.824 0.176
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0188      0.913 0.000 0.004 0.996 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.4978      0.721 0.384 0.000 0.004 0.612
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0188      0.590 0.000 0.000 0.004 0.996
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4804      0.659 0.616 0.000 0.000 0.384
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.754 1.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0188      0.755 0.996 0.000 0.000 0.004
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.2944      0.834 0.000 0.868 0.004 0.128
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.2011      0.619 0.080 0.000 0.000 0.920
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0188      0.755 0.996 0.000 0.000 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3610      0.730 0.200 0.800 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.754 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.4978      0.472 0.004 0.000 0.384 0.612
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.4978      0.657 0.612 0.000 0.004 0.384
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.4978      0.657 0.612 0.000 0.004 0.384
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3649      0.761 0.000 0.000 0.796 0.204
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5887      0.447 0.036 0.600 0.004 0.360
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.4804      0.659 0.616 0.000 0.000 0.384
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4500      0.636 0.000 0.000 0.684 0.316
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0336      0.748 0.992 0.000 0.000 0.008
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0188      0.755 0.996 0.000 0.000 0.004
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0657      0.584 0.012 0.000 0.004 0.984
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4978      0.657 0.612 0.000 0.004 0.384
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4978      0.657 0.612 0.000 0.004 0.384
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0188      0.913 0.000 0.004 0.996 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0336      0.748 0.992 0.000 0.000 0.008
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.4804      0.547 0.000 0.000 0.616 0.384
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4804      0.659 0.616 0.000 0.000 0.384
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0188      0.751 0.996 0.000 0.000 0.004
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.4817      0.722 0.388 0.000 0.000 0.612
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0188      0.960 0.000 0.996 0.004 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4978      0.472 0.004 0.000 0.384 0.612
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0376      0.913 0.000 0.004 0.992 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2 p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.5524     0.4763 0.276 0.628 NA 0.000 0.092
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.7853    -0.1983 0.448 0.000 NA 0.260 0.112
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3143     0.5334 0.796 0.000 NA 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     4  0.6439    -0.2406 0.000 0.000 NA 0.448 0.372
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     4  0.6450    -0.2512 0.000 0.000 NA 0.436 0.384
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     4  0.6439    -0.2406 0.000 0.000 NA 0.448 0.372
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0162     0.9196 0.000 0.996 NA 0.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     4  0.6439    -0.2406 0.000 0.000 NA 0.448 0.372
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0451     0.9188 0.000 0.988 NA 0.000 0.004
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.6191     0.4266 0.204 0.000 NA 0.552 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.6453    -0.2555 0.000 0.000 NA 0.432 0.388
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1965     0.8971 0.000 0.904 NA 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.6849    -0.2234 0.464 0.000 NA 0.096 0.388
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4249     0.5613 0.000 0.000 NA 0.568 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     4  0.6450    -0.2512 0.000 0.000 NA 0.436 0.384
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0000     0.4372 0.000 0.000 NA 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0000     0.4372 0.000 0.000 NA 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.6439    -0.2406 0.000 0.000 NA 0.448 0.372
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3452     0.5407 0.756 0.000 NA 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.0162     0.4340 0.000 0.000 NA 0.996 0.004
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0162     0.4600 0.996 0.000 NA 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.4781     0.5547 0.020 0.000 NA 0.552 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.7986     0.0524 0.000 0.452 NA 0.148 0.204
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.0000     0.4372 0.000 0.000 NA 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.7985    -0.1887 0.236 0.000 NA 0.444 0.140
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     4  0.6453    -0.2555 0.000 0.000 NA 0.432 0.388
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3424     0.5219 0.000 0.000 NA 0.760 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.6569     0.3297 0.292 0.000 NA 0.468 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3003     0.5284 0.812 0.000 NA 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1908     0.8984 0.000 0.908 NA 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0162     0.9196 0.000 0.996 NA 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0404     0.9190 0.000 0.988 NA 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0162     0.9195 0.000 0.996 NA 0.000 0.004
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.4781     0.5547 0.020 0.000 NA 0.552 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.3731     0.7617 0.160 0.800 NA 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.6191     0.4266 0.204 0.000 NA 0.552 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.5074     0.6821 0.168 0.700 NA 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0162     0.9196 0.000 0.996 NA 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.1041     0.4526 0.000 0.000 NA 0.964 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.4581 1.000 0.000 NA 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0794     0.4471 0.972 0.000 NA 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0404     0.9340 0.012 0.000 NA 0.000 0.988
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4497     0.3672 0.424 0.568 NA 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3452     0.5407 0.756 0.000 NA 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.8107    -0.2462 0.368 0.000 NA 0.324 0.128
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4302     0.5822 0.520 0.000 NA 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0609     0.9174 0.000 0.980 NA 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.6586    -0.1288 0.464 0.000 NA 0.292 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2127     0.8929 0.000 0.892 NA 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.4581 1.000 0.000 NA 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0162     0.4570 0.996 0.000 NA 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     4  0.6443    -0.2438 0.000 0.000 NA 0.444 0.376
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4291     0.5890 0.536 0.000 NA 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.1851     0.9004 0.000 0.912 NA 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.4126     0.4841 0.380 0.000 NA 0.000 0.620
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3274     0.5366 0.780 0.000 NA 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4302     0.5822 0.520 0.000 NA 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.4273     0.5623 0.000 0.000 NA 0.552 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9208 0.000 1.000 NA 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.0162     0.4340 0.000 0.000 NA 0.996 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000     0.9438 0.000 0.000 NA 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3930     0.4899 0.000 0.764 0.000 0.000 0.092 0.144
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5956     0.2839 0.056 0.000 0.528 0.000 0.080 0.336
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4020     0.6233 0.692 0.000 0.000 0.000 0.032 0.276
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0146     0.7229 0.000 0.004 0.996 0.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     6  0.3851     0.9340 0.000 0.460 0.000 0.000 0.000 0.540
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0291     0.7217 0.000 0.004 0.992 0.000 0.004 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0146     0.7224 0.000 0.000 0.996 0.004 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0146     0.8362 0.000 0.996 0.000 0.000 0.004 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     6  0.3851     0.9340 0.000 0.460 0.000 0.000 0.000 0.540
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0260     0.8342 0.000 0.992 0.000 0.000 0.008 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0146     0.7229 0.000 0.004 0.996 0.000 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0146     0.8014 0.000 0.000 0.000 0.996 0.000 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0146     0.8362 0.000 0.996 0.000 0.000 0.004 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.6282     0.4460 0.064 0.000 0.004 0.452 0.080 0.400
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     6  0.3851     0.9340 0.000 0.460 0.000 0.000 0.000 0.540
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1866     0.7312 0.000 0.908 0.000 0.000 0.008 0.084
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.6282     0.4460 0.064 0.000 0.004 0.452 0.080 0.400
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0260     0.7992 0.000 0.000 0.000 0.992 0.000 0.008
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2638     0.7416 0.060 0.000 0.000 0.884 0.016 0.040
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0405     0.7197 0.000 0.004 0.988 0.000 0.008 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1686     0.7818 0.924 0.000 0.000 0.064 0.000 0.012
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     6  0.3868     0.8590 0.000 0.496 0.000 0.000 0.000 0.504
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.6282     0.4460 0.064 0.000 0.004 0.452 0.080 0.400
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.5785     0.2873 0.064 0.000 0.004 0.036 0.464 0.432
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0260     0.7992 0.000 0.000 0.000 0.992 0.000 0.008
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0291     0.7217 0.000 0.004 0.992 0.000 0.004 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0291     0.8348 0.000 0.992 0.000 0.000 0.004 0.004
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     6  0.3851     0.9340 0.000 0.460 0.000 0.000 0.000 0.540
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3819     0.5543 0.000 0.000 0.652 0.340 0.000 0.008
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0260     0.8342 0.000 0.992 0.000 0.000 0.008 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3833     0.5475 0.000 0.000 0.648 0.344 0.000 0.008
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0146     0.7229 0.000 0.004 0.996 0.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2513     0.7118 0.852 0.000 0.000 0.000 0.008 0.140
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3804     0.5597 0.000 0.000 0.656 0.336 0.000 0.008
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.5188     0.4687 0.496 0.000 0.004 0.000 0.076 0.424
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     6  0.4238     0.9315 0.016 0.444 0.000 0.000 0.000 0.540
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.6282     0.4460 0.064 0.000 0.004 0.452 0.080 0.400
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0146     0.8022 0.004 0.000 0.000 0.996 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.5147     0.0368 0.000 0.316 0.576 0.000 0.000 0.108
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.3819     0.5543 0.000 0.000 0.652 0.340 0.000 0.008
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     6  0.4238     0.9315 0.016 0.444 0.000 0.000 0.000 0.540
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.2448     0.6713 0.000 0.000 0.884 0.000 0.064 0.052
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0405     0.7197 0.000 0.004 0.988 0.000 0.008 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1757     0.7327 0.000 0.000 0.076 0.916 0.000 0.008
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.5748     0.5114 0.064 0.000 0.004 0.552 0.044 0.336
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4803     0.5236 0.556 0.000 0.000 0.008 0.040 0.396
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3817    -0.6914 0.000 0.568 0.000 0.000 0.000 0.432
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     6  0.3851     0.9340 0.000 0.460 0.000 0.000 0.000 0.540
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0405     0.8307 0.000 0.988 0.000 0.000 0.008 0.004
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.2491     0.5321 0.000 0.836 0.000 0.000 0.000 0.164
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1500     0.7783 0.936 0.000 0.000 0.052 0.000 0.012
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0865     0.7940 0.000 0.964 0.000 0.000 0.000 0.036
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1779     0.7809 0.920 0.000 0.000 0.064 0.000 0.016
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0260     0.8005 0.008 0.000 0.000 0.992 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.6288     0.4307 0.064 0.000 0.004 0.440 0.080 0.412
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.3634     0.3202 0.000 0.696 0.000 0.000 0.008 0.296
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.6282     0.4460 0.064 0.000 0.004 0.452 0.080 0.400
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1972     0.7599 0.056 0.000 0.000 0.916 0.024 0.004
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0146     0.8362 0.000 0.996 0.000 0.000 0.004 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     6  0.5523     0.6559 0.164 0.296 0.000 0.000 0.000 0.540
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0405     0.8307 0.000 0.988 0.000 0.000 0.008 0.004
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1686     0.7818 0.924 0.000 0.000 0.064 0.000 0.012
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0146     0.8014 0.000 0.000 0.000 0.996 0.000 0.004
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     6  0.4238     0.9315 0.016 0.444 0.000 0.000 0.000 0.540
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0260     0.8342 0.000 0.992 0.000 0.000 0.008 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4039     0.3858 0.000 0.000 0.568 0.424 0.000 0.008
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5370     0.4414 0.464 0.000 0.004 0.004 0.080 0.448
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.5631     0.4278 0.452 0.000 0.004 0.016 0.080 0.448
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.1610     0.8761 0.000 0.000 0.084 0.000 0.916 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5779     0.1725 0.044 0.540 0.004 0.000 0.064 0.348
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0260     0.7992 0.000 0.000 0.000 0.992 0.000 0.008
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2513     0.7118 0.852 0.000 0.000 0.000 0.008 0.140
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4954     0.4839 0.032 0.000 0.688 0.000 0.076 0.204
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2197     0.7533 0.900 0.000 0.000 0.044 0.000 0.056
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1686     0.7818 0.924 0.000 0.000 0.064 0.000 0.012
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.2762     0.4309 0.000 0.804 0.000 0.000 0.000 0.196
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.6282     0.4460 0.064 0.000 0.004 0.452 0.080 0.400
#> B3561356-5A80-4C79-B23A-D518425565FE     6  0.4238     0.9315 0.016 0.444 0.000 0.000 0.000 0.540
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5370     0.4414 0.464 0.000 0.004 0.004 0.080 0.448
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5468     0.4372 0.460 0.000 0.004 0.008 0.080 0.448
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0146     0.7229 0.000 0.004 0.996 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1327     0.7824 0.936 0.000 0.000 0.064 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.3874    -0.4021 0.000 0.636 0.000 0.000 0.008 0.356
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.3770     0.5903 0.032 0.000 0.004 0.000 0.752 0.212
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3695     0.6484 0.732 0.000 0.000 0.000 0.024 0.244
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2258     0.7504 0.896 0.000 0.000 0.044 0.000 0.060
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.8032 0.000 0.000 0.000 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.8369 0.000 1.000 0.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3774     0.5664 0.000 0.000 0.664 0.328 0.000 0.008
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.1663     0.8790 0.000 0.000 0.088 0.000 0.912 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.848           0.945       0.970         0.4726 0.519   0.519
#> 3 3 0.508           0.650       0.788         0.3672 0.690   0.470
#> 4 4 0.651           0.643       0.817         0.1323 0.821   0.536
#> 5 5 0.692           0.572       0.746         0.0673 0.873   0.583
#> 6 6 0.846           0.719       0.831         0.0442 0.883   0.557

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1184     0.9737 0.984 0.016
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.4939     0.8812 0.108 0.892
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000     0.9839 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9839 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.7528     0.7985 0.216 0.784
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4562     0.9096 0.096 0.904
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000     0.9451 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9839 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1184     0.9737 0.984 0.016
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000     0.9839 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9451 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4431     0.9117 0.092 0.908
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1184     0.9737 0.984 0.016
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000     0.9451 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.0672     0.9782 0.992 0.008
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.6887     0.8399 0.184 0.816
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.0000     0.9839 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.9839 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9451 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9451 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.9839 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9451 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.0000     0.9839 1.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.9839 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4562     0.9096 0.096 0.904
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.9839 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.9839 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000     0.9839 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.3584     0.9163 0.932 0.068
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.8144     0.6367 0.748 0.252
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9451 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1184     0.9737 0.984 0.016
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000     0.9839 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000     0.9839 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.9839 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.0000     0.9839 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000     0.9839 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.1184     0.9398 0.016 0.984
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9451 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9839 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9451 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.9839 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.9839 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000     0.9839 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.1184     0.9398 0.016 0.984
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.3584     0.9209 0.068 0.932
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.4939     0.9023 0.108 0.892
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6343     0.8612 0.160 0.840
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000     0.9839 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000     0.9839 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.9451 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000     0.9839 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.6343     0.8651 0.160 0.840
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1184     0.9737 0.984 0.016
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.3431     0.9193 0.936 0.064
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1184     0.9737 0.984 0.016
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4939     0.9023 0.108 0.892
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.9839 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000     0.9839 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0672     0.9437 0.008 0.992
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000     0.9839 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9451 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.6343     0.8612 0.160 0.840
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000     0.9839 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000     0.9451 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000     0.9839 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000     0.9839 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.9839 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000     0.9839 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000     0.9839 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9451 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4562     0.9096 0.096 0.904
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.9451 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9451 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1184     0.9737 0.984 0.016
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9451 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9839 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000     0.9839 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.9839 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.7139     0.8155 0.196 0.804
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     0.9839 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000     0.9839 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1184     0.9737 0.984 0.016
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9451 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.6973     0.8296 0.188 0.812
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000     0.9451 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9839 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000     0.9839 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6343     0.8612 0.160 0.840
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.9451 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000     0.9839 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.9839 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9451 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     0.9839 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0376     0.9812 0.996 0.004
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.9996    -0.0477 0.512 0.488
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000     0.9839 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1184     0.9737 0.984 0.016
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9451 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9451 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000     0.9839 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1184     0.9737 0.984 0.016
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0938     0.9764 0.988 0.012
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9451 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.9839 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6343     0.8612 0.160 0.840
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.9839 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.9839 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.9839 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.1184     0.9398 0.016 0.984
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9451 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1184     0.9737 0.984 0.016
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.9839 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.9839 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4815     0.9049 0.104 0.896
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     0.9839 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9839 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1184     0.9737 0.984 0.016
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.9839 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9451 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000     0.9839 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.1633     0.9391 0.024 0.976

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.4452     0.6778 0.808 0.000 0.192
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3551     0.7512 0.132 0.868 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4452     0.6665 0.192 0.000 0.808
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.5138     0.6039 0.748 0.000 0.252
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.9276     0.5007 0.264 0.212 0.524
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     1  0.6192     0.4085 0.580 0.420 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.4452     0.7465 0.192 0.808 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.4452     0.6778 0.808 0.000 0.192
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.4452     0.6778 0.808 0.000 0.192
#> 806616FE-1855-4284-9265-42842104CB21     3  0.5254     0.6533 0.264 0.000 0.736
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.8759 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     1  0.6215     0.3917 0.572 0.428 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4452     0.6778 0.808 0.000 0.192
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2066     0.8236 0.060 0.940 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.6299     0.6700 0.476 0.000 0.524
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.9276     0.5007 0.264 0.212 0.524
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.6192     0.6921 0.420 0.000 0.580
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.5138     0.7182 0.252 0.000 0.748
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.8759 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.8759 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.4750     0.7377 0.216 0.000 0.784
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.8759 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5529     0.6974 0.296 0.000 0.704
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.0000     0.7334 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     1  0.6168     0.4239 0.588 0.412 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.4702     0.7393 0.212 0.000 0.788
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.4702     0.7393 0.212 0.000 0.788
#> 4496EE84-2C36-413B-A328-A5B598A6C387     3  0.4702     0.7393 0.212 0.000 0.788
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.8515    -0.5984 0.476 0.092 0.432
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.5667     0.6671 0.800 0.140 0.060
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.8759 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.4452     0.6778 0.808 0.000 0.192
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.2448     0.7223 0.076 0.000 0.924
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.5948     0.7014 0.360 0.000 0.640
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.4702     0.7393 0.212 0.000 0.788
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.6192     0.6921 0.420 0.000 0.580
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.5431     0.6930 0.284 0.000 0.716
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.8758     0.5113 0.192 0.588 0.220
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.8759 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.4452     0.6778 0.808 0.000 0.192
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.6302    -0.1927 0.480 0.520 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.0000     0.7334 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.0000     0.7334 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.6252     0.6916 0.444 0.000 0.556
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.4452     0.7465 0.192 0.808 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.7778     0.5835 0.264 0.644 0.092
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.6168     0.4239 0.588 0.412 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.6168     0.4239 0.588 0.412 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.4452     0.6778 0.808 0.000 0.192
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.6299     0.6700 0.476 0.000 0.524
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8759 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.6299     0.6700 0.476 0.000 0.524
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.9340     0.4891 0.264 0.220 0.516
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.4452     0.6778 0.808 0.000 0.192
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.7112    -0.5388 0.552 0.024 0.424
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4842     0.6412 0.776 0.000 0.224
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     1  0.6168     0.4239 0.588 0.412 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.0000     0.7334 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.4555     0.7421 0.200 0.000 0.800
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.6180     0.4167 0.584 0.416 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.6299     0.6700 0.476 0.000 0.524
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.8759 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.6168     0.4239 0.588 0.412 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4452     0.6665 0.192 0.000 0.808
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.4452     0.7465 0.192 0.808 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.6299     0.6700 0.476 0.000 0.524
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.5138     0.7182 0.252 0.000 0.748
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.4702     0.7393 0.212 0.000 0.788
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4452     0.6665 0.192 0.000 0.808
#> 352471DC-A881-4EA8-B646-EB1200291893     3  0.6079     0.4693 0.388 0.000 0.612
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.6180     0.0271 0.416 0.584 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     1  0.6180     0.4165 0.584 0.416 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.8759 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.8759 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.4452     0.6778 0.808 0.000 0.192
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.8759 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.4504     0.6734 0.804 0.000 0.196
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.2261     0.7460 0.068 0.000 0.932
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.0000     0.7334 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5678     0.5325 0.684 0.316 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.0237     0.7333 0.004 0.000 0.996
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.0000     0.7334 0.000 0.000 1.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4452     0.6778 0.808 0.000 0.192
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.8759 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.6140     0.4316 0.596 0.404 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2356     0.8121 0.072 0.928 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4452     0.6778 0.808 0.000 0.192
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.5178     0.7160 0.256 0.000 0.744
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     1  0.6168     0.4239 0.588 0.412 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.8759 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.1860     0.4945 0.948 0.000 0.052
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     3  0.4504     0.5218 0.196 0.000 0.804
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.8759 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     3  0.0000     0.7334 0.000 0.000 1.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3412     0.7180 0.124 0.000 0.876
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5667     0.6671 0.800 0.140 0.060
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.5988     0.7004 0.368 0.000 0.632
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.4452     0.6778 0.808 0.000 0.192
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.8759 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.8759 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4842     0.6623 0.224 0.000 0.776
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.4452     0.6778 0.808 0.000 0.192
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.4452     0.6778 0.808 0.000 0.192
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.8759 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.0000     0.7334 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.6168     0.4239 0.588 0.412 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     3  0.5098     0.3776 0.248 0.000 0.752
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     3  0.0747     0.7267 0.016 0.000 0.984
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.4702     0.7393 0.212 0.000 0.788
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.7040     0.6416 0.252 0.688 0.060
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.8759 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.4452     0.6778 0.808 0.000 0.192
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.4702     0.7393 0.212 0.000 0.788
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.4702     0.7393 0.212 0.000 0.788
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.6168     0.4239 0.588 0.412 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000     0.7334 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4452     0.6778 0.808 0.000 0.192
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.4452     0.6778 0.808 0.000 0.192
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.4702     0.7393 0.212 0.000 0.788
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.8759 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.6299     0.6700 0.476 0.000 0.524
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.4291     0.7609 0.180 0.820 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.2593     0.8293 0.080 0.904 0.016 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.4967     0.5355 0.000 0.000 0.548 0.452
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.3837     0.7700 0.000 0.000 0.776 0.224
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.3837     0.6844 0.000 0.224 0.776 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 806616FE-1855-4284-9265-42842104CB21     3  0.3837     0.7700 0.000 0.000 0.776 0.224
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     1  0.5444     0.3327 0.560 0.424 0.016 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.1059     0.9028 0.012 0.972 0.016 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0592     0.7257 0.000 0.000 0.984 0.016
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.3837     0.7700 0.000 0.000 0.776 0.224
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.3852     0.5983 0.180 0.000 0.808 0.012
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.4040     0.4945 0.752 0.000 0.248 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.4898     0.6464 0.416 0.000 0.000 0.584
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.1022     0.6746 0.032 0.000 0.000 0.968
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1059     0.7246 0.016 0.000 0.972 0.012
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.2342     0.6984 0.912 0.080 0.008 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.6042    -0.2257 0.580 0.000 0.052 0.368
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4103     0.5147 0.256 0.000 0.744 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.4948     0.6188 0.440 0.000 0.000 0.560
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.2149     0.7304 0.000 0.088 0.912 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.5512    -0.1883 0.492 0.492 0.016 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.5212     0.0391 0.008 0.000 0.420 0.572
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.3837     0.6844 0.000 0.224 0.776 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0817     0.7230 0.000 0.024 0.976 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3837     0.7700 0.000 0.000 0.776 0.224
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1059     0.9028 0.012 0.972 0.016 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3837     0.7700 0.000 0.000 0.776 0.224
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.3688     0.7692 0.000 0.000 0.792 0.208
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.4253     0.7654 0.016 0.000 0.776 0.208
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.3610     0.6931 0.200 0.000 0.000 0.800
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.7697     0.1593 0.220 0.404 0.376 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4086     0.7685 0.008 0.000 0.776 0.216
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4072     0.7581 0.000 0.000 0.748 0.252
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3649     0.6900 0.000 0.204 0.796 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4436     0.7588 0.020 0.000 0.764 0.216
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4477     0.6805 0.000 0.000 0.688 0.312
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4898    -0.3194 0.584 0.000 0.000 0.416
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.5427     0.0831 0.416 0.568 0.016 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1059     0.9028 0.012 0.972 0.016 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1059     0.9028 0.012 0.972 0.016 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0592     0.7190 0.984 0.000 0.000 0.016
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3400     0.6923 0.180 0.000 0.000 0.820
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5026     0.4970 0.672 0.312 0.016 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0188     0.6613 0.000 0.000 0.004 0.996
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.6532     0.3818 0.368 0.000 0.548 0.084
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.3649     0.5507 0.204 0.000 0.000 0.796
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.0188     0.6655 0.004 0.000 0.000 0.996
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.4955     0.2743 0.000 0.000 0.556 0.444
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.1610     0.7102 0.952 0.032 0.016 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.7001     0.5362 0.244 0.000 0.180 0.576
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4103     0.7557 0.000 0.000 0.744 0.256
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1059     0.9028 0.012 0.972 0.016 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000     0.6659 0.000 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.3649     0.5319 0.204 0.000 0.000 0.796
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.0817     0.6598 0.024 0.000 0.000 0.976
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.4332     0.7216 0.000 0.176 0.792 0.032
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.4134     0.6901 0.260 0.000 0.000 0.740
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.5408     0.3706 0.576 0.408 0.016 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     4  0.3688     0.4870 0.000 0.000 0.208 0.792
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0469     0.7234 0.988 0.000 0.000 0.012
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.4916     0.6424 0.424 0.000 0.000 0.576
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9158 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3837     0.7700 0.000 0.000 0.776 0.224
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.4994    -0.1032 0.000 0.480 0.520 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.2806    0.69608 0.000 0.844 0.004 0.000 0.152
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.5493    0.45759 0.000 0.000 0.632 0.112 0.256
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.2127    0.68122 0.000 0.108 0.892 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6700    0.47634 0.324 0.420 0.000 0.000 0.256
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.3366    0.67861 0.000 0.768 0.000 0.000 0.232
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.3999    0.39577 0.000 0.000 0.656 0.000 0.344
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4900    0.18431 0.024 0.000 0.512 0.000 0.464
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.6567    0.18424 0.024 0.000 0.112 0.396 0.468
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0162    0.66537 0.004 0.000 0.000 0.996 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.1043    0.66755 0.040 0.000 0.000 0.960 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000    0.66463 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.3999    0.39577 0.000 0.000 0.656 0.000 0.344
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.6570    0.39248 0.388 0.408 0.000 0.000 0.204
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.3607    0.37938 0.244 0.000 0.004 0.752 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5922    0.21927 0.112 0.000 0.520 0.000 0.368
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4383    0.01135 0.572 0.000 0.004 0.424 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1197    0.68752 0.000 0.048 0.952 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.6620    0.51343 0.288 0.456 0.000 0.000 0.256
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1197    0.64177 0.000 0.000 0.048 0.952 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.2127    0.68122 0.000 0.108 0.892 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.4151    0.39231 0.000 0.004 0.652 0.000 0.344
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.6395   -0.36562 0.424 0.408 0.000 0.000 0.168
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2732    0.69629 0.000 0.840 0.000 0.000 0.160
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.2233    0.72092 0.000 0.000 0.892 0.104 0.004
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3109    0.61927 0.800 0.000 0.000 0.000 0.200
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000    0.66463 0.000 0.000 0.000 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.6739   -0.30328 0.000 0.372 0.372 0.000 0.256
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4364    0.63630 0.000 0.000 0.768 0.112 0.120
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.2074    0.68247 0.000 0.104 0.896 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3857    0.28273 0.000 0.000 0.312 0.688 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.6239    0.06466 0.000 0.000 0.452 0.404 0.144
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3684    0.35961 0.720 0.000 0.000 0.280 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.6596    0.52063 0.280 0.464 0.000 0.000 0.256
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3210    0.68498 0.000 0.788 0.000 0.000 0.212
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.2732    0.69629 0.000 0.840 0.000 0.000 0.160
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000    0.66463 0.000 0.000 0.000 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5335    0.40307 0.668 0.200 0.000 0.000 0.132
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3983    0.48035 0.000 0.000 0.000 0.660 0.340
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.4167    0.58446 0.724 0.024 0.000 0.000 0.252
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2179    0.69478 0.000 0.888 0.000 0.000 0.112
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.1121    0.66534 0.044 0.000 0.000 0.956 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.5591   -0.00705 0.496 0.000 0.432 0.072 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.6480   -0.00225 0.184 0.000 0.000 0.416 0.400
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.5944    0.20911 0.108 0.000 0.000 0.488 0.404
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.4224    0.39650 0.000 0.000 0.216 0.040 0.744
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3783    0.60884 0.740 0.008 0.000 0.000 0.252
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.4359    0.22006 0.412 0.000 0.004 0.584 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4364    0.63630 0.000 0.000 0.768 0.112 0.120
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.2773    0.69574 0.000 0.836 0.000 0.000 0.164
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.4182    0.43886 0.000 0.000 0.000 0.600 0.400
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> F900E9BE-2400-4451-9434-EE8BC513BA94     5  0.6749   -0.05398 0.272 0.000 0.000 0.328 0.400
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.5939    0.21779 0.108 0.000 0.000 0.492 0.400
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.2630    0.69312 0.000 0.080 0.892 0.016 0.012
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000    0.66463 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.6717    0.46263 0.336 0.408 0.000 0.000 0.256
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.4617    0.46191 0.000 0.000 0.108 0.148 0.744
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000    0.85143 1.000 0.000 0.000 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.1043    0.66831 0.040 0.000 0.000 0.960 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000    0.70459 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.2127    0.72165 0.000 0.000 0.892 0.108 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.6746    0.01251 0.000 0.264 0.392 0.000 0.344

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4  p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3634    -0.1974 0.000 0.644 0.000 0.000 0.0 0.356
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.2912     0.6973 0.000 0.000 0.784 0.216 0.0 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     6  0.3854     0.7566 0.000 0.464 0.000 0.000 0.0 0.536
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0790     0.7212 0.000 0.968 0.000 0.000 0.0 0.032
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.6317 0.000 0.000 0.000 1.000 0.0 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.3756     0.7292 0.000 0.000 0.000 0.600 0.0 0.400
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.3756     0.7292 0.000 0.000 0.000 0.600 0.0 0.400
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.2527     0.5666 0.168 0.832 0.000 0.000 0.0 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0000     0.6317 0.000 0.000 0.000 1.000 0.0 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     6  0.6073    -0.5967 0.284 0.000 0.000 0.316 0.0 0.400
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.1007     0.9169 0.956 0.000 0.000 0.044 0.0 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000     0.6317 0.000 0.000 0.000 1.000 0.0 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0713     0.6168 0.028 0.000 0.000 0.972 0.0 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4576     0.7129 0.000 0.000 0.040 0.560 0.0 0.400
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.2135     0.6201 0.128 0.872 0.000 0.000 0.0 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0458     0.9480 0.984 0.000 0.000 0.016 0.0 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2730     0.4623 0.000 0.808 0.000 0.000 0.0 0.192
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2793     0.7292 0.800 0.000 0.000 0.200 0.0 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0458     0.6252 0.016 0.000 0.000 0.984 0.0 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.3756     0.7292 0.000 0.000 0.000 0.600 0.0 0.400
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.3717     0.2495 0.000 0.616 0.384 0.000 0.0 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     6  0.3854     0.7566 0.000 0.464 0.000 0.000 0.0 0.536
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1714     0.8186 0.000 0.000 0.908 0.092 0.0 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.6129    -0.3125 0.000 0.000 0.344 0.320 0.0 0.336
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.3847     0.2184 0.000 0.000 0.544 0.456 0.0 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1501     0.6709 0.000 0.924 0.000 0.000 0.0 0.076
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.2730     0.4623 0.000 0.808 0.000 0.000 0.0 0.192
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3756     0.7292 0.000 0.000 0.000 0.600 0.0 0.400
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0458     0.6252 0.016 0.000 0.000 0.984 0.0 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.3747     0.3419 0.396 0.604 0.000 0.000 0.0 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0458     0.6252 0.016 0.000 0.000 0.984 0.0 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0458     0.6374 0.000 0.000 0.000 0.984 0.0 0.016
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     6  0.3854     0.7566 0.000 0.464 0.000 0.000 0.0 0.536
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3717     0.2838 0.384 0.616 0.000 0.000 0.0 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3175     0.2191 0.000 0.744 0.000 0.000 0.0 0.256
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.3747     0.3318 0.396 0.000 0.604 0.000 0.0 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.3727     0.0987 0.388 0.000 0.000 0.612 0.0 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.3601     0.2867 0.312 0.004 0.000 0.684 0.0 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.3804     0.1785 0.424 0.576 0.000 0.000 0.0 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.5234     0.2599 0.596 0.000 0.000 0.260 0.0 0.144
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.1714     0.8186 0.000 0.000 0.908 0.092 0.0 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0458     0.9475 0.984 0.016 0.000 0.000 0.0 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.2941     0.3976 0.000 0.780 0.000 0.000 0.0 0.220
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0260     0.6289 0.008 0.000 0.000 0.992 0.0 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.3868    -0.2237 0.496 0.000 0.000 0.504 0.0 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.3464     0.2910 0.312 0.000 0.000 0.688 0.0 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.3756     0.7292 0.000 0.000 0.000 0.600 0.0 0.400
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000     0.7456 0.000 1.000 0.000 0.000 0.0 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.3756     0.5276 0.000 0.000 0.000 0.400 0.6 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9619 1.000 0.000 0.000 0.000 0.0 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0458     0.9475 0.984 0.016 0.000 0.000 0.0 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.4516     0.7303 0.036 0.000 0.000 0.564 0.0 0.400
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     6  0.3756     0.8542 0.000 0.400 0.000 0.000 0.0 0.600
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000     0.8795 0.000 0.000 1.000 0.000 0.0 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0000     0.9516 0.000 0.000 0.000 0.000 1.0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.983       0.979         0.4911 0.497   0.497
#> 3 3 0.797           0.816       0.889         0.2840 0.863   0.725
#> 4 4 0.840           0.908       0.936         0.1737 0.837   0.579
#> 5 5 0.777           0.802       0.892         0.0379 0.986   0.944
#> 6 6 0.802           0.730       0.840         0.0557 0.945   0.781

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.2778      0.985 0.048 0.952
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.2778      0.985 0.048 0.952
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.994 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.2778      0.985 0.048 0.952
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.0000      0.994 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.2778      0.985 0.048 0.952
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.0000      0.994 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.2778      0.985 0.048 0.952
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.2778      0.985 0.048 0.952
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.994 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.963 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2778      0.985 0.048 0.952
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.2778      0.985 0.048 0.952
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2778      0.985 0.048 0.952
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.2236      0.966 0.964 0.036
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.0000      0.994 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.2236      0.966 0.964 0.036
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.994 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.963 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.963 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.994 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.963 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.2236      0.966 0.964 0.036
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.994 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.2778      0.985 0.048 0.952
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.994 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.994 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.994 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.2236      0.966 0.964 0.036
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.2778      0.985 0.048 0.952
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.963 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.2778      0.985 0.048 0.952
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.994 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.994 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.994 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.2236      0.966 0.964 0.036
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.994 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000      0.994 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.963 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.2778      0.985 0.048 0.952
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2778      0.985 0.048 0.952
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.994 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.2236      0.966 0.964 0.036
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.994 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.0000      0.994 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.0000      0.994 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.2778      0.985 0.048 0.952
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.2778      0.985 0.048 0.952
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.2778      0.985 0.048 0.952
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.994 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.963 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.994 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.994 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.2778      0.985 0.048 0.952
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.0000      0.994 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.2778      0.985 0.048 0.952
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.2778      0.985 0.048 0.952
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.994 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.994 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.0938      0.985 0.988 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.994 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.963 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.2778      0.985 0.048 0.952
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.994 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.0000      0.994 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.994 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.994 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.994 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.994 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     2  0.2778      0.985 0.048 0.952
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2778      0.985 0.048 0.952
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2778      0.985 0.048 0.952
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.963 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.963 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.2778      0.985 0.048 0.952
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4022      0.949 0.080 0.920
#> A314C4E6-B245-4F10-A555-50B9B819040D     2  0.2778      0.985 0.048 0.952
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.994 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.994 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.2778      0.985 0.048 0.952
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.994 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.994 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.2778      0.985 0.048 0.952
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.963 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2778      0.985 0.048 0.952
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.2778      0.985 0.048 0.952
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.2778      0.985 0.048 0.952
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.994 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2778      0.985 0.048 0.952
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.963 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.994 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     2  0.2778      0.985 0.048 0.952
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.963 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     2  0.3114      0.978 0.056 0.944
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.2236      0.966 0.964 0.036
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.2778      0.985 0.048 0.952
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.994 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.2778      0.985 0.048 0.952
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.963 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.963 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.994 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.2778      0.985 0.048 0.952
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.2778      0.985 0.048 0.952
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.963 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.994 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.2778      0.985 0.048 0.952
#> F900E9BE-2400-4451-9434-EE8BC513BA94     2  0.2778      0.985 0.048 0.952
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     2  0.3114      0.978 0.056 0.944
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.994 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.0000      0.994 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.963 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.2778      0.985 0.048 0.952
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.994 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.994 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.2778      0.985 0.048 0.952
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.2236      0.966 0.964 0.036
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.2778      0.985 0.048 0.952
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.2778      0.985 0.048 0.952
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.994 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.963 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.994 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.2236      0.966 0.964 0.036

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.2796      0.927 0.908 0.092 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.6280      0.313 0.460 0.540 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000      0.963 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2796      0.927 0.908 0.092 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000      0.963 0.000 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.6244      0.407 0.440 0.560 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0237      0.961 0.000 0.004 0.996
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.2796      0.927 0.908 0.092 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.2959      0.917 0.900 0.100 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.963 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1163      0.743 0.028 0.972 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6244      0.407 0.440 0.560 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.2796      0.927 0.908 0.092 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.1643      0.735 0.044 0.956 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000      0.963 0.000 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000      0.963 0.000 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000      0.963 0.000 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.3030      0.945 0.092 0.004 0.904
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.740 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.740 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.3030      0.945 0.092 0.004 0.904
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.740 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000      0.963 0.000 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.0000      0.963 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6244      0.407 0.440 0.560 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.3030      0.945 0.092 0.004 0.904
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.3030      0.945 0.092 0.004 0.904
#> 4496EE84-2C36-413B-A328-A5B598A6C387     3  0.2796      0.946 0.092 0.000 0.908
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000      0.963 0.000 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.4750      0.643 0.216 0.784 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.740 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.2796      0.927 0.908 0.092 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.0000      0.963 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.3272      0.939 0.104 0.004 0.892
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.3030      0.945 0.092 0.004 0.904
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000      0.963 0.000 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.0829      0.958 0.012 0.004 0.984
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.963 0.000 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.740 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.2796      0.927 0.908 0.092 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.6215      0.430 0.428 0.572 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.0000      0.963 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.0000      0.963 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.2796      0.946 0.092 0.000 0.908
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1411      0.944 0.000 0.036 0.964
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0000      0.963 0.000 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.6008      0.521 0.372 0.628 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3619      0.708 0.136 0.864 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.2796      0.927 0.908 0.092 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0237      0.963 0.004 0.000 0.996
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3816      0.706 0.148 0.852 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000      0.963 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1643      0.941 0.000 0.044 0.956
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2796      0.927 0.908 0.092 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2796      0.946 0.092 0.000 0.908
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2796      0.927 0.908 0.092 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6244      0.407 0.440 0.560 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.0000      0.963 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     3  0.2796      0.946 0.092 0.000 0.908
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4062      0.819 0.000 0.164 0.836
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0237      0.963 0.004 0.000 0.996
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.740 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.6244      0.407 0.440 0.560 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000      0.963 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1163      0.949 0.000 0.028 0.972
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.3030      0.945 0.092 0.004 0.904
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.3272      0.939 0.104 0.004 0.892
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.3030      0.945 0.092 0.004 0.904
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000      0.963 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2796      0.927 0.908 0.092 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.6225      0.422 0.432 0.568 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6244      0.407 0.440 0.560 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2356      0.736 0.072 0.928 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.5178      0.632 0.256 0.744 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.2796      0.927 0.908 0.092 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.1289      0.734 0.032 0.968 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2796      0.927 0.908 0.092 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     3  0.2796      0.946 0.092 0.000 0.908
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.0000      0.963 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.6307     -0.205 0.512 0.488 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.0000      0.963 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.2796      0.946 0.092 0.000 0.908
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2796      0.927 0.908 0.092 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0592      0.742 0.012 0.988 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.6244      0.407 0.440 0.560 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.6079      0.480 0.388 0.612 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2796      0.927 0.908 0.092 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.3030      0.945 0.092 0.004 0.904
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6244      0.407 0.440 0.560 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0747      0.742 0.016 0.984 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4636      0.916 0.104 0.044 0.852
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.2796      0.927 0.908 0.092 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.740 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3532      0.898 0.884 0.108 0.008
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000      0.963 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.6307     -0.205 0.512 0.488 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.3193      0.941 0.100 0.004 0.896
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2796      0.927 0.908 0.092 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.740 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0592      0.742 0.012 0.988 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.963 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.2796      0.927 0.908 0.092 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2796      0.927 0.908 0.092 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.2711      0.730 0.088 0.912 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.0000      0.963 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.6111      0.486 0.396 0.604 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.2796      0.927 0.908 0.092 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.2796      0.927 0.908 0.092 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.3030      0.945 0.092 0.004 0.904
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1289      0.947 0.000 0.032 0.968
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.740 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.2796      0.927 0.908 0.092 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.3193      0.941 0.100 0.004 0.896
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.2796      0.946 0.092 0.000 0.908
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.6309     -0.236 0.504 0.496 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.963 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.2796      0.927 0.908 0.092 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2796      0.927 0.908 0.092 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.3272      0.939 0.104 0.004 0.892
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.740 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0237      0.963 0.004 0.000 0.996
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0000      0.963 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0188     0.9708 0.996 0.000 0.004 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.1452     0.8842 0.008 0.956 0.036 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.3975     0.8217 0.000 0.000 0.760 0.240
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.4790     0.6115 0.000 0.000 0.620 0.380
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3791     0.8173 0.200 0.796 0.004 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.2593     0.8899 0.000 0.004 0.892 0.104
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0469     0.9653 0.988 0.012 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.4898     0.5332 0.000 0.000 0.584 0.416
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3791     0.8173 0.200 0.796 0.004 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0188     0.9708 0.996 0.000 0.004 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0927     0.8874 0.016 0.976 0.008 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1211     0.8882 0.000 0.000 0.960 0.040
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.3975     0.8238 0.000 0.000 0.760 0.240
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1211     0.8882 0.000 0.000 0.960 0.040
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.1389     0.8885 0.000 0.000 0.952 0.048
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3791     0.8173 0.200 0.796 0.004 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0188     0.9926 0.000 0.000 0.004 0.996
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1211     0.8882 0.000 0.000 0.960 0.040
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.3893     0.7679 0.796 0.196 0.008 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0188     0.9708 0.996 0.000 0.004 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1302     0.8884 0.000 0.000 0.956 0.044
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0657     0.9814 0.004 0.000 0.012 0.984
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.2466     0.8904 0.000 0.004 0.900 0.096
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3448     0.8350 0.168 0.828 0.004 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.1022     0.8825 0.000 0.000 0.968 0.032
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.2593     0.8899 0.000 0.004 0.892 0.104
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.1389     0.8897 0.000 0.000 0.952 0.048
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.5292     0.0491 0.480 0.512 0.008 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.3893     0.7679 0.796 0.196 0.008 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8909 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.4262     0.8277 0.000 0.008 0.756 0.236
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3791     0.8173 0.200 0.796 0.004 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4964     0.8420 0.000 0.068 0.764 0.168
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.0188     0.9926 0.000 0.000 0.004 0.996
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3791     0.8173 0.200 0.796 0.004 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.3975     0.8217 0.000 0.000 0.760 0.240
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.2654     0.8894 0.000 0.004 0.888 0.108
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0188     0.9704 0.996 0.000 0.004 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3583     0.8295 0.180 0.816 0.004 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3791     0.8173 0.200 0.796 0.004 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0469     0.8893 0.000 0.988 0.012 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0804     0.8922 0.008 0.980 0.012 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4137     0.7043 0.208 0.780 0.012 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188     0.9925 0.000 0.000 0.004 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4136     0.8165 0.196 0.788 0.016 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0188     0.9708 0.996 0.000 0.004 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.8909 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.1489     0.9353 0.952 0.044 0.004 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.1798     0.8832 0.040 0.944 0.016 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4509     0.7078 0.288 0.708 0.004 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0188     0.8914 0.000 0.996 0.004 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.0336     0.9879 0.000 0.000 0.008 0.992
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0707     0.9615 0.980 0.000 0.020 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.1716     0.9319 0.936 0.000 0.064 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.1211     0.8882 0.000 0.000 0.960 0.040
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4012     0.8246 0.184 0.800 0.016 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.3942     0.8276 0.000 0.000 0.764 0.236
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0188     0.9698 0.996 0.004 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0336     0.9915 0.000 0.000 0.008 0.992
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.3032     0.8590 0.868 0.124 0.008 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0707     0.9615 0.980 0.000 0.020 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.1211     0.9479 0.960 0.000 0.040 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3688     0.8480 0.000 0.000 0.792 0.208
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4175     0.8133 0.200 0.784 0.016 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.1022     0.8825 0.000 0.000 0.968 0.032
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000     0.9719 1.000 0.000 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9939 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0469     0.8919 0.000 0.988 0.012 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.1716     0.9165 0.000 0.000 0.064 0.936
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1389     0.8885 0.000 0.000 0.952 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1965      0.876 0.904 0.000 0.000 0.000 0.096
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.3692      0.777 0.052 0.812 0.000 0.000 0.136
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.1012      0.763 0.000 0.000 0.968 0.012 0.020
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2074      0.573 0.000 0.000 0.896 0.104 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3912      0.750 0.228 0.752 0.000 0.000 0.020
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000      0.788 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2891      0.347 0.000 0.000 0.824 0.176 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0510      0.837 0.000 0.984 0.000 0.000 0.016
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3912      0.750 0.228 0.752 0.000 0.000 0.020
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1965      0.876 0.904 0.000 0.000 0.000 0.096
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2964      0.770 0.120 0.856 0.000 0.000 0.024
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.3109      0.648 0.000 0.000 0.800 0.000 0.200
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0162      0.786 0.000 0.000 0.996 0.004 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.3109      0.648 0.000 0.000 0.800 0.000 0.200
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0794      0.837 0.000 0.972 0.000 0.000 0.028
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0794      0.837 0.000 0.972 0.000 0.000 0.028
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0794      0.837 0.000 0.972 0.000 0.000 0.028
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3109      0.648 0.000 0.000 0.800 0.000 0.200
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.1704      0.876 0.000 0.000 0.004 0.928 0.068
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3942      0.747 0.232 0.748 0.000 0.000 0.020
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.3109      0.648 0.000 0.000 0.800 0.000 0.200
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.3368      0.797 0.820 0.156 0.000 0.000 0.024
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0609      0.838 0.000 0.980 0.000 0.000 0.020
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1965      0.876 0.904 0.000 0.000 0.000 0.096
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.0865      0.898 0.000 0.000 0.004 0.972 0.024
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0162      0.905 0.000 0.000 0.004 0.996 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.3109      0.648 0.000 0.000 0.800 0.000 0.200
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1892      0.858 0.000 0.000 0.080 0.916 0.004
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0290      0.788 0.000 0.000 0.992 0.000 0.008
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0794      0.837 0.000 0.972 0.000 0.000 0.028
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3912      0.750 0.228 0.752 0.000 0.000 0.020
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.2439      0.840 0.000 0.000 0.004 0.876 0.120
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.6121      0.921 0.000 0.000 0.408 0.128 0.464
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0404      0.903 0.000 0.000 0.012 0.988 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0162      0.786 0.000 0.000 0.996 0.004 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2891      0.669 0.000 0.000 0.824 0.000 0.176
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4402      0.386 0.636 0.352 0.000 0.000 0.012
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.3264      0.793 0.820 0.164 0.000 0.000 0.016
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3684      0.600 0.000 0.000 0.280 0.720 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2230      0.802 0.000 0.884 0.000 0.000 0.116
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.3837      0.545 0.000 0.000 0.308 0.692 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0162      0.788 0.000 0.000 0.996 0.004 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.3586      0.625 0.000 0.000 0.264 0.736 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1041      0.895 0.964 0.004 0.000 0.000 0.032
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3942      0.747 0.232 0.748 0.000 0.000 0.020
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.2970      0.797 0.000 0.000 0.004 0.828 0.168
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0963      0.742 0.000 0.036 0.964 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.3707      0.593 0.000 0.000 0.284 0.716 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0609      0.838 0.000 0.980 0.000 0.000 0.020
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3988      0.726 0.252 0.732 0.000 0.000 0.016
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0404      0.780 0.000 0.000 0.988 0.012 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000      0.788 0.000 0.000 1.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.0290      0.904 0.000 0.000 0.008 0.992 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.1608      0.867 0.000 0.000 0.072 0.928 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3912      0.750 0.228 0.752 0.000 0.000 0.020
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3912      0.750 0.228 0.752 0.000 0.000 0.020
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2280      0.800 0.000 0.880 0.000 0.000 0.120
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1399      0.837 0.028 0.952 0.000 0.000 0.020
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.2074      0.874 0.896 0.000 0.000 0.000 0.104
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.3437      0.716 0.176 0.808 0.004 0.000 0.012
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.3123      0.781 0.000 0.000 0.004 0.812 0.184
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.5515      0.679 0.260 0.628 0.000 0.000 0.112
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.3010      0.793 0.000 0.000 0.004 0.824 0.172
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2020      0.875 0.900 0.000 0.000 0.000 0.100
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0404      0.837 0.000 0.988 0.000 0.000 0.012
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.2825      0.819 0.860 0.124 0.000 0.000 0.016
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3569      0.805 0.068 0.828 0.000 0.000 0.104
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4366      0.620 0.320 0.664 0.000 0.000 0.016
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2127      0.802 0.000 0.892 0.000 0.000 0.108
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.2011      0.851 0.000 0.000 0.088 0.908 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3274      0.780 0.780 0.000 0.000 0.000 0.220
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0794      0.837 0.000 0.972 0.000 0.000 0.028
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.3741      0.740 0.732 0.004 0.000 0.000 0.264
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.3242      0.620 0.000 0.000 0.784 0.000 0.216
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5510      0.713 0.208 0.648 0.000 0.000 0.144
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0162      0.905 0.000 0.000 0.004 0.996 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0290      0.906 0.992 0.000 0.000 0.000 0.008
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0703      0.837 0.000 0.976 0.000 0.000 0.024
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0609      0.838 0.000 0.980 0.000 0.000 0.020
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.788 0.000 0.000 1.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0703      0.838 0.000 0.976 0.000 0.000 0.024
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.2179      0.855 0.000 0.000 0.004 0.896 0.100
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.2920      0.816 0.852 0.132 0.000 0.000 0.016
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3395      0.767 0.764 0.000 0.000 0.000 0.236
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3550      0.765 0.760 0.004 0.000 0.000 0.236
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000      0.788 0.000 0.000 1.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0794      0.837 0.000 0.972 0.000 0.000 0.028
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.5373      0.708 0.236 0.652 0.000 0.000 0.112
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.5929      0.916 0.000 0.000 0.432 0.104 0.464
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.908 1.000 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.2074      0.874 0.896 0.000 0.000 0.000 0.104
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0609      0.838 0.000 0.980 0.000 0.000 0.020
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4249      0.236 0.000 0.000 0.432 0.568 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.3109      0.648 0.000 0.000 0.800 0.000 0.200

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0146      0.834 0.996 0.000 0.000 0.000 0.000 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.6823      0.242 0.044 0.456 0.020 0.000 0.148 0.332
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.3737      0.645 0.000 0.000 0.780 0.008 0.168 0.044
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2092      0.730 0.876 0.000 0.000 0.000 0.000 0.124
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1745      0.774 0.000 0.000 0.920 0.068 0.000 0.012
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     5  0.2697      0.787 0.000 0.188 0.000 0.000 0.812 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0146      0.823 0.000 0.000 0.996 0.004 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1578      0.783 0.936 0.004 0.000 0.000 0.012 0.048
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1913      0.762 0.000 0.000 0.908 0.080 0.000 0.012
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.1219      0.873 0.000 0.948 0.000 0.000 0.004 0.048
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     5  0.2697      0.787 0.000 0.188 0.000 0.000 0.812 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0146      0.834 0.996 0.000 0.000 0.000 0.000 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.6480      0.428 0.160 0.592 0.020 0.000 0.072 0.156
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.2730      0.780 0.000 0.000 0.808 0.000 0.000 0.192
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1075      0.796 0.000 0.000 0.952 0.048 0.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.2793      0.779 0.000 0.000 0.800 0.000 0.000 0.200
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0146      0.865 0.000 0.000 0.004 0.996 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.879 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.879 0.000 1.000 0.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.879 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.2902      0.779 0.000 0.000 0.800 0.004 0.000 0.196
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.4265      0.727 0.000 0.000 0.000 0.728 0.172 0.100
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     5  0.2697      0.787 0.000 0.188 0.000 0.000 0.812 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0363      0.864 0.000 0.000 0.000 0.988 0.000 0.012
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.2793      0.779 0.000 0.000 0.800 0.000 0.000 0.200
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.5962      0.395 0.608 0.020 0.020 0.000 0.156 0.196
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0790      0.876 0.000 0.968 0.000 0.000 0.032 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0146      0.834 0.996 0.000 0.000 0.000 0.000 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.3671      0.767 0.000 0.000 0.008 0.784 0.168 0.040
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0777      0.861 0.000 0.000 0.004 0.972 0.000 0.024
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.2762      0.779 0.000 0.000 0.804 0.000 0.000 0.196
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2478      0.826 0.012 0.000 0.024 0.888 0.000 0.076
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0146      0.824 0.000 0.000 0.996 0.000 0.000 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.879 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     5  0.3288      0.694 0.000 0.276 0.000 0.000 0.724 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.4265      0.727 0.000 0.000 0.000 0.728 0.172 0.100
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.7033     -0.298 0.000 0.000 0.292 0.104 0.172 0.432
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1682      0.840 0.000 0.000 0.052 0.928 0.000 0.020
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0146      0.823 0.000 0.000 0.996 0.004 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2278      0.806 0.000 0.000 0.868 0.004 0.000 0.128
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     5  0.5739      0.499 0.228 0.012 0.000 0.000 0.568 0.192
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.6483      0.282 0.540 0.028 0.020 0.000 0.216 0.196
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3665      0.673 0.000 0.000 0.252 0.728 0.000 0.020
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1780      0.867 0.000 0.924 0.000 0.000 0.028 0.048
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4356      0.508 0.000 0.000 0.360 0.608 0.000 0.032
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0547      0.824 0.000 0.000 0.980 0.000 0.000 0.020
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.3284      0.722 0.000 0.000 0.196 0.784 0.000 0.020
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3383      0.604 0.728 0.004 0.000 0.000 0.000 0.268
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     5  0.2697      0.787 0.000 0.188 0.000 0.000 0.812 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.4265      0.727 0.000 0.000 0.000 0.728 0.172 0.100
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0363      0.864 0.000 0.000 0.000 0.988 0.000 0.012
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.1370      0.811 0.000 0.036 0.948 0.004 0.000 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.3713      0.699 0.000 0.000 0.224 0.744 0.000 0.032
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1219      0.868 0.000 0.948 0.000 0.000 0.048 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     5  0.2979      0.787 0.004 0.188 0.000 0.000 0.804 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1750      0.804 0.000 0.000 0.932 0.016 0.040 0.012
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0146      0.824 0.000 0.000 0.996 0.000 0.000 0.004
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.1745      0.838 0.000 0.000 0.056 0.924 0.000 0.020
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0146      0.864 0.000 0.000 0.000 0.996 0.000 0.004
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4066      0.793 0.000 0.000 0.064 0.788 0.112 0.036
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2854      0.671 0.792 0.000 0.000 0.000 0.000 0.208
#> F779417A-9E29-4B27-BEA3-B23273A66021     5  0.3076      0.740 0.000 0.240 0.000 0.000 0.760 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     5  0.2697      0.787 0.000 0.188 0.000 0.000 0.812 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1856      0.866 0.000 0.920 0.000 0.000 0.032 0.048
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1528      0.869 0.000 0.936 0.000 0.000 0.016 0.048
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0146      0.834 0.996 0.000 0.000 0.000 0.000 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.6461      0.429 0.160 0.600 0.024 0.000 0.072 0.144
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0146      0.864 0.000 0.000 0.000 0.996 0.000 0.004
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.4265      0.727 0.000 0.000 0.000 0.728 0.172 0.100
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     5  0.6212      0.579 0.160 0.064 0.000 0.000 0.572 0.204
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.4265      0.727 0.000 0.000 0.000 0.728 0.172 0.100
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1480      0.852 0.000 0.000 0.000 0.940 0.040 0.020
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0146      0.834 0.996 0.000 0.000 0.000 0.000 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1616      0.870 0.000 0.932 0.000 0.000 0.048 0.020
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     5  0.6254      0.489 0.256 0.056 0.000 0.000 0.544 0.144
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     5  0.6831      0.415 0.052 0.336 0.004 0.000 0.416 0.192
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     5  0.3354      0.786 0.008 0.184 0.000 0.000 0.792 0.016
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1528      0.868 0.000 0.936 0.000 0.000 0.016 0.048
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.3698      0.770 0.000 0.000 0.116 0.788 0.000 0.096
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3979      0.455 0.628 0.000 0.012 0.000 0.000 0.360
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.879 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.4241     -0.286 0.348 0.000 0.020 0.000 0.004 0.628
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.5253      0.549 0.000 0.000 0.604 0.000 0.168 0.228
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     5  0.5641      0.523 0.088 0.024 0.004 0.000 0.568 0.316
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0777      0.861 0.000 0.000 0.004 0.972 0.000 0.024
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0363      0.830 0.988 0.000 0.000 0.000 0.000 0.012
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0790      0.876 0.000 0.968 0.000 0.000 0.032 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2001      0.864 0.000 0.912 0.000 0.000 0.040 0.048
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.3453      0.671 0.000 0.000 0.792 0.000 0.164 0.044
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0363      0.829 0.988 0.000 0.000 0.000 0.012 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1856      0.868 0.000 0.920 0.000 0.000 0.032 0.048
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.4265      0.727 0.000 0.000 0.000 0.728 0.172 0.100
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.5933      0.286 0.540 0.016 0.000 0.000 0.252 0.192
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4091      0.215 0.520 0.000 0.008 0.000 0.000 0.472
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4338      0.134 0.492 0.000 0.020 0.000 0.000 0.488
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0146      0.865 0.000 0.000 0.004 0.996 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0146      0.823 0.000 0.000 0.996 0.004 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.879 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1327      0.841 0.000 0.000 0.000 0.936 0.000 0.064
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000      0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     5  0.6238      0.663 0.080 0.148 0.000 0.000 0.580 0.192
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.5765      0.155 0.000 0.000 0.420 0.000 0.172 0.408
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.1007      0.807 0.956 0.000 0.000 0.000 0.000 0.044
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0146      0.834 0.996 0.000 0.000 0.000 0.000 0.004
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0260      0.864 0.000 0.000 0.000 0.992 0.000 0.008
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0790      0.876 0.000 0.968 0.000 0.000 0.032 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4385      0.320 0.000 0.000 0.444 0.532 0.000 0.024
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.2697      0.780 0.000 0.000 0.812 0.000 0.000 0.188

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.976       0.990         0.5009 0.499   0.499
#> 3 3 0.682           0.751       0.878         0.3241 0.765   0.562
#> 4 4 0.824           0.855       0.913         0.1072 0.849   0.592
#> 5 5 0.854           0.824       0.920         0.0545 0.919   0.709
#> 6 6 0.754           0.558       0.779         0.0454 0.956   0.816

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.991 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0000      0.987 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.991 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.991 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.8955      0.548 0.312 0.688
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.987 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.987 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.991 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.991 1.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.991 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.987 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.987 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.991 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.987 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.0000      0.987 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.1633      0.965 0.024 0.976
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.0000      0.987 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.991 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.987 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.987 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.991 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.987 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.0000      0.987 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.991 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.987 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.991 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.991 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.991 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.0000      0.987 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.987 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.987 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.991 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.991 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.991 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.991 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.0000      0.987 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.991 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.0000      0.987 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.987 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.991 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.987 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.991 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.991 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.991 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.987 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.987 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.987 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.987 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.991 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.991 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.987 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.991 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.1184      0.972 0.016 0.984
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.991 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.6973      0.768 0.812 0.188
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1633      0.970 0.976 0.024
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.987 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.991 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.991 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.987 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.991 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.987 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.987 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.991 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.987 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.991 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.991 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.991 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.991 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.991 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.987 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.987 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.987 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.987 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.991 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.987 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.991 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.991 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.991 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0000      0.987 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.991 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.991 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.991 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.987 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.987 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.987 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.991 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.991 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.987 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.987 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0376      0.988 0.996 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.991 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.987 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.991 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     2  0.9323      0.466 0.348 0.652
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0672      0.980 0.008 0.992
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.991 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.991 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.987 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.987 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.2423      0.954 0.960 0.040
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.3584      0.925 0.932 0.068
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.991 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.987 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.991 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.987 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.991 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.991 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.991 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.987 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.987 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.991 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.991 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.991 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.987 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.7453      0.732 0.788 0.212
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.991 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1184      0.978 0.984 0.016
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.991 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.987 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.991 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.987 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0747      0.830 0.984 0.016 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.6307      0.126 0.000 0.512 0.488
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000      0.718 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4555      0.734 0.800 0.000 0.200
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.5835      0.584 0.000 0.340 0.660
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.965 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.5810      0.588 0.000 0.336 0.664
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.838 1.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0424      0.834 0.992 0.008 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.718 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.965 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.965 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.838 1.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0237      0.961 0.000 0.996 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.5178      0.656 0.000 0.256 0.744
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.4887      0.674 0.000 0.228 0.772
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0237      0.719 0.000 0.004 0.996
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0592      0.832 0.988 0.000 0.012
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.965 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.965 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.838 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.965 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.6026      0.537 0.000 0.376 0.624
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.5968      0.580 0.636 0.000 0.364
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.965 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.838 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.838 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.838 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0237      0.719 0.000 0.004 0.996
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0237      0.961 0.000 0.996 0.004
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.965 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.838 1.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.2796      0.641 0.092 0.000 0.908
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.2796      0.765 0.908 0.000 0.092
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.838 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4555      0.688 0.000 0.200 0.800
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4235      0.754 0.824 0.000 0.176
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0237      0.719 0.000 0.004 0.996
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.965 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.838 1.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.965 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.6045      0.561 0.620 0.000 0.380
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.6215     -0.167 0.428 0.000 0.572
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.6235      0.362 0.436 0.000 0.564
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5988      0.549 0.000 0.368 0.632
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.5988      0.549 0.000 0.368 0.632
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.965 0.000 1.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.965 0.000 1.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.838 1.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.5678      0.546 0.316 0.000 0.684
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.965 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.4452      0.648 0.192 0.000 0.808
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.718 0.000 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.5269      0.729 0.784 0.016 0.200
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.6298      0.450 0.388 0.004 0.608
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.9213      0.396 0.484 0.160 0.356
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.965 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.6244      0.465 0.560 0.000 0.440
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0424      0.834 0.992 0.000 0.008
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.6154      0.480 0.000 0.408 0.592
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.5988      0.482 0.368 0.000 0.632
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.965 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.965 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000      0.718 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.5948      0.560 0.000 0.360 0.640
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.6192      0.396 0.420 0.000 0.580
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.838 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.838 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000      0.718 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4178      0.753 0.828 0.000 0.172
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.965 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.965 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.965 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.965 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3752      0.713 0.856 0.144 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.965 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.838 1.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.1964      0.812 0.944 0.000 0.056
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.6026      0.565 0.624 0.000 0.376
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4235      0.729 0.000 0.824 0.176
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.4504      0.493 0.196 0.000 0.804
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0237      0.837 0.996 0.000 0.004
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0892      0.827 0.980 0.020 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.965 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1529      0.915 0.040 0.960 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.965 0.000 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.838 1.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.838 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.965 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.965 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.5785      0.323 0.668 0.000 0.332
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.5835      0.606 0.660 0.000 0.340
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.965 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.6215      0.482 0.572 0.000 0.428
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000      0.718 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5968      0.411 0.000 0.636 0.364
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0237      0.836 0.996 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.7276      0.670 0.704 0.104 0.192
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.965 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.965 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.718 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6126      0.317 0.600 0.400 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.838 1.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.965 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.5968      0.580 0.636 0.000 0.364
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.965 0.000 1.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.5988      0.575 0.632 0.000 0.368
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.5988      0.575 0.632 0.000 0.368
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.838 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5905      0.570 0.000 0.352 0.648
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.965 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.838 1.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.838 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0424      0.834 0.992 0.000 0.008
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.965 0.000 1.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.718 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4452      0.739 0.808 0.000 0.192
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6168      0.285 0.588 0.412 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.838 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.965 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.5560      0.563 0.300 0.000 0.700
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.6126      0.496 0.000 0.400 0.600

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2149      0.831 0.000 0.088 0.000 0.912
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.3610      0.704 0.800 0.200 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.3649      0.668 0.796 0.000 0.204 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4500      0.723 0.684 0.000 0.000 0.316
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0188      0.902 0.004 0.000 0.996 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0376      0.901 0.004 0.004 0.992 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0817      0.913 0.000 0.024 0.000 0.976
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0336      0.902 0.008 0.000 0.992 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.1677      0.931 0.012 0.948 0.040 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.3942      0.815 0.236 0.000 0.764 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0336      0.902 0.008 0.000 0.992 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4250      0.784 0.276 0.000 0.724 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3873      0.818 0.228 0.000 0.772 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.3908      0.815 0.784 0.000 0.004 0.212
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.3942      0.815 0.236 0.000 0.764 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1388      0.943 0.012 0.960 0.028 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1022      0.950 0.000 0.968 0.032 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.5550      0.766 0.692 0.000 0.060 0.248
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1118      0.905 0.000 0.000 0.036 0.964
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4008      0.808 0.244 0.000 0.756 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.2081      0.839 0.084 0.000 0.000 0.916
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0657      0.901 0.012 0.004 0.984 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.3831      0.818 0.792 0.000 0.004 0.204
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.718 1.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4977      0.125 0.000 0.000 0.460 0.540
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0188      0.901 0.000 0.004 0.996 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3649      0.828 0.204 0.000 0.796 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.2401      0.888 0.004 0.904 0.092 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0524      0.901 0.008 0.000 0.988 0.004
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0804      0.898 0.008 0.000 0.980 0.012
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0469      0.901 0.012 0.000 0.988 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.6563      0.703 0.632 0.208 0.000 0.160
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0188      0.901 0.000 0.000 0.996 0.004
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.4364      0.699 0.764 0.220 0.000 0.016
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.3791      0.819 0.796 0.000 0.004 0.200
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.0000      0.902 0.000 0.000 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0376      0.902 0.004 0.000 0.992 0.004
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0817      0.956 0.000 0.976 0.024 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1716      0.881 0.064 0.000 0.936 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0376      0.901 0.004 0.004 0.992 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.2868      0.795 0.000 0.000 0.864 0.136
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.4387      0.749 0.144 0.000 0.804 0.052
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4679      0.674 0.648 0.000 0.000 0.352
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.4746      0.411 0.000 0.368 0.000 0.632
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.1211      0.944 0.000 0.960 0.040 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0524      0.928 0.004 0.000 0.008 0.988
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.3791      0.819 0.796 0.000 0.004 0.200
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.3356      0.751 0.176 0.824 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.3810      0.820 0.804 0.000 0.008 0.188
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2760      0.777 0.000 0.128 0.000 0.872
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0188      0.967 0.000 0.996 0.000 0.004
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4948      0.243 0.000 0.000 0.560 0.440
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3907      0.803 0.768 0.000 0.000 0.232
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.2973      0.812 0.856 0.000 0.000 0.144
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0817      0.702 0.976 0.000 0.024 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.4454      0.581 0.692 0.308 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0336      0.930 0.000 0.000 0.008 0.992
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.6694      0.390 0.516 0.392 0.000 0.092
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0336      0.966 0.000 0.992 0.008 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0469      0.964 0.000 0.988 0.012 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.3688      0.664 0.792 0.000 0.208 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.4564      0.483 0.000 0.328 0.000 0.672
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.0188      0.931 0.004 0.000 0.000 0.996
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.3870      0.817 0.788 0.000 0.004 0.208
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0672      0.962 0.000 0.984 0.008 0.008
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.3726      0.816 0.788 0.000 0.000 0.212
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.3610      0.820 0.800 0.000 0.000 0.200
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0376      0.901 0.004 0.004 0.992 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000      0.933 0.000 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.718 1.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4907      0.554 0.580 0.000 0.000 0.420
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.4977      0.112 0.000 0.540 0.000 0.460
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0188      0.933 0.000 0.000 0.004 0.996
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1022      0.950 0.000 0.968 0.032 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0376      0.902 0.004 0.000 0.992 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.3649      0.828 0.204 0.000 0.796 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.3521     0.6673 0.004 0.232 0.000 0.764 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.2848     0.7494 0.840 0.156 0.000 0.000 0.004
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.3816     0.5600 0.696 0.000 0.304 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2516     0.8125 0.860 0.000 0.000 0.140 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.9274 0.000 0.000 1.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.9274 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0963     0.9170 0.000 0.036 0.000 0.964 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0162     0.9274 0.004 0.000 0.996 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0162     0.9152 0.000 0.996 0.004 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0290     0.9415 0.000 0.008 0.000 0.992 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.4088     0.4804 0.000 0.368 0.000 0.000 0.632
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.1121     0.8399 0.044 0.000 0.000 0.000 0.956
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0324     0.9271 0.004 0.000 0.992 0.000 0.004
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.1197     0.8382 0.048 0.000 0.000 0.000 0.952
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0162     0.9152 0.000 0.996 0.004 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0404     0.9123 0.000 0.988 0.012 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0290     0.9140 0.000 0.992 0.008 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0290     0.8402 0.008 0.000 0.000 0.000 0.992
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.2127     0.8335 0.892 0.000 0.000 0.108 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0162     0.9143 0.004 0.996 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.1121     0.8399 0.044 0.000 0.000 0.000 0.956
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.4446     0.4023 0.008 0.400 0.000 0.000 0.592
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.3243     0.8018 0.036 0.860 0.012 0.000 0.092
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0162     0.9442 0.000 0.004 0.000 0.996 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4599     0.4545 0.624 0.000 0.356 0.020 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.0963     0.8410 0.036 0.000 0.000 0.000 0.964
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.1740     0.8914 0.056 0.000 0.000 0.932 0.012
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0324     0.9271 0.004 0.000 0.992 0.000 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0162     0.9152 0.000 0.996 0.004 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0290     0.9423 0.008 0.000 0.000 0.992 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.2074     0.8352 0.896 0.000 0.000 0.104 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0963     0.8185 0.964 0.000 0.000 0.000 0.036
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.2074     0.8337 0.000 0.000 0.896 0.104 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0000     0.9274 0.000 0.000 1.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.0404     0.8407 0.012 0.000 0.000 0.000 0.988
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0290     0.9140 0.000 0.992 0.008 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.2074     0.8118 0.036 0.044 0.000 0.000 0.920
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0486     0.9262 0.004 0.000 0.988 0.004 0.004
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0324     0.9271 0.004 0.000 0.992 0.000 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0162     0.9274 0.004 0.000 0.996 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3550     0.6655 0.760 0.236 0.000 0.004 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0162     0.9268 0.000 0.000 0.996 0.004 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.2329     0.7841 0.876 0.124 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.1952     0.8404 0.912 0.000 0.004 0.084 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0162     0.9443 0.004 0.000 0.000 0.996 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4470     0.3708 0.012 0.000 0.616 0.000 0.372
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0162     0.9268 0.000 0.000 0.996 0.004 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1281     0.8946 0.000 0.956 0.032 0.000 0.012
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1197     0.9011 0.048 0.000 0.952 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000     0.9274 0.000 0.000 1.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.2074     0.8332 0.000 0.000 0.896 0.104 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.1478     0.8877 0.064 0.000 0.936 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2732     0.7956 0.840 0.000 0.000 0.160 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.4302     0.0645 0.000 0.520 0.000 0.480 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.5601     0.2761 0.036 0.584 0.028 0.000 0.352
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0162     0.9445 0.004 0.000 0.000 0.996 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0566     0.9379 0.012 0.000 0.004 0.984 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.1331     0.8364 0.952 0.000 0.000 0.040 0.008
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.1732     0.8447 0.080 0.920 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.1845     0.8234 0.928 0.000 0.056 0.016 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1341     0.9008 0.056 0.000 0.000 0.944 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.4251     0.5210 0.012 0.316 0.000 0.672 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0162     0.9152 0.000 0.996 0.004 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0880     0.8924 0.000 0.968 0.000 0.032 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0324     0.9142 0.004 0.992 0.004 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1568     0.8799 0.036 0.944 0.000 0.000 0.020
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     4  0.4210     0.2755 0.000 0.000 0.412 0.588 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1792     0.8400 0.916 0.000 0.000 0.084 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0162     0.9152 0.000 0.996 0.004 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0963     0.8185 0.964 0.000 0.000 0.000 0.036
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.2020     0.8004 0.100 0.000 0.000 0.000 0.900
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3177     0.7053 0.792 0.208 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.4302    -0.0308 0.480 0.520 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0609     0.9085 0.000 0.980 0.020 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2002     0.8774 0.020 0.932 0.020 0.000 0.028
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4291     0.0661 0.464 0.000 0.536 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.3143     0.7084 0.000 0.204 0.000 0.796 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.1493     0.9125 0.024 0.028 0.000 0.948 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1579     0.8823 0.024 0.944 0.000 0.000 0.032
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.1965     0.8378 0.904 0.000 0.000 0.096 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.5607     0.5606 0.036 0.284 0.000 0.044 0.636
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.1872     0.8413 0.928 0.020 0.000 0.052 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0963     0.8185 0.964 0.000 0.000 0.000 0.036
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.9274 0.000 0.000 1.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0162     0.9152 0.000 0.996 0.004 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0162     0.9442 0.000 0.004 0.000 0.996 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000     0.9155 0.000 1.000 0.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.3983     0.4852 0.660 0.000 0.000 0.000 0.340
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.4679     0.6988 0.716 0.068 0.000 0.216 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.4268     0.1925 0.000 0.556 0.000 0.444 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9461 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1168     0.8967 0.008 0.960 0.032 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0162     0.9270 0.000 0.000 0.996 0.000 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.0290     0.8383 0.008 0.000 0.000 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.5144    0.60079 0.120 0.236 0.000 0.636 0.000 0.008
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     6  0.5095    0.46960 0.104 0.312 0.000 0.000 0.000 0.584
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.3684    0.44656 0.000 0.000 0.628 0.000 0.000 0.372
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     6  0.4882    0.70841 0.168 0.044 0.000 0.076 0.000 0.712
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0146    0.91960 0.004 0.000 0.996 0.000 0.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1453    0.47651 0.040 0.944 0.000 0.000 0.008 0.008
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0405    0.91899 0.008 0.000 0.988 0.000 0.000 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0508    0.85100 0.012 0.000 0.000 0.984 0.000 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.2201    0.80278 0.076 0.028 0.000 0.896 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0146    0.92092 0.000 0.000 0.996 0.000 0.000 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2520    0.39247 0.152 0.844 0.000 0.000 0.000 0.004
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1204    0.46470 0.056 0.944 0.000 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.4705    0.66957 0.104 0.192 0.000 0.696 0.000 0.008
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.4426    0.38895 0.068 0.156 0.012 0.000 0.752 0.012
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.4409    0.67821 0.380 0.000 0.000 0.000 0.588 0.032
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0260    0.92045 0.000 0.000 0.992 0.000 0.000 0.008
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.4409    0.67823 0.380 0.000 0.000 0.000 0.588 0.032
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.3782    0.00553 0.412 0.588 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3852    0.06335 0.384 0.612 0.000 0.000 0.000 0.004
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.3797   -0.01910 0.420 0.580 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.0146    0.58490 0.000 0.000 0.000 0.000 0.996 0.004
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.1429    0.77779 0.004 0.000 0.004 0.052 0.000 0.940
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.2078    0.46171 0.032 0.916 0.000 0.000 0.040 0.012
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0260    0.85135 0.000 0.000 0.000 0.992 0.000 0.008
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0260    0.85146 0.000 0.000 0.000 0.992 0.000 0.008
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.4362    0.67665 0.388 0.000 0.000 0.000 0.584 0.028
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     5  0.4906    0.32760 0.064 0.220 0.000 0.000 0.684 0.032
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.4274   -0.09173 0.432 0.552 0.004 0.000 0.012 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.3525    0.77298 0.096 0.080 0.000 0.816 0.000 0.008
#> F5940915-4123-49B3-95EE-4A0412BE8C30     6  0.4815    0.19654 0.004 0.000 0.396 0.048 0.000 0.552
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.3706    0.43087 0.000 0.000 0.000 0.620 0.380 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.4400    0.67901 0.376 0.000 0.000 0.000 0.592 0.032
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.5395    0.50430 0.204 0.000 0.000 0.644 0.124 0.028
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0405    0.91898 0.008 0.000 0.988 0.000 0.000 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.3907    0.00650 0.408 0.588 0.000 0.000 0.000 0.004
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.2070    0.81835 0.092 0.000 0.000 0.896 0.000 0.012
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0891    0.48072 0.024 0.968 0.000 0.000 0.000 0.008
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.1333    0.77886 0.000 0.000 0.008 0.048 0.000 0.944
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.1003    0.75682 0.020 0.000 0.000 0.000 0.016 0.964
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.1700    0.85844 0.000 0.000 0.916 0.080 0.000 0.004
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0260    0.91772 0.008 0.000 0.992 0.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.4310    0.67235 0.396 0.000 0.000 0.000 0.580 0.024
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.4024    0.02071 0.400 0.592 0.004 0.000 0.000 0.004
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.3032    0.48623 0.016 0.120 0.004 0.004 0.848 0.008
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0291    0.85192 0.004 0.000 0.000 0.992 0.000 0.004
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0692    0.91616 0.004 0.000 0.976 0.000 0.000 0.020
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1152    0.47646 0.044 0.952 0.000 0.000 0.000 0.004
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0146    0.92092 0.000 0.000 0.996 0.000 0.000 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0260    0.92045 0.000 0.000 0.992 0.000 0.000 0.008
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.5894   -0.12317 0.184 0.468 0.000 0.004 0.000 0.344
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0520    0.91494 0.008 0.000 0.984 0.008 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.4545    0.67102 0.176 0.124 0.000 0.000 0.000 0.700
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1434    0.47538 0.028 0.948 0.000 0.000 0.012 0.012
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.1341    0.77418 0.000 0.000 0.024 0.028 0.000 0.948
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.1524    0.82704 0.000 0.000 0.008 0.932 0.000 0.060
#> 84E18629-1B13-4696-8E54-121ABE469CD2     5  0.4380   -0.02792 0.012 0.000 0.436 0.000 0.544 0.008
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000    0.92078 0.000 0.000 1.000 0.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.4262    0.07595 0.364 0.616 0.012 0.000 0.004 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1082    0.48033 0.040 0.956 0.000 0.000 0.000 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0713    0.91293 0.000 0.000 0.972 0.000 0.000 0.028
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0000    0.92078 0.000 0.000 1.000 0.000 0.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.1549    0.88761 0.000 0.000 0.936 0.044 0.000 0.020
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.1663    0.80784 0.000 0.000 0.000 0.912 0.088 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.1387    0.88711 0.000 0.000 0.932 0.000 0.000 0.068
#> 352471DC-A881-4EA8-B646-EB1200291893     6  0.5110    0.59066 0.136 0.000 0.000 0.248 0.000 0.616
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0405    0.48269 0.008 0.988 0.000 0.000 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2719    0.43146 0.040 0.876 0.000 0.000 0.072 0.012
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1501    0.46151 0.076 0.924 0.000 0.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0603    0.47963 0.016 0.980 0.000 0.000 0.000 0.004
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.5608   -0.21985 0.124 0.440 0.000 0.432 0.000 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     1  0.5110    0.00000 0.592 0.324 0.004 0.000 0.076 0.004
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.2070    0.81835 0.092 0.000 0.000 0.896 0.000 0.012
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3693    0.72641 0.004 0.000 0.084 0.796 0.000 0.116
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.1049    0.77761 0.000 0.000 0.008 0.032 0.000 0.960
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.3803    0.36025 0.184 0.760 0.000 0.000 0.000 0.056
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.1410    0.76394 0.004 0.000 0.044 0.008 0.000 0.944
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.2883    0.69410 0.000 0.000 0.000 0.788 0.000 0.212
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.5880    0.22262 0.152 0.412 0.000 0.428 0.000 0.008
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3930    0.09569 0.364 0.628 0.004 0.000 0.000 0.004
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3817    0.31102 0.020 0.772 0.000 0.188 0.008 0.012
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4219    0.28832 0.320 0.648 0.000 0.000 0.000 0.032
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.2113    0.81828 0.092 0.004 0.000 0.896 0.000 0.008
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4356    0.33598 0.132 0.764 0.000 0.076 0.024 0.004
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2632    0.37919 0.164 0.832 0.000 0.000 0.000 0.004
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4649    0.24348 0.004 0.000 0.556 0.412 0.012 0.016
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.3293    0.76268 0.128 0.008 0.000 0.040 0.000 0.824
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.3899    0.01822 0.404 0.592 0.000 0.000 0.000 0.004
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.1668    0.77407 0.060 0.004 0.008 0.000 0.000 0.928
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.4957    0.65750 0.332 0.000 0.000 0.000 0.584 0.084
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.5782   -0.22063 0.176 0.424 0.000 0.000 0.000 0.400
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0146    0.85206 0.000 0.000 0.004 0.996 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.6158    0.18309 0.184 0.552 0.000 0.040 0.000 0.224
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.4122   -0.24999 0.472 0.520 0.004 0.000 0.000 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.3995   -0.27305 0.480 0.516 0.004 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.2823    0.73819 0.000 0.000 0.796 0.000 0.000 0.204
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.4027    0.68086 0.028 0.224 0.000 0.736 0.004 0.008
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.5372    0.58804 0.152 0.212 0.000 0.624 0.000 0.012
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.3491    0.34114 0.040 0.804 0.000 0.000 0.148 0.008
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.1285    0.77871 0.000 0.000 0.004 0.052 0.000 0.944
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.4998    0.19413 0.016 0.236 0.000 0.068 0.672 0.008
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.3139    0.75818 0.120 0.036 0.000 0.008 0.000 0.836
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.2326    0.77008 0.092 0.012 0.000 0.008 0.000 0.888
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000    0.85201 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0146    0.92076 0.000 0.000 0.996 0.000 0.000 0.004
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.3774    0.01220 0.408 0.592 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.1082    0.84375 0.040 0.000 0.000 0.956 0.000 0.004
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0363    0.85147 0.000 0.000 0.000 0.988 0.000 0.012
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0632    0.84592 0.000 0.000 0.000 0.976 0.000 0.024
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.2848    0.39249 0.176 0.816 0.000 0.000 0.000 0.008
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     6  0.5463    0.14073 0.148 0.000 0.000 0.000 0.312 0.540
#> 12F54761-4F68-4181-8421-88EA858902FC     6  0.5921    0.48852 0.156 0.020 0.000 0.288 0.000 0.536
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.4818    0.21910 0.036 0.460 0.000 0.496 0.000 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0363    0.85125 0.000 0.000 0.000 0.988 0.000 0.012
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.3961   -0.10645 0.440 0.556 0.004 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000    0.92078 0.000 0.000 1.000 0.000 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.4228    0.67161 0.392 0.000 0.000 0.000 0.588 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.503           0.677       0.798         0.4312 0.522   0.522
#> 3 3 0.600           0.571       0.778         0.4302 0.671   0.462
#> 4 4 0.672           0.812       0.892         0.1868 0.804   0.524
#> 5 5 0.696           0.724       0.862         0.0377 0.991   0.964
#> 6 6 0.735           0.691       0.823         0.0283 0.972   0.888

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1843     0.5505 0.972 0.028
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.9944     0.6119 0.544 0.456
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.9954     0.6117 0.540 0.460
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.9954     0.6117 0.540 0.460
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  1.0000     0.9439 0.500 0.500
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.9963     0.9840 0.464 0.536
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.7602    -0.0997 0.780 0.220
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.1843     0.5505 0.972 0.028
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1843     0.5505 0.972 0.028
#> 806616FE-1855-4284-9265-42842104CB21     1  0.2778     0.5092 0.952 0.048
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.9954     0.9858 0.460 0.540
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.9954     0.9858 0.460 0.540
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0938     0.5804 0.988 0.012
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.9970     0.9820 0.468 0.532
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.1414     0.5800 0.980 0.020
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  1.0000    -0.9459 0.500 0.500
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.1414     0.5800 0.980 0.020
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.1843     0.5505 0.972 0.028
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.9954     0.9858 0.460 0.540
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.9954     0.9858 0.460 0.540
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.1843     0.5505 0.972 0.028
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.9954     0.9858 0.460 0.540
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.9909    -0.8403 0.556 0.444
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.9954     0.6117 0.540 0.460
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.9954     0.9858 0.460 0.540
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.1843     0.5505 0.972 0.028
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0938     0.5804 0.988 0.012
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.6438     0.6069 0.836 0.164
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.1414     0.5800 0.980 0.020
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  1.0000    -0.9467 0.500 0.500
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.9954     0.9858 0.460 0.540
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.2043     0.5539 0.968 0.032
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.9954     0.6117 0.540 0.460
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.9996     0.9607 0.488 0.512
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.1843     0.5505 0.972 0.028
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.1414     0.5800 0.980 0.020
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.6148     0.6063 0.848 0.152
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.2043     0.5705 0.968 0.032
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.9954     0.9858 0.460 0.540
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0938     0.5804 0.988 0.012
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.9954     0.9858 0.460 0.540
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.9954     0.6117 0.540 0.460
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.9954     0.6117 0.540 0.460
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.1843     0.5505 0.972 0.028
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.9963     0.9849 0.464 0.536
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.9963     0.9849 0.464 0.536
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.9970     0.9820 0.468 0.532
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.9954     0.9858 0.460 0.540
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.9996     0.9607 0.488 0.512
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.2778     0.5092 0.952 0.048
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  1.0000     0.9508 0.496 0.504
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.2778     0.5092 0.952 0.048
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.2603     0.5168 0.956 0.044
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.9954     0.6117 0.540 0.460
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.9963     0.9849 0.464 0.536
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.9954     0.6117 0.540 0.460
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.9954     0.9858 0.460 0.540
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.9954     0.6117 0.540 0.460
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.6438     0.6069 0.836 0.164
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.9954     0.9858 0.460 0.540
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.9996     0.9607 0.488 0.512
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.9954     0.9858 0.460 0.540
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.9970     0.9820 0.468 0.532
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.9944     0.6119 0.544 0.456
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.9963     0.9849 0.464 0.536
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.2778     0.5092 0.952 0.048
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     2  1.0000     0.9506 0.496 0.504
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.1843     0.5505 0.972 0.028
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.9954     0.6117 0.540 0.460
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.9954     0.6117 0.540 0.460
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.9954     0.9858 0.460 0.540
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.9954     0.9858 0.460 0.540
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  1.0000     0.9446 0.500 0.500
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.9954     0.9858 0.460 0.540
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1843     0.5505 0.972 0.028
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.9954     0.9858 0.460 0.540
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.5946     0.6050 0.856 0.144
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.6438     0.6069 0.836 0.164
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.9954     0.6117 0.540 0.460
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.2603     0.5168 0.956 0.044
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.9954     0.6117 0.540 0.460
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.9954     0.6117 0.540 0.460
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1843     0.5505 0.972 0.028
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.9954     0.9858 0.460 0.540
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.9963     0.9849 0.464 0.536
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.2603     0.5168 0.956 0.044
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0938     0.5804 0.988 0.012
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     2  1.0000     0.9506 0.496 0.504
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.9954     0.9858 0.460 0.540
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  1.0000     0.9508 0.496 0.504
#> F25A7521-2596-4D60-BABE-862023C40D40     1  1.0000    -0.9393 0.504 0.496
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.9954     0.6117 0.540 0.460
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.9954     0.9858 0.460 0.540
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.9954     0.6117 0.540 0.460
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.9954     0.6117 0.540 0.460
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.9944     0.6119 0.544 0.456
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.1843     0.5505 0.972 0.028
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.9954     0.6117 0.540 0.460
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.9954     0.9858 0.460 0.540
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.9954     0.9858 0.460 0.540
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.9954     0.6117 0.540 0.460
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.9996     0.9607 0.488 0.512
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1843     0.5505 0.972 0.028
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.9954     0.9858 0.460 0.540
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.9954     0.6117 0.540 0.460
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.9963     0.9849 0.464 0.536
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.9954     0.6117 0.540 0.460
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.9954     0.6117 0.540 0.460
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.1843     0.5505 0.972 0.028
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.9963     0.9849 0.464 0.536
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.9954     0.9858 0.460 0.540
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.1843     0.5505 0.972 0.028
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.1843     0.5505 0.972 0.028
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.1843     0.5505 0.972 0.028
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.2603     0.5168 0.956 0.044
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.9954     0.6117 0.540 0.460
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.9954     0.6117 0.540 0.460
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1843     0.5505 0.972 0.028
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0938     0.5804 0.988 0.012
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.9954     0.9858 0.460 0.540
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.2778     0.5092 0.952 0.048
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.9963     0.9849 0.464 0.536

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.6950      0.927 0.508 0.476 0.016
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.4883      0.772 0.208 0.004 0.788
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0424      0.890 0.008 0.000 0.992
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     3  0.3573      0.843 0.120 0.004 0.876
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.1860      0.381 0.052 0.948 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.5138      0.559 0.252 0.748 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.5785     -0.546 0.332 0.668 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.6954      0.921 0.500 0.484 0.016
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.6954      0.921 0.500 0.484 0.016
#> 806616FE-1855-4284-9265-42842104CB21     2  0.7668     -0.867 0.460 0.496 0.044
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.6140      0.585 0.404 0.596 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6291      0.570 0.468 0.532 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.7895      0.916 0.508 0.436 0.056
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0592      0.439 0.012 0.988 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.7895      0.915 0.508 0.436 0.056
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.1860      0.381 0.052 0.948 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.7895      0.915 0.508 0.436 0.056
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.6950      0.927 0.508 0.476 0.016
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.6308      0.561 0.492 0.508 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.6308      0.561 0.492 0.508 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.6950      0.927 0.508 0.476 0.016
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.6308      0.561 0.492 0.508 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.3116      0.248 0.108 0.892 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.0000      0.891 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6308      0.561 0.492 0.508 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.6950      0.927 0.508 0.476 0.016
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.7895      0.916 0.508 0.436 0.056
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.9501      0.718 0.488 0.288 0.224
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.7895      0.915 0.508 0.436 0.056
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.1753      0.388 0.048 0.952 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.6308      0.561 0.492 0.508 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.7069      0.926 0.508 0.472 0.020
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.3573      0.843 0.120 0.004 0.876
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.1031      0.423 0.024 0.976 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.6950      0.927 0.508 0.476 0.016
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.7895      0.915 0.508 0.436 0.056
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.9405      0.747 0.496 0.300 0.204
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.7657      0.912 0.508 0.448 0.044
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.6308      0.561 0.492 0.508 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.7895      0.916 0.508 0.436 0.056
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.6291      0.570 0.468 0.532 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.0000      0.891 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.0000      0.891 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.6950      0.927 0.508 0.476 0.016
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0592      0.439 0.012 0.988 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.2165      0.491 0.064 0.936 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0592      0.439 0.012 0.988 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6168      0.582 0.412 0.588 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.1289      0.432 0.032 0.968 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     2  0.7668     -0.867 0.460 0.496 0.044
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1753      0.389 0.048 0.952 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     2  0.7668     -0.867 0.460 0.496 0.044
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.7671     -0.873 0.464 0.492 0.044
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     3  0.5929      0.654 0.320 0.004 0.676
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0000      0.449 0.000 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     3  0.0000      0.891 0.000 0.000 1.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6308      0.561 0.492 0.508 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.0000      0.891 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.9501      0.718 0.488 0.288 0.224
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.6168      0.582 0.412 0.588 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.1031      0.423 0.024 0.976 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.6308      0.561 0.492 0.508 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1411      0.469 0.036 0.964 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4883      0.772 0.208 0.004 0.788
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0592      0.439 0.012 0.988 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     2  0.7668     -0.867 0.460 0.496 0.044
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     2  0.1289      0.412 0.032 0.968 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.6950      0.927 0.508 0.476 0.016
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.5929      0.654 0.320 0.004 0.676
#> 352471DC-A881-4EA8-B646-EB1200291893     3  0.5929      0.654 0.320 0.004 0.676
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.6291      0.570 0.468 0.532 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6291      0.570 0.468 0.532 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.1860      0.381 0.052 0.948 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.6308      0.561 0.492 0.508 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6950      0.927 0.508 0.476 0.016
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.6308      0.561 0.492 0.508 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.9408      0.751 0.492 0.308 0.200
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.9501      0.718 0.488 0.288 0.224
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.0000      0.891 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.7671     -0.873 0.464 0.492 0.044
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.0000      0.891 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.3573      0.843 0.120 0.004 0.876
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.6950      0.927 0.508 0.476 0.016
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.6140      0.585 0.404 0.596 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2625      0.498 0.084 0.916 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.7671     -0.873 0.464 0.492 0.044
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.7895      0.916 0.508 0.436 0.056
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     2  0.1289      0.412 0.032 0.968 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6308      0.561 0.492 0.508 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1753      0.389 0.048 0.952 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     2  0.1964      0.373 0.056 0.944 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     3  0.0000      0.891 0.000 0.000 1.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.6308      0.561 0.492 0.508 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     3  0.0000      0.891 0.000 0.000 1.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000      0.891 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.4883      0.772 0.208 0.004 0.788
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.6950      0.927 0.508 0.476 0.016
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     3  0.5929      0.654 0.320 0.004 0.676
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.6308      0.561 0.492 0.508 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.6308      0.561 0.492 0.508 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0424      0.890 0.008 0.000 0.992
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.1289      0.432 0.032 0.968 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.6950      0.927 0.508 0.476 0.016
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.6308      0.561 0.492 0.508 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.0000      0.891 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5178      0.556 0.256 0.744 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     3  0.0000      0.891 0.000 0.000 1.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     3  0.0000      0.891 0.000 0.000 1.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.6950      0.927 0.508 0.476 0.016
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0592      0.439 0.012 0.988 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.6308      0.561 0.492 0.508 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.6954      0.921 0.500 0.484 0.016
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.6950      0.927 0.508 0.476 0.016
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.6950      0.927 0.508 0.476 0.016
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.7671     -0.873 0.464 0.492 0.044
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.891 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     3  0.5929      0.654 0.320 0.004 0.676
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6954      0.921 0.500 0.484 0.016
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.7895      0.916 0.508 0.436 0.056
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.6308      0.561 0.492 0.508 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     2  0.7668     -0.867 0.460 0.496 0.044
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.2165      0.491 0.064 0.936 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.4049     0.7366 0.780 0.000 0.008 0.212
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0672     0.8572 0.984 0.000 0.008 0.008
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3681     0.7870 0.816 0.000 0.008 0.176
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1610     0.8863 0.000 0.016 0.952 0.032
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     3  0.4741     0.4762 0.000 0.328 0.668 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.4830     0.1305 0.000 0.000 0.608 0.392
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.1722     0.8735 0.000 0.008 0.048 0.944
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.1722     0.8735 0.000 0.008 0.048 0.944
#> 806616FE-1855-4284-9265-42842104CB21     4  0.4008     0.7532 0.000 0.000 0.244 0.756
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.4072     0.6874 0.000 0.748 0.252 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2408     0.8580 0.000 0.896 0.104 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0188     0.8601 0.004 0.000 0.000 0.996
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.1938     0.8857 0.000 0.052 0.936 0.012
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     4  0.3873     0.7705 0.000 0.000 0.228 0.772
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1610     0.8863 0.000 0.016 0.952 0.032
#> 853120F0-857B-4108-9EC8-727189630C5F     4  0.3873     0.7705 0.000 0.000 0.228 0.772
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.2647     0.8295 0.000 0.000 0.880 0.120
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0469     0.9086 0.000 0.988 0.012 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0188     0.8601 0.004 0.000 0.000 0.996
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.3311     0.7001 0.172 0.000 0.000 0.828
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     4  0.3873     0.7705 0.000 0.000 0.228 0.772
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.1510     0.8886 0.000 0.016 0.956 0.028
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.1305     0.8739 0.004 0.000 0.036 0.960
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.3681     0.7870 0.816 0.000 0.008 0.176
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.1837     0.8870 0.000 0.028 0.944 0.028
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> AA403EC3-FD44-4247-B06D-AEF415391E46     4  0.3873     0.7705 0.000 0.000 0.228 0.772
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.4139     0.7340 0.144 0.000 0.040 0.816
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.3975     0.7593 0.000 0.000 0.240 0.760
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0188     0.8601 0.004 0.000 0.000 0.996
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2408     0.8580 0.000 0.896 0.104 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1677     0.8885 0.000 0.040 0.948 0.012
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2888     0.8404 0.000 0.124 0.872 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.1854     0.8864 0.000 0.048 0.940 0.012
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.4134     0.6537 0.000 0.740 0.260 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.4630     0.7458 0.000 0.036 0.768 0.196
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4008     0.7532 0.000 0.000 0.244 0.756
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.1284     0.8853 0.000 0.012 0.964 0.024
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.4008     0.7532 0.000 0.000 0.244 0.756
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.3873     0.7685 0.000 0.000 0.228 0.772
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.5085     0.5438 0.616 0.000 0.008 0.376
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2546     0.8825 0.000 0.060 0.912 0.028
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.3311     0.7001 0.172 0.000 0.000 0.828
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.4134     0.6537 0.000 0.740 0.260 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.1837     0.8870 0.000 0.028 0.944 0.028
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.2480     0.8655 0.000 0.088 0.904 0.008
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.4049     0.7366 0.780 0.000 0.008 0.212
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1677     0.8885 0.000 0.040 0.948 0.012
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.4008     0.7532 0.000 0.000 0.244 0.756
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.4501     0.7395 0.000 0.024 0.764 0.212
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.5085     0.5438 0.616 0.000 0.008 0.376
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5085     0.5438 0.616 0.000 0.008 0.376
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2408     0.8580 0.000 0.896 0.104 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2408     0.8580 0.000 0.896 0.104 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.1388     0.8851 0.000 0.012 0.960 0.028
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.3024     0.7339 0.148 0.000 0.000 0.852
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3311     0.7001 0.172 0.000 0.000 0.828
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     4  0.3873     0.7685 0.000 0.000 0.228 0.772
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.3681     0.7870 0.816 0.000 0.008 0.176
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4040     0.6932 0.000 0.752 0.248 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     3  0.3852     0.7639 0.000 0.192 0.800 0.008
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     4  0.3873     0.7685 0.000 0.000 0.228 0.772
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0188     0.8601 0.004 0.000 0.000 0.996
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.4501     0.7395 0.000 0.024 0.764 0.212
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.1284     0.8853 0.000 0.012 0.964 0.024
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2142     0.8779 0.000 0.016 0.928 0.056
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.4049     0.7366 0.780 0.000 0.008 0.212
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.5085     0.5438 0.616 0.000 0.008 0.376
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0672     0.8572 0.984 0.000 0.008 0.008
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.2227     0.8858 0.000 0.036 0.928 0.036
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5163    -0.0037 0.000 0.516 0.480 0.004
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1677     0.8885 0.000 0.040 0.948 0.012
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.1722     0.8735 0.000 0.008 0.048 0.944
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.1302     0.8759 0.000 0.000 0.044 0.956
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     4  0.3873     0.7685 0.000 0.000 0.228 0.772
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5085     0.5438 0.616 0.000 0.008 0.376
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.1722     0.8735 0.000 0.008 0.048 0.944
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0188     0.8601 0.004 0.000 0.000 0.996
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4008     0.7532 0.000 0.000 0.244 0.756
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.2888     0.8404 0.000 0.124 0.872 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.4168    0.67973 0.756 0.000 0.000 0.200 0.044
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0703    0.81367 0.976 0.000 0.000 0.000 0.024
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.4104    0.71952 0.788 0.000 0.000 0.124 0.088
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.3621    0.65814 0.000 0.000 0.788 0.020 0.192
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     3  0.4142    0.45463 0.000 0.308 0.684 0.004 0.004
#> 9264567D-4524-46AF-A851-C091C3CD76CF     5  0.4298   -0.06849 0.000 0.000 0.352 0.008 0.640
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0693    0.81501 0.000 0.000 0.012 0.980 0.008
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0693    0.81501 0.000 0.000 0.012 0.980 0.008
#> 806616FE-1855-4284-9265-42842104CB21     4  0.5240    0.53785 0.000 0.000 0.216 0.672 0.112
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.4333    0.70519 0.000 0.740 0.212 0.000 0.048
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.2179    0.85288 0.000 0.896 0.100 0.000 0.004
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.1197    0.80250 0.000 0.000 0.000 0.952 0.048
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.1202    0.75527 0.000 0.032 0.960 0.004 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     4  0.4147    0.56547 0.000 0.000 0.008 0.676 0.316
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.3621    0.65814 0.000 0.000 0.788 0.020 0.192
#> 853120F0-857B-4108-9EC8-727189630C5F     4  0.4147    0.56547 0.000 0.000 0.008 0.676 0.316
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0162    0.90491 0.000 0.996 0.004 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.5243    0.59493 0.000 0.000 0.680 0.132 0.188
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0451    0.90172 0.000 0.988 0.008 0.000 0.004
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.1197    0.80250 0.000 0.000 0.000 0.952 0.048
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.4096    0.64007 0.144 0.000 0.000 0.784 0.072
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     4  0.4147    0.56547 0.000 0.000 0.008 0.676 0.316
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.0898    0.75220 0.000 0.000 0.972 0.020 0.008
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0162    0.81505 0.000 0.000 0.000 0.996 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.4104    0.71952 0.788 0.000 0.000 0.124 0.088
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.3146    0.73503 0.000 0.000 0.856 0.052 0.092
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     4  0.4147    0.56547 0.000 0.000 0.008 0.676 0.316
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.4641    0.65174 0.116 0.000 0.008 0.760 0.116
#> 50D620F3-5C52-42FB-89A1-6840A7444647     5  0.4108    0.16390 0.000 0.000 0.008 0.308 0.684
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.1197    0.80250 0.000 0.000 0.000 0.952 0.048
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.2179    0.85288 0.000 0.896 0.100 0.000 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.3586    0.67831 0.000 0.020 0.792 0.000 0.188
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.3648    0.72118 0.000 0.092 0.824 0.000 0.084
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.1116    0.75518 0.000 0.028 0.964 0.004 0.004
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3916    0.62248 0.000 0.732 0.256 0.000 0.012
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.5385    0.51557 0.000 0.008 0.668 0.232 0.092
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4847    0.57835 0.000 0.000 0.216 0.704 0.080
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.2583    0.71588 0.000 0.000 0.864 0.004 0.132
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.5240    0.53785 0.000 0.000 0.216 0.672 0.112
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.5339    0.55662 0.000 0.000 0.176 0.672 0.152
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.5538    0.51205 0.588 0.000 0.000 0.324 0.088
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3857    0.73832 0.000 0.028 0.832 0.052 0.088
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.4096    0.64007 0.144 0.000 0.000 0.784 0.072
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.3916    0.62248 0.000 0.732 0.256 0.000 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.3146    0.73503 0.000 0.000 0.856 0.052 0.092
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.1864    0.74645 0.000 0.068 0.924 0.004 0.004
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.4168    0.67973 0.756 0.000 0.000 0.200 0.044
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3586    0.67831 0.000 0.020 0.792 0.000 0.188
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.5240    0.53785 0.000 0.000 0.216 0.672 0.112
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.5216    0.49540 0.000 0.000 0.660 0.248 0.092
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.5538    0.51205 0.588 0.000 0.000 0.324 0.088
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.5538    0.51205 0.588 0.000 0.000 0.324 0.088
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.2179    0.85288 0.000 0.896 0.100 0.000 0.004
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2179    0.85288 0.000 0.896 0.100 0.000 0.004
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.2707    0.71375 0.000 0.000 0.860 0.008 0.132
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.3798    0.67119 0.128 0.000 0.000 0.808 0.064
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.4096    0.64007 0.144 0.000 0.000 0.784 0.072
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     4  0.5339    0.55662 0.000 0.000 0.176 0.672 0.152
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.4104    0.71952 0.788 0.000 0.000 0.124 0.088
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4302    0.70998 0.000 0.744 0.208 0.000 0.048
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     3  0.4215    0.64383 0.000 0.172 0.772 0.004 0.052
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     4  0.5339    0.55662 0.000 0.000 0.176 0.672 0.152
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.1197    0.80250 0.000 0.000 0.000 0.952 0.048
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.5216    0.49540 0.000 0.000 0.660 0.248 0.092
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.2583    0.71588 0.000 0.000 0.864 0.004 0.132
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2853    0.73385 0.000 0.000 0.876 0.072 0.052
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.4168    0.67973 0.756 0.000 0.000 0.200 0.044
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.5538    0.51205 0.588 0.000 0.000 0.324 0.088
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0703    0.81367 0.976 0.000 0.000 0.000 0.024
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.2819    0.74821 0.000 0.008 0.884 0.032 0.076
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4658   -0.00422 0.000 0.504 0.484 0.000 0.012
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3586    0.67831 0.000 0.020 0.792 0.000 0.188
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0693    0.81501 0.000 0.000 0.012 0.980 0.008
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0290    0.81808 0.000 0.000 0.008 0.992 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     4  0.5339    0.55662 0.000 0.000 0.176 0.672 0.152
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000    0.82029 1.000 0.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.5538    0.51205 0.588 0.000 0.000 0.324 0.088
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.0693    0.81501 0.000 0.000 0.012 0.980 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.1197    0.80250 0.000 0.000 0.000 0.952 0.048
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000    0.90663 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.5240    0.53785 0.000 0.000 0.216 0.672 0.112
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.3648    0.72118 0.000 0.092 0.824 0.000 0.084

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5 p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     4  0.4672     0.6346 0.200 0.000 0.000 0.704 0.016 NA
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.0820     0.8019 0.000 0.000 0.000 0.972 0.012 NA
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     4  0.4780     0.6909 0.116 0.000 0.000 0.736 0.056 NA
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.6106     0.5878 0.020 0.000 0.508 0.000 0.188 NA
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     3  0.5080     0.5131 0.004 0.288 0.632 0.000 0.020 NA
#> 9264567D-4524-46AF-A851-C091C3CD76CF     5  0.4946    -0.0707 0.000 0.000 0.068 0.000 0.528 NA
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0363     0.7917 0.988 0.000 0.012 0.000 0.000 NA
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0363     0.7917 0.988 0.000 0.012 0.000 0.000 NA
#> 806616FE-1855-4284-9265-42842104CB21     1  0.5090     0.3217 0.592 0.000 0.024 0.000 0.336 NA
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.4286     0.6766 0.000 0.720 0.208 0.000 0.004 NA
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1863     0.8664 0.000 0.896 0.104 0.000 0.000 NA
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1367     0.7720 0.944 0.000 0.000 0.000 0.044 NA
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.2663     0.7098 0.004 0.012 0.884 0.000 0.032 NA
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.5790     0.6429 0.360 0.000 0.000 0.000 0.456 NA
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.6106     0.5878 0.020 0.000 0.508 0.000 0.188 NA
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.5790     0.6429 0.360 0.000 0.000 0.000 0.456 NA
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0632     0.9151 0.000 0.976 0.024 0.000 0.000 NA
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.6020     0.3363 0.060 0.000 0.476 0.000 0.072 NA
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0363     0.9219 0.000 0.988 0.012 0.000 0.000 NA
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.1367     0.7720 0.944 0.000 0.000 0.000 0.044 NA
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.4298     0.5974 0.776 0.000 0.000 0.092 0.048 NA
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.5790     0.6429 0.360 0.000 0.000 0.000 0.456 NA
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.3019     0.7073 0.020 0.000 0.856 0.000 0.032 NA
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0405     0.7929 0.988 0.000 0.000 0.000 0.008 NA
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.4780     0.6909 0.116 0.000 0.000 0.736 0.056 NA
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.2046     0.6877 0.060 0.000 0.908 0.000 0.000 NA
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.5790     0.6429 0.360 0.000 0.000 0.000 0.456 NA
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4628     0.5885 0.752 0.000 0.000 0.064 0.092 NA
#> 50D620F3-5C52-42FB-89A1-6840A7444647     5  0.4368     0.4383 0.048 0.000 0.000 0.000 0.656 NA
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1367     0.7720 0.944 0.000 0.000 0.000 0.044 NA
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1863     0.8664 0.000 0.896 0.104 0.000 0.000 NA
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5600     0.5986 0.000 0.000 0.528 0.000 0.176 NA
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.1983     0.6846 0.000 0.072 0.908 0.000 0.000 NA
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.2487     0.7093 0.004 0.008 0.892 0.000 0.028 NA
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3586     0.5949 0.000 0.720 0.268 0.000 0.000 NA
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.4259     0.5616 0.240 0.008 0.708 0.000 0.000 NA
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.4976     0.3725 0.624 0.000 0.024 0.000 0.304 NA
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.5666     0.6207 0.004 0.000 0.552 0.000 0.196 NA
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.5090     0.3217 0.592 0.000 0.024 0.000 0.336 NA
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.4283     0.3164 0.592 0.000 0.024 0.000 0.384 NA
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.6023     0.4556 0.316 0.000 0.000 0.536 0.056 NA
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.1781     0.6889 0.060 0.008 0.924 0.000 0.000 NA
#> B5474EEB-D585-4668-959C-38F240F55BC2     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.4298     0.5974 0.776 0.000 0.000 0.092 0.048 NA
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.3586     0.5949 0.000 0.720 0.268 0.000 0.000 NA
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.2046     0.6877 0.060 0.000 0.908 0.000 0.000 NA
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.2941     0.7060 0.004 0.048 0.872 0.000 0.020 NA
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.4672     0.6346 0.200 0.000 0.000 0.704 0.016 NA
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.5600     0.5986 0.000 0.000 0.528 0.000 0.176 NA
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.5090     0.3217 0.592 0.000 0.024 0.000 0.336 NA
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.4107     0.5431 0.256 0.000 0.700 0.000 0.000 NA
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.6023     0.4556 0.316 0.000 0.000 0.536 0.056 NA
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.6023     0.4556 0.316 0.000 0.000 0.536 0.056 NA
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1863     0.8664 0.000 0.896 0.104 0.000 0.000 NA
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1863     0.8664 0.000 0.896 0.104 0.000 0.000 NA
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.5768     0.6173 0.008 0.000 0.548 0.000 0.196 NA
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.3984     0.6308 0.800 0.000 0.000 0.076 0.044 NA
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.4298     0.5974 0.776 0.000 0.000 0.092 0.048 NA
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.4283     0.3164 0.592 0.000 0.024 0.000 0.384 NA
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.4780     0.6909 0.116 0.000 0.000 0.736 0.056 NA
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4258     0.6831 0.000 0.724 0.204 0.000 0.004 NA
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     3  0.2520     0.6436 0.004 0.152 0.844 0.000 0.000 NA
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.4283     0.3164 0.592 0.000 0.024 0.000 0.384 NA
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1367     0.7720 0.944 0.000 0.000 0.000 0.044 NA
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.4107     0.5431 0.256 0.000 0.700 0.000 0.000 NA
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.5666     0.6207 0.004 0.000 0.552 0.000 0.196 NA
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5662     0.6522 0.080 0.000 0.652 0.000 0.160 NA
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     4  0.4672     0.6346 0.200 0.000 0.000 0.704 0.016 NA
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.6023     0.4556 0.316 0.000 0.000 0.536 0.056 NA
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.0820     0.8019 0.000 0.000 0.000 0.972 0.012 NA
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.1906     0.6988 0.032 0.008 0.924 0.000 0.000 NA
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> B3561356-5A80-4C79-B23A-D518425565FE     3  0.3866    -0.0490 0.000 0.484 0.516 0.000 0.000 NA
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5600     0.5986 0.000 0.000 0.528 0.000 0.176 NA
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0363     0.7917 0.988 0.000 0.012 0.000 0.000 NA
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.7966 1.000 0.000 0.000 0.000 0.000 NA
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.4283     0.3164 0.592 0.000 0.024 0.000 0.384 NA
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     4  0.0000     0.8094 0.000 0.000 0.000 1.000 0.000 NA
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.6023     0.4556 0.316 0.000 0.000 0.536 0.056 NA
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0363     0.7917 0.988 0.000 0.012 0.000 0.000 NA
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.1367     0.7720 0.944 0.000 0.000 0.000 0.044 NA
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9270 0.000 1.000 0.000 0.000 0.000 NA
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.5090     0.3217 0.592 0.000 0.024 0.000 0.336 NA
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1983     0.6846 0.000 0.072 0.908 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.998         0.4961 0.505   0.505
#> 3 3 1.000           0.933       0.975         0.3046 0.670   0.443
#> 4 4 0.703           0.732       0.871         0.1411 0.788   0.488
#> 5 5 0.704           0.670       0.809         0.0749 0.869   0.559
#> 6 6 0.763           0.681       0.802         0.0421 0.932   0.683

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1   0.000      0.998 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1   0.000      0.998 1.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1   0.000      0.998 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1   0.000      0.998 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2   0.000      0.999 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2   0.000      0.999 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2   0.000      0.999 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1   0.000      0.998 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1   0.584      0.837 0.860 0.140
#> 806616FE-1855-4284-9265-42842104CB21     1   0.000      0.998 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2   0.000      0.999 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2   0.000      0.999 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1   0.000      0.998 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2   0.000      0.999 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1   0.000      0.998 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2   0.000      0.999 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1   0.000      0.998 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1   0.000      0.998 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2   0.000      0.999 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2   0.000      0.999 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1   0.000      0.998 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2   0.000      0.999 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2   0.000      0.999 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1   0.000      0.998 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2   0.000      0.999 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1   0.000      0.998 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1   0.000      0.998 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1   0.000      0.998 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1   0.000      0.998 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2   0.000      0.999 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2   0.000      0.999 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1   0.000      0.998 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1   0.000      0.998 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2   0.000      0.999 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1   0.000      0.998 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1   0.000      0.998 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1   0.000      0.998 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1   0.000      0.998 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2   0.000      0.999 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1   0.000      0.998 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2   0.000      0.999 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1   0.000      0.998 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1   0.000      0.998 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1   0.000      0.998 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2   0.000      0.999 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2   0.000      0.999 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2   0.000      0.999 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2   0.000      0.999 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2   0.000      0.999 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1   0.000      0.998 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2   0.000      0.999 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1   0.000      0.998 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1   0.000      0.998 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1   0.000      0.998 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2   0.000      0.999 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1   0.000      0.998 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2   0.000      0.999 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1   0.000      0.998 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1   0.000      0.998 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2   0.000      0.999 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2   0.000      0.999 0.000 1.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2   0.000      0.999 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2   0.000      0.999 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1   0.000      0.998 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2   0.000      0.999 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1   0.000      0.998 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     2   0.000      0.999 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1   0.000      0.998 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1   0.000      0.998 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1   0.000      0.998 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2   0.000      0.999 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2   0.000      0.999 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2   0.000      0.999 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2   0.000      0.999 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1   0.000      0.998 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2   0.000      0.999 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1   0.000      0.998 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1   0.000      0.998 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1   0.000      0.998 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1   0.000      0.998 1.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1   0.000      0.998 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1   0.000      0.998 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1   0.000      0.998 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2   0.000      0.999 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2   0.000      0.999 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1   0.000      0.998 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1   0.000      0.998 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     2   0.000      0.999 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2   0.000      0.999 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2   0.000      0.999 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     2   0.000      0.999 0.000 1.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1   0.000      0.998 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2   0.000      0.999 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1   0.000      0.998 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1   0.000      0.998 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1   0.000      0.998 1.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1   0.000      0.998 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1   0.000      0.998 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2   0.000      0.999 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2   0.000      0.999 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1   0.000      0.998 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2   0.000      0.999 0.000 1.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1   0.000      0.998 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2   0.000      0.999 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1   0.000      0.998 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2   0.000      0.999 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1   0.000      0.998 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1   0.000      0.998 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1   0.000      0.998 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2   0.000      0.999 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2   0.000      0.999 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1   0.000      0.998 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1   0.000      0.998 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1   0.000      0.998 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1   0.000      0.998 1.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1   0.000      0.998 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1   0.000      0.998 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2   0.260      0.954 0.044 0.956
#> FA716037-886B-4DD0-8016-686C2D24550A     1   0.000      0.998 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2   0.000      0.999 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1   0.000      0.998 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2   0.000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     3  0.0000      0.973 0.000 0.000 1.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000      0.932 1.000 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.932 1.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.932 1.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000      0.973 0.000 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.999 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000      0.973 0.000 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     3  0.0000      0.973 0.000 0.000 1.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     3  0.0000      0.973 0.000 0.000 1.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000      0.973 0.000 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.999 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.999 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     3  0.0000      0.973 0.000 0.000 1.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.999 0.000 1.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000      0.973 0.000 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000      0.973 0.000 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000      0.973 0.000 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.0000      0.973 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.999 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.999 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.0000      0.973 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.999 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000      0.973 0.000 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.932 1.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.999 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.0000      0.973 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.0000      0.973 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.6260      0.274 0.552 0.000 0.448
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000      0.973 0.000 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.0000      0.973 0.000 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.999 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     3  0.0000      0.973 0.000 0.000 1.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.932 1.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0000      0.973 0.000 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.0000      0.973 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000      0.973 0.000 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.0000      0.973 0.000 0.000 1.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.973 0.000 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.999 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     3  0.0000      0.973 0.000 0.000 1.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.999 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.932 1.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.932 1.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0000      0.973 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.999 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.999 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.6126      0.345 0.000 0.400 0.600
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.999 0.000 1.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.2878      0.871 0.000 0.096 0.904
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000      0.973 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.999 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0000      0.973 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0000      0.973 0.000 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.932 1.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0747      0.980 0.000 0.984 0.016
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.932 1.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.999 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.932 1.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.6252      0.285 0.556 0.000 0.444
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.999 0.000 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000      0.973 0.000 0.000 1.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.999 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.999 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.932 1.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.6111      0.355 0.000 0.396 0.604
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0000      0.973 0.000 0.000 1.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.0000      0.973 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.0000      0.973 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.932 1.000 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.932 1.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.999 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.999 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.0000      0.973 0.000 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.999 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     3  0.0000      0.973 0.000 0.000 1.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.999 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6286      0.226 0.536 0.000 0.464
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.6260      0.274 0.552 0.000 0.448
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.932 1.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     3  0.0000      0.973 0.000 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.932 1.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.932 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     3  0.0000      0.973 0.000 0.000 1.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.999 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.999 0.000 1.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.0000      0.973 0.000 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     3  0.0000      0.973 0.000 0.000 1.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.0000      0.973 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.999 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.999 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0000      0.973 0.000 0.000 1.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.932 1.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.999 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.932 1.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000      0.932 1.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.932 1.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.0000      0.973 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.932 1.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.999 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.999 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.932 1.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.0000      0.973 0.000 0.000 1.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     3  0.0000      0.973 0.000 0.000 1.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.999 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.932 1.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.999 0.000 1.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.932 1.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.932 1.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.0000      0.973 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.5948      0.444 0.000 0.360 0.640
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.999 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     3  0.0000      0.973 0.000 0.000 1.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.0000      0.973 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.0000      0.973 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.0000      0.973 0.000 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.932 1.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.932 1.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     3  0.0000      0.973 0.000 0.000 1.000
#> FA716037-886B-4DD0-8016-686C2D24550A     3  0.0000      0.973 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.999 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000      0.973 0.000 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.999 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.0336     0.7843 0.000 0.000 0.008 0.992
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.4985     0.2054 0.532 0.000 0.000 0.468
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.7843 0.000 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     3  0.4933     0.3155 0.000 0.432 0.568 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0336     0.7827 0.000 0.000 0.992 0.008
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.3764     0.6992 0.000 0.000 0.216 0.784
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.4933     0.2754 0.000 0.000 0.432 0.568
#> 806616FE-1855-4284-9265-42842104CB21     4  0.4961     0.5213 0.000 0.000 0.448 0.552
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.4134     0.6405 0.000 0.260 0.740 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4040     0.4235 0.000 0.000 0.752 0.248
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.7843 0.000 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     4  0.4406     0.6396 0.000 0.000 0.300 0.700
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.3726     0.7033 0.000 0.000 0.212 0.788
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.3486     0.7252 0.000 0.000 0.188 0.812
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0336     0.7827 0.000 0.000 0.992 0.008
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0921     0.7808 0.000 0.000 0.028 0.972
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0336     0.7843 0.000 0.000 0.008 0.992
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0188     0.7839 0.004 0.000 0.000 0.996
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     4  0.4406     0.6396 0.000 0.000 0.300 0.700
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.0000     0.7843 0.000 0.000 1.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0336     0.7843 0.000 0.000 0.008 0.992
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.3942     0.6168 0.000 0.000 0.764 0.236
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.3356     0.7312 0.000 0.000 0.176 0.824
#> AA403EC3-FD44-4247-B06D-AEF415391E46     4  0.4605     0.6187 0.000 0.000 0.336 0.664
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.4406     0.6396 0.000 0.000 0.300 0.700
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.3486     0.7252 0.000 0.000 0.188 0.812
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.4164     0.6231 0.000 0.264 0.736 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.4406     0.5142 0.000 0.700 0.300 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.0336     0.7864 0.000 0.008 0.992 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.4454     0.4966 0.000 0.692 0.308 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.3975     0.6117 0.000 0.000 0.760 0.240
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.4981     0.4964 0.000 0.000 0.464 0.536
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.3610     0.6962 0.000 0.200 0.800 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.3356     0.7334 0.000 0.000 0.176 0.824
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     4  0.4477     0.6333 0.000 0.000 0.312 0.688
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.3975     0.5681 0.240 0.000 0.000 0.760
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.1940     0.7830 0.000 0.076 0.924 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188     0.7839 0.004 0.000 0.000 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4804     0.4279 0.000 0.384 0.616 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0817     0.7779 0.000 0.000 0.976 0.024
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.3024     0.7483 0.000 0.148 0.852 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.4994     0.1656 0.520 0.000 0.000 0.480
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0336     0.7864 0.000 0.008 0.992 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3486     0.7252 0.000 0.000 0.188 0.812
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.4624     0.4435 0.000 0.000 0.660 0.340
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.2530     0.7567 0.000 0.000 0.112 0.888
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.4941     0.0918 0.436 0.000 0.000 0.564
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4746     0.4540 0.632 0.000 0.000 0.368
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.1118     0.7691 0.000 0.000 0.964 0.036
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.3486     0.7252 0.000 0.000 0.188 0.812
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0188     0.7839 0.004 0.000 0.000 0.996
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     4  0.3942     0.6715 0.000 0.000 0.236 0.764
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     3  0.4972     0.2450 0.000 0.456 0.544 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     4  0.4431     0.6367 0.000 0.000 0.304 0.696
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.4585     0.4598 0.000 0.000 0.668 0.332
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.3610     0.6962 0.000 0.200 0.800 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0000     0.7843 0.000 0.000 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.4985     0.2054 0.532 0.000 0.000 0.468
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.3486     0.7252 0.000 0.000 0.188 0.812
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.4843     0.2233 0.396 0.000 0.000 0.604
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.3942     0.6168 0.000 0.000 0.764 0.236
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4543     0.4579 0.000 0.676 0.324 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.3486     0.7252 0.000 0.000 0.188 0.812
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0336     0.7864 0.000 0.008 0.992 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.3764     0.6992 0.000 0.000 0.216 0.784
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0336     0.7843 0.000 0.000 0.008 0.992
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0336     0.7843 0.000 0.000 0.008 0.992
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     4  0.4477     0.6332 0.000 0.000 0.312 0.688
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     0.9059 1.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.4941     0.0918 0.436 0.000 0.000 0.564
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.4981     0.1692 0.000 0.000 0.464 0.536
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.7847 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9547 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     4  0.4961     0.5213 0.000 0.000 0.448 0.552
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.4103     0.6334 0.000 0.256 0.744 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2690      0.644 0.000 0.000 0.000 0.844 0.156
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     5  0.3106      0.470 0.116 0.000 0.020 0.008 0.856
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0162      0.939 0.996 0.000 0.000 0.000 0.004
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.2966      0.818 0.816 0.000 0.000 0.000 0.184
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2054      0.749 0.000 0.000 0.920 0.052 0.028
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     3  0.3909      0.697 0.000 0.216 0.760 0.000 0.024
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.4428      0.505 0.000 0.000 0.700 0.032 0.268
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0609      0.706 0.000 0.000 0.020 0.980 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.1851      0.643 0.000 0.000 0.088 0.912 0.000
#> 806616FE-1855-4284-9265-42842104CB21     5  0.6589      0.418 0.000 0.000 0.224 0.328 0.448
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2208      0.924 0.000 0.908 0.072 0.000 0.020
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1310      0.965 0.000 0.956 0.024 0.000 0.020
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.4114      0.427 0.000 0.000 0.000 0.624 0.376
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.2674      0.762 0.000 0.140 0.856 0.000 0.004
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.6690      0.368 0.000 0.000 0.300 0.268 0.432
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1753      0.742 0.000 0.000 0.936 0.032 0.032
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.6219      0.473 0.000 0.000 0.212 0.240 0.548
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0404      0.711 0.000 0.000 0.012 0.988 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0290      0.712 0.000 0.000 0.008 0.992 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3649      0.665 0.000 0.000 0.808 0.040 0.152
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1117      0.969 0.000 0.964 0.016 0.000 0.020
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.2280      0.675 0.000 0.000 0.000 0.880 0.120
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.3707      0.558 0.000 0.000 0.000 0.716 0.284
#> 4496EE84-2C36-413B-A328-A5B598A6C387     5  0.4297     -0.130 0.000 0.000 0.000 0.472 0.528
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.6219      0.473 0.000 0.000 0.212 0.240 0.548
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.2597      0.756 0.000 0.000 0.884 0.092 0.024
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.2891      0.631 0.000 0.000 0.000 0.824 0.176
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.2966      0.818 0.816 0.000 0.000 0.000 0.184
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.4298      0.585 0.000 0.000 0.640 0.352 0.008
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0162      0.712 0.000 0.000 0.004 0.996 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.6396      0.451 0.000 0.000 0.212 0.280 0.508
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     5  0.3932      0.253 0.000 0.000 0.000 0.328 0.672
#> 50D620F3-5C52-42FB-89A1-6840A7444647     5  0.6219      0.473 0.000 0.000 0.212 0.240 0.548
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.4138      0.415 0.000 0.000 0.000 0.616 0.384
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1117      0.969 0.000 0.964 0.016 0.000 0.020
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0290      0.712 0.000 0.000 0.008 0.992 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.2127      0.769 0.000 0.108 0.892 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.4270      0.564 0.000 0.320 0.668 0.000 0.012
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.1638      0.767 0.000 0.000 0.932 0.064 0.004
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.4491      0.544 0.000 0.328 0.652 0.000 0.020
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.4576      0.518 0.000 0.000 0.608 0.376 0.016
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3810      0.509 0.000 0.000 0.088 0.812 0.100
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.3110      0.741 0.000 0.060 0.860 0.000 0.080
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     5  0.6164      0.355 0.000 0.000 0.140 0.368 0.492
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     5  0.6491      0.454 0.000 0.000 0.228 0.284 0.488
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     5  0.4666      0.283 0.040 0.000 0.000 0.284 0.676
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3427      0.758 0.000 0.028 0.836 0.128 0.008
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1117      0.969 0.000 0.964 0.016 0.000 0.020
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     5  0.4256     -0.030 0.000 0.000 0.000 0.436 0.564
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.3003      0.734 0.000 0.188 0.812 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4046      0.652 0.000 0.000 0.696 0.296 0.008
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.3959      0.763 0.000 0.068 0.816 0.104 0.012
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     5  0.4050      0.443 0.172 0.000 0.008 0.036 0.784
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.1341      0.739 0.000 0.000 0.944 0.000 0.056
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.2291      0.653 0.000 0.000 0.036 0.908 0.056
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.3728      0.435 0.000 0.000 0.244 0.748 0.008
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0794      0.706 0.000 0.000 0.000 0.972 0.028
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     5  0.5309      0.391 0.164 0.000 0.000 0.160 0.676
#> 352471DC-A881-4EA8-B646-EB1200291893     5  0.5905      0.315 0.276 0.000 0.000 0.144 0.580
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1310      0.965 0.000 0.956 0.024 0.000 0.020
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.2012      0.936 0.000 0.920 0.060 0.000 0.020
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.4731      0.382 0.000 0.000 0.640 0.032 0.328
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0162      0.712 0.000 0.000 0.004 0.996 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     5  0.4291     -0.108 0.000 0.000 0.000 0.464 0.536
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     5  0.4256     -0.030 0.000 0.000 0.000 0.436 0.564
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     5  0.4132      0.429 0.000 0.000 0.020 0.260 0.720
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.2966      0.818 0.816 0.000 0.000 0.000 0.184
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.3999      0.471 0.000 0.000 0.000 0.656 0.344
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.2208      0.924 0.000 0.908 0.072 0.000 0.020
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     3  0.4229      0.703 0.000 0.208 0.756 0.012 0.024
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     5  0.6388      0.458 0.000 0.000 0.208 0.284 0.508
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.4138      0.415 0.000 0.000 0.000 0.616 0.384
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4538     -0.169 0.000 0.000 0.452 0.540 0.008
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.1117      0.969 0.000 0.964 0.016 0.000 0.020
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.3110      0.741 0.000 0.060 0.860 0.000 0.080
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4163      0.696 0.000 0.000 0.740 0.228 0.032
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.2471      0.857 0.864 0.000 0.000 0.000 0.136
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     5  0.4210      0.406 0.204 0.000 0.004 0.036 0.756
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0290      0.712 0.000 0.000 0.008 0.992 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     5  0.5307      0.389 0.156 0.000 0.000 0.168 0.676
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.3966      0.601 0.664 0.000 0.000 0.000 0.336
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.4283      0.590 0.000 0.000 0.644 0.348 0.008
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.4114      0.427 0.000 0.000 0.000 0.624 0.376
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     3  0.4654      0.514 0.000 0.348 0.628 0.000 0.024
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0290      0.712 0.000 0.000 0.008 0.992 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.1341      0.739 0.000 0.000 0.944 0.000 0.056
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0510      0.708 0.000 0.000 0.016 0.984 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.3586      0.578 0.000 0.000 0.000 0.736 0.264
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.3586      0.578 0.000 0.000 0.000 0.736 0.264
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     5  0.6333      0.456 0.000 0.000 0.196 0.288 0.516
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     5  0.5309      0.391 0.164 0.000 0.000 0.160 0.676
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.1851      0.643 0.000 0.000 0.088 0.912 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.4138      0.415 0.000 0.000 0.000 0.616 0.384
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     5  0.6631      0.383 0.000 0.000 0.224 0.356 0.420
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.2233      0.770 0.000 0.104 0.892 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.3991      0.472 0.240 0.000 0.008 0.724 0.028 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.5097      0.392 0.604 0.000 0.008 0.000 0.304 0.084
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     6  0.0622      0.891 0.000 0.000 0.008 0.000 0.012 0.980
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     6  0.3636      0.624 0.320 0.000 0.000 0.000 0.004 0.676
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.3232      0.710 0.020 0.000 0.812 0.008 0.160 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     3  0.4070      0.750 0.120 0.076 0.784 0.004 0.016 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     5  0.3705      0.599 0.020 0.000 0.236 0.004 0.740 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0551      0.729 0.004 0.000 0.004 0.984 0.008 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.1232      0.720 0.004 0.000 0.016 0.956 0.024 0.000
#> 806616FE-1855-4284-9265-42842104CB21     5  0.4716      0.798 0.056 0.000 0.060 0.152 0.732 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.5128      0.646 0.104 0.660 0.216 0.000 0.020 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3591      0.844 0.104 0.816 0.064 0.000 0.016 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4184      0.179 0.500 0.000 0.000 0.488 0.012 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     3  0.3515      0.772 0.092 0.048 0.832 0.004 0.024 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.3208      0.791 0.012 0.000 0.068 0.076 0.844 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.3470      0.695 0.020 0.000 0.792 0.012 0.176 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.3722      0.802 0.068 0.000 0.032 0.084 0.816 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0405      0.732 0.004 0.000 0.000 0.988 0.008 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0777      0.920 0.024 0.972 0.000 0.000 0.004 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0291      0.732 0.004 0.000 0.000 0.992 0.004 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.4468     -0.197 0.020 0.000 0.488 0.004 0.488 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.0000      0.898 0.000 0.000 0.000 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.2133      0.901 0.052 0.912 0.020 0.000 0.016 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.2312      0.658 0.112 0.000 0.000 0.876 0.012 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.3967      0.268 0.356 0.000 0.000 0.632 0.012 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.2941      0.678 0.780 0.000 0.000 0.220 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.3722      0.802 0.068 0.000 0.032 0.084 0.816 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.3557      0.740 0.032 0.000 0.824 0.044 0.100 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.3629      0.460 0.260 0.000 0.000 0.724 0.016 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     6  0.3547      0.650 0.300 0.000 0.000 0.000 0.004 0.696
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.5451      0.222 0.020 0.000 0.472 0.440 0.068 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0291      0.732 0.004 0.000 0.000 0.992 0.004 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.3411      0.806 0.044 0.000 0.032 0.088 0.836 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.3501      0.723 0.804 0.000 0.000 0.116 0.080 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     5  0.3545      0.800 0.060 0.000 0.044 0.064 0.832 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.4177      0.241 0.520 0.000 0.000 0.468 0.012 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3124      0.867 0.096 0.848 0.040 0.000 0.016 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.0000      0.898 0.000 0.000 0.000 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.0146      0.898 0.000 0.000 0.000 0.000 0.004 0.996
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0405      0.732 0.004 0.000 0.000 0.988 0.008 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.2183      0.773 0.028 0.020 0.912 0.000 0.040 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.2858      0.771 0.028 0.092 0.864 0.000 0.016 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.3402      0.779 0.088 0.000 0.836 0.028 0.048 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     3  0.4421      0.727 0.104 0.112 0.756 0.000 0.028 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.5580     -0.214 0.048 0.000 0.440 0.468 0.044 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.3688      0.544 0.008 0.000 0.028 0.768 0.196 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.4203      0.757 0.096 0.040 0.788 0.004 0.072 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     5  0.4622      0.765 0.092 0.000 0.020 0.164 0.724 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     5  0.4500      0.801 0.076 0.000 0.040 0.132 0.752 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3355      0.729 0.828 0.000 0.000 0.100 0.064 0.008
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2675      0.768 0.020 0.004 0.888 0.052 0.036 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.0146      0.897 0.000 0.000 0.000 0.000 0.004 0.996
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.2039      0.903 0.052 0.916 0.020 0.000 0.012 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.0000      0.898 0.000 0.000 0.000 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.2882      0.714 0.812 0.000 0.000 0.180 0.008 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.2487      0.784 0.024 0.064 0.892 0.000 0.020 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.5633      0.313 0.028 0.000 0.500 0.396 0.076 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0291      0.924 0.004 0.992 0.000 0.000 0.004 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.3978      0.769 0.104 0.020 0.808 0.044 0.024 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.5017      0.522 0.660 0.000 0.016 0.000 0.232 0.092
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3406      0.695 0.020 0.000 0.792 0.008 0.180 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.3381      0.571 0.008 0.000 0.008 0.772 0.212 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.3117      0.651 0.016 0.000 0.080 0.852 0.052 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0725      0.727 0.012 0.000 0.000 0.976 0.012 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.3603      0.712 0.828 0.000 0.000 0.044 0.064 0.064
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3483      0.702 0.828 0.000 0.000 0.044 0.028 0.100
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3647      0.841 0.104 0.812 0.068 0.000 0.016 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4425      0.772 0.104 0.744 0.136 0.000 0.016 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     5  0.4082      0.627 0.056 0.000 0.188 0.008 0.748 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0547      0.730 0.000 0.000 0.000 0.980 0.020 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0291      0.925 0.004 0.992 0.000 0.000 0.004 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2730      0.705 0.808 0.000 0.000 0.192 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.2882      0.714 0.812 0.000 0.000 0.180 0.008 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.0146      0.898 0.000 0.000 0.000 0.000 0.004 0.996
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     5  0.5310      0.353 0.348 0.000 0.000 0.116 0.536 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.0146      0.897 0.000 0.000 0.000 0.000 0.004 0.996
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     6  0.3728      0.587 0.344 0.000 0.000 0.000 0.004 0.652
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.4726     -0.047 0.424 0.000 0.008 0.536 0.032 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.5241      0.624 0.108 0.644 0.228 0.000 0.020 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     3  0.4030      0.762 0.104 0.064 0.800 0.016 0.016 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     5  0.4672      0.784 0.112 0.000 0.024 0.136 0.728 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.4177      0.241 0.520 0.000 0.000 0.468 0.012 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4462      0.459 0.016 0.000 0.224 0.708 0.052 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.2039      0.903 0.052 0.916 0.020 0.000 0.012 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.4203      0.757 0.096 0.040 0.788 0.004 0.072 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.6051      0.368 0.032 0.000 0.496 0.348 0.124 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.0000      0.898 0.000 0.000 0.000 0.000 0.000 1.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.0146      0.898 0.000 0.000 0.000 0.000 0.004 0.996
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     6  0.4139      0.712 0.212 0.000 0.008 0.000 0.048 0.732
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5037      0.524 0.660 0.000 0.016 0.000 0.228 0.096
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0508      0.730 0.004 0.000 0.000 0.984 0.012 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3613      0.717 0.828 0.000 0.000 0.052 0.064 0.056
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     6  0.5212      0.252 0.440 0.000 0.008 0.000 0.068 0.484
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.5528     -0.227 0.040 0.000 0.448 0.464 0.048 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.4700     -0.229 0.476 0.000 0.008 0.488 0.028 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.0000      0.898 0.000 0.000 0.000 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     3  0.4042      0.744 0.100 0.096 0.784 0.000 0.020 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.0146      0.898 0.000 0.000 0.000 0.000 0.004 0.996
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.0146      0.898 0.000 0.000 0.000 0.000 0.004 0.996
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0146      0.732 0.004 0.000 0.000 0.996 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3406      0.695 0.020 0.000 0.792 0.008 0.180 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0260      0.731 0.000 0.000 0.000 0.992 0.008 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.4380      0.337 0.312 0.000 0.012 0.652 0.024 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.4380      0.337 0.312 0.000 0.012 0.652 0.024 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     5  0.4635      0.781 0.116 0.000 0.020 0.136 0.728 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     6  0.0146      0.898 0.000 0.000 0.000 0.000 0.004 0.996
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3610      0.715 0.828 0.000 0.000 0.048 0.064 0.060
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.1232      0.720 0.004 0.000 0.016 0.956 0.024 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.4177      0.241 0.520 0.000 0.000 0.468 0.012 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.925 0.000 1.000 0.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     5  0.4407      0.778 0.020 0.000 0.060 0.188 0.732 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1749      0.783 0.008 0.024 0.932 0.000 0.036 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.992         0.5011 0.499   0.499
#> 3 3 0.935           0.928       0.969         0.2894 0.838   0.684
#> 4 4 0.949           0.915       0.960         0.0921 0.925   0.797
#> 5 5 0.874           0.839       0.913         0.0677 0.909   0.713
#> 6 6 0.842           0.748       0.875         0.0298 0.975   0.900

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.993 1.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000      0.993 1.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.993 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.993 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.0000      0.990 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.990 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.990 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.4022      0.906 0.080 0.920
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.0000      0.990 0.000 1.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.993 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.990 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.990 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.993 1.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.990 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.9881      0.217 0.564 0.436
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.0000      0.990 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.0000      0.993 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0672      0.985 0.992 0.008
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.990 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.990 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.993 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.990 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.0000      0.990 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.993 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.990 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.993 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.993 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.993 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.0000      0.993 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.990 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.990 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.993 1.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.993 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.0000      0.990 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.993 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.0000      0.993 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.993 1.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000      0.993 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.990 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.993 1.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.990 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.993 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.993 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.993 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.990 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.990 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.990 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.990 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.0000      0.990 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.993 1.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.990 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.993 1.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.993 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.993 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0000      0.990 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.993 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.990 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.993 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.993 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.990 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.0000      0.990 0.000 1.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.990 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.990 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.993 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.990 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.993 1.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     2  0.0000      0.990 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.993 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.993 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.993 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.990 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.990 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.990 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.990 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.993 1.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.990 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.993 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.993 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.993 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000      0.993 1.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.993 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.993 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.993 1.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.990 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.990 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0000      0.993 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.993 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     2  0.0000      0.990 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.990 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.990 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     2  0.0000      0.990 0.000 1.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.993 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.990 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.993 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000      0.993 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.993 1.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.993 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.993 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.990 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.990 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.993 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.0000      0.990 0.000 1.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.993 1.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.990 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.993 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.990 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.993 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.993 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.993 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.990 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.990 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.9909      0.195 0.444 0.556
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.993 1.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.993 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0000      0.993 1.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.993 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.993 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.0000      0.990 0.000 1.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.993 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.990 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.993 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.990 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     3  0.0000      0.987 0.000 0.000 1.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000      0.946 1.000 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.946 1.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.946 1.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.0000      0.978 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.978 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.978 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     3  0.0000      0.987 0.000 0.000 1.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     3  0.0000      0.987 0.000 0.000 1.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.946 1.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.978 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.978 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.5733      0.566 0.676 0.000 0.324
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.978 0.000 1.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.2448      0.865 0.924 0.076 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.0000      0.978 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.0000      0.946 1.000 0.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.0000      0.987 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.978 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.978 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.0000      0.987 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.978 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.0000      0.978 0.000 1.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.946 1.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.978 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     3  0.0000      0.987 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     3  0.0000      0.987 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.5733      0.566 0.676 0.000 0.324
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.0000      0.946 1.000 0.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.978 0.000 1.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.978 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     3  0.0000      0.987 0.000 0.000 1.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.946 1.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.5968      0.436 0.000 0.636 0.364
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     3  0.0000      0.987 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.0000      0.946 1.000 0.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.946 1.000 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000      0.946 1.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.978 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.5733      0.566 0.676 0.000 0.324
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.978 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.946 1.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.946 1.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.0000      0.987 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.978 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.978 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.978 0.000 1.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.978 0.000 1.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.6280      0.168 0.000 0.540 0.460
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0000      0.987 0.000 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.978 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.946 1.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.946 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.946 1.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0000      0.978 0.000 1.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.946 1.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.978 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.946 1.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.946 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.978 0.000 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.2625      0.899 0.000 0.916 0.084
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.978 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.978 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.946 1.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.978 0.000 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4555      0.727 0.200 0.000 0.800
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.0000      0.987 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     3  0.0000      0.987 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.946 1.000 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.946 1.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.978 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.978 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.978 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.978 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     3  0.0000      0.987 0.000 0.000 1.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.978 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.946 1.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.946 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.946 1.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000      0.946 1.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.946 1.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.946 1.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.6045      0.449 0.620 0.000 0.380
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.978 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.978 0.000 1.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0000      0.946 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.5733      0.566 0.676 0.000 0.324
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.0000      0.987 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.978 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.978 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     2  0.1643      0.939 0.000 0.956 0.044
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.946 1.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.978 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.946 1.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000      0.946 1.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.946 1.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.0000      0.987 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.946 1.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.978 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.978 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.946 1.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.2625      0.899 0.000 0.916 0.084
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.5733      0.566 0.676 0.000 0.324
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.978 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.946 1.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.978 0.000 1.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.946 1.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.946 1.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.0000      0.987 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.978 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.978 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     3  0.0000      0.987 0.000 0.000 1.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     3  0.0592      0.977 0.012 0.000 0.988
#> F205F9FC-F2D5-4164-9A40-1279647F900B     3  0.0592      0.977 0.012 0.000 0.988
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0000      0.946 1.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.946 1.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.946 1.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     3  0.1163      0.960 0.000 0.028 0.972
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.5733      0.566 0.676 0.000 0.324
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.978 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.1753      0.905 0.952 0.000 0.048
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.978 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.2521      0.881 0.064 0.000 0.024 0.912
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0188      0.987 0.996 0.000 0.004 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.3219      0.799 0.000 0.836 0.164 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1022      0.922 0.000 0.032 0.968 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0336      0.928 0.000 0.000 0.008 0.992
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0336      0.928 0.000 0.000 0.008 0.992
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1022      0.958 0.032 0.000 0.968 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1629      0.957 0.952 0.000 0.024 0.024
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1022      0.958 0.032 0.000 0.968 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.4624      0.546 0.000 0.660 0.340 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1389      0.948 0.048 0.000 0.952 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0336      0.928 0.000 0.000 0.008 0.992
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.4356      0.632 0.000 0.708 0.292 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0817      0.922 0.000 0.000 0.024 0.976
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.2670      0.874 0.072 0.000 0.024 0.904
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.1629      0.957 0.952 0.000 0.024 0.024
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1389      0.948 0.048 0.000 0.952 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.2813      0.867 0.080 0.000 0.024 0.896
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.5250      0.239 0.000 0.552 0.008 0.440
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1022      0.958 0.032 0.000 0.968 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1022      0.958 0.032 0.000 0.968 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1629      0.957 0.952 0.000 0.024 0.024
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0592      0.928 0.000 0.984 0.016 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.5138      0.282 0.000 0.392 0.008 0.600
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.1637      0.916 0.000 0.000 0.940 0.060
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.1211      0.954 0.040 0.000 0.960 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1022      0.958 0.032 0.000 0.968 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0469      0.983 0.988 0.000 0.012 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.5523      0.381 0.000 0.596 0.024 0.380
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.3074      0.811 0.000 0.848 0.152 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4008      0.634 0.000 0.000 0.756 0.244
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0336      0.928 0.000 0.000 0.008 0.992
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0592      0.926 0.000 0.000 0.016 0.984
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0188      0.937 0.000 0.996 0.004 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0817      0.922 0.000 0.000 0.024 0.976
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0817      0.975 0.976 0.000 0.024 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0469      0.983 0.988 0.000 0.012 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0188      0.987 0.996 0.000 0.004 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1733      0.954 0.948 0.000 0.024 0.028
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0188      0.987 0.996 0.000 0.004 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1629      0.957 0.952 0.000 0.024 0.024
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0336      0.928 0.000 0.000 0.008 0.992
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     2  0.5364      0.543 0.000 0.652 0.320 0.028
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0592      0.926 0.000 0.000 0.016 0.984
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.5150      0.361 0.000 0.596 0.008 0.396
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1629      0.957 0.952 0.000 0.024 0.024
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.3123      0.807 0.000 0.844 0.156 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0336      0.928 0.000 0.000 0.008 0.992
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.3205      0.839 0.104 0.000 0.024 0.872
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.3205      0.839 0.104 0.000 0.024 0.872
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0188      0.987 0.996 0.000 0.004 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.0524      0.926 0.000 0.004 0.008 0.988
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.1629      0.957 0.952 0.000 0.024 0.024
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.940 0.000 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.1174      0.950 0.020 0.000 0.968 0.012
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.940 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.0451      0.689 0.008 0.000 0.000 0.988 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.1943      0.911 0.924 0.000 0.056 0.000 0.020
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.4221      0.761 0.000 0.780 0.112 0.000 0.108
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.2286      0.852 0.000 0.004 0.888 0.000 0.108
#> 45EAD449-C59A-463E-880A-C375CDD039BA     5  0.2852      0.823 0.000 0.000 0.000 0.172 0.828
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     5  0.2852      0.823 0.000 0.000 0.000 0.172 0.828
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1792      0.864 0.000 0.000 0.916 0.000 0.084
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.3612      0.689 0.268 0.000 0.000 0.732 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0794      0.875 0.000 0.000 0.972 0.000 0.028
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.5426      0.533 0.000 0.640 0.252 0.000 0.108
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1300      0.870 0.016 0.000 0.956 0.000 0.028
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     5  0.3305      0.800 0.000 0.000 0.000 0.224 0.776
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     5  0.4302      0.478 0.000 0.000 0.000 0.480 0.520
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.5370      0.392 0.000 0.584 0.348 0.000 0.068
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0290      0.678 0.000 0.000 0.000 0.992 0.008
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0290      0.689 0.008 0.000 0.000 0.992 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.3684      0.682 0.280 0.000 0.000 0.720 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1493      0.864 0.024 0.000 0.948 0.000 0.028
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0290      0.689 0.008 0.000 0.000 0.992 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     5  0.3346      0.787 0.000 0.064 0.000 0.092 0.844
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4300     -0.441 0.000 0.000 0.000 0.524 0.476
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0794      0.875 0.000 0.000 0.972 0.000 0.028
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.3707      0.678 0.284 0.000 0.000 0.716 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     5  0.4283      0.528 0.000 0.000 0.000 0.456 0.544
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.2124      0.888 0.000 0.900 0.004 0.000 0.096
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0404      0.954 0.000 0.988 0.000 0.000 0.012
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     5  0.3641      0.799 0.000 0.060 0.000 0.120 0.820
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4310      0.468 0.000 0.000 0.604 0.004 0.392
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0510      0.951 0.000 0.984 0.000 0.000 0.016
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.2079      0.843 0.064 0.000 0.916 0.000 0.020
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0794      0.877 0.000 0.000 0.972 0.000 0.028
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.1270      0.927 0.000 0.948 0.000 0.000 0.052
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.2813      0.763 0.832 0.000 0.000 0.168 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0404      0.954 0.000 0.988 0.000 0.000 0.012
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     5  0.2177      0.694 0.000 0.080 0.008 0.004 0.908
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.3866      0.794 0.000 0.808 0.096 0.000 0.096
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.5359      0.294 0.000 0.000 0.532 0.412 0.056
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     5  0.2852      0.823 0.000 0.000 0.000 0.172 0.828
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.2852      0.475 0.000 0.000 0.000 0.828 0.172
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.2451      0.888 0.000 0.904 0.056 0.004 0.036
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.2074      0.585 0.000 0.000 0.000 0.896 0.104
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.4294      0.285 0.468 0.000 0.000 0.532 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.2732      0.776 0.840 0.000 0.000 0.160 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.2103      0.908 0.920 0.000 0.056 0.004 0.020
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2891      0.707 0.176 0.000 0.000 0.824 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.2451      0.893 0.904 0.000 0.056 0.004 0.036
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.3684      0.682 0.280 0.000 0.000 0.720 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     5  0.2852      0.823 0.000 0.000 0.000 0.172 0.828
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0510      0.951 0.000 0.984 0.000 0.000 0.016
#> F25A7521-2596-4D60-BABE-862023C40D40     5  0.5260      0.287 0.000 0.348 0.060 0.000 0.592
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.1608      0.915 0.928 0.000 0.072 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0162      0.970 0.996 0.000 0.000 0.000 0.004
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.2377      0.550 0.000 0.000 0.000 0.872 0.128
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     5  0.3868      0.725 0.000 0.140 0.000 0.060 0.800
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.3366      0.701 0.232 0.000 0.000 0.768 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     5  0.4030      0.686 0.000 0.000 0.000 0.352 0.648
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.4123      0.771 0.000 0.788 0.108 0.000 0.104
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     5  0.2929      0.820 0.000 0.000 0.000 0.180 0.820
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0609      0.696 0.020 0.000 0.000 0.980 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0703      0.697 0.024 0.000 0.000 0.976 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.2451      0.893 0.904 0.000 0.056 0.004 0.036
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     5  0.2852      0.823 0.000 0.000 0.000 0.172 0.828
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.3661      0.685 0.276 0.000 0.000 0.724 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.1792      0.864 0.000 0.000 0.916 0.000 0.084
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0404      0.954 0.000 0.988 0.000 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.2170     0.7074 0.888 0.000 0.000 0.100 0.012 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     6  0.4141     0.7063 0.092 0.000 0.000 0.000 0.168 0.740
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.6017    -0.1588 0.004 0.424 0.368 0.000 0.204 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.2964     0.3470 0.004 0.000 0.792 0.000 0.204 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000     0.8390 0.000 0.000 0.000 1.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0000     0.8390 0.000 0.000 0.000 1.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.1285     0.3481 0.000 0.000 0.944 0.000 0.052 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.3240     0.6904 0.752 0.000 0.000 0.000 0.004 0.244
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.3869     0.7673 0.000 0.000 0.500 0.000 0.500 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.6022     0.1506 0.004 0.376 0.416 0.000 0.204 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.4264     0.7741 0.000 0.000 0.484 0.000 0.500 0.016
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.2066     0.8120 0.072 0.000 0.000 0.904 0.024 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.4028     0.5881 0.308 0.000 0.000 0.668 0.024 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.5170     0.2361 0.000 0.204 0.176 0.000 0.620 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.2432     0.6971 0.876 0.000 0.000 0.100 0.024 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.2170     0.7025 0.888 0.000 0.000 0.100 0.012 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.3288     0.6713 0.724 0.000 0.000 0.000 0.000 0.276
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.4264     0.7741 0.000 0.000 0.484 0.000 0.500 0.016
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1958     0.7067 0.896 0.000 0.000 0.100 0.004 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.1036     0.8173 0.000 0.024 0.004 0.964 0.008 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4167     0.5185 0.344 0.000 0.000 0.632 0.024 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.3999     0.7730 0.000 0.000 0.496 0.000 0.500 0.004
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.2482    -0.0202 0.004 0.000 0.848 0.000 0.148 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3309     0.6669 0.720 0.000 0.000 0.000 0.000 0.280
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.3956     0.6130 0.292 0.000 0.000 0.684 0.024 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.5388     0.3945 0.004 0.604 0.192 0.000 0.200 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.1075     0.8939 0.000 0.952 0.000 0.000 0.048 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0547     0.8279 0.000 0.020 0.000 0.980 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4640     0.3482 0.020 0.000 0.728 0.128 0.124 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.1124     0.8968 0.008 0.956 0.000 0.000 0.036 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.2669     0.1293 0.000 0.000 0.836 0.000 0.008 0.156
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.4064     0.1776 0.068 0.000 0.784 0.000 0.120 0.028
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.3270     0.7560 0.000 0.820 0.060 0.000 0.120 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     6  0.2300     0.7788 0.144 0.000 0.000 0.000 0.000 0.856
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.1075     0.8941 0.000 0.952 0.000 0.000 0.048 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.5996     0.3399 0.004 0.044 0.152 0.600 0.200 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.5530     0.3403 0.004 0.580 0.216 0.000 0.200 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4968     0.1350 0.328 0.000 0.604 0.052 0.016 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.8390 0.000 0.000 0.000 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.4252     0.2350 0.604 0.000 0.000 0.372 0.024 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4922     0.4210 0.096 0.616 0.000 0.000 0.288 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.3636     0.4131 0.676 0.000 0.000 0.320 0.004 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.3857     0.2756 0.532 0.000 0.000 0.000 0.000 0.468
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     6  0.2178     0.7955 0.132 0.000 0.000 0.000 0.000 0.868
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     6  0.4887     0.5579 0.096 0.000 0.000 0.000 0.280 0.624
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.2313     0.7249 0.884 0.000 0.000 0.004 0.012 0.100
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     6  0.5073     0.5330 0.096 0.000 0.004 0.000 0.292 0.608
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.3266     0.6750 0.728 0.000 0.000 0.000 0.000 0.272
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.8390 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.1124     0.8968 0.008 0.956 0.000 0.000 0.036 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.7634     0.1995 0.004 0.252 0.364 0.180 0.200 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     6  0.1501     0.8798 0.000 0.000 0.000 0.000 0.076 0.924
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     6  0.1265     0.9013 0.044 0.000 0.000 0.000 0.008 0.948
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.3743     0.5126 0.724 0.000 0.000 0.252 0.024 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.1765     0.7415 0.000 0.096 0.000 0.904 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.3014     0.7106 0.804 0.000 0.000 0.000 0.012 0.184
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.3394     0.7223 0.200 0.000 0.000 0.776 0.024 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.5853     0.1214 0.004 0.504 0.292 0.000 0.200 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0547     0.8357 0.020 0.000 0.000 0.980 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.2274     0.7155 0.892 0.000 0.000 0.088 0.008 0.012
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.2274     0.7155 0.892 0.000 0.000 0.088 0.008 0.012
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     6  0.4939     0.5398 0.096 0.000 0.000 0.000 0.292 0.612
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     6  0.0000     0.9394 0.000 0.000 0.000 0.000 0.000 1.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.0146     0.8378 0.000 0.004 0.000 0.996 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.3221     0.6809 0.736 0.000 0.000 0.000 0.000 0.264
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9287 0.000 1.000 0.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0146     0.2951 0.000 0.000 0.996 0.000 0.004 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.1444     0.8766 0.000 0.928 0.000 0.000 0.072 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.990         0.4707 0.531   0.531
#> 3 3 0.816           0.891       0.954         0.3568 0.777   0.601
#> 4 4 0.810           0.856       0.928         0.1567 0.798   0.510
#> 5 5 0.779           0.680       0.819         0.0641 0.971   0.886
#> 6 6 0.782           0.679       0.756         0.0453 0.894   0.593

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0376      0.990 0.996 0.004
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000      0.989 1.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.989 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.989 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.0000      0.991 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.991 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.9491      0.428 0.632 0.368
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0376      0.990 0.996 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0376      0.990 0.996 0.004
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0376      0.990 0.996 0.004
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.991 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.991 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0376      0.990 0.996 0.004
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.991 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.0376      0.990 0.996 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.0000      0.991 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.0376      0.990 0.996 0.004
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0376      0.990 0.996 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.991 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.991 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0376      0.990 0.996 0.004
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.991 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.0376      0.990 0.996 0.004
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.989 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.991 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0376      0.990 0.996 0.004
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0376      0.990 0.996 0.004
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.989 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.0376      0.990 0.996 0.004
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.0376      0.990 0.996 0.004
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.991 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0376      0.990 0.996 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.989 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.7219      0.751 0.200 0.800
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0376      0.990 0.996 0.004
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.0376      0.990 0.996 0.004
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0376      0.990 0.996 0.004
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0376      0.990 0.996 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.991 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0376      0.990 0.996 0.004
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.991 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.989 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.989 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0376      0.990 0.996 0.004
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.991 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.991 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.991 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.991 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.0000      0.991 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0376      0.990 0.996 0.004
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.991 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0376      0.990 0.996 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0376      0.990 0.996 0.004
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.989 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0000      0.991 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.989 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.991 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.989 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.989 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.991 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.7219      0.751 0.200 0.800
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.991 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.991 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.989 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.991 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0376      0.990 0.996 0.004
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0376      0.990 0.996 0.004
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0376      0.990 0.996 0.004
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.989 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.989 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.991 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.991 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     1  0.8443      0.632 0.728 0.272
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.991 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0376      0.990 0.996 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.991 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0376      0.990 0.996 0.004
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.989 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.989 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0376      0.990 0.996 0.004
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.989 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.989 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0376      0.990 0.996 0.004
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.991 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.991 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0376      0.990 0.996 0.004
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0376      0.990 0.996 0.004
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.1633      0.971 0.976 0.024
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.991 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.991 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0672      0.987 0.992 0.008
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.989 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.991 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.989 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000      0.989 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.989 1.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0376      0.990 0.996 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.989 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.991 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.991 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.989 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.0000      0.991 0.000 1.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0376      0.990 0.996 0.004
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.991 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.989 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.991 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.989 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.989 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0376      0.990 0.996 0.004
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.991 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.991 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0376      0.990 0.996 0.004
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0376      0.990 0.996 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0376      0.990 0.996 0.004
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0376      0.990 0.996 0.004
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.989 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.989 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0376      0.990 0.996 0.004
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0376      0.990 0.996 0.004
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.991 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0376      0.990 0.996 0.004
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.991 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.946 1.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.3192      0.862 0.112 0.000 0.888
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000      0.994 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     3  0.0000      0.994 0.000 0.000 1.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.6095      0.468 0.392 0.608 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.920 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.1411      0.913 0.964 0.036 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.946 1.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.946 1.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     1  0.0000      0.946 1.000 0.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.920 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.920 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.946 1.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.3686      0.821 0.140 0.860 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.0000      0.946 1.000 0.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.1031      0.925 0.976 0.024 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.0000      0.946 1.000 0.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.946 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.920 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.920 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.946 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.920 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.0000      0.946 1.000 0.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.0000      0.994 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.920 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.946 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.946 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.6026      0.444 0.624 0.000 0.376
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.0000      0.946 1.000 0.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.0000      0.946 1.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.920 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.946 1.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.0000      0.994 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.946 1.000 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.946 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.0000      0.946 1.000 0.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.1860      0.900 0.948 0.000 0.052
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.0000      0.946 1.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.920 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.946 1.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.920 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.0000      0.994 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.0000      0.994 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.946 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.920 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.920 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.5678      0.611 0.316 0.684 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.920 0.000 1.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.6309      0.112 0.500 0.500 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.946 1.000 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4346      0.781 0.184 0.816 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000      0.946 1.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.0000      0.946 1.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.6026      0.444 0.624 0.000 0.376
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.3686      0.821 0.140 0.860 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     3  0.0000      0.994 0.000 0.000 1.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.920 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.0000      0.994 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.6026      0.444 0.624 0.000 0.376
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.920 0.000 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.946 1.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.920 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.3879      0.811 0.152 0.848 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000      0.994 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.6026      0.503 0.376 0.624 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.946 1.000 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.946 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.946 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000      0.994 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     3  0.0000      0.994 0.000 0.000 1.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.920 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.920 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     1  0.2261      0.878 0.932 0.068 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.920 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.946 1.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.920 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.6026      0.444 0.624 0.000 0.376
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.6026      0.444 0.624 0.000 0.376
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.0000      0.994 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.0000      0.946 1.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.0000      0.994 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.0000      0.994 0.000 0.000 1.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.946 1.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.920 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.920 0.000 1.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.0000      0.946 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.946 1.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.946 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.920 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3752      0.818 0.144 0.856 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.0000      0.946 1.000 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     3  0.0000      0.994 0.000 0.000 1.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.920 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     3  0.0000      0.994 0.000 0.000 1.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000      0.994 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.0237      0.990 0.004 0.000 0.996
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.946 1.000 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.6026      0.444 0.624 0.000 0.376
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.920 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.920 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.994 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.946 1.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.946 1.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.920 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.0000      0.994 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.920 0.000 1.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     3  0.0000      0.994 0.000 0.000 1.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     3  0.0000      0.994 0.000 0.000 1.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.946 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.6008      0.511 0.372 0.628 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.920 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.946 1.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.946 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.946 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.0000      0.946 1.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.994 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.6026      0.444 0.624 0.000 0.376
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0000      0.946 1.000 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.946 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.920 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.0000      0.946 1.000 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.920 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette   p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.0336     0.9602 0.00 0.000 0.008 0.992
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     4  0.1211     0.9271 0.04 0.000 0.000 0.960
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.2345     0.8505 0.00 0.900 0.100 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     3  0.4103     0.7204 0.00 0.000 0.744 0.256
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     3  0.4103     0.7204 0.00 0.000 0.744 0.256
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2704     0.7906 0.00 0.000 0.876 0.124
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4925     0.2627 0.00 0.572 0.428 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1716     0.8146 0.00 0.000 0.936 0.064
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.0592     0.8192 0.00 0.000 0.984 0.016
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.4877     0.5477 0.00 0.000 0.592 0.408
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     4  0.0469     0.9558 0.00 0.000 0.012 0.988
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.2345     0.8375 0.00 0.000 0.100 0.900
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.4804     0.5935 0.00 0.000 0.616 0.384
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3356     0.7702 0.00 0.000 0.824 0.176
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.4193     0.6648 0.00 0.732 0.268 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.4103     0.6754 0.00 0.744 0.256 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.4103     0.6066 0.00 0.256 0.744 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.2589     0.7948 0.00 0.000 0.884 0.116
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4925     0.2627 0.00 0.572 0.428 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.4790     0.6002 0.00 0.000 0.620 0.380
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.2216     0.7469 0.00 0.092 0.908 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.4103     0.6066 0.00 0.256 0.744 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.3801     0.6875 0.22 0.000 0.000 0.780
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0336     0.8171 0.00 0.008 0.992 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.4996    -0.0886 0.00 0.000 0.484 0.516
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.5288     0.6509 0.00 0.224 0.720 0.056
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     3  0.4790     0.6002 0.00 0.000 0.620 0.380
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.2704     0.8319 0.00 0.876 0.124 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.4790     0.6002 0.00 0.000 0.620 0.380
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.4925     0.2627 0.00 0.572 0.428 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.4790     0.6002 0.00 0.000 0.620 0.380
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.4730     0.6185 0.00 0.000 0.636 0.364
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.8192 0.00 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     3  0.4103     0.7204 0.00 0.000 0.744 0.256
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.4790     0.6002 0.00 0.000 0.620 0.380
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     1.0000 1.00 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     3  0.4103     0.7204 0.00 0.000 0.744 0.256
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9680 0.00 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9240 0.00 1.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.2760     0.7896 0.00 0.000 0.872 0.128
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.4222     0.6872 0.00 0.728 0.272 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0609     0.8129 0.980 0.000 0.020 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     5  0.4235    -0.3273 0.424 0.000 0.000 0.000 0.576
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     4  0.3561     0.7741 0.000 0.000 0.000 0.740 0.260
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2230     0.6319 0.000 0.000 0.884 0.000 0.116
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.5314     0.5722 0.000 0.528 0.052 0.000 0.420
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.3895     0.6212 0.000 0.000 0.680 0.000 0.320
#> 45EAD449-C59A-463E-880A-C375CDD039BA     3  0.1197     0.7018 0.048 0.000 0.952 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     3  0.1121     0.7027 0.044 0.000 0.956 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.4908     0.6200 0.044 0.000 0.636 0.000 0.320
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3895     0.7905 0.000 0.680 0.000 0.000 0.320
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3796     0.8035 0.000 0.700 0.000 0.000 0.300
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.6710    -0.0226 0.000 0.316 0.264 0.000 0.420
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.4908     0.6200 0.044 0.000 0.636 0.000 0.320
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.2377     0.6894 0.000 0.000 0.872 0.000 0.128
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.3895     0.4478 0.680 0.000 0.000 0.000 0.320
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.1121     0.7018 0.044 0.000 0.956 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.3612     0.8078 0.000 0.732 0.000 0.000 0.268
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     3  0.4219     0.4474 0.416 0.000 0.584 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.3895     0.6212 0.000 0.000 0.680 0.000 0.320
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3684     0.8083 0.000 0.720 0.000 0.000 0.280
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.4270     0.4327 0.668 0.000 0.012 0.000 0.320
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.0000     0.7001 0.000 0.000 1.000 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.3561     0.7741 0.000 0.000 0.000 0.740 0.260
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.0000     0.7001 0.000 0.000 1.000 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0609     0.8129 0.980 0.000 0.020 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.5036     0.6178 0.052 0.000 0.628 0.000 0.320
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.3895     0.4478 0.680 0.000 0.000 0.000 0.320
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3796     0.8035 0.000 0.700 0.000 0.000 0.300
#> 692C65BB-BF32-4846-806B-01A285BED1B9     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.4074     0.5068 0.364 0.000 0.636 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.4473     0.6667 0.000 0.580 0.008 0.000 0.412
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.4025     0.8027 0.000 0.700 0.008 0.000 0.292
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.2605     0.6046 0.000 0.000 0.852 0.000 0.148
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.3796     0.8035 0.000 0.700 0.000 0.000 0.300
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.2516     0.6086 0.000 0.000 0.860 0.000 0.140
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4402     0.5154 0.352 0.000 0.636 0.000 0.012
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     5  0.3561     0.1653 0.000 0.000 0.260 0.000 0.740
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.5036     0.6178 0.052 0.000 0.628 0.000 0.320
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3452     0.4373 0.000 0.000 0.756 0.000 0.244
#> B5474EEB-D585-4668-959C-38F240F55BC2     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3684     0.8083 0.000 0.720 0.000 0.000 0.280
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.4227     0.6698 0.000 0.580 0.000 0.000 0.420
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0000     0.7001 0.000 0.000 1.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3684     0.8083 0.000 0.720 0.000 0.000 0.280
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.2605     0.6046 0.000 0.000 0.852 0.000 0.148
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.6400     0.4247 0.512 0.000 0.000 0.228 0.260
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.4287     0.5071 0.000 0.000 0.540 0.000 0.460
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.3424     0.5496 0.760 0.000 0.240 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.0000     0.7001 0.000 0.000 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3796     0.8035 0.000 0.700 0.000 0.000 0.300
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3796     0.8035 0.000 0.700 0.000 0.000 0.300
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.4366     0.6217 0.016 0.000 0.664 0.000 0.320
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     3  0.4101     0.5008 0.372 0.000 0.628 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.3684     0.8083 0.000 0.720 0.000 0.000 0.280
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.1121     0.8056 0.956 0.000 0.000 0.000 0.044
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.3895     0.4478 0.680 0.000 0.000 0.000 0.320
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3561     0.7741 0.000 0.000 0.000 0.740 0.260
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3932     0.7838 0.000 0.672 0.000 0.000 0.328
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     5  0.6606     0.0735 0.000 0.216 0.364 0.000 0.420
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.5036     0.6178 0.052 0.000 0.628 0.000 0.320
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.0000     0.7001 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.3684     0.8083 0.000 0.720 0.000 0.000 0.280
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     5  0.3561     0.1653 0.000 0.000 0.260 0.000 0.740
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0000     0.7001 0.000 0.000 1.000 0.000 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     4  0.3561     0.7741 0.000 0.000 0.000 0.740 0.260
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     5  0.4242    -0.3340 0.428 0.000 0.000 0.000 0.572
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.4101     0.5008 0.372 0.000 0.628 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.3561     0.7741 0.000 0.000 0.000 0.740 0.260
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.2280     0.6285 0.000 0.000 0.880 0.000 0.120
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4084     0.7815 0.000 0.668 0.004 0.000 0.328
#> F900E9BE-2400-4451-9434-EE8BC513BA94     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.3752     0.5707 0.292 0.000 0.708 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.4283     0.5096 0.000 0.000 0.544 0.000 0.456
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     3  0.1121     0.7027 0.044 0.000 0.956 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.5036     0.6178 0.052 0.000 0.628 0.000 0.320
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     4  0.0000     0.9263 0.000 0.000 0.000 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3561     0.7110 0.740 0.000 0.000 0.000 0.260
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     3  0.0290     0.7009 0.008 0.000 0.992 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.8240 1.000 0.000 0.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.7414 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.4973     0.6191 0.048 0.000 0.632 0.000 0.320
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.6638    -0.2613 0.000 0.364 0.224 0.000 0.412

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.1501     0.7744 0.924 0.000 0.076 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     4  0.4493     0.4153 0.040 0.000 0.364 0.596 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     4  0.3695     0.3827 0.000 0.000 0.000 0.624 0.000 0.376
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.6067     0.5834 0.000 0.004 0.404 0.376 0.216 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3469     0.7403 0.000 0.824 0.072 0.012 0.092 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.2234     0.5949 0.000 0.000 0.872 0.004 0.124 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     3  0.4948     0.6598 0.076 0.000 0.564 0.360 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     3  0.4808     0.6628 0.064 0.000 0.576 0.360 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.2231     0.6080 0.068 0.000 0.900 0.004 0.028 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0713     0.8318 0.000 0.972 0.000 0.000 0.028 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0146     0.8351 0.000 0.996 0.000 0.000 0.004 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.1075     0.8042 0.952 0.000 0.000 0.048 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4807     0.6329 0.000 0.684 0.092 0.012 0.212 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1387     0.6065 0.068 0.000 0.932 0.000 0.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.5453     0.6372 0.000 0.000 0.556 0.284 0.160 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.4609     0.4567 0.588 0.000 0.364 0.048 0.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     3  0.5379     0.6456 0.120 0.000 0.516 0.364 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     5  0.2996     0.9811 0.000 0.228 0.000 0.000 0.772 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.2883     0.5824 0.000 0.788 0.000 0.000 0.212 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.3765     0.1097 0.596 0.000 0.404 0.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000     0.6219 0.000 0.000 1.000 0.000 0.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0632     0.8254 0.000 0.976 0.000 0.000 0.024 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.3804     0.4985 0.424 0.000 0.000 0.576 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.4620     0.4538 0.584 0.000 0.368 0.048 0.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     3  0.3647     0.6637 0.000 0.000 0.640 0.360 0.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.1075     0.7931 0.952 0.000 0.048 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     4  0.3804     0.3158 0.000 0.000 0.000 0.576 0.000 0.424
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.5411     0.6371 0.000 0.000 0.512 0.364 0.124 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0458     0.8032 0.984 0.000 0.016 0.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1444     0.6047 0.072 0.000 0.928 0.000 0.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.1075     0.8042 0.952 0.000 0.000 0.048 0.000 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.4609     0.4567 0.588 0.000 0.364 0.048 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.1075     0.8042 0.952 0.000 0.000 0.048 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0260     0.8339 0.000 0.992 0.000 0.000 0.008 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     3  0.3995     0.1807 0.480 0.000 0.516 0.004 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.3488     0.6920 0.000 0.764 0.004 0.016 0.216 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.1364     0.8181 0.000 0.944 0.004 0.004 0.048 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     3  0.5757     0.6294 0.000 0.028 0.508 0.372 0.092 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0146     0.8351 0.000 0.996 0.000 0.000 0.004 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     3  0.6451     0.5692 0.000 0.024 0.384 0.376 0.216 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.3872     0.3215 0.392 0.000 0.604 0.004 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     3  0.5343     0.0339 0.000 0.324 0.572 0.012 0.092 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1444     0.6047 0.072 0.000 0.928 0.000 0.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     4  0.3706     0.5325 0.380 0.000 0.000 0.620 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     4  0.7519    -0.4285 0.000 0.200 0.208 0.376 0.216 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0713     0.8232 0.000 0.972 0.000 0.000 0.028 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.3695     0.5374 0.376 0.000 0.000 0.624 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.2070     0.7869 0.000 0.896 0.000 0.012 0.092 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.5411     0.6371 0.000 0.000 0.512 0.364 0.124 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1075     0.8140 0.000 0.952 0.000 0.000 0.048 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     3  0.5820     0.6281 0.000 0.032 0.504 0.372 0.092 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     4  0.5055     0.5414 0.132 0.000 0.000 0.624 0.000 0.244
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3865     0.5390 0.000 0.020 0.748 0.016 0.216 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.2871     0.6108 0.804 0.000 0.192 0.004 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     3  0.3899     0.6633 0.000 0.000 0.628 0.364 0.008 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     4  0.3695     0.5374 0.376 0.000 0.000 0.624 0.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     4  0.3695     0.5374 0.376 0.000 0.000 0.624 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0146     0.8351 0.000 0.996 0.000 0.000 0.004 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0146     0.8351 0.000 0.996 0.000 0.000 0.004 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     3  0.0146     0.6214 0.000 0.004 0.996 0.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     5  0.3050     0.9757 0.000 0.236 0.000 0.000 0.764 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     3  0.3823     0.2518 0.436 0.000 0.564 0.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.2300     0.6962 0.000 0.856 0.000 0.000 0.144 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.2048     0.7074 0.880 0.000 0.000 0.120 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3747     0.5070 0.396 0.000 0.000 0.604 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.4609     0.4567 0.588 0.000 0.364 0.048 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.3804     0.3158 0.000 0.000 0.000 0.576 0.000 0.424
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.1075     0.8042 0.952 0.000 0.000 0.048 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0937     0.8307 0.000 0.960 0.000 0.000 0.040 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.6282     0.2961 0.000 0.468 0.068 0.372 0.092 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     3  0.1444     0.6047 0.072 0.000 0.928 0.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.1075     0.8042 0.952 0.000 0.000 0.048 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     3  0.5641     0.6356 0.008 0.000 0.504 0.364 0.124 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0713     0.8232 0.000 0.972 0.000 0.000 0.028 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     3  0.5288     0.0839 0.000 0.308 0.588 0.012 0.092 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5411     0.6371 0.000 0.000 0.512 0.364 0.124 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     5  0.3050     0.9731 0.000 0.236 0.000 0.000 0.764 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     4  0.3804     0.3158 0.000 0.000 0.000 0.576 0.000 0.424
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     4  0.4218     0.4262 0.024 0.000 0.360 0.616 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     3  0.3866     0.1726 0.484 0.000 0.516 0.000 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     4  0.3695     0.5374 0.376 0.000 0.000 0.624 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.3804     0.3158 0.000 0.000 0.000 0.576 0.000 0.424
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     3  0.5283     0.6391 0.000 0.004 0.528 0.376 0.092 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.1075     0.8042 0.952 0.000 0.000 0.048 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     5  0.3050     0.9757 0.000 0.236 0.000 0.000 0.764 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0713     0.8295 0.000 0.972 0.000 0.000 0.028 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     3  0.5205     0.3197 0.412 0.000 0.496 0.092 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.4102     0.5437 0.000 0.020 0.736 0.028 0.216 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     3  0.4707     0.6639 0.056 0.000 0.584 0.360 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     3  0.1444     0.6047 0.072 0.000 0.928 0.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     4  0.3695     0.5374 0.376 0.000 0.000 0.624 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     3  0.3782     0.6641 0.004 0.000 0.636 0.360 0.000 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000     0.8110 1.000 0.000 0.000 0.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     5  0.2912     0.9902 0.000 0.216 0.000 0.000 0.784 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.1444     0.6047 0.072 0.000 0.928 0.000 0.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.6156     0.4361 0.000 0.520 0.024 0.240 0.216 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.538           0.919       0.946         0.5014 0.497   0.497
#> 3 3 0.667           0.848       0.890         0.3085 0.684   0.450
#> 4 4 0.498           0.452       0.654         0.1105 0.841   0.571
#> 5 5 0.801           0.744       0.873         0.0841 0.859   0.521
#> 6 6 0.849           0.775       0.869         0.0432 0.924   0.659

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.5178      0.913 0.116 0.884
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.0938      0.952 0.012 0.988
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.4815      0.926 0.896 0.104
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     2  0.5178      0.913 0.116 0.884
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     1  0.4939      0.925 0.892 0.108
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.953 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     1  0.4939      0.925 0.892 0.108
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.5178      0.913 0.116 0.884
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.5178      0.913 0.116 0.884
#> 806616FE-1855-4284-9265-42842104CB21     1  0.4939      0.925 0.892 0.108
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.953 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.953 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     2  0.5178      0.913 0.116 0.884
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0672      0.952 0.008 0.992
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     1  0.4939      0.925 0.892 0.108
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     1  0.4939      0.925 0.892 0.108
#> 853120F0-857B-4108-9EC8-727189630C5F     1  0.4939      0.925 0.892 0.108
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.927 1.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.953 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.953 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.927 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.953 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     1  0.4939      0.925 0.892 0.108
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.927 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.953 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.927 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.927 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.927 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     1  0.4939      0.925 0.892 0.108
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0938      0.952 0.012 0.988
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.953 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.5178      0.913 0.116 0.884
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.927 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.4431      0.927 0.908 0.092
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.927 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     1  0.4939      0.925 0.892 0.108
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.4431      0.927 0.908 0.092
#> 50D620F3-5C52-42FB-89A1-6840A7444647     1  0.4939      0.925 0.892 0.108
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.953 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     2  0.5178      0.913 0.116 0.884
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.953 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.927 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.1414      0.928 0.980 0.020
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.927 1.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     1  0.4939      0.925 0.892 0.108
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     1  0.4939      0.925 0.892 0.108
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0672      0.952 0.008 0.992
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6048      0.799 0.148 0.852
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.5178      0.913 0.116 0.884
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.4815      0.926 0.896 0.104
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.953 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.4815      0.926 0.896 0.104
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     1  0.4939      0.925 0.892 0.108
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     2  0.5178      0.913 0.116 0.884
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.4815      0.926 0.896 0.104
#> B5474EEB-D585-4668-959C-38F240F55BC2     2  0.5178      0.913 0.116 0.884
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.953 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.927 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.927 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     1  0.4939      0.925 0.892 0.108
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.4815      0.926 0.896 0.104
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.953 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0938      0.952 0.012 0.988
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.4815      0.926 0.896 0.104
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     1  0.4939      0.925 0.892 0.108
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.4431      0.927 0.908 0.092
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.927 1.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.927 1.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.927 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.9998     -0.142 0.508 0.492
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.953 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.953 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.953 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.953 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.5178      0.913 0.116 0.884
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0672      0.952 0.008 0.992
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.8555      0.548 0.720 0.280
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.927 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.927 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0938      0.952 0.012 0.988
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.927 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.927 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.5178      0.913 0.116 0.884
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.953 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0938      0.952 0.012 0.988
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0672      0.952 0.008 0.992
#> 6F7DB73C-FE46-402C-9001-DC2005278069     2  0.5178      0.913 0.116 0.884
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.927 1.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0672      0.952 0.008 0.992
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.953 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.4815      0.926 0.896 0.104
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1184      0.919 0.984 0.016
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.953 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.927 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.4939      0.925 0.892 0.108
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.0938      0.952 0.012 0.988
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.927 1.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     2  0.5178      0.913 0.116 0.884
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.953 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.953 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.4815      0.926 0.896 0.104
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.5178      0.913 0.116 0.884
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     2  0.5178      0.913 0.116 0.884
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.953 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.927 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0938      0.952 0.012 0.988
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.927 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.927 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.927 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     1  0.4939      0.925 0.892 0.108
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.953 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.5178      0.913 0.116 0.884
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.3431      0.884 0.936 0.064
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.927 1.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0938      0.952 0.012 0.988
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.4815      0.926 0.896 0.104
#> 12F54761-4F68-4181-8421-88EA858902FC     2  0.5178      0.913 0.116 0.884
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.5178      0.913 0.116 0.884
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.927 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.953 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.4815      0.926 0.896 0.104
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     1  0.4939      0.925 0.892 0.108

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0747      0.827 0.984 0.016 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     2  0.2711      0.895 0.088 0.912 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0892      0.926 0.020 0.000 0.980
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0747      0.827 0.984 0.016 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0747      0.928 0.016 0.000 0.984
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.4702      0.890 0.212 0.788 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1529      0.926 0.000 0.040 0.960
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0747      0.827 0.984 0.016 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1411      0.809 0.964 0.036 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0747      0.928 0.016 0.000 0.984
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.2537      0.894 0.080 0.920 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.4702      0.890 0.212 0.788 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0747      0.827 0.984 0.016 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.2297      0.878 0.036 0.944 0.020
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.1860      0.921 0.000 0.052 0.948
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1529      0.926 0.000 0.040 0.960
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.1529      0.926 0.000 0.040 0.960
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.4702      0.831 0.788 0.000 0.212
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0237      0.874 0.004 0.996 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1289      0.884 0.032 0.968 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.4702      0.831 0.788 0.000 0.212
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0424      0.869 0.000 0.992 0.008
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.1753      0.923 0.000 0.048 0.952
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.4702      0.831 0.788 0.000 0.212
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.4702      0.890 0.212 0.788 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.4702      0.831 0.788 0.000 0.212
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.4702      0.831 0.788 0.000 0.212
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.4702      0.831 0.788 0.000 0.212
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.1529      0.926 0.000 0.040 0.960
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.4555      0.891 0.200 0.800 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0592      0.866 0.000 0.988 0.012
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0747      0.827 0.984 0.016 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.5678      0.401 0.316 0.000 0.684
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     3  0.2537      0.865 0.080 0.000 0.920
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.4702      0.831 0.788 0.000 0.212
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.1753      0.923 0.000 0.048 0.952
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.0892      0.926 0.020 0.000 0.980
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1529      0.926 0.000 0.040 0.960
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1860      0.888 0.052 0.948 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0747      0.827 0.984 0.016 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.4702      0.890 0.212 0.788 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.4702      0.831 0.788 0.000 0.212
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.5968      0.248 0.364 0.000 0.636
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.5098      0.795 0.752 0.000 0.248
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1860      0.921 0.000 0.052 0.948
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.1529      0.926 0.000 0.040 0.960
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.4750      0.888 0.216 0.784 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.6318      0.353 0.008 0.636 0.356
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0747      0.827 0.984 0.016 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.0747      0.928 0.016 0.000 0.984
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2959      0.896 0.100 0.900 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0747      0.928 0.016 0.000 0.984
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.4233      0.810 0.004 0.160 0.836
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0747      0.827 0.984 0.016 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.0747      0.928 0.016 0.000 0.984
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0747      0.827 0.984 0.016 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.4702      0.890 0.212 0.788 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.4796      0.824 0.780 0.000 0.220
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.4702      0.831 0.788 0.000 0.212
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4235      0.790 0.000 0.176 0.824
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.0747      0.928 0.016 0.000 0.984
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0747      0.863 0.000 0.984 0.016
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4750      0.888 0.216 0.784 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0892      0.926 0.020 0.000 0.980
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.2261      0.909 0.000 0.068 0.932
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.0747      0.928 0.016 0.000 0.984
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.4702      0.831 0.788 0.000 0.212
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.4702      0.831 0.788 0.000 0.212
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0892      0.926 0.020 0.000 0.980
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0747      0.827 0.984 0.016 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.4702      0.890 0.212 0.788 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.4702      0.890 0.212 0.788 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3192      0.896 0.112 0.888 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0592      0.866 0.000 0.988 0.012
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0747      0.827 0.984 0.016 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0892      0.862 0.000 0.980 0.020
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0424      0.829 0.992 0.008 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.4702      0.831 0.788 0.000 0.212
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.5254      0.775 0.736 0.000 0.264
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4750      0.888 0.216 0.784 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.6307      0.304 0.512 0.000 0.488
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.4702      0.831 0.788 0.000 0.212
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0747      0.827 0.984 0.016 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.4702      0.890 0.212 0.788 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4750      0.888 0.216 0.784 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.4750      0.888 0.216 0.784 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0747      0.827 0.984 0.016 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.4702      0.831 0.788 0.000 0.212
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4702      0.890 0.212 0.788 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2625      0.895 0.084 0.916 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0747      0.928 0.016 0.000 0.984
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.1289      0.834 0.968 0.000 0.032
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0237      0.874 0.004 0.996 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.6252      0.433 0.556 0.000 0.444
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.1411      0.927 0.000 0.036 0.964
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     2  0.4750      0.888 0.216 0.784 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.4702      0.831 0.788 0.000 0.212
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0747      0.827 0.984 0.016 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0592      0.866 0.000 0.988 0.012
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.2229      0.883 0.044 0.944 0.012
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0892      0.926 0.020 0.000 0.980
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1163      0.817 0.972 0.028 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0747      0.827 0.984 0.016 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0592      0.866 0.000 0.988 0.012
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.4702      0.831 0.788 0.000 0.212
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.4702      0.889 0.212 0.788 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.2537      0.835 0.920 0.000 0.080
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.4702      0.831 0.788 0.000 0.212
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.4702      0.831 0.788 0.000 0.212
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.2261      0.909 0.000 0.068 0.932
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0237      0.871 0.000 0.996 0.004
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0747      0.827 0.984 0.016 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.4575      0.832 0.812 0.004 0.184
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.4702      0.831 0.788 0.000 0.212
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.4750      0.888 0.216 0.784 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0892      0.926 0.020 0.000 0.980
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0747      0.827 0.984 0.016 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0892      0.824 0.980 0.020 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.4702      0.831 0.788 0.000 0.212
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0592      0.866 0.000 0.988 0.012
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0747      0.928 0.016 0.000 0.984
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.1860      0.921 0.000 0.052 0.948

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.4776    0.61518 0.624 0.000 0.000 0.376
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.7704   -0.20031 0.440 0.412 0.020 0.128
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.7815    0.01402 0.256 0.000 0.392 0.352
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.3123    0.57756 0.844 0.000 0.000 0.156
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2408    0.58001 0.000 0.000 0.896 0.104
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.6360    0.69170 0.180 0.656 0.000 0.164
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0188    0.61978 0.000 0.000 0.996 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.5712    0.61401 0.584 0.032 0.000 0.384
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.6738    0.57517 0.544 0.104 0.000 0.352
#> 806616FE-1855-4284-9265-42842104CB21     3  0.3801    0.49054 0.000 0.000 0.780 0.220
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3377    0.74285 0.140 0.848 0.000 0.012
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.6279    0.69968 0.180 0.664 0.000 0.156
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.4776    0.61518 0.624 0.000 0.000 0.376
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.7782    0.48174 0.032 0.556 0.248 0.164
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0188    0.61978 0.000 0.000 0.996 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0657    0.61988 0.000 0.004 0.984 0.012
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0336    0.62014 0.000 0.000 0.992 0.008
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.3873    0.52833 0.000 0.000 0.228 0.772
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.1118    0.75316 0.000 0.964 0.000 0.036
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0804    0.76081 0.012 0.980 0.000 0.008
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.4307    0.56613 0.024 0.000 0.192 0.784
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.1022    0.75415 0.000 0.968 0.000 0.032
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0336    0.61945 0.000 0.008 0.992 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     4  0.7922    0.06775 0.340 0.000 0.320 0.340
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.6279    0.69968 0.180 0.664 0.000 0.156
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.4679    0.56981 0.044 0.000 0.184 0.772
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.4916    0.56954 0.056 0.000 0.184 0.760
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.4956    0.56965 0.056 0.000 0.188 0.756
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000    0.62041 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     4  0.8307   -0.29705 0.080 0.324 0.104 0.492
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1118    0.75316 0.000 0.964 0.000 0.036
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.5112    0.61787 0.608 0.008 0.000 0.384
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.7674    0.07059 0.224 0.000 0.436 0.340
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.4992    0.13336 0.000 0.000 0.476 0.524
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.4677    0.56944 0.040 0.000 0.192 0.768
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000    0.62041 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.6101    0.07991 0.052 0.000 0.388 0.560
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0188    0.61978 0.000 0.000 0.996 0.004
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0927    0.76143 0.016 0.976 0.000 0.008
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.5099    0.61768 0.612 0.008 0.000 0.380
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.6240    0.70078 0.176 0.668 0.000 0.156
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.7922   -0.50977 0.344 0.000 0.320 0.336
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.7918   -0.04215 0.316 0.000 0.352 0.332
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.4843    0.33851 0.000 0.000 0.396 0.604
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0712    0.61506 0.008 0.004 0.984 0.004
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0564    0.62008 0.004 0.004 0.988 0.004
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.6508    0.68254 0.192 0.640 0.000 0.168
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.8169    0.16101 0.028 0.404 0.400 0.168
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.5712    0.61401 0.584 0.032 0.000 0.384
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4948    0.07959 0.000 0.000 0.560 0.440
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.4121    0.73161 0.184 0.796 0.000 0.020
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3837    0.49154 0.000 0.000 0.776 0.224
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.7214    0.36007 0.024 0.184 0.620 0.172
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.3074    0.57810 0.848 0.000 0.000 0.152
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.4564    0.31580 0.000 0.000 0.672 0.328
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1867    0.52160 0.928 0.000 0.000 0.072
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.6279    0.69968 0.180 0.664 0.000 0.156
#> A533C39D-CE42-42AD-92AD-549157A43139     4  0.7922    0.01096 0.320 0.000 0.340 0.340
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.4973    0.41325 0.008 0.000 0.348 0.644
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.6774    0.33835 0.008 0.196 0.636 0.160
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4907    0.13837 0.000 0.000 0.580 0.420
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.1917    0.74669 0.012 0.944 0.008 0.036
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.5720    0.59969 0.296 0.652 0.000 0.052
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.7654    0.08122 0.220 0.000 0.440 0.340
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3719    0.52494 0.008 0.020 0.848 0.124
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4992   -0.04042 0.000 0.000 0.524 0.476
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.4920    0.56658 0.052 0.000 0.192 0.756
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.4406    0.56778 0.028 0.000 0.192 0.780
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.7563    0.09153 0.220 0.000 0.476 0.304
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.4220    0.52091 0.748 0.004 0.000 0.248
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.6279    0.69968 0.180 0.664 0.000 0.156
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.6279    0.69968 0.180 0.664 0.000 0.156
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.4121    0.73161 0.184 0.796 0.000 0.020
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.1118    0.75316 0.000 0.964 0.000 0.036
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.6263    0.60563 0.576 0.068 0.000 0.356
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.7677    0.46123 0.024 0.552 0.260 0.164
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.5193    0.60453 0.580 0.008 0.000 0.412
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.5007    0.39995 0.008 0.000 0.356 0.636
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     4  0.7923    0.02933 0.324 0.000 0.332 0.344
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.5530    0.00978 0.632 0.336 0.000 0.032
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.7921   -0.05685 0.320 0.000 0.348 0.332
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.7721    0.24452 0.248 0.000 0.312 0.440
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.4776    0.61518 0.624 0.000 0.000 0.376
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.6279    0.69968 0.180 0.664 0.000 0.156
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.7351    0.42077 0.264 0.524 0.000 0.212
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     1  0.5816   -0.13209 0.572 0.392 0.000 0.036
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.5112    0.61787 0.608 0.008 0.000 0.384
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.4406    0.56778 0.028 0.000 0.192 0.780
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.6320    0.69597 0.180 0.660 0.000 0.160
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.4121    0.73161 0.184 0.796 0.000 0.020
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.4222    0.42638 0.000 0.000 0.728 0.272
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.3649    0.40184 0.796 0.000 0.000 0.204
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0779    0.75784 0.004 0.980 0.000 0.016
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     4  0.7740    0.02924 0.328 0.000 0.244 0.428
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.2466    0.60100 0.028 0.000 0.916 0.056
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5005    0.15943 0.712 0.264 0.004 0.020
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.6586    0.36717 0.184 0.000 0.184 0.632
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.3074    0.57810 0.848 0.000 0.000 0.152
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.1118    0.75316 0.000 0.964 0.000 0.036
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0524    0.76058 0.008 0.988 0.000 0.004
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     4  0.7638   -0.08928 0.220 0.000 0.332 0.448
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.6677    0.58098 0.552 0.100 0.000 0.348
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.4776    0.61518 0.624 0.000 0.000 0.376
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1118    0.75316 0.000 0.964 0.000 0.036
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     4  0.7922    0.06559 0.336 0.000 0.320 0.344
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.8132    0.57628 0.084 0.532 0.096 0.288
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.4361    0.33709 0.772 0.000 0.020 0.208
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     4  0.7716    0.05973 0.356 0.000 0.228 0.416
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.4839    0.57022 0.052 0.000 0.184 0.764
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3663    0.52634 0.008 0.020 0.852 0.120
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1305    0.75402 0.004 0.960 0.000 0.036
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.5626    0.61483 0.588 0.028 0.000 0.384
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.7184   -0.01669 0.316 0.000 0.160 0.524
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.6653    0.34776 0.196 0.000 0.180 0.624
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.5931   -0.29050 0.504 0.460 0.000 0.036
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.7900   -0.04314 0.296 0.000 0.360 0.344
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.3123    0.57756 0.844 0.000 0.000 0.156
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.6584    0.59061 0.568 0.096 0.000 0.336
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.6511    0.33777 0.188 0.000 0.172 0.640
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1118    0.75316 0.000 0.964 0.000 0.036
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3569    0.51406 0.000 0.000 0.804 0.196
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0524    0.61729 0.008 0.004 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.5051     0.6086 0.664 0.264 0.000 0.000 0.072
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     5  0.3970     0.7798 0.000 0.000 0.096 0.104 0.800
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.3304     0.7481 0.000 0.000 0.816 0.016 0.168
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0955     0.8380 0.968 0.000 0.000 0.028 0.004
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.1628     0.8376 0.936 0.056 0.000 0.000 0.008
#> 806616FE-1855-4284-9265-42842104CB21     3  0.3727     0.7046 0.000 0.000 0.768 0.016 0.216
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     1  0.5891     0.1725 0.476 0.448 0.016 0.000 0.060
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0404     0.8278 0.000 0.000 0.988 0.012 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0162     0.8673 0.000 0.000 0.000 0.996 0.004
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.8672 0.000 0.000 0.000 1.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     5  0.1851     0.8286 0.000 0.000 0.000 0.088 0.912
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0510     0.8696 0.016 0.000 0.000 0.984 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0290     0.8699 0.008 0.000 0.000 0.992 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0290     0.8699 0.008 0.000 0.000 0.992 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.2124     0.8327 0.916 0.056 0.000 0.000 0.028
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0510     0.8444 0.984 0.000 0.000 0.000 0.016
#> F5940915-4123-49B3-95EE-4A0412BE8C30     5  0.2522     0.8234 0.000 0.000 0.012 0.108 0.880
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0771     0.8580 0.000 0.000 0.004 0.976 0.020
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0609     0.8679 0.020 0.000 0.000 0.980 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     4  0.5962    -0.1372 0.000 0.000 0.108 0.468 0.424
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.8308 0.000 0.000 1.000 0.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0671     0.9280 0.004 0.980 0.000 0.000 0.016
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0609     0.8442 0.980 0.000 0.000 0.000 0.020
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     5  0.1851     0.8286 0.000 0.000 0.000 0.088 0.912
#> CB925BF0-1249-4350-A175-9A4129C43B8D     5  0.1908     0.8235 0.000 0.000 0.000 0.092 0.908
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0324     0.8669 0.000 0.000 0.004 0.992 0.004
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0162     0.8301 0.000 0.000 0.996 0.000 0.004
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0290     0.8292 0.000 0.000 0.992 0.008 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     1  0.4297     0.1606 0.528 0.472 0.000 0.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     1  0.7189     0.2229 0.464 0.084 0.356 0.000 0.096
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1357     0.8286 0.948 0.000 0.000 0.048 0.004
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.6643    -0.1522 0.000 0.000 0.372 0.404 0.224
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0671     0.9271 0.004 0.980 0.000 0.000 0.016
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3852     0.6955 0.000 0.000 0.760 0.020 0.220
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     5  0.7565    -0.1337 0.100 0.024 0.376 0.060 0.440
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.6635     0.1975 0.000 0.000 0.416 0.360 0.224
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.1197     0.8399 0.952 0.000 0.000 0.000 0.048
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     5  0.2074     0.8251 0.000 0.000 0.000 0.104 0.896
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.1732     0.8026 0.000 0.000 0.000 0.920 0.080
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.4914     0.6478 0.000 0.028 0.672 0.016 0.284
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.6581     0.2668 0.000 0.000 0.452 0.324 0.224
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0579     0.9209 0.000 0.984 0.008 0.000 0.008
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.4283     0.0614 0.456 0.544 0.000 0.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     5  0.5901     0.1823 0.000 0.000 0.400 0.104 0.496
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3690     0.7460 0.000 0.020 0.780 0.000 0.200
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.5917     0.3372 0.000 0.000 0.180 0.596 0.224
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0794     0.8625 0.028 0.000 0.000 0.972 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0510     0.8696 0.016 0.000 0.000 0.984 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     5  0.4172     0.7709 0.000 0.000 0.108 0.108 0.784
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.2359     0.8047 0.904 0.000 0.000 0.060 0.036
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0898     0.9259 0.008 0.972 0.000 0.000 0.020
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.1628     0.8376 0.936 0.056 0.000 0.000 0.008
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     1  0.6202     0.2064 0.472 0.424 0.016 0.000 0.088
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.4787     0.3653 0.608 0.000 0.000 0.364 0.028
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.3143     0.6300 0.000 0.000 0.000 0.796 0.204
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     5  0.1608     0.8251 0.000 0.000 0.000 0.072 0.928
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     1  0.2966     0.7393 0.816 0.184 0.000 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     5  0.2127     0.8233 0.000 0.000 0.000 0.108 0.892
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     5  0.4331     0.3826 0.004 0.000 0.000 0.400 0.596
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1270     0.9174 0.052 0.948 0.000 0.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     1  0.1792     0.8263 0.916 0.084 0.000 0.000 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.5044     0.1970 0.408 0.556 0.000 0.000 0.036
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0609     0.8442 0.980 0.000 0.000 0.000 0.020
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0510     0.8696 0.016 0.000 0.000 0.984 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.3730     0.5647 0.288 0.712 0.000 0.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0798     0.9272 0.008 0.976 0.000 0.000 0.016
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.6108     0.4826 0.000 0.000 0.568 0.208 0.224
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     5  0.4718     0.0462 0.444 0.000 0.000 0.016 0.540
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     5  0.1608     0.8251 0.000 0.000 0.000 0.072 0.928
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0290     0.8286 0.000 0.000 0.992 0.000 0.008
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5064     0.6458 0.680 0.232 0.000 0.000 0.088
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0671     0.8691 0.016 0.000 0.000 0.980 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     5  0.4169     0.7600 0.000 0.000 0.116 0.100 0.784
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.1628     0.8376 0.936 0.056 0.000 0.000 0.008
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     5  0.1851     0.8286 0.000 0.000 0.000 0.088 0.912
#> B3561356-5A80-4C79-B23A-D518425565FE     1  0.1956     0.8301 0.916 0.076 0.000 0.000 0.008
#> F900E9BE-2400-4451-9434-EE8BC513BA94     5  0.2390     0.7513 0.084 0.000 0.000 0.020 0.896
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     5  0.1704     0.8235 0.004 0.000 0.000 0.068 0.928
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0510     0.8696 0.016 0.000 0.000 0.984 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3319     0.7690 0.000 0.020 0.820 0.000 0.160
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0162     0.8434 0.996 0.000 0.000 0.000 0.004
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.2464     0.7864 0.096 0.000 0.000 0.888 0.016
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.1197     0.8443 0.048 0.000 0.000 0.952 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     1  0.3707     0.6076 0.716 0.284 0.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     5  0.3862     0.7771 0.000 0.000 0.104 0.088 0.808
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0880     0.8428 0.968 0.000 0.000 0.000 0.032
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.1628     0.8376 0.936 0.056 0.000 0.000 0.008
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0451     0.8679 0.004 0.000 0.000 0.988 0.008
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000     0.9308 0.000 1.000 0.000 0.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3727     0.7046 0.000 0.000 0.768 0.016 0.216
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0162     0.8301 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     5  0.2699      0.674 0.032 0.028 0.004 0.000 0.888 0.048
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     6  0.2218      0.849 0.000 0.000 0.104 0.012 0.000 0.884
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.1745      0.840 0.000 0.000 0.924 0.000 0.020 0.056
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.3409      0.663 0.000 0.700 0.000 0.000 0.300 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0363      0.942 0.988 0.000 0.000 0.012 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0520      0.943 0.984 0.008 0.000 0.000 0.008 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.3345      0.729 0.000 0.000 0.776 0.000 0.020 0.204
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0260      0.830 0.000 0.992 0.000 0.000 0.008 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.3330      0.690 0.000 0.716 0.000 0.000 0.284 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     5  0.5814      0.495 0.064 0.340 0.004 0.000 0.544 0.048
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0603      0.864 0.000 0.000 0.980 0.000 0.016 0.004
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0363      0.865 0.000 0.000 0.988 0.000 0.012 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0146      0.830 0.000 0.996 0.000 0.000 0.004 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3330      0.690 0.000 0.716 0.000 0.000 0.284 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     1  0.5038     -0.121 0.516 0.008 0.004 0.000 0.428 0.044
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0291      0.826 0.000 0.992 0.000 0.000 0.004 0.004
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     6  0.1003      0.915 0.000 0.000 0.016 0.020 0.000 0.964
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.2823      0.692 0.000 0.000 0.000 0.796 0.000 0.204
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     6  0.5343      0.105 0.000 0.000 0.108 0.408 0.000 0.484
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.3265      0.724 0.000 0.748 0.000 0.000 0.248 0.004
#> 692C65BB-BF32-4846-806B-01A285BED1B9     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> CB925BF0-1249-4350-A175-9A4129C43B8D     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.0520      0.863 0.000 0.000 0.984 0.000 0.008 0.008
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0000      0.865 0.000 0.000 1.000 0.000 0.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     5  0.4738      0.488 0.064 0.336 0.000 0.000 0.600 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.6322      0.354 0.064 0.032 0.324 0.000 0.532 0.048
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.1141      0.900 0.948 0.000 0.000 0.052 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     4  0.6272      0.177 0.000 0.000 0.308 0.464 0.020 0.208
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.2003      0.802 0.000 0.884 0.000 0.000 0.116 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.3374      0.724 0.000 0.000 0.772 0.000 0.020 0.208
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.4512      0.633 0.028 0.000 0.676 0.000 0.024 0.272
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0146      0.949 0.996 0.004 0.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.6305      0.229 0.000 0.000 0.448 0.324 0.020 0.208
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.3530      0.737 0.792 0.000 0.000 0.000 0.152 0.056
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3330      0.690 0.000 0.716 0.000 0.000 0.284 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0458      0.880 0.000 0.000 0.000 0.984 0.000 0.016
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.2637      0.819 0.000 0.008 0.872 0.000 0.024 0.096
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     4  0.5741      0.452 0.000 0.000 0.184 0.588 0.020 0.208
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.3081      0.736 0.000 0.776 0.000 0.000 0.220 0.004
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     5  0.4700      0.480 0.060 0.340 0.000 0.000 0.600 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4627      0.248 0.000 0.000 0.532 0.012 0.020 0.436
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0881      0.860 0.000 0.008 0.972 0.000 0.012 0.008
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     4  0.5573      0.478 0.000 0.000 0.160 0.612 0.020 0.208
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0146      0.884 0.004 0.000 0.000 0.996 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     6  0.2250      0.860 0.000 0.000 0.092 0.020 0.000 0.888
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0547      0.933 0.980 0.000 0.000 0.000 0.000 0.020
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.3330      0.690 0.000 0.716 0.000 0.000 0.284 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3330      0.690 0.000 0.716 0.000 0.000 0.284 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3464      0.659 0.000 0.688 0.000 0.000 0.312 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0405      0.946 0.988 0.008 0.000 0.000 0.004 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     5  0.5803      0.495 0.064 0.336 0.004 0.000 0.548 0.048
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.4256      0.152 0.464 0.000 0.000 0.520 0.000 0.016
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.2048      0.795 0.000 0.000 0.000 0.880 0.000 0.120
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     5  0.1528      0.690 0.048 0.016 0.000 0.000 0.936 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     4  0.1387      0.847 0.000 0.000 0.000 0.932 0.000 0.068
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3266      0.701 0.000 0.728 0.000 0.000 0.272 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     5  0.3975      0.404 0.392 0.008 0.000 0.000 0.600 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     5  0.1485      0.684 0.024 0.028 0.000 0.000 0.944 0.004
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     5  0.4428      0.361 0.032 0.388 0.000 0.000 0.580 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.2003      0.802 0.000 0.884 0.000 0.000 0.116 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5310      0.595 0.000 0.000 0.644 0.128 0.020 0.208
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     6  0.1007      0.891 0.044 0.000 0.000 0.000 0.000 0.956
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     6  0.0260      0.920 0.000 0.000 0.000 0.008 0.000 0.992
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0458      0.865 0.000 0.000 0.984 0.000 0.016 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     5  0.1675      0.684 0.032 0.024 0.000 0.000 0.936 0.008
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0291      0.885 0.004 0.000 0.000 0.992 0.000 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0291      0.948 0.992 0.004 0.000 0.000 0.004 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0291      0.826 0.000 0.992 0.000 0.000 0.004 0.004
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0508      0.828 0.000 0.984 0.000 0.000 0.012 0.004
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     6  0.2572      0.814 0.000 0.000 0.136 0.012 0.000 0.852
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0520      0.943 0.984 0.008 0.000 0.000 0.008 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0291      0.826 0.000 0.992 0.000 0.000 0.004 0.004
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     6  0.0363      0.922 0.000 0.000 0.000 0.012 0.000 0.988
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.4671      0.391 0.392 0.008 0.004 0.000 0.572 0.024
#> F900E9BE-2400-4451-9434-EE8BC513BA94     6  0.0363      0.914 0.012 0.000 0.000 0.000 0.000 0.988
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     6  0.0291      0.918 0.004 0.000 0.000 0.004 0.000 0.992
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000      0.886 0.000 0.000 0.000 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0881      0.860 0.000 0.008 0.972 0.000 0.012 0.008
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0146      0.950 0.996 0.004 0.000 0.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0777      0.872 0.024 0.000 0.000 0.972 0.000 0.004
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0363      0.879 0.012 0.000 0.000 0.988 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     5  0.1713      0.692 0.044 0.028 0.000 0.000 0.928 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     6  0.2743      0.794 0.000 0.000 0.164 0.008 0.000 0.828
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.950 1.000 0.000 0.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0405      0.946 0.988 0.008 0.000 0.000 0.004 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0363      0.882 0.000 0.000 0.000 0.988 0.000 0.012
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0291      0.826 0.000 0.992 0.000 0.000 0.004 0.004
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.3345      0.729 0.000 0.000 0.776 0.000 0.020 0.204
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0000      0.865 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17548 rows and 122 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.986         0.4322 0.568   0.568
#> 3 3 1.000           0.962       0.985         0.4965 0.702   0.510
#> 4 4 0.816           0.868       0.927         0.1528 0.858   0.618
#> 5 5 0.776           0.640       0.821         0.0518 0.943   0.784
#> 6 6 0.844           0.793       0.892         0.0302 0.920   0.671

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>                                      class entropy silhouette    p1    p2
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     2  0.0000      0.989 0.000 1.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.0000      0.975 1.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000      0.975 1.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.975 1.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.0000      0.989 0.000 1.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.989 0.000 1.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.989 0.000 1.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     2  0.0000      0.989 0.000 1.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     2  0.0000      0.989 0.000 1.000
#> 806616FE-1855-4284-9265-42842104CB21     2  0.0000      0.989 0.000 1.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.989 0.000 1.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.989 0.000 1.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.9393      0.460 0.644 0.356
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.989 0.000 1.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.0000      0.989 0.000 1.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.0000      0.989 0.000 1.000
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.0000      0.989 0.000 1.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     2  0.0000      0.989 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.989 0.000 1.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.989 0.000 1.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     2  0.0000      0.989 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.989 0.000 1.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.0000      0.989 0.000 1.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.975 1.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.989 0.000 1.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     2  0.9044      0.518 0.320 0.680
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.1184      0.964 0.984 0.016
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.975 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.0000      0.989 0.000 1.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.989 0.000 1.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.989 0.000 1.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     2  0.0672      0.982 0.008 0.992
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.975 1.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     2  0.0000      0.989 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     2  0.0000      0.989 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.0000      0.989 0.000 1.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.0672      0.970 0.992 0.008
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.0000      0.989 0.000 1.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.989 0.000 1.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.3114      0.929 0.944 0.056
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.989 0.000 1.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.975 1.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000      0.975 1.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     2  0.0000      0.989 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.989 0.000 1.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.989 0.000 1.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.989 0.000 1.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.989 0.000 1.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     2  0.0000      0.989 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     2  0.0000      0.989 0.000 1.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.989 0.000 1.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     2  0.0000      0.989 0.000 1.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.0000      0.989 0.000 1.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000      0.975 1.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.0000      0.989 0.000 1.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000      0.975 1.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.989 0.000 1.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.975 1.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.975 1.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.989 0.000 1.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     2  0.0000      0.989 0.000 1.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.989 0.000 1.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.989 0.000 1.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     1  0.0000      0.975 1.000 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.989 0.000 1.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     2  0.0000      0.989 0.000 1.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     2  0.0000      0.989 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     2  0.1184      0.974 0.016 0.984
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.0000      0.975 1.000 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0000      0.975 1.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.989 0.000 1.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.989 0.000 1.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.989 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.989 0.000 1.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     2  0.0000      0.989 0.000 1.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.989 0.000 1.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.975 1.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.975 1.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.975 1.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.0672      0.982 0.008 0.992
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.975 1.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.0000      0.975 1.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     2  0.2778      0.942 0.048 0.952
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.989 0.000 1.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.0000      0.989 0.000 1.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.989 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.2423      0.943 0.960 0.040
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     2  0.0000      0.989 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.989 0.000 1.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.989 0.000 1.000
#> F25A7521-2596-4D60-BABE-862023C40D40     2  0.0000      0.989 0.000 1.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.975 1.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.989 0.000 1.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000      0.975 1.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.0000      0.975 1.000 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.0000      0.975 1.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     2  0.0000      0.989 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000      0.975 1.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.989 0.000 1.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.989 0.000 1.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.0000      0.975 1.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     2  0.0000      0.989 0.000 1.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.8955      0.558 0.688 0.312
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.989 0.000 1.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.975 1.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0000      0.989 0.000 1.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.975 1.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000      0.975 1.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     2  0.0000      0.989 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.989 0.000 1.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.989 0.000 1.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     2  0.0000      0.989 0.000 1.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     2  0.9427      0.424 0.360 0.640
#> F205F9FC-F2D5-4164-9A40-1279647F900B     2  0.5059      0.867 0.112 0.888
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.989 0.000 1.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000      0.975 1.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000      0.975 1.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     2  0.0000      0.989 0.000 1.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.4815      0.878 0.896 0.104
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.989 0.000 1.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     2  0.0000      0.989 0.000 1.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.989 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>                                      class entropy silhouette    p1    p2    p3
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     1  0.0000      0.960 1.000 0.000 0.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     3  0.0000      0.989 0.000 0.000 1.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     3  0.0000      0.989 0.000 0.000 1.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     3  0.0000      0.989 0.000 0.000 1.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     2  0.0000      0.996 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0000      0.996 0.000 1.000 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     2  0.0000      0.996 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     1  0.0000      0.960 1.000 0.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     1  0.0000      0.960 1.000 0.000 0.000
#> 806616FE-1855-4284-9265-42842104CB21     2  0.0237      0.993 0.004 0.996 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0000      0.996 0.000 1.000 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0000      0.996 0.000 1.000 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     1  0.0000      0.960 1.000 0.000 0.000
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.0000      0.996 0.000 1.000 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     2  0.0000      0.996 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     2  0.0000      0.996 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     2  0.0000      0.996 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     1  0.0000      0.960 1.000 0.000 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.0000      0.996 0.000 1.000 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0000      0.996 0.000 1.000 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     1  0.0000      0.960 1.000 0.000 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.0000      0.996 0.000 1.000 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.1753      0.949 0.048 0.952 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     3  0.0000      0.989 0.000 0.000 1.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.0000      0.996 0.000 1.000 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     1  0.0000      0.960 1.000 0.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     1  0.0000      0.960 1.000 0.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     1  0.0000      0.960 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     2  0.0000      0.996 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.0000      0.996 0.000 1.000 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.0000      0.996 0.000 1.000 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     1  0.0000      0.960 1.000 0.000 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     3  0.0000      0.989 0.000 0.000 1.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     1  0.0000      0.960 1.000 0.000 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     1  0.0000      0.960 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     2  0.0000      0.996 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.4062      0.806 0.164 0.000 0.836
#> 50D620F3-5C52-42FB-89A1-6840A7444647     2  0.0000      0.996 0.000 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.0000      0.996 0.000 1.000 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     1  0.0000      0.960 1.000 0.000 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0000      0.996 0.000 1.000 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     3  0.0000      0.989 0.000 0.000 1.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     3  0.0000      0.989 0.000 0.000 1.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     1  0.0000      0.960 1.000 0.000 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     2  0.0000      0.996 0.000 1.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.0000      0.996 0.000 1.000 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.0000      0.996 0.000 1.000 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0000      0.996 0.000 1.000 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     1  0.0000      0.960 1.000 0.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     1  0.0000      0.960 1.000 0.000 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000      0.996 0.000 1.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     1  0.0237      0.956 0.996 0.000 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     2  0.0000      0.996 0.000 1.000 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     3  0.0000      0.989 0.000 0.000 1.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     1  0.6295      0.145 0.528 0.472 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     3  0.0000      0.989 0.000 0.000 1.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.0000      0.996 0.000 1.000 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     3  0.0000      0.989 0.000 0.000 1.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     1  0.0000      0.960 1.000 0.000 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.0000      0.996 0.000 1.000 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     1  0.0000      0.960 1.000 0.000 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.0000      0.996 0.000 1.000 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0000      0.996 0.000 1.000 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.0000      0.989 0.000 0.000 1.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     2  0.0000      0.996 0.000 1.000 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     1  0.0000      0.960 1.000 0.000 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     1  0.0000      0.960 1.000 0.000 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     1  0.0000      0.960 1.000 0.000 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     3  0.0000      0.989 0.000 0.000 1.000
#> 352471DC-A881-4EA8-B646-EB1200291893     3  0.0592      0.979 0.012 0.000 0.988
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0000      0.996 0.000 1.000 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0000      0.996 0.000 1.000 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000      0.996 0.000 1.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.0000      0.996 0.000 1.000 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     1  0.0000      0.960 1.000 0.000 0.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.0000      0.996 0.000 1.000 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     1  0.0000      0.960 1.000 0.000 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     1  0.0000      0.960 1.000 0.000 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     3  0.0000      0.989 0.000 0.000 1.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.2878      0.895 0.000 0.904 0.096
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     3  0.0000      0.989 0.000 0.000 1.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     3  0.3116      0.878 0.108 0.000 0.892
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     1  0.0000      0.960 1.000 0.000 0.000
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.0000      0.996 0.000 1.000 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.1529      0.956 0.040 0.960 0.000
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000      0.996 0.000 1.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     1  0.0000      0.960 1.000 0.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     1  0.0000      0.960 1.000 0.000 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0000      0.996 0.000 1.000 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000      0.996 0.000 1.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     1  0.6008      0.430 0.628 0.372 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     3  0.0000      0.989 0.000 0.000 1.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.0000      0.996 0.000 1.000 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     3  0.0000      0.989 0.000 0.000 1.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.0000      0.989 0.000 0.000 1.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     3  0.0000      0.989 0.000 0.000 1.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     1  0.0000      0.960 1.000 0.000 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     3  0.0000      0.989 0.000 0.000 1.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.0000      0.996 0.000 1.000 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.0000      0.996 0.000 1.000 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.0000      0.989 0.000 0.000 1.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     1  0.0000      0.960 1.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     1  0.2066      0.902 0.940 0.000 0.060
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.0000      0.996 0.000 1.000 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     3  0.0000      0.989 0.000 0.000 1.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0237      0.993 0.004 0.996 0.000
#> F900E9BE-2400-4451-9434-EE8BC513BA94     3  0.0000      0.989 0.000 0.000 1.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     3  0.0000      0.989 0.000 0.000 1.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     1  0.0000      0.960 1.000 0.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     2  0.0000      0.996 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.0000      0.996 0.000 1.000 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     1  0.0000      0.960 1.000 0.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     1  0.0000      0.960 1.000 0.000 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     1  0.0000      0.960 1.000 0.000 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000      0.996 0.000 1.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     3  0.0000      0.989 0.000 0.000 1.000
#> 12F54761-4F68-4181-8421-88EA858902FC     3  0.0000      0.989 0.000 0.000 1.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     1  0.0237      0.956 0.996 0.004 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     1  0.0000      0.960 1.000 0.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.0000      0.996 0.000 1.000 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     1  0.6111      0.371 0.604 0.396 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     2  0.0000      0.996 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>                                      class entropy silhouette    p1    p2    p3    p4
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.3907     0.7379 0.768 0.232 0.000 0.000
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0188     0.8663 0.000 0.996 0.004 0.000
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0817     0.9520 0.000 0.024 0.000 0.976
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.0817     0.8735 0.000 0.976 0.024 0.000
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0592     0.8710 0.000 0.984 0.016 0.000
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0921     0.9511 0.028 0.000 0.000 0.972
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4164     0.7894 0.000 0.736 0.264 0.000
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.2647     0.8714 0.000 0.880 0.120 0.000
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.0817     0.8735 0.000 0.976 0.024 0.000
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.3311     0.8528 0.000 0.828 0.172 0.000
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.7169     0.4697 0.000 0.508 0.344 0.148
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.1302     0.8775 0.000 0.956 0.044 0.000
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.3649     0.8357 0.000 0.796 0.204 0.000
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.3975     0.8102 0.000 0.760 0.240 0.000
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     1  0.5543     0.3904 0.612 0.000 0.360 0.028
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.2589     0.8723 0.000 0.884 0.116 0.000
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0188     0.8663 0.000 0.996 0.004 0.000
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.1118     0.8701 0.000 0.036 0.964 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     3  0.0707     0.8843 0.000 0.020 0.980 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.1940     0.8780 0.000 0.924 0.076 0.000
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.4382     0.7521 0.000 0.704 0.296 0.000
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.2345     0.8313 0.000 0.000 0.900 0.100
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.0000     0.8642 0.000 1.000 0.000 0.000
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.0524     0.8927 0.004 0.000 0.988 0.008
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0188     0.8963 0.004 0.000 0.996 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.3710     0.7439 0.000 0.004 0.804 0.192
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.1867     0.8783 0.000 0.928 0.072 0.000
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0188     0.9715 0.004 0.000 0.000 0.996
#> 84E18629-1B13-4696-8E54-121ABE469CD2     3  0.3942     0.5607 0.000 0.236 0.764 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.3074     0.7880 0.000 0.000 0.848 0.152
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.4222     0.7810 0.000 0.728 0.272 0.000
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.0188     0.8663 0.000 0.996 0.004 0.000
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.4955     0.1638 0.444 0.000 0.556 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.0188     0.8960 0.000 0.004 0.996 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4855     0.3116 0.000 0.000 0.600 0.400
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.2530     0.8537 0.888 0.000 0.112 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1211     0.9191 0.960 0.000 0.000 0.040
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.1557     0.8781 0.000 0.944 0.056 0.000
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.0592     0.8714 0.000 0.984 0.016 0.000
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.0000     0.8642 0.000 1.000 0.000 0.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.3024     0.8624 0.000 0.852 0.148 0.000
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.4382     0.7521 0.000 0.704 0.296 0.000
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.1302     0.8422 0.044 0.956 0.000 0.000
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.1557     0.9039 0.944 0.000 0.000 0.056
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2530     0.8758 0.100 0.004 0.000 0.896
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.1118     0.8758 0.000 0.964 0.036 0.000
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.4295     0.6962 0.000 0.752 0.008 0.240
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.0000     0.8642 0.000 1.000 0.000 0.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.3400     0.8493 0.000 0.820 0.180 0.000
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.0000     0.8642 0.000 1.000 0.000 0.000
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.0188     0.8968 0.000 0.000 0.996 0.004
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.2530     0.8733 0.000 0.888 0.112 0.000
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     3  0.4994     0.0112 0.480 0.000 0.520 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3726     0.7643 0.788 0.212 0.000 0.000
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.4134     0.7934 0.000 0.740 0.260 0.000
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.4134     0.7934 0.000 0.740 0.260 0.000
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     1  0.2469     0.8554 0.892 0.000 0.108 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.0188     0.9714 0.000 0.004 0.000 0.996
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.4990     0.4499 0.352 0.008 0.000 0.640
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.3688     0.8333 0.000 0.792 0.208 0.000
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.5585     0.7792 0.000 0.712 0.204 0.084
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1474     0.8778 0.000 0.948 0.052 0.000
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.0000     0.8642 0.000 1.000 0.000 0.000
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0000     0.9515 1.000 0.000 0.000 0.000
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.3688     0.7134 0.000 0.208 0.000 0.792
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9748 0.000 0.000 0.000 1.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.4040     0.8037 0.000 0.752 0.248 0.000
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0000     0.8982 0.000 0.000 1.000 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     3  0.0000     0.8982 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.1282     0.9470 0.000 0.004 0.000 0.952 0.044
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     1  0.6707     0.0451 0.388 0.368 0.000 0.000 0.244
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.2286     0.7959 0.888 0.000 0.108 0.000 0.004
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.2054     0.6486 0.000 0.028 0.920 0.000 0.052
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     2  0.0963     0.6482 0.000 0.964 0.000 0.000 0.036
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.0324     0.6657 0.000 0.004 0.992 0.000 0.004
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0290     0.9758 0.000 0.008 0.000 0.992 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0912     0.6656 0.000 0.012 0.972 0.000 0.016
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     2  0.3074     0.5983 0.000 0.804 0.000 0.000 0.196
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     2  0.0510     0.6494 0.000 0.984 0.000 0.000 0.016
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0693     0.9708 0.008 0.000 0.000 0.980 0.012
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.4973     0.1372 0.000 0.632 0.048 0.000 0.320
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.4307    -0.0513 0.000 0.000 0.496 0.000 0.504
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.1300     0.6641 0.000 0.016 0.956 0.000 0.028
#> 853120F0-857B-4108-9EC8-727189630C5F     3  0.4450    -0.0645 0.000 0.004 0.508 0.000 0.488
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0162     0.9785 0.000 0.000 0.004 0.996 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.2189     0.6126 0.000 0.904 0.012 0.000 0.084
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     2  0.1792     0.6391 0.000 0.916 0.000 0.000 0.084
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0162     0.9785 0.000 0.000 0.004 0.996 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.4398     0.3878 0.000 0.720 0.040 0.000 0.240
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     5  0.4404     0.5803 0.000 0.292 0.024 0.000 0.684
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.2848     0.5575 0.000 0.840 0.004 0.000 0.156
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     3  0.4306    -0.0443 0.000 0.000 0.508 0.000 0.492
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.5380     0.4753 0.000 0.712 0.040 0.072 0.176
#> F798E986-79BB-48FD-8514-95571EDB594B     5  0.5351     0.3136 0.000 0.464 0.052 0.000 0.484
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0162     0.9786 0.000 0.000 0.000 0.996 0.004
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0162     0.8901 0.996 0.000 0.000 0.000 0.004
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.0992     0.9652 0.000 0.000 0.008 0.968 0.024
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.4450    -0.0237 0.000 0.004 0.488 0.000 0.508
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     3  0.7696     0.0841 0.376 0.000 0.388 0.108 0.128
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.1544     0.6482 0.000 0.000 0.932 0.000 0.068
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.1981     0.6233 0.000 0.920 0.016 0.000 0.064
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0162     0.9784 0.004 0.000 0.000 0.996 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     2  0.0404     0.6492 0.000 0.988 0.000 0.000 0.012
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0671     0.9707 0.000 0.000 0.016 0.980 0.004
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.5543     0.2474 0.000 0.224 0.640 0.000 0.136
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     5  0.5516     0.5943 0.000 0.220 0.136 0.000 0.644
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     2  0.2753     0.6228 0.000 0.856 0.008 0.000 0.136
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     5  0.5215     0.5233 0.000 0.372 0.052 0.000 0.576
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.4719     0.5467 0.000 0.016 0.720 0.228 0.036
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     2  0.3480     0.5713 0.000 0.752 0.000 0.000 0.248
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.1124     0.6651 0.000 0.000 0.960 0.036 0.004
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.0771     0.6665 0.000 0.004 0.976 0.000 0.020
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.2124     0.8302 0.900 0.000 0.000 0.004 0.096
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     3  0.8488    -0.0227 0.000 0.188 0.320 0.272 0.220
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.3391     0.5149 0.000 0.800 0.012 0.000 0.188
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0703     0.9657 0.024 0.000 0.000 0.976 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     5  0.5921     0.5690 0.000 0.296 0.136 0.000 0.568
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.5328     0.4436 0.000 0.016 0.604 0.344 0.036
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.5359    -0.1830 0.000 0.532 0.056 0.000 0.412
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     2  0.1270     0.6463 0.000 0.948 0.000 0.000 0.052
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.3690     0.5755 0.200 0.000 0.780 0.000 0.020
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.3840     0.5570 0.000 0.116 0.808 0.000 0.076
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.4276     0.4104 0.000 0.000 0.616 0.380 0.004
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.0771     0.9705 0.000 0.000 0.004 0.976 0.020
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0162     0.9785 0.000 0.000 0.004 0.996 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.4449     0.0316 0.512 0.000 0.484 0.000 0.004
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.0609     0.8778 0.980 0.000 0.000 0.020 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     2  0.0404     0.6463 0.000 0.988 0.000 0.000 0.012
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.1270     0.6368 0.000 0.948 0.000 0.000 0.052
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     2  0.3534     0.5659 0.000 0.744 0.000 0.000 0.256
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.4042     0.4522 0.000 0.756 0.032 0.000 0.212
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0290     0.9772 0.000 0.000 0.000 0.992 0.008
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     5  0.5264     0.4960 0.000 0.392 0.052 0.000 0.556
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0162     0.9784 0.004 0.000 0.000 0.996 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0290     0.9770 0.008 0.000 0.000 0.992 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     2  0.4477     0.5326 0.040 0.708 0.000 0.000 0.252
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0162     0.8901 0.996 0.000 0.000 0.000 0.004
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.1121     0.8560 0.956 0.000 0.000 0.044 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.2969     0.8472 0.020 0.000 0.000 0.852 0.128
#> 969A8063-FE1C-426C-821D-BDC714F1E385     2  0.3305     0.5850 0.000 0.776 0.000 0.000 0.224
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.5373     0.2818 0.000 0.652 0.000 0.236 0.112
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     2  0.3586     0.5599 0.000 0.736 0.000 0.000 0.264
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0162     0.9785 0.000 0.000 0.004 0.996 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.4973    -0.3157 0.000 0.496 0.020 0.004 0.480
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     2  0.3395     0.5785 0.000 0.764 0.000 0.000 0.236
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.2792     0.6486 0.000 0.004 0.884 0.072 0.040
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.1549     0.6347 0.000 0.944 0.016 0.000 0.040
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     1  0.6024     0.1669 0.512 0.000 0.364 0.000 0.124
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.5946     0.5013 0.592 0.184 0.000 0.000 0.224
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0162     0.9787 0.000 0.000 0.000 0.996 0.004
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.2338     0.8176 0.884 0.000 0.000 0.004 0.112
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.5176    -0.0458 0.000 0.572 0.048 0.000 0.380
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.5350    -0.3309 0.000 0.488 0.052 0.000 0.460
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.4341     0.2454 0.404 0.000 0.592 0.000 0.004
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.0404     0.9729 0.000 0.012 0.000 0.988 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.3617     0.8114 0.044 0.004 0.000 0.824 0.128
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.5291    -0.3026 0.000 0.496 0.048 0.000 0.456
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     5  0.5488     0.4757 0.000 0.396 0.020 0.032 0.552
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0000     0.8912 1.000 0.000 0.000 0.000 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.3532     0.5854 0.000 0.092 0.832 0.000 0.076
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.1251     0.6388 0.000 0.956 0.008 0.000 0.036
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.0404     0.9762 0.000 0.000 0.000 0.988 0.012
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.0404     0.9762 0.000 0.000 0.000 0.988 0.012
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     2  0.3508     0.5684 0.000 0.748 0.000 0.000 0.252
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0162     0.8901 0.996 0.000 0.000 0.000 0.004
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0566     0.8843 0.984 0.000 0.000 0.004 0.012
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.1341     0.9230 0.000 0.056 0.000 0.944 0.000
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0000     0.9792 0.000 0.000 0.000 1.000 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.5206    -0.1943 0.000 0.528 0.044 0.000 0.428
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.0865     0.6616 0.000 0.004 0.972 0.000 0.024
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.6118     0.4464 0.000 0.164 0.288 0.000 0.548

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>                                      class entropy silhouette    p1    p2    p3    p4    p5    p6
#> F9537DC1-770E-4CE2-9D67-CCAABCF60931     4  0.1938      0.928 0.000 0.000 0.008 0.920 0.020 0.052
#> 7CBD6124-AB7E-46AD-8273-FA826F8F067F     6  0.3636      0.330 0.320 0.000 0.000 0.000 0.004 0.676
#> 203691F1-8D53-4E50-8B64-56D2E0D04208     1  0.3023      0.695 0.768 0.000 0.232 0.000 0.000 0.000
#> 604AF3D4-BCBE-4C9F-9FD5-85C65EEE3E01     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 1304CB8A-91FA-46E5-A4E4-F0B6DD3EF838     3  0.0508      0.817 0.000 0.012 0.984 0.000 0.004 0.000
#> 0B261D94-FFEC-42D3-B17F-15FD25A46422     6  0.3288      0.535 0.000 0.276 0.000 0.000 0.000 0.724
#> 9264567D-4524-46AF-A851-C091C3CD76CF     3  0.1411      0.811 0.000 0.004 0.936 0.000 0.060 0.000
#> 45EAD449-C59A-463E-880A-C375CDD039BA     4  0.0363      0.970 0.000 0.000 0.000 0.988 0.012 0.000
#> 03EEEE15-9BAF-429A-B6D0-0BD2FB6EB3B5     4  0.0260      0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> 806616FE-1855-4284-9265-42842104CB21     3  0.0405      0.817 0.000 0.004 0.988 0.000 0.008 0.000
#> 108CF4F0-31D6-4C2C-984B-5AAF0829CED7     6  0.0790      0.779 0.000 0.032 0.000 0.000 0.000 0.968
#> B19B0DC5-14B3-427B-94D7-082F3DC614C9     6  0.3547      0.418 0.000 0.332 0.000 0.000 0.000 0.668
#> D9FD8955-3006-45CA-BC9A-A8BAF18264FE     4  0.0603      0.966 0.000 0.000 0.000 0.980 0.004 0.016
#> A2A46B51-FF44-45C0-B886-12313AC0FC0A     2  0.3897      0.640 0.000 0.696 0.000 0.000 0.024 0.280
#> 2FBB0C34-2E4D-4396-897D-990625749EFB     5  0.2263      0.918 0.000 0.056 0.048 0.000 0.896 0.000
#> 96E78E9B-6BBC-4C06-9D0F-DAC051828DA3     3  0.0603      0.818 0.000 0.004 0.980 0.000 0.016 0.000
#> 853120F0-857B-4108-9EC8-727189630C5F     5  0.2134      0.920 0.000 0.052 0.044 0.000 0.904 0.000
#> EF9A5BA0-F672-48F0-8F0A-8E7B6A75B9E5     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> FD3F7EF7-3C82-49BB-ABC1-179CAF03B3E7     2  0.3857      0.301 0.000 0.532 0.000 0.000 0.000 0.468
#> DD14F103-81DC-482F-BE77-B5DC48C59DD7     6  0.2527      0.695 0.000 0.168 0.000 0.000 0.000 0.832
#> 8DFD6709-70F8-4BC0-941C-3B673F86CF29     4  0.0260      0.972 0.000 0.000 0.000 0.992 0.008 0.000
#> F6DBC40E-0AE2-453F-B1D5-1BB0453C19D4     2  0.2838      0.741 0.000 0.808 0.004 0.000 0.000 0.188
#> BA15FA9A-CE07-46A9-A42C-D33AB54B4CBF     2  0.1531      0.721 0.000 0.928 0.004 0.000 0.068 0.000
#> F5A814F6-E824-4DB2-8497-4B99E151D450     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> C86373C0-AC79-4748-A7F1-B63DA3A40055     2  0.3151      0.693 0.000 0.748 0.000 0.000 0.000 0.252
#> CE6BF7C2-5006-4148-9EAB-4054DD052977     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> D1E7B413-20DD-466B-9E97-E72CCFF692A7     4  0.0260      0.971 0.000 0.000 0.000 0.992 0.008 0.000
#> 4496EE84-2C36-413B-A328-A5B598A6C387     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> A553770E-41B0-4BD7-BA33-ED0A33DD8529     5  0.2066      0.920 0.000 0.052 0.040 0.000 0.908 0.000
#> F50803F9-FEF7-444A-B585-7082DCA1D11A     2  0.5254      0.602 0.000 0.660 0.028 0.008 0.072 0.232
#> F798E986-79BB-48FD-8514-95571EDB594B     2  0.1219      0.762 0.000 0.948 0.004 0.000 0.000 0.048
#> BB2707B0-F108-4076-A0AA-F10385BB41CB     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> F5940915-4123-49B3-95EE-4A0412BE8C30     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> FB377B95-88DD-4C3B-9C5D-A552D9C2B4AB     4  0.2189      0.917 0.000 0.032 0.004 0.904 0.060 0.000
#> 2618AF36-2C3D-459B-BBBB-ACB23BCC3C1B     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> AA403EC3-FD44-4247-B06D-AEF415391E46     5  0.2058      0.920 0.000 0.056 0.036 0.000 0.908 0.000
#> 2E053273-F46D-4677-8BE9-9CE90D19D359     5  0.3048      0.798 0.028 0.000 0.012 0.116 0.844 0.000
#> 50D620F3-5C52-42FB-89A1-6840A7444647     3  0.2597      0.737 0.000 0.000 0.824 0.000 0.176 0.000
#> CCF8CEFA-6676-4B41-A86E-AC0CBF30D2DD     2  0.3838      0.354 0.000 0.552 0.000 0.000 0.000 0.448
#> 37A58DA6-AEE8-4279-9738-FCBB1B92AA3E     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> 86DD14A6-828B-4AF1-8032-63569F2759F9     6  0.3634      0.340 0.000 0.356 0.000 0.000 0.000 0.644
#> 692C65BB-BF32-4846-806B-01A285BED1B9     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> CB925BF0-1249-4350-A175-9A4129C43B8D     1  0.0146      0.938 0.996 0.000 0.000 0.000 0.004 0.000
#> 368F63CC-493E-45CA-A846-8A4D943C4928     4  0.0909      0.961 0.000 0.000 0.012 0.968 0.020 0.000
#> 4EBCD716-0014-4C79-843D-6E3F5AA743E1     3  0.3717      0.322 0.000 0.384 0.616 0.000 0.000 0.000
#> C7C6FBAA-4A63-4B32-9B43-306F69E1867E     2  0.3756      0.280 0.000 0.600 0.000 0.000 0.400 0.000
#> B9084CCA-6AB7-44D2-94BB-EF6D7AC7985F     6  0.1814      0.748 0.000 0.100 0.000 0.000 0.000 0.900
#> 01680E9C-60C7-442F-8CE9-B4890EFA8C44     2  0.0405      0.744 0.000 0.988 0.000 0.000 0.008 0.004
#> F84FBB47-11F2-45D5-9C5F-7C80AB0C9FBB     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> 06E30C6B-2F20-4619-9775-88B3B55602C6     3  0.2195      0.788 0.000 0.012 0.904 0.068 0.016 0.000
#> BF5BE22A-239B-4DB8-9E69-34F89C9CDA22     6  0.0146      0.780 0.000 0.004 0.000 0.000 0.000 0.996
#> C7EBFCFA-8415-4C72-A436-BD36391DC066     3  0.1779      0.810 0.000 0.000 0.920 0.016 0.064 0.000
#> AE2B25DD-F8AE-4B1B-B40A-E1D6784D019C     3  0.1285      0.813 0.000 0.004 0.944 0.000 0.052 0.000
#> D5F0EEAA-18A5-4CA5-8554-1052AADCB53E     1  0.1812      0.881 0.912 0.000 0.000 0.008 0.000 0.080
#> B6656C31-B782-4FD3-B07D-ABF664BA8915     2  0.3776      0.601 0.000 0.756 0.196 0.048 0.000 0.000
#> B5474EEB-D585-4668-959C-38F240F55BC2     1  0.0146      0.938 0.996 0.000 0.000 0.000 0.004 0.000
#> EC595B05-067F-47E7-A3B1-6C2DD73A2AB2     2  0.2454      0.752 0.000 0.840 0.000 0.000 0.000 0.160
#> A533C39D-CE42-42AD-92AD-549157A43139     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> D93F1B3C-1502-46FD-8EEE-973CF8BB3724     4  0.0603      0.964 0.016 0.000 0.000 0.980 0.004 0.000
#> 84E18629-1B13-4696-8E54-121ABE469CD2     2  0.1700      0.723 0.000 0.916 0.080 0.000 0.004 0.000
#> 7219A24C-306D-4C24-98DA-8F194D0B809B     3  0.4163      0.502 0.000 0.008 0.656 0.320 0.016 0.000
#> 1E91EE61-6412-44DD-B13C-910244D4D4D4     2  0.2243      0.765 0.000 0.880 0.004 0.000 0.004 0.112
#> 9E34636D-C99E-4AF2-A417-8AEAC8084144     6  0.2823      0.651 0.000 0.204 0.000 0.000 0.000 0.796
#> 3288DA84-360C-452F-AB9A-7148CC18AE95     3  0.1176      0.808 0.024 0.000 0.956 0.000 0.020 0.000
#> B17D9FCC-C687-4C04-BACD-846B822E1FE7     3  0.2214      0.760 0.000 0.096 0.888 0.000 0.016 0.000
#> 282EDEC3-3F81-45D3-BF27-F1242ED966CC     3  0.3674      0.571 0.000 0.000 0.716 0.268 0.016 0.000
#> 446EC9FF-4F10-40BC-8383-736FD7BCF55D     4  0.1511      0.945 0.000 0.012 0.004 0.940 0.044 0.000
#> E406ADC2-DB17-4F81-B4A7-FF6FAEF225EA     4  0.0146      0.972 0.000 0.000 0.000 0.996 0.004 0.000
#> 6A7BAB3B-752A-4671-A166-90643D5B29AF     1  0.3777      0.684 0.752 0.000 0.216 0.020 0.012 0.000
#> 352471DC-A881-4EA8-B646-EB1200291893     1  0.1267      0.885 0.940 0.000 0.000 0.060 0.000 0.000
#> F779417A-9E29-4B27-BEA3-B23273A66021     6  0.3756      0.187 0.000 0.400 0.000 0.000 0.000 0.600
#> BD9C0D6B-83A9-4B4B-AD84-50EAD8409DFB     2  0.3810      0.414 0.000 0.572 0.000 0.000 0.000 0.428
#> 4401759F-1FB6-4589-9AB6-F582EA99AAF2     6  0.0000      0.778 0.000 0.000 0.000 0.000 0.000 1.000
#> 73D21B57-EA30-4D90-B667-AC95C8A66264     2  0.2793      0.734 0.000 0.800 0.000 0.000 0.000 0.200
#> D891BCA1-0323-4277-BAF7-6F505377EA45     4  0.0405      0.970 0.000 0.000 0.000 0.988 0.008 0.004
#> 5E367AE1-8F91-4E28-9908-F66CD59CF8E4     2  0.1116      0.744 0.000 0.960 0.004 0.000 0.028 0.008
#> A314C4E6-B245-4F10-A555-50B9B819040D     4  0.0363      0.970 0.000 0.000 0.000 0.988 0.012 0.000
#> 037B1CEE-3B36-4EB8-B4AD-BFFC1972D06C     4  0.0291      0.971 0.004 0.000 0.000 0.992 0.004 0.000
#> BC4C8A01-362C-4772-8399-4803AD32D6FA     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> C7676B99-E211-43C4-8D07-1F91B8EE1F31     6  0.0520      0.772 0.008 0.000 0.008 0.000 0.000 0.984
#> 0FBDDB5D-8C3F-4A12-B834-72F2C02202EA     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 47B91ADC-2079-40C1-927B-F9C38297AF80     1  0.1765      0.843 0.904 0.000 0.000 0.096 0.000 0.000
#> E11DB312-6ACB-4787-8A2B-AFD814F82900     4  0.3165      0.847 0.000 0.000 0.008 0.836 0.040 0.116
#> 969A8063-FE1C-426C-821D-BDC714F1E385     6  0.1080      0.779 0.000 0.032 0.004 0.000 0.004 0.960
#> 1816CF84-8DAF-4CC9-AD93-F3C5439082E7     2  0.3975      0.679 0.000 0.716 0.000 0.040 0.000 0.244
#> 6AE31A62-2F65-40FC-AE48-72B822AE64CA     6  0.0000      0.778 0.000 0.000 0.000 0.000 0.000 1.000
#> 6F7DB73C-FE46-402C-9001-DC2005278069     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> 16F2C47A-F5A6-483D-86E4-36F9CF6F35EB     4  0.0146      0.972 0.000 0.000 0.000 0.996 0.004 0.000
#> C8B6FE79-5718-46C2-8D75-6D91539EFA6B     2  0.0865      0.758 0.000 0.964 0.000 0.000 0.000 0.036
#> 53A37AC7-4504-4176-9B38-A3B2A7C6BE5B     6  0.0146      0.780 0.000 0.004 0.000 0.000 0.000 0.996
#> F25A7521-2596-4D60-BABE-862023C40D40     3  0.5496      0.472 0.000 0.008 0.592 0.240 0.160 0.000
#> 1F87CAF7-FDDF-4C01-817A-361EADB9EAB4     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 158EF652-E08F-4671-B2E1-AE48ACDD7E31     2  0.3869      0.181 0.000 0.500 0.000 0.000 0.000 0.500
#> AB2E57AC-5BB3-4849-9D48-C87BBF8B413F     1  0.0146      0.938 0.996 0.000 0.000 0.000 0.004 0.000
#> 31354101-6FAF-40DB-BC13-1A4889C8CCDB     5  0.3123      0.804 0.136 0.000 0.040 0.000 0.824 0.000
#> 3DFCF947-3A16-49B8-B7BB-4F2F2A0333E6     1  0.3789      0.580 0.668 0.000 0.004 0.000 0.004 0.324
#> 0FEC3F05-D63C-4631-AC08-CDC2D89BE67E     4  0.0692      0.964 0.000 0.000 0.004 0.976 0.020 0.000
#> AF06ED6A-EF09-4E84-A728-4988BFA90339     1  0.1814      0.866 0.900 0.000 0.000 0.000 0.000 0.100
#> BCEA34CA-360D-4776-BAD1-387F48E5550D     2  0.2624      0.756 0.000 0.844 0.004 0.000 0.004 0.148
#> A7D93D12-C461-4953-AB66-9458C1D2A06A     2  0.1745      0.767 0.000 0.920 0.000 0.000 0.012 0.068
#> AFC6EAFF-3B81-46F0-8C48-9270FF5BE164     3  0.1501      0.782 0.076 0.000 0.924 0.000 0.000 0.000
#> EE5C7BA5-055C-4D13-BA54-C5F85E6F9781     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> 7B0C596C-AA30-453E-B978-481B67BDC55B     4  0.3124      0.859 0.032 0.000 0.004 0.852 0.016 0.096
#> 092B3FA6-407C-40AB-8A96-29E5CEBC58C7     2  0.1588      0.767 0.000 0.924 0.004 0.000 0.000 0.072
#> D643D42B-D8D2-4B14-8576-279E9D3C6219     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> B3561356-5A80-4C79-B23A-D518425565FE     2  0.0405      0.746 0.000 0.988 0.000 0.004 0.000 0.008
#> F900E9BE-2400-4451-9434-EE8BC513BA94     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000 0.000
#> 6BC21C0D-3866-4503-A72C-BF550CB67E97     1  0.0146      0.938 0.996 0.000 0.000 0.000 0.004 0.000
#> 5DFB79B7-E93A-4E6A-A8E9-06F0863E8BC9     4  0.0146      0.972 0.000 0.000 0.000 0.996 0.004 0.000
#> 607034BC-E86A-424E-B8AA-3F2598CC7986     3  0.0790      0.812 0.000 0.032 0.968 0.000 0.000 0.000
#> AFAEF14F-81B6-493F-89BC-A689F699AD66     2  0.3862      0.273 0.000 0.524 0.000 0.000 0.000 0.476
#> 85DDCDE4-1535-48EE-8DBF-155A68A51909     4  0.0146      0.972 0.000 0.000 0.000 0.996 0.004 0.000
#> 472B75A2-A8C0-4503-B212-CADB781802EB     4  0.1957      0.925 0.000 0.008 0.008 0.912 0.072 0.000
#> F205F9FC-F2D5-4164-9A40-1279647F900B     4  0.2978      0.879 0.000 0.012 0.056 0.860 0.072 0.000
#> D82FECBA-9DB2-4376-BAAB-1AEA25CE4F67     6  0.0146      0.780 0.000 0.004 0.000 0.000 0.000 0.996
#> AAAA6565-B578-4F16-8651-00420EA3BBA9     1  0.0146      0.938 0.996 0.000 0.000 0.000 0.004 0.000
#> 12F54761-4F68-4181-8421-88EA858902FC     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 0.004
#> AD8F2E20-9D30-460B-A53C-3847C12464E9     4  0.0458      0.966 0.000 0.000 0.000 0.984 0.000 0.016
#> FA716037-886B-4DD0-8016-686C2D24550A     4  0.0146      0.971 0.000 0.000 0.000 0.996 0.004 0.000
#> 529FB954-9F8F-4D0C-95FB-130172C04FFF     2  0.1644      0.767 0.000 0.920 0.004 0.000 0.000 0.076
#> ACD42BD5-BC9C-460A-9672-A0CFAF3B96BE     3  0.2597      0.738 0.000 0.000 0.824 0.000 0.176 0.000
#> 13531B65-487B-4964-9AFA-4DE90C2DBBAE     5  0.2266      0.879 0.000 0.108 0.012 0.000 0.880 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0